

 inside front cover

 [image: IBC_F02_Wenz]

 [image:]

 ASP.NET Core Security

 Christian Wenz

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Technical development editor:

 	
 Ben McNamara

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Carrie Andrews

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Srihari Sridharan

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781633439986

 dedication

 To HMS.

contents

 front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 First steps

 1 On web application security

 1.1 ASP.NET Core: History and options

 ASP.NET Core version history

 MVC

 Razor Pages

 Web API

 Blazor

 1.2 Identifying and mitigating threats

 Web application components

 Defense in depth

 1.3 Security-related APIs

 1.4 Security is important

 Part 2 Mitigating common attacks

 2 Cross-site scripting (XSS)

 2.1 Anatomy of a cross-site scripting attack

 2.2 Preventing cross-site scripting

 Understanding the same-origin policy

 Escaping HTML

 Escaping in a different context

 2.3 Content Security Policy

 Sample application

 How Content Security Policy works

 Refactoring applications for Content Security Policy

 Content Security Policy best practices

 Content Security Policy Level 3 features

 2.4 More browser safeguards

 3 Attacking session management

 3.1 Anatomy of a session management attack

 Stealing session cookies

 Cookies and session management

 3.2 ASP.NET Core cookie and session settings

 3.3 Enforcing HTTPS

 3.4 Detecting session hijacking

 4 Cross-site request forgery

 4.1 Anatomy of a cross-site request forgery attack

 4.2 Cross-site request forgery countermeasures

 Making the HTTP request unpredictable

 Securing the session cookie

 4.3 Clickjacking

 4.4 Cross-origin resource sharing

 5 Unvalidated data

 5.1 Looking at HTTP

 5.2 ASP.NET Core validation

 5.3 Mass assignment

 5.4 Secure deserialization

 6 SQL injection (and other injections)

 6.1 Anatomy of an SQL injection attack

 6.2 Prepared statements

 6.3 Entity Framework Core

 6.4 XML external entities

 6.5 Other injections

 Part 3 Secure data storage

 7 Storing secrets

 7.1 On encryption

 7.2 Secret Manager

 7.3 The appsettings.json file

 7.4 Storing secrets in the cloud

 Storing secrets in Azure

 Storing secrets in AWS

 Storing secrets in Google Cloud

 7.5 Using the data protection API

 7.6 Storing secrets locally with Blazor

 8 Handling passwords

 8.1 From data leak to password theft

 8.2 Implementing password hashing

 MD5 (and why not to use it)

 PBKDF2

 Argon2

 scrypt

 bcrypt

 8.3 Analyzing ASP.NET Core templates

 Part 4 Configuration

 9 HTTP headers

 9.1 Hiding server information

 9.2 Browser security headers

 Referrer Policy

 Feature and permissions policy

 Preventing content sniffing

 Cross-origin policies

 Further headers

 10 Error handling

 10.1 Error pages for web applications

 Custom error pages

 Status code error pages

 10.2 Handling errors in APIs

 11 Logging and health checks

 11.1 Health checks

 Health check setup

 Advanced heath checks

 Formatting the output

 Health checks UI

 11.2 Logging

 Creating log entries

 Log levels

 Log scopes

 Part 5 Authentication and authorization

 12 Securing web applications with ASP.NET Core Identity

 12.1 ASP.NET Core Identity setup

 12.2 ASP.NET Core Identity fundamentals

 12.3 Advanced ASP.NET Core Identity features

 Password options

 Cookie options

 Locking out users

 Working with claims

 Two-factor authentication

 Authenticating with external providers

 13 Securing APIs and single page applications

 13.1 Securing APIs with tokens

 13.2 OAuth and OpenID Connect

 OAuth vs. OpenID Connect

 OAuth flows

 13.3 Securing applications

 Third-party tools

 Client credentials

 Authorization code + PKCE

 SPAs and BFF

 Part 6 Security as a process

 14 Secure dependencies

 14.1 Using npm audit

 14.2 Keeping NuGet dependencies up-to-date

 15 Audit tools

 15.1 Finding vulnerabilities

 15.2 OWASP ZAP

 15.3 Security Code Scan

 15.4 GitHub Advanced Security

 16 OWASP Top 10

 16.1 OWASP Top 10

 Top 10 creation process

 #1: Broken access control

 #2: Cryptographic failures

 #3: Injection

 #4: Insecure design

 #5: Security misconfiguration

 #6: Vulnerable and outdated components

 #7: Identification and authentication failures

 #8: Software and data integrity failures

 #9: Security logging and monitoring failures

 #10: Server-side request forgery

 16.2 OWASP API Top 10

 16.3 Other lists

 index

front matter

preface

 I still remember the first time I was exposed to the topic of web application security, although I did not realize the impact at that time. Back around 1997, I was creating web applications (or, rather, websites, back then), but hosting services were really expensive. For one of my projects, the only option I could afford was one where I was allowed to create just one page (!), and I had to use the hosting provider’s tooling for that—no custom HTML or CSS was possible. I had plenty of free space available on a free hosting service but could not use my own domain there; rather, I used something like http://home.someprovider.com/mysite.

