

 Gradle in Action

 Benjamin Muschko

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 © 2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	

 	
 Development editor:
Copyeditor:
Proofreader:
Typesetter:
Cover designer:

 	
 Jennifer Stout
Benjamin Berg
Melody Dolab
Dennis Dalinnik
Marija Tudor

 ISBN: 9781617291302

 Printed in the United States of America

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introducing Gradle

 Chapter 1. Introduction to project automation

 Chapter 2. Next-generation builds with Gradle

 Chapter 3. Building a Gradle project by example

 2. Mastering the fundamentals

 Chapter 4. Build script essentials

 Chapter 5. Dependency management

 Chapter 6. Multiproject builds

 Chapter 7. Testing with Gradle

 Chapter 8. Extending Gradle

 Chapter 9. Integration and migration

 3. From build to deployment

 Chapter 10. IDE support and tooling

 Chapter 11. Building polyglot projects

 Chapter 12. Code quality management and monitoring

 Chapter 13. Continuous integration

 Chapter 14. Artifact assembly and publishing

 Chapter 15. Infrastructure provisioning and deployment

 Appendix A. Driving the command line

 Appendix B. Groovy for Gradle users

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introducing Gradle

 Chapter 1. Introduction to project automation

 1.1. Life without project automation

 1.2. Benefits of project automation

 1.2.1. Prevents manual intervention

 1.2.2. Creates repeatable builds

 1.2.3. Makes builds portable

 1.3. Types of project automation

 1.3.1. On-demand builds

 1.3.2. Triggered builds

 1.3.3. Scheduled builds

 1.4. Build tools

 1.4.1. What’s a build tool?

 1.4.2. Anatomy of a build tool

 1.5. Java build tools

 1.5.1. Apache Ant

 1.5.2. Apache Maven

 1.5.3. Requirements for a next-generation build tool

 1.6. Summary

 Chapter 2. Next-generation builds with Gradle

 2.1. Why Gradle? Why now?

 2.1.1. Evolution of Java build tools

 2.1.2. Why you should choose Gradle

 2.2. Gradle’s compelling feature set

 2.2.1. Expressive build language and deep API

 2.2.2. Gradle is Groovy

 2.2.3. Flexible conventions

 2.2.4. Robust and powerful dependency management

 2.2.5. Scalable builds

 2.2.6. Effortless extendibility

 2.2.7. Integration with other build tools

 2.2.8. Community-driven and company-backed

 2.2.9. Icing on the cake: additional features

 2.3. The bigger picture: continuous delivery

 2.3.1. Automating your project from build to deployment

 2.4. Installing Gradle

 2.5. Getting started with Gradle

 2.6. Using the Command line

 2.6.1. Listing available tasks of a project

 2.6.2. Task execution

 2.6.3. Command-line options

 2.6.4. Gradle daemon

 2.7. Summary

 Chapter 3. Building a Gradle project by example

 3.1. Introducing the case study

 3.1.1. The To Do application

 3.1.2. Task management use cases

 3.1.3. Examining the component interaction

 3.1.4. Building the application’s functionality

 3.2. Building a Java project

 3.2.1. Using the Java plugin

 3.2.2. Customizing your project

 3.2.3. Configuring and using external dependencies

 3.3. Web development with Gradle

 3.3.1. Adding web components

 3.3.2. Using the War and Jetty plugins

 3.4. Gradle wrapper

 3.4.1. Setting up the wrapper

 3.4.2. Using the wrapper

 3.4.3. Customizing the wrapper

 3.5. Summary

 2. Mastering the fundamentals

 Chapter 4. Build script essentials

 4.1. Building blocks

 4.1.1. Projects

 4.1.2. Tasks

 4.1.3. Properties

 4.2. Working with tasks

 4.2.1. Managing the project version

 4.2.2. Declaring task actions

 4.2.3. Accessing DefaultTask properties

 4.2.4. Defining task dependencies

 4.2.5. Finalizer tasks

 4.2.6. Adding arbitrary code

 4.2.7. Understanding task configuration

 4.2.8. Declaring task inputs and outputs

 4.2.9. Writing and using a custom task

 4.2.10. Gradle’s built-in task types

 4.2.11. Task rules

 4.2.12. Building code in buildSrc directory

 4.3. Hooking into the build lifecycle

 Internal task graph representation

 4.3.1. Hooking into the task execution graph

 4.3.2. Implementing a task execution graph listener

 4.3.3. Initializing the build environment

 4.4. Summary

 Chapter 5. Dependency management

 5.1. A quick overview of dependency management

 5.1.1. Imperfect dependency management techniques

 5.1.2. Importance of automated dependency management

 5.1.3. Using automated dependency management

 5.1.4. Challenges of automated dependency management

 5.2. Learning dependency management by example

 5.3. Dependency configurations

 5.3.1. Understanding the configuration API representation

 5.3.2. Defining a custom configuration

 5.3.3. Accessing a configuration

 5.4. Declaring dependencies

 5.4.1. Understanding the dependency API representation

 5.4.2. External module dependencies

 5.4.3. File dependencies

 5.5. Using and configuring repositories

 5.5.1. Understanding the repository API representation

 5.5.2. Maven repositories

 5.5.3. Ivy repositories

 5.5.4. Flat directory repositories

 5.6. Understanding the local dependency cache

 5.6.1. Analyzing the cache structure

 5.6.2. Notable caching features

 5.7. Troubleshooting dependency problems

 5.7.1. Responding to version conflicts

 5.7.2. Enforcing a specific version

 5.7.3. Using the dependency insight report

 5.7.4. Refreshing the cache

 5.8. Summary

 Chapter 6. Multiproject builds

 6.1. Modularizing a project

 6.1.1. Coupling and cohesion

 6.1.2. Identifying modules

 6.1.3. Refactoring to modules

 6.2. Assembling a multiproject build

 6.2.1. Introducing the settings file

 6.2.2. Understanding the Settings API representation

 6.2.3. Settings execution

 6.2.4. Settings file resolution

 6.2.5. Hierarchical versus flat layout

 6.3. Configuring subprojects

 6.3.1. Understanding the Project API representation

 6.3.2. Defining specific behavior

 6.3.3. Declaring project dependencies

 6.3.4. Partial multiproject builds

 6.3.5. Declaring cross-project task dependencies

 6.3.6. Defining common behavior

 6.4. Individual project files

 6.4.1. Creating build files per project

 6.4.2. Defining the root project’s build code

 6.4.3. Defining the subprojects’ build code

 6.5. Customizing projects

 6.6. Summary

 Chapter 7. Testing with Gradle

 7.1. Automated testing

 7.1.1. Types of automated testing

 7.1.2. Test automation pyramid

 7.2. Testing Java applications

 7.2.1. Project layout

 7.2.2. Test configurations

 7.2.3. Test tasks

 7.2.4. Automatic test detection

 7.3. Unit testing

 7.3.1. Using JUnit

 7.3.2. Using alternative unit testing frameworks

 7.3.3. Multiple unit testing frameworks in harmony

 7.4. Configuring test execution

 7.4.1. Command-line options

 7.4.2. Understanding the Test API representation

 7.4.3. Controlling runtime behavior

 7.4.4. Controlling test logging

 7.4.5. Parallel test execution

 7.4.6. Reacting to test lifecycle events

 7.4.7. Implementing a test listener

 7.5. Integration testing

 7.5.1. Introducing the case study

 7.5.2. Writing the test class

 7.5.3. Supporting integration tests in the build

 7.5.4. Establishing conventions for integration tests

 7.5.5. Bootstrapping the test environment

 7.6. Functional testing

 7.6.1. Introducing the case study

 7.6.2. Supporting functional tests in the build

 7.7. Summary

 Chapter 8. Extending Gradle

 8.1. Introducing the plugin case study

 8.1.1. Application management in the cloud with Gradle

 8.1.2. Setting up the cloud environment

 8.2. From zero to plugin

 8.3. Writing a script plugin

 8.3.1. Adding the CloudBees API library

 8.3.2. Using the CloudBees API from tasks

 8.4. Writing custom task classes

 8.4.1. Custom task implementation options

 8.4.2. Defining a custom task in buildSrc

 8.5. Using and building object plugins

 8.5.1. Applying object plugins

 8.5.2. Anatomy of an object plugin

 8.5.3. Writing an object plugin

 8.5.4. Plugin extension mechanism

 8.5.5. Assigning a meaningful plugin name

 8.5.6. Testing an object plugin

 8.5.7. Developing and consuming a standalone object plugin

 8.6. Summary

 Chapter 9. Integration and migration

 9.1. Ant and Gradle

 9.1.1. Using Ant script functionality from Gradle

 9.1.2. Using standard Ant tasks from Gradle

 9.1.3. Migration strategies

 9.2. Maven and Gradle

 9.2.1. Commonalities and differences

 9.2.2. Migration strategies

 9.3. Comparing builds

 9.4. Summary

 3. From build to deployment

 Chapter 10. IDE support and tooling

 10.1. Using IDE plugins to generate project files

 10.1.1. Using the Eclipse plugins

 10.1.2. Using the IDEA plugin

 10.1.3. Using the Sublime Text plugin

 10.2. Managing Gradle projects in popular IDEs

 10.2.1. Gradle support in SpringSource STS

 10.2.2. Gradle support in IntelliJ IDEA

 10.2.3. Gradle support in NetBeans IDE

 10.3. Embedding Gradle with the tooling API

 10.4. Summary

 Chapter 11. Building polyglot projects

 11.1. Managing JavaScript with Gradle

 11.1.1. Typical tasks when dealing with JavaScript

 11.1.2. Using JavaScript in the To Do application

 11.1.3. Dependency management for JavaScript libraries

 11.1.4. Merging and minifying JavaScript using a third-party Ant task

 11.1.5. JavaScript optimization as part of the development workflow

 11.1.6. JavaScript code analysis using an external Java library

 11.1.7. Using a third-party Gradle JavaScript plugin

 11.1.8. Executing Grunt from Gradle

 11.2. Building polyglot, JVM-based projects

 11.2.1. Base capabilities of JVM language plugins

 11.2.2. Building Groovy projects

 11.2.3. Building Scala projects

 11.3. Other languages

 11.4. Summary

 Chapter 12. Code quality management and monitoring

 12.1. Integrating code analysis into your build

 12.2. Measuring code coverage

 12.2.1. Exploring code coverage tools

 12.2.2. Using the JaCoCo plugin

 12.2.3. Using the Cobertura plugin

 12.3. Performing static code analysis

 12.3.1. Exploring static code analysis tools

 12.3.2. Using the Checkstyle plugin

 12.3.3. Using the PMD plugin

 12.3.4. Using the FindBugs plugin

 12.3.5. Using the JDepend plugin

 12.4. Integrating with Sonar

 12.4.1. Installing and running Sonar

 12.4.2. Analyzing a project with Sonar Runner

 12.4.3. Publishing code coverage metrics to Sonar

 12.5. Summary

 Chapter 13. Continuous integration

 13.1. Benefits of continuous integration

 13.2. Setting up Git

 13.2.1. Creating a GitHub account

 13.2.2. Forking the GitHub repository

 13.2.3. Installing and configuring Git

 13.3. Building a project with Jenkins

 13.3.1. Starting Jenkins

 13.3.2. Installing the Git and Gradle plugins

 13.3.3. Defining the build job

 13.3.4. Executing the build job

 13.3.5. Adding test reporting

 13.4. Exploring cloud-based solutions

 13.5. Modeling a build pipeline with Jenkins

 13.5.1. Challenges of building a pipeline

 13.5.2. Exploring essential Jenkins plugins

 13.5.3. Configuring the pipeline jobs

 13.6. Summary

 Chapter 14. Artifact assembly and publishing

 14.1. Building artifacts and distributions

 14.1.1. Declaring additional artifacts

 14.1.2. Creating distributions

 14.2. Publishing artifacts to a binary repository

 14.2.1. Publishing to a Maven repository

 14.2.2. Old versus new publishing mechanisms

 14.2.3. Declaring a software component as a Maven publication

 14.2.4. Publishing a software component to the local Maven cache

 14.2.5. Declaring custom artifacts for publication

 14.2.6. Modifying the generated POM

 14.2.7. Publishing to a local Maven repository

 14.2.8. Publishing to a remote Maven repository

 14.3. Publishing to a public binary repository

 14.3.1. Publishing to JFrog Bintray

 14.3.2. Publishing to Maven Central

 14.4. Artifact assembly and publishing as part of the build pipeline

 14.4.1. Build binaries once

 14.4.2. Publish once, reuse later

 14.4.3. Picking an appropriate versioning scheme

 14.4.4. Including build information in a deployable artifact

 14.4.5. Publishing your To Do application WAR file

 14.4.6. Extending the build pipeline

 14.5. Summary

 Chapter 15. Infrastructure provisioning and deployment

 15.1. Infrastructure provisioning

 15.1.1. Infrastructure as code

 15.1.2. Creating a virtual machine with Vagrant and Puppet

 15.1.3. Executing Vagrant from Gradle

 15.2. Targeting a deployment environment

 15.2.1. Defining configuration in a Groovy script

 15.2.2. Reading the configuration with Groovy’s ConfigSlurper

 15.2.3. Using the configuration throughout the build

 15.3. Automated deployments

 15.3.1. Retrieving the artifact from the binary repository

 15.3.2. Identifying necessary deployment steps

 15.3.3. Deployment through SSH commands

 15.4. Deployment tests

 15.4.1. Verifying a successful deployment with smoke tests

 15.4.2. Verifying application functionality with acceptance tests

 15.5. Deployment as part of the build pipeline

 15.5.1. Automatic deployment to test environment

 15.5.2. Deployment tests

 15.5.3. On-demand deployment to UAT and production environment

 15.6. Summary

 Appendix A. Driving the command line

 A.1. Discovery tasks

 A.2. Build setup tasks

 A.3. Configuration input

 A.3.1. Common options

 A.3.2. Property options

 A.3.3. Logging options

 A.3.4. Caching options

 A.3.5. Daemon options

 Appendix B. Groovy for Gradle users

 B.1. What is Groovy?

 B.2. How much Groovy do I need to know?