 One of the very few features available to me was to set the keywords of the page (back in the day, search engines actually parsed that information). If I was using “web application security, hacking,” for instance, this would be turned into the following HTML markup:

 <meta name="keywords" content="web application security, hacking">

 After some experimenting, I found that I could try the following “keyword”:

 "><meta http-equiv="refresh" content="0; url=http://home.someprovider.com/mysite"><"

 It turned out that the provider was putting this data verbatim into the <meta> tag, leading to this result (formatted for legibility, with my input in bold):

 <meta name="keywords" content="">
<meta http-equiv="refresh" content="0; url=http://home.someprovider.com/mysite">
<"">

 So I injected another <meta> tag that redirected the browser to my actual site, hosted for free somewhere else.

 It took a while until I understood the implications of what I had found—it was possible to inject arbitrary content on that page. My “attack” was harmless, but it would also have been possible to add other, more malicious markup. This sparked my interest in web application security, and I haven’t looked back since. I have audited countless web applications, worked with customers before or after an audit, taught developers to write secure web applications, spoken at conferences on three continents about web application security, and tried my best to make the applications I was responsible for as safe as possible. In 2004, I was awarded a Microsoft MVP (Most Valuable Professional) award for ASP.NET for the first time, and I’ve followed security APIs, gotchas, and concerns in that framework very closely over the years.

 I had considered writing a book on the experience and knowledge I have gained over the last 25 years, but the timing was never right. In mid-2021, it suddenly was, and I started a monthslong journey to condense everything I know and consider important into the book you are about to read.

 In my experience, just knowing countermeasures against certain threats is not good enough. Developers need to understand how attacks work—it’s easier to defend against things you have already seen. That’s why many of the chapters will first show the attack and then explain how to prevent it. Apart from making the content more accessible that way, it’s also fun—we see how things can be broken and call this work!

 As the title suggests, ASP.NET Core Security is based on ASP.NET Core, which includes both Razor Pages and ASP.NET Core MVC. The book also covers Microsoft’s third web application framework, Blazor, where it’s feasible. All the examples in the book use C# and are based on .NET 6 (and are expected to still be valid for many versions to come).

acknowledgments

 Many people who were involved in getting this book ready for you to enjoy are mentioned on the copyright page (rightfully so!), and there are many others who helped and contributed along the way.

 I am indebted to the roster of reviewers who provided useful comments at various stages of the book’s development, as did the readers of the Manning Early Access Program (MEAP) edition. To all the reviewers, Al Pezewski, Billy Miguel Vanegas, Daniel Vásquez, Darren Gillis, David Paccoud, Dennis Hayes Djordje, Dorogoy Dmitry Sergevich, Doyle Turner, Emmanouil Chardalas, Guy Langston, Harry Polder, Jedidja Bourgeois, Joe Cuevas, Jose Luis Perez, Marcin Sęk, Marek Petak, Markus Wolff, Matthew Harvell, Michael Holmes, Milos Todorovic, Nick McGinness, Nik Rimington, Onofrei George, Paul Brown, Richard Vaughan, Ron Lease, Samuel Bosch, Stanley Anozie, Sumit K. Singh, Tom Gueth, Viorel-Marian Moisei, and Wayne Mather, thank you for your input and for helping to improve this book.

 Several trusted colleagues and friends also gave invaluable feedback and made the book so much better. Thank you all for your insights and support!

 Special thanks to Doug Rudder, my developmental editor, who not only kept the project on track, but also caught me every time I cut corners, further improving the book.

about this book

 The title of the book says it all: it covers security for ASP.NET Core applications, so it details various threats and risks for web applications based on Microsoft’s .NET technology. I believe in the “show, don’t tell” principle, so you will see not only APIs and countermeasures, but also how an attack takes place. Real-world incidents will serve as the basis for many of the chapters.

Who should read this book?