 B.3. Comparing Java and Groovy syntax

 B.4. Essential Groovy features

 B.4.1. Assert statement

 B.4.2. Optional data type declaration

 B.4.3. Optional parentheses

 B.4.4. Strings

 B.4.5. Groovy Strings (GStrings)

 B.4.6. Collections API

 B.4.7. Named parameters

 B.4.8. Closures

 B.4.9. Groovy Development Toolkit

 B.5. Applied Groovy in Gradle build scripts

 Index

 List of Figures

 List of Tables

 List of Listings

 front matter

Foreword

 When you create a new technology like Gradle, one of the most critical stages of development has nothing to do with writing code. Once the initial versions of your project are used by thousands of developers and a community starts to assemble around it, the challenge becomes communicating with a much larger audience of users who will use the project and pass judgment on its merits, and growing the size of the community ten-fold or a thousand-fold. Gradle has already amassed a large audience, and we’ve seen tremendous growth over the last two years, but we’re getting ready for a still larger influx of end-users.

 Therefore, the importance of having a good book cannot be overstated. Developers with a range of skills and abilities need to be able to pick up a book that’s easy to understand and which can impart both the syntax and the philosophy behind the tool. Only then will they be able to confidently grow the community that can educate itself using a single, authoritative reference for Gradle. Gradle in Action is that book. Additionally, this book gives new Gradle users a very good glimpse into how Gradle fits into a larger view of continuous delivery.

 Benjamin is the sort of expert that you hope emerges from an open source community. He has been a long term Gradle contributor and is the author of several popular Gradle plugins. He’s both a communicator and a developer. Benjamin has the rare ability to dive into the core details of a particularly challenging development problem and then explain the tool to end-users. We’re happy that he has recently joined Gradleware and is now part of the Gradle development team.

 I hope you enjoy the book as well as working with Gradle. May your software delivery process become both fun and efficient.

 HANS DOCKTER

 FOUNDER OF GRADLE AND GRADLEWARE

Preface

 When I started my career as a software developer, I was blissfully unaware of the need for project automation. My tool of choice was the IDE, which allowed me to run all tasks required to fully automate my software development cycle. In 2003 Rainer Sawitzki,[1] an external consultant to the project I was working on, introduced me to Apache Ant. I thought it was the most amazing thing to be able to describe my automation logic with the help of mostly pre-existing functionality and to execute it in a defined order. Despite the fact that the definition language was XML (these were the days when XML was still fashionable), I soon began to become more ambitious by creating artifacts for different target platforms, writing deployment logic for web containers, and setting up a continuous integration server.

 1 Thanks again for the object-oriented mindset I picked up by working with you. You’ve been a great mentor to me.

 Automation requirements have changed significantly since then. My projects have grown in size and complexity. Deployment and delivery models have become far more sophisticated. And while I explored other build tool options to meet these needs over the years, I found that there was always a Catch-22. Many developers accepted the status quo in this space, which left them with painful experiences. Rarely is there a topic that’s discussed more religiously[2] than the pros and cons of build tools and why people hate them so much. The purpose of this book isn’t necessarily to convince you to switch your current build to Gradle. If you’re happy with your setup (whatever you’re using), by all means, stick to it. I will, however, talk about the massive innovation that Gradle brings to the table and compare it to existing solutions. I invite you to be your own judge.

 2 This topic is on par with Windows versus Linux or the comparison of web application frameworks.

 I started to write this book with a specific goal in mind: teach the core concepts of Gradle, but don’t stop there. In a world that embraces software development practices like continuous integration and delivery, you have to take into consideration the tooling ecosystem into which a build system must integrate. Hopefully, I’ve found the right balance in this book. If you have questions, comments, or ideas, I’d love to hear them. Your feedback might spark the urge to write a second edition or add-on content. Feel free to send me an email or contact me on the book’s forum at Manning.

 As with all book projects, the page count is limited. To stick to the scope of this book, I had to leave out some of the content I initially planned to write. (This is my first book. With the naiveté of a virgin author, I thought I could fit it all in.) The source code repository of the book, found at https://github.com/bmuschko/gradle-in-action-source, expands on some of this material and lists references to other code examples and resources. I hope you enjoy reading the book as much as I enjoyed writing it.

Acknowledgments

 When thinking about writing a book, you have no idea how much work it’s going to be. It’s safe to say that it literally controls your life for an extended period of time. After a while, the writing part becomes easier. The hard part is to start writing every day. This wouldn’t have been possible without the support, encouragement, and help of others.

 In 2010, I started to evaluate Gradle for the first time as a replacement for a Maven project for a previous employer. I probably wouldn’t have done that without the spike initiated by Jonathan Bodner, a long-term acquaintance, whom I deeply admire for his technical insight. He started me on my way to getting excited about Gradle, becoming deeply involved with its community, and writing plugins of my own.

 I’ve been a technical reviewer for books published by Manning for many years before writing my own. It started when I met Dan Allen, the author of Seam in Action (Manning, 2008), at one of the No Fluff Just Stuff conferences. After chatting with me for a while, he quickly got me excited about his endeavors and I offered to help him by reviewing his book. My engagement got me a first glimpse of what it means to write a book. I had always wanted to write a book, but never found the appropriate time or topic to jump on it. With Gradle, it just felt right. Thanks, Dan, for your enthusiasm that inspired me to carry on the torch and make it my own.

 One of the first things you do before writing a book is put together the outline and table of contents. The first person I showed the draft to was David James, the organizer of the Washington DC–area Groovy user group. Thanks for your outside perspective on the organization of the book, your meticulous attention to detail, and your strong encouragement to make the book a reality.

 No commercial book is published without many people in the background. This goes out to everyone involved in the process at Manning Publications. Michael Stephens, who I talked to first, bought into the idea of this book and ultimately trusted me to do a good job. My gratitude also goes to Cynthia Kane, who helped me to find my writing style. I’d also like to thank Jennifer Stout, my development editor, who always tried to get the best out of me, made me think about whole text passages in a different way, and tolerated my impatience. You’ve been a great help. Thanks also to the whole Manning production and marketing team for guidance along the way and for making the book what it is now. I know you did a tremendous amount of work.

 I’d also like to thank the members of the Gradleware team, as well as the Gradle community, for creating Gradle and pushing the boundaries of build automation. Your continued effort and belief in a high-quality product improves the life of many disgruntled build masters around the globe. Special thanks go out to René Gröschke and Luke Daley for their technical insight and their review of the first third of the book. I am also grateful to Hans Dockter, the founder of Gradle, for contributing the foreword and endorsing this book in its early stages, and for the continued promotion through Gradleware.

 Thanks to the following reviewers of the manuscript who provided invaluable feedback and gave me a different perspective on the content: Andy Keffalas, BJ Peter DeLaCruz, Chris Grijalva, Chris Nauroth, Dominik Helleberg, Eric Wendelin, Iain Starks, John Moses, Jon Bodner, Marcin Nowina-Krowicki, Mayur S. Patil, Mehrdad Karjoo, Mohd Suhaizal Md Kamari, Nacho Ormeño, Nick Watts, Pawel Dolega, Rob Bugh, Robin Percy, Samuel Brown, Scott Bennett-McLeish, Steve Dickson, Tarin Gamberini, Wellington R. Pinheiro, and Zekai Otles. Thanks also to Barry Kern for his careful technical proofread of the manuscript shortly before it went into production.

 Special thanks to Spencer Allain, Jonathan Keam, and Robert Wenner for thoroughly reading every chapter of the book and providing me with line-by-line edits and comments at different stages of development; Michael McGarr and Samuel Brown for bouncing around ideas that involved content on continuous delivery and DevOps; and Baruch Sadogursky from JFrog for the technical review of chapter 14 and for promoting the book even before it was released. I also wish to thank the relentless Author Online forum participants for pushing the content to the next level.

 Writing a book requires making sacrifices and puts tremendous strain on personal relationships. I would like to thank my family and friends for being supportive, encouraging, and understanding while I’ve worked toward completing this ambitious goal. And, yes, there will be time for hanging out without me thinking about the content of the current chapter.

 I’m deeply grateful to my wife Sarah for her unending support and optimism. You pushed me to believe in myself, made me take breaks from writing, and tolerated me falling asleep before 9:00 p.m. most days. Without you, the writing process would have been far more grueling than it was.

About this Book

Roadmap

 This book is divided into three parts. The first part gives an introduction to Gradle’s concepts and philosophy, explaining how it compares to other build tools and how to write scripts to automate simple tasks. Part two explores the tool’s building blocks and core techniques in greater depth. You should be able to use this knowledge to implement complex, extendable, enterprise builds. The third part describes how Gradle can be used in the context of continuous deliver, focusing on topics like polyglot builds, code quality, artifact assembly, and deployment.

 The chapters in part 1, Introducing Gradle, are as follows:

 1. Introduction to project automation—This chapter gives a gentle introduction into why it’s a good idea to automate your projects and how build tools can help get the job done.

 2. Next generation builds with Gradle—How does Gradle compare to existing JVM-language build tools? This chapter covers Gradle’s extensive feature set and how it helps automate your software delivery process in the context of a Continuous Delivery deployment pipeline. As a first taste, you’ll write a simple build script and run it on the command line.

 3. Building a Gradle project by example—This chapter introduces a Java-based web application as a vehicle to demonstrate some of Gradle’s core features. We’ll explore the use of the Java plugin for standardized and nonconventional use cases and examine productivity tools for fast development turnaround.

 Part 2, Mastering the fundamentals, focuses on applying important Gradle concepts to the case study introduced in part 1:

 4. Build script essentials—What are the main building blocks of a Gradle project? This chapter discusses the use of important domain objects, namely projects and tasks. We’ll touch on how these objects map to the corresponding classes in the Gradle API, Gradle’s build lifecycle, the incremental build feature, and the mechanics of registering lifecycle hooks.

 5. Dependency management—No enterprise project can do without reusing functionality from external libraries. This chapter explores Gradle’s declarative support for dependency management, version conflict resolution strategies, and the inner workings of its cache.

 6. Multiproject builds—Does your project consist of multiple, modularized software components? This chapter covers the options for organizing build logic in a multiproject setting, how to declare project dependencies, and the use of partial builds to improve execution time.

 7. Testing with Gradle—Testing your code is an important activity of the software development lifecycle. By the end of this chapter, you’ll write tests with JUnit, TestNG, and Spock and execute them as part of the build lifecycle. You’ll also learn how to configure test execution, register listeners to react to test lifecycle events, and organize different types of tests with the help of source sets.

 8. Extending Gradle—Gradle provides an extensible domain object model. If you want to add completely new functionality to a project or extend the existing domain model, this chapter is for you. You’ll learn how to write your own plugin to deploy your sample application to the cloud.

 9. Integration and migration—In this chapter, we’ll look at how Gradle integrates with Ant and Maven. We’ll also explore migration strategies in case you decide to go with Gradle long term.

 Part 3, From build to deployment, examines how Gradle can be used to bring the example application from the developer’s machine into the production environment with the help of a build pipeline:

 10. IDE support and tooling—IDEs are key enablers for boosting developer productivity. This chapter explains Gradle’s capabilities for generating project files for popular IDEs like Eclipse, IntelliJ, and NetBeans. We also discuss how to navigate and manage Gradle-backed projects within these IDEs.

 11. Building polyglot projects—In this chapter, we’ll discuss how Gradle faces the challenge of organizing and building polyglot projects by using your case study application as an example. The languages you’ll integrate include JavaScript, Groovy, and Scala.

 12. Code quality management and monitoring—In this chapter we’ll focus on tools that measure code quality and visualize the results to help you pinpoint problem areas in your code. By the time you finish this chapter, you’ll know how to integrate code quality tools with your build.