 You should understand the basics of .NET and be proficient with at least one of the web application options of ASP.NET Core (Razor Pages or MVC/Web API). If you are comfortable with HTML and CSS, as in “I understand it when I see it,” even better. At least some shallow experience with JavaScript is helpful in some of the chapters. The book will use C# as the language of choice, so this is another prerequisite for you to get the most out of ASP.NET Core Security.

How this book is organized: a roadmap

 The book is split into 5 parts with a total of 16 chapters. Part 1 of the book sets the stage for the content to come:

 	
 Chapter 1 discusses why web application security is important and which ASP.NET Core options exist, as well as how they may be affected. You will also receive a quick refresher on the project options ASP.NET Core provides.

 Part 2 shows the most common attacks against web applications and how to defend against them:

 	
 Chapter 2 covers cross-site scripting (XSS), a very widespread attack that is usually based on injecting malicious JavaScript code. The example from the preface, where HTML was injected, also falls into this category.

 	
 Chapter 3 discusses several ways to attack session management and how to make sessions more secure. This includes features introduced in modern web browsers.

 	
 Chapter 4 covers cross-site request forgery (CSRF), a very dangerous attack that can be mitigated both with built-in ASP.NET Core features and with security mechanisms in recent browsers.

 	
 Chapter 5 describes the potential effects of unvalidated data and what ASP.NET Core brings to the table. This includes model validation, which is both convenient and powerful.

 	
 Chapter 6 covers SQL injection, a really old attack that is rare in the ASP.NET Core world due to easy-to-use countermeasures and the rise of OR mappers such as Entity Framework Core.

 Part 3 deals with secure data storage:

 	
 Chapter 7 covers storing secrets such as tokens. One option is to use encryption; another is to use select cloud offerings.

 	
 Chapter 8 discusses handling passwords and how to securely store them. Actually, passwords should not be stored at all, but their hashes should.

 Part 4 covers various security-related configuration options:

 	
 Chapter 9 details several HTTP headers supported in modern web browsers that add an extra layer of security to an application. The chapter also discusses how to prevent revealing HTTP headers from being sent to the client.

 	
 Chapter 10 provides an introduction to error handling for an ASP.NET Core application, including best practices.

 	
 Chapter 11 covers two topics that are different but somewhat related: logging can make sure that diagnostic information about a site is stored for later retrieval, and health checks provide a mechanism for surveillance of the availability of a site and its services.

 Part 5 covers authentication and authorization for ASP.NET Core applications:

 	
 Chapter 12 provides an introduction to ASP.NET Core Identity, making it easy to add user management and authentication to a site.

 	
 Chapter 13 describes securing APIs and single-page applications (SPAs) using a token-based solution. The chapter also covers OAuth and OpenID Connect from an ASP.NET Core perspective.

 Part 6 covers several aspects that are part of a security process:

 	
 Chapter 14 discusses how to make sure dependencies are secure, including various auditing tools.

 	
 Chapter 15 focuses on audit tools that can help find vulnerabilities in web applications.

 	
 Chapter 16 covers the OWASP Top 10, a regularly updated list of the top ten security risks for web applications, and how they are covered in this book.

 Most of the chapters are independent of each other, but there are several cross-references where applicable.

About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. In some cases, the original source code has been reformatted. I’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this wasn’t enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 Source code is available for chapters 1 through 13 of this book. A .NET solution called AspNetCoreSecurity will contain several ASP.NET Core projects (in chapter 13, there’s a second solution). Depending on the chapter, the code shown will be in one or several of those projects. All source code was tested with ASP.NET Core and .NET 6. The IDE of choice was Visual Studio 2022, but the code, of course, also works with other options such as Visual Studio Code and Rider. Please always make sure you read the full chapter before trying or using the code. In several instances, code is intentionally vulnerable to demonstrate an attack. You can download the source code from the publisher’s website at www.manning.com/books/asp-net-core-security.

liveBook discussion forum

 Purchase of ASP.NET Core Security includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/asp-net-core-security/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

about the author

 [image: Christian Wenz picture]

 Christian Wenz is a web pioneer, technology specialist, and entrepreneur. Since 1999, he has written close to 150 books on web technologies and related topics, which have been translated into ten languages. At his day job, he consults for enterprises on digitization and Industry 4.0. A fixture at international developer conferences, he has presented on three continents. Christian has been an MVP for ASP.NET since 2004, is the lead author of the official PHP certification, and sporadically contributes to OSS projects. He holds university degrees in computer science and business informatics and is a two-time recipient of a Knuth reward check.

about the cover illustration

 The figure on the cover of ASP.NET Core Security is “Venitienne,” or “Venetian (woman),” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 First steps

 No week passes without some high-profile internet security incident—data leaking to the public, popular code libraries receiving updates with malware, a new ransomware being passed around, and websites being exposed to security vulnerabilities. Many of the happenings you read about in IT news were made possible by bugs in code. Since this book is based on ASP.NET Core, chapter 1 will unveil web application options that technology provides and will analyze where attacks may happen. We will build the “mental model” for the remainder of the book.