 13. Continuous integration—Continuous integration (CI) is a software development practice where source code is integrated frequently, optimally multiple times a day. This chapter discusses the installation and configuration procedures needed to run Gradle on Jenkins, an open-source CI server.

 14. Artifact assembly and publishing—A build either consumes or produces binary artifacts. This chapter explores the artifact assembly process and the configuration needed to publish artifacts, including their metadata, to a binary repository.

 15. Infrastructure provisioning and deployment—A configured target environment is a prerequisite for any software deployment. In this chapter, we’ll discuss the importance of “infrastructure as code” for setting up and configuring an environment and its services in an automated fashion. Later, you’ll implement an exemplary deployment process with Gradle.

 Two appendixes cover additional topics:

 A. Driving the command line—This appendix explains how to operate Gradle from the command line. We’ll explore tasks available to all Gradle builds, plus command line options and their use cases.

 B. Groovy for Gradle users—If you’re new to Groovy, this appendix provides you with a gentle introduction to the most important and widely used language features.

Who should read the book?

 This book is primarily for developers and build automation engineers who want to implement a repeatable build that’s easy to read and extend. I assume that you have a basic understanding of an object-oriented programming language. You’ll get the most out of the content if you have a working knowledge of Java.

 In this book, you’ll use a lot of Groovy; however, I don’t assume you already have experience with the language. For a jump-start on Groovy, look at appendix B, Groovy for Gradle users. The appendix also provides additional references to books that dig deeper into more advanced aspects of the language.

 Throughout the chapters, we’ll touch on topics you can’t circumnavigate when dealing with automated builds. It will be helpful to have some knowledge of tools like Ant, Ivy, and Maven; practices like continuous integration and delivery; and concepts like dependency management. But don’t worry if that’s not your technical background. Every chapter will explain the “why” in great detail.

Code conventions and downloads

 Source code in listings and text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the code listings and highlight important concepts.

 The full source code is available from the publisher’s website at www.manning.com/GradleInAction and from the GitHub repository at https://github.com/bmuschko/gradle-in-action-source. You’ll find additional references to source code repositories that either take some examples from the book to the next level or demonstrate the use of Gradle in contexts not covered in the book.

Author Online

 The purchase of Gradle in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and other users. To access the forum and subscribe to it, visit http://www.manning.com/GradleInAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to readers is to provide a venue for meaningful dialogue between individual readers and between readers and the author. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). Let your voice be heard, and keep the author on his toes!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the author

 Benjamin Muschko is a software engineer with more than 10 years of experience in developing and delivering business applications. He is a member of the Gradleware engineering team and developer of several popular Gradle plugins.

About the Cover Illustration

 The figure on the cover of Gradle in Action is captioned a “Woman from Istria,” which is a large peninsula in the Adriatic Sea, off Croatia. This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist who spent many years studying the botany, geology, and ethnography of many parts of the Austrian Empire, as well as the Veneto, the Julian Alps, and the western Balkans, inhabited in the past by peoples of the Illyrian tribes. Hand-drawn illustrations accompany the many scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of the eastern Alpine and northwestern Balkan regions just 200 years ago. This was a time when the dress codes of two villages separated by a few miles identified people uniquely as belonging to one or the other, and when members of a social class or trade could be easily distinguished by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another and today the inhabitants of the picturesque towns and villages in the Slovenian Alps or Balkan coastal towns are not readily distinguishable from the residents of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on costumes from two centuries ago brought back to life by illustrations such as this one.

 Part 1. Introducing Gradle

 Efficient project automation is one of the key enablers for delivering software to the end user. The build tool of choice shouldn’t stand in the way of this effort; rather, it should provide you with a flexible and maintainable way to model your automation needs. Gradle’s core strength is that it provides you with easy-to-understand but powerful tooling to automate your project end-to-end.

 In chapter 1, we’ll discuss the benefits of project automation and its impact on the ability to develop and deliver software in a repeatable, reliable, and portable fashion. You’ll learn the basic concepts and components of a build tool and how they’re implemented with Ant and Maven. By comparing their pros and cons, you’ll see the need for a next-generation build tool.

 Gradle draws on lessons learned from established build tools and takes their best ideas to the next level. Chapter 2 introduces you to Gradle’s compelling feature set. You’ll install the Gradle runtime and explore how to write and execute a simple build script from the command line.

 Simple build scripts only go so far. Chapter 3 introduces a real-world Java-based web application. You’ll learn the configuration needed to compile, unit-test, package, and run the sample. By the end of part 1, you’ll have a feel for Gradle’s expressiveness and flexibility.

 Chapter 1. Introduction to project automation

 This chapter covers:

 	Understanding the benefits of project automation

 	Getting to know different types of project automation

 	Surveying the characteristics and architecture of build tools

 	Exploring the pros and cons of build tool implementations

 Tom and Joe work as software developers for Acme Enterprises, a startup company that offers a free online service for finding the best deals in your area. The company recently received investor funding and is now frantically working toward its first official launch. Tom and Joe are in a time crunch. By the end of next month, they’ll need to present a first version of the product to their investors. Both developers are driven individuals, and they pump out features daily. So far, development of the software has stayed within the time and budget constraints, which makes them happy campers. The chief technology officer (CTO) pats them on the back; life is good. However, the manual and error-prone build and delivery process slows them down significantly. As a result, the team has to live with sporadic compilation issues, inconsistently built software artifacts, and failed deployments. This is where build tools come in.

 This chapter will give you a gentle introduction into why it’s a good idea to automate your project and how build tools can help get the job done. We’ll talk about the benefits that come with sufficient project automation, the types and characteristics of project automation, and the tooling that enables you to implement an automated process.

 Two traditional build tools dominate Java-based projects: Ant and Maven. We’ll go over their main features, look at some build code, and talk about their shortcomings. Lastly, we’ll discuss the requirements for a build tool that will fulfill the needs of modern-day project automation.

1.1. Life without project automation

 Going back to Tom and Joe’s predicament, let’s go over why project automation is such a no-brainer. Believe it or not, lots of developers face the following situations. The reasons are varied, but probably sound familiar.

 	
My IDE does the job. At Acme, developers do all their coding within the IDE, from navigating through the source code, implementing new features, and compiling and refactoring code, to running unit and integration tests. Whenever new code is developed, they press the Compile button. If the IDE tells them that there’s no compilation error and the tests are passing, they check the code into version control so it can be shared with the rest of the team. The IDE is a powerful tool, but every developer will need to install it first with a standardized version to be able to perform all of these tasks, a lesson Joe learns when he uses a new feature only supported by the latest version of the compiler.

 	
It works on my box. Staring down a ticking clock, Joe checks out the code from version control and realizes that it doesn’t compile anymore. It seems like one of the classes is missing from the source code. He calls Tom, who’s puzzled that the code doesn’t compile on Joe’s machine. After discussing the issue, Tom realizes that he probably forgot to check in one of his classes, which causes the compilation process to fail. The rest of the team is now blocked and can’t continue their work until Tom checks in the missing source file.

 	
The code integration is a complete disaster. Acme has two different development groups, one specializing in building the web-based user interface and the other working on the server-side backend code. Both teams sit together at Tom’s computer to run the compilation for the whole application, build a deliverable, and deploy it to a web server in a test environment. The first cheers quickly fade when the team sees that some of the functionality isn’t working as expected. Some of the URLs simply don’t resolve or result in an error. Even though the team wrote some functional tests, they didn’t get exercised regularly in the IDE.

 	
The testing process slows to a crawl. The quality assurance (QA) team is eager to get their hands on a first version of the application. As you can imagine, they aren’t too happy about testing low-quality software. With every fix the development team puts into place, they have to run through the same manual process. The team stops to check new changes into version control, a new version is built from an IDE, and the deliverable is copied to the test server. Each and every time, a developer is fully occupied and can’t add any other value to the company. After weeks of testing and a successful demo to the investor, the QA team says the application is ready for prime time.

 	
Deployment turns into a marathon. From experience, the team knows that the outcome of deploying an application is unpredictable due to unforeseen problems. The infrastructure and runtime environment has to be set up, the database has to be prepared with seed data, the actual deployment of the application has to happen, and initial health monitoring needs to be performed. Of course, the team has an action plan in place, but each of the steps has to be executed manually.

 The product launch is a raving success. The following week, the CTO swings by the developers’ desks; he already has new ideas to improve the user experience. A friend has told him about agile development, a time-boxed iterative approach for implementing and releasing software. He proposes that the team introduces two-week release cycles. Tom and Joe look at each other, both horrified at the manual and repetitive work that lies ahead. Together, they plan to automate each step of the implementation and delivery process to reduce the risk of failed builds, late integration, and painful deployments.

1.2. Benefits of project automation

 This story makes clear how vital project automation is for team success. These days, time to market has become more important than ever. Being able to build and deliver software in a repeatable and consistent way is key. Let’s look at the benefits of automating your project.

 1.2.1. Prevents manual intervention

 Having to manually perform steps to produce and deliver software is time-consuming and error-prone. Frankly, as a developer and system administrator, you have better things to do than to handhold a compilation process or to copy a file from directory A to directory B. We’re all human. Not only can you make mistakes along the way, manual intervention also takes away from the time you desperately need to get your actual work done. Any step in your software development process that can be automated should be automated.

 1.2.2. Creates repeatable builds

 The actual building of your software usually follows predefined and ordered steps. For example, you compile your source code first, then run your tests, and lastly assemble a deliverable. You’ll need to run the same steps over and over again—every day. This should be as easy as pressing a button. The outcome of this process needs to be repeatable for everyone who runs the build.

 1.2.3. Makes builds portable

 You’ve seen that being able to run a build from an IDE is very limiting. First of all, you’ll need to have the particular product installed on your machine. Second, the IDE may only be available for a specific operating system. An automated build shouldn’t require a specific runtime environment to work, whether this is an operating system or an IDE. Optimally, the automated tasks should be executable from the command line, which allows you to run the build from any machine you want, whenever you want.

1.3. Types of project automation

 You saw at the beginning of this chapter that a user can request a build to be run. A user can be any stakeholder who wants to trigger the build, like a developer, a QA team member, or a product owner. Our friend Tom, for example, pressed the Compile button in his IDE whenever he wanted the code to be compiled. On-demand automation is only one type of project automation. You can also schedule your build to be executed at predefined times or when a specific event occurs.

 1.3.1. On-demand builds

 The typical use case for on-demand automation is when a user triggers a build on his or her machine, as shown in figure 1.1. It’s common practice that a version control system (VCS) manages the versioning of the build definition and source code files.

 Figure 1.1. On-demand builds execute build definitions backed by a VCS.

 [image:]

 In most cases, the user executes a script on the command line that performs tasks in a predefined order—for example, compiling source code, copying a file from directory A to directory B, or assembling a deliverable. Usually, this type of automation is executed multiple times per day.

 1.3.2. Triggered builds

 If you’re practicing agile software development, you’re interested in receiving fast feedback about the health of your project. You’ll want to know if your source code can be compiled without any errors or if there’s a potential software defect indicated by a failed unit or integration test. This type of automation is usually triggered if code was checked into version control, as shown in figure 1.2.

 Figure 1.2. Build triggered by a check-in of files into VCS

 [image:]

 1.3.3. Scheduled builds

 Think of scheduled automation as a time-based job scheduler (in the context of a Unix-based operation system, also known as a cron job). It runs in particular intervals or at concrete times—for example, every morning at 1:00 a.m. or every 15 minutes. As with all cron jobs, scheduled automation generally runs on a dedicated server. Figure 1.3 shows a scheduled build that runs every morning at 5:00 a.m. This kind of automation is particularly useful for generating reports or documentation for your project.

 Figure 1.3. Scheduled build initiated at 5:00 a.m. daily

 [image:]

 The practice that implements scheduled and triggered builds is commonly referred to as continuous integration (CI). You’ll learn more about CI in chapter 13. After identifying the benefits and types of project automation, it’s time to discuss the tools that allow you to implement this functionality.

1.4. Build tools

 Naturally, you may ask yourself why you’d need another tool to implement automation for your project. You could just write the logic as an executable script, such as a shell script. Think back to the goals of project automation we discussed earlier. You want a tool that allows you to create a repeatable, reliable, and portable build without manual intervention. A shell script wouldn’t be easily portable from a UNIX-based system to a Windows-based system, so it doesn’t meet your criteria.

 1.4.1. What’s a build tool?

 What you need is a programming utility that lets you express your automation needs as executable, ordered tasks. Let’s say you want to compile your source code, copy the generated class files into a directory, and assemble a deliverable that contains the class files. A deliverable could be a ZIP file, for example, that can be distributed to a runtime environment. Figure 1.4 shows the tasks and their execution order for the described scenario.

 Figure 1.4. A common scenario of tasks executed in a predefined order

 [image:]

 Each of these tasks represents a unit of work—for example, compilation of source code. The order is important. You can’t create the ZIP archive if the required class files haven’t been compiled. Therefore, the compilation task needs to be executed first.

 Directed Acyclic Graph

 Internally, tasks and their interdependencies are modeled as a directed acyclic graph (DAG). A DAG is a data structure from computer science and contains the following two elements:

 	
Node: A unit of work; in the case of a build tool, this is a task (for example, compiling source code).

 	
Directed edge: A directed edge, also called an arrow, representing the relationship between nodes. In our situation, the arrow means depends on. If a task defines dependent tasks, they’ll need to execute before the task itself can be executed. Often this is the case because the task relies on the output produced by another task. Here’s an example: to execute the task “assemble deliverable,” you’ll need to run its dependent tasks “copy class files to directory” and “compile source code.”

 Each node knows about its own execution state. A node—and therefore the task—can only be executed once. For example, if two different tasks depend on the task “source code compilation,” you only want to execute it once. Figure 1.5 shows this scenario as a DAG.

 Figure 1.5. DAG representation of tasks

 [image:]

 You may have noticed that the nodes are shown in an inverted order from the tasks in figure 1.4. This is because the order is determined by node dependencies. As a developer, you won’t have to deal directly with the DAG representation of your build. This job is done by the build tool. Later in this chapter, you’ll see how some Java-based build tools use these concepts in practice.

 1.4.2. Anatomy of a build tool

 It’s important to understand the interactions among the components of a build tool, the actual definition of the build logic, and the data that goes in and out. Let’s discuss each of the elements and their particular responsibilities.

 Build file

 The build file contains the configuration needed for the build, defines external dependencies such as third-party libraries, and contains the instructions to achieve a specific goal in the form of tasks and their interdependencies. Figure 1.6 illustrates a build file that describes four tasks and how they depend on each other.

 Figure 1.6. The build file expresses the rules of your build expressed by tasks and their interdependencies.

 [image:]

 The tasks we discussed in the scenario earlier—compiling source code, copying files to a directory, and assembling a ZIP file—would be defined in the build file. Oftentimes, a scripting language is used to express the build logic. That’s why a build file is also referred to as a build script.

 Build inputs and outputs

 A task takes an input, works on it by executing a series of steps, and produces an output. Some tasks may not need any input to function correctly, nor is creating an output considered mandatory. Complex task dependency graphs may use the output of a dependent task as input. Figure 1.7 demonstrates the consumption of inputs and the creation of outputs in a task graph.

 Figure 1.7. Task inputs and outputs

 [image:]

 I already mentioned an example that follows this workflow. We took a bunch of source code files as input, compiled them to classes, and assembled a deliverable as output. The compilation and assembly processes each represent one task. The assembly of the deliverable only makes sense if you compiled the source code first. Therefore, both tasks need to retain their order.

 Build engine

 The build file’s step-by-step instructions or rule set must be translated into an internal model the build tool can understand. The build engine processes the build file at runtime, resolves dependencies between tasks, and sets up the entire configuration needed to command the execution, as shown in figure 1.8.

 Figure 1.8. The build engine translates the rule set into an internal model representation that is accessed during the runtime of the build.

 [image:]

 Once the internal model is built, the engine will execute the series of tasks in the correct order. Some build tools allow you to access this model via an API to query for this information at runtime.

 Dependency Manager

 The dependency manager is used to process declarative dependency definitions for your build file, resolve them from an artifact repository (for example, the local file system, an FTP, or an HTTP server), and make them available to your project. A dependency is generally an external, reusable library in the form of a JAR file (for example, Log4J for logging support). The repository acts as storage for dependencies, and organizes and describes them by identifiers, such as name and version. A typical repository can be an HTTP server or the local file system. Figure 1.9 illustrates how the dependency manager fits into the architecture of a build tool.

 Figure 1.9. The dependency manager retrieves external dependencies and makes them available to your build.

 [image:]

 Many libraries depend on other libraries, called transitive dependencies. The dependency manager can use metadata stored in the repository to automatically resolve transitive dependencies as well. A build tool is not required to provide a dependency management component.

1.5. Java build tools

 In this section, we look at two popular, Java-based build tools: Ant and Maven. We’ll discuss their characteristics, see a sample script in action, and outline the shortcomings of each tool. Let’s start with the tool that’s been around the longest—Ant.

 1.5.1. Apache Ant

 Apache Ant (Another Neat Tool) is an open source build tool written in Java. Its main purpose is to provide automation for typical tasks needed in Java projects, such as compiling source files to classes, running unit tests, packaging JAR files, and creating Javadoc documentation. Additionally, it provides a wide range of predefined tasks for file system and archiving operations. If any of these tasks don’t fulfill your requirements, you can extend the build with new tasks written in Java.

 While Ant’s core is written in Java, your build file is expressed through XML, which makes it portable across different runtime environments. Ant does not provide a dependency manager, so you’ll need to manage external dependencies yourself. However, Ant integrates well with another Apache project called Ivy, a full-fledged, standalone dependency manager. Integrating Ant with Ivy requires additional effort and has to be done manually for each individual project. Let’s look at a sample build script.

 Build Script Terminology

 To understand any Ant build script, you need to start with some quick nomenclature. A build script consists of three basic elements: the project, multiple targets, and the used tasks. Figure 1.10 illustrates the relationship between each of the elements.

 Figure 1.10. Ant’s hierarchical build script structure with the elements project, target, and task

 [image:]

 In Ant, a task is a piece of executable code—for example, for creating a new directory or moving a file. Within your build script, use a task by its predefined XML tag name. The task’s behavior can be configured by its exposed attributes. The following code snippet shows the usage of the javac Ant task for compiling Java source code within your build script:

 [image:]

 While Ant ships with a wide range of predefined tasks, you can extend your build script’s capabilities by writing your own task in Java.

 A target is a set of tasks you want to be executed. Think of it as a logical grouping. When running Ant on the command line, provide the name of the target(s) you want to execute. By declaring dependencies between targets, a whole chain of commands can be created. The following code snippet shows two dependent targets:

 [image:]

 Mandatory to all Ant projects is the overarching container, the project. It’s the top-level element in an Ant script and contains one or more targets. You can only define one project per build script. The following code snippet shows the project in relation to the targets:

 [image:]

 With a basic understanding of Ant’s hierarchical structure, let’s look at a full-fledged scenario of a sample build script.

 Sample build script

 Say you want to write a script that compiles your Java source code in the directory src using the Java compiler and put it into the output directory build. Your Java source code has a dependency on a class from the external library Apache Commons Lang. You tell the compiler about it by referencing the library’s JAR file in the classpath. After compiling the code, you want to assemble a JAR file. Each unit of work, source code compilation, and JAR assembly will be grouped in an individual target. You’ll also add two more targets for initializing and cleaning up the required output directories. The structure of the Ant build script you’ll create is shown in figure 1.11.

 Figure 1.11. Hierarchical project structure of sample Ant build script

 [image:]

 Let’s get down to business. It’s time to implement this example as an Ant build script. The following listing shows the whole project and the targets required to achieve your goal.

 Listing 1.1. Ant script with targets for compiling source code and assembling JAR file

 [image:]

 Ant doesn’t impose any restrictions on how to define your build’s structure. This makes it easy to adapt to existing project layouts. For example, the source and output directories in the sample script have been chosen arbitrarily. It would be very easy to change them by setting a different value to their corresponding properties. The same is true for target definition; you have full flexibility to choose which logic needs to be executed per target and the order of execution.

 Shortcomings

 Despite all this flexibility, you should be aware of some shortcomings:

 	Using XML as the definition language for your build logic results in overly large and verbose build scripts compared to build tools with a more succinct definition language.

 	Complex build logic leads to long and unmaintainable build scripts. Trying to define conditional logic like if-then/if-then-else statements becomes a burden when using a markup language.

 	Ant doesn’t give you any guidelines on how to set up your project. In an enterprise setting, this often leads to a build file that looks different every time. Common functionality is oftentimes copied and pasted. Every new developer on the project needs to understand the individual structure of a build.

 	You want to know how many classes have been compiled or how many tasks have been executed in a build. Ant doesn’t expose an API that lets you query information about the in-memory model at runtime.

 	Using Ant without Ivy makes it hard to manage dependencies. Oftentimes, you’ll need to check your JAR files into version control and manage their organization manually.

OEBPS/OEBPS/Images/01fig05_alt.jpg
Directed acyclic graph

Copy class
files to

directory

Assemble
deliverable

Compile
source code

Node Node Node

Task dependencies

depends depends
Compile on Copy class on Assemble
files to
source code ! deliverable
directory

Task Task Task

OEBPS/OEBPS/Images/common1.jpg

OEBPS/OEBPS/Images/01fig02_alt.jpg
Local machine

execute

4

User

implement

Build

check in

definition

compile

Source

check out

check in

code

Version control
system

trigger

Network

execute

Server

Build
definition

OEBPS/OEBPS/Images/01fig06.jpg
Build file

OEBPS/OEBPS/Images/01fig03_alt.jpg
Local machine

‘ execute
User

implement

Build

check in

definition

compile

Source

check out

check in

code [+

|| check out

Server

Version control
system

rigger

Network

execute

Server

Build
definition

execute

0

Scheduled
for 5 AM daily

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/common.jpg

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/01fig07_alt.jpg
Output 1

Output 2

Input 1

Input 2.

Build file

Output 3

OEBPS/OEBPS/Images/013fig01_alt.jpg
Jource and destination directories are
configured by attributes srcdir and destdi

javac srediretsret destdir-rdests/> | compile Java source files located in directory
src and put class files into directory dest.

OEBPS/OEBPS/Images/014fig01_alt.jpg
<project name="example-build®>
<target name="init">
<mkdir dir="build"/>
</target>

inites
build"/>

<target names="compile" depend:
<javac sredirs"src" destdir
</target>
clsroiects

“7] Project encloses one or more
targets and defines optional
attributes, such as the name,
to describe the project

OEBPS/OEBPS/Images/01fig08.jpg
Build file

declares —L
Inputs
T
processes
uses
Build engine | —————— | Outputs
produces

Build tool

Data

OEBPS/OEBPS/Images/01fig11_alt.jpg
Task for creating
output directory
build

Task for complling
Java source tree

Tasks for preparing
and creating JAR

Tasks for deleting
output directories

R —

my-app

init

mkdir

i

depends on

compile

Javac

i

dist

depends on

mkdir

g

clean

delete

g

DRGNS DL ST
flename

Projoct with name
my-app.

Target fo initilizing
the output directory

Target for compiling
source code

Target for generating
the distribution

Target for leaning up
temporary directories

OEBPS/OEBPS/Images/015fig01_alt.jpg
cproject name="my-app" detault="dist” Dasedire"®."s

<property name="src* location="srct/> Sets global properties for
<property names"build" location="build"/> this build, like source,
<property name="dist" location="dist"/> output, and distribution

<property name="version" value="1.0"/> rectories
<target namesrinit*> ——
<nkdir dir="s(build}"/> ! used by compile targer

</target>

<target name="compile" depends="init" description="compile the source">
<javac ercdir="$(erc)" destdir="${build}
Javac $(src)" destdir="${build} Compiles Java code.

= classpath-"1ib/commons-lang3-3.1. jar" i ’
ws includeantruntime="false"/> fre oty build

</targets
<target name="dist® depends="compile’ Creates distribution
w descriptions"generate the distribution"> directory
<mkdix dir="${dist}/>
<jar jarfile="${dist)/my-app-${version).jar" basedir="s{buila}"/>
</targets
<target name="clean" description="clean up'> Assembles everything
<delete dir="${build)"/> in directory build into
<delete dir="s{dist}"/> Deletes build and JAR file myapp-1.0
</target> dist directory trees

S CoRadts ol

OEBPS/OEBPS/Images/01fig04.jpg
Build tools

Step 1 Step 2 Step 3

Compile Cory, oo Assemble
source code o deliverable
directory

Task Task Task

OEBPS/OEBPS/Images/01fig01_alt.jpg
Local machine |

|
execute Build | checkin
definition .
| checkout
compile | | e
User P |)
implement Source | checkin
| code |
check out

Version control

Server sysiem

OEBPS/OEBPS/Images/01fig10.jpg
Build script

Project

Target 1

depends on
Target 2

Target 3 depends on

OEBPS/OEBPS/Images/013fig02_alt.jpg
" Target named init that used task mi
<target names*init"> " 4
<nkdir dir="buila*/> | i 7 bt

/carget> Target named compile for compiling Java
source code via javac Ant task. This target

depends on target init, so f you run it on

the command lir ‘will be executed first.

ctarget name-*compile" depends
<javac srcdir-tsrc® destdi
</taraet>

OEBPS/OEBPS/Images/01fig09.jpg
Buila file

declares —
Tasks ;
L iputs | |
processes
uses i
Build engine 1| outputs |
produces 1
uses
resolves [TT——|
Dependency -]
manager "
dependencies 4
—
Build tool Repository