1 On web application security

 This chapter covers

 	
Learning why web application security is important

 	
Using ASP.NET Core to create web applications and APIs

 	
Identifying why certain parts of an application are at risk

 	
Exploring what to expect from this book

 Nine out of ten web applications have security vulnerabilities. This is the rather frightening conclusion of a study released in 2020 by Positive Technologies (http://mng.bz/mOj2), a provider of various security solutions. Obviously, such studies can often be biased toward the business model of those who conduct them, but several other studies from previous years yielded similar outcomes. Here’s a report about one study from as far back as 2009: http://mng.bz/5Qo1.

 The authors of the study also found that about four out of five web application vulnerabilities are part of the code, instead of, say, the server configuration. From this, we can deduce two trends:

 	
 The major security risk for web applications lies in their code.

 	
 The problem is industry-wide, and the situation does not seem to be getting better.

 Often, a lack of security does not immediately show—until it’s too late and a web application has been successfully hacked. It is therefore mandatory to make web application security a top priority and to use security best practices from the very beginning of a project.

 Most security risks for web applications lie in the way web browsers, HTTP, database servers, and other “web aspects” work; therefore, these risks are technology-agnostic. Here’s one example of this: in theory, injecting JavaScript into a website works independently of the server language or framework being used. In practice, there are the following differences:

 	
 Some languages and frameworks have built-in countermeasures that help prevent common attacks without any extra effort during development.

 	
 The functions, methods, and APIs used to defend against certain attacks and risks are naturally named differently in technologies and frameworks.

 Therefore, a book on web application security will need to present and describe common attacks, in a more or less general fashion, and will then need to introduce countermeasures that are tied to a certain technology. The stack we will be using in this book is Microsoft’s .NET; since we are talking about web applications, its web framework, ASP.NET Core, will be the focus. The book was written with .NET 6 and ASP.NET Core 6 but is expected to be upward-compatible with newer versions.

1.1 ASP.NET Core: History and options

 ASP.NET has a long history that is tied to that of .NET, which was first released as a beta in 2001 and as a final version 1.0 in early 2002. Back then, the software package was called “.NET Framework” and contained a server web application framework called ASP.NET (the first three letters were carried over from the previous Microsoft web technology ASP, which was short for “Active Server Pages”). Along with .NET Framework came a new programming language, C#, which will be used throughout this book, although other options exist (Visual Basic for .NET, or F#, a functional language).

1.1.1 ASP.NET Core version history

 ASP.NET and .NET evolved over the years but are not specifically covered in this book. That may come as a surprise, especially given the book title, but in the 2010s, Microsoft worked on a new evolution of .NET that culminated in the release of .NET Core 1.0 in mid-2016. This new version of .NET was open source, was more or less platform-agnostic, and was not tied to Windows any longer. The word Core was used to avoid confusion with .NET, especially with version numbers. Whether that worked is a different discussion, but to add to the confusion, Microsoft dropped Core when .NET reached version 5.0. The reason: the latest, and probably final, version of the .NET Framework and of ASP.NET is 4.8, so there won’t be .NET Framework 5; thus, “.NET 5” clearly means the new evolution of .NET.

 It is a bit more complicated with ASP.NET, though. The MVC (model-view-controller) framework, ASP.NET MVC, has its own version numbers. The latest release of the ASP.NET MVC NuGet package for the .NET Framework is 5.2.8 (http://mng.bz/2nE0), so “ASP.NET 5” could actually mean three things:

 	
 ASP.NET MVC 5 (based on the .NET Framework)

 	
 ASP.NET Core 5 (based on .NET 5, formerly known as .NET Core)

 	
 ASP.NET as part of .NET 5, which was the previous project name of what later became .NET Core 1.0

 I think we can agree that it did make sense to leave the Core suffix to make the product name explicit, so ASP.NET Core it is—for now. You don’t have to be a prophet to predict that Core will likely be dropped at some point in the future. But for now, if there’s Core in the name, we are talking about a current version of Microsoft’s web framework, not a legacy one. This book is based on .NET 6, where Core is still present.

1.1.2 MVC

 The architectural pattern “model-view-controller” (MVC) was invented in the 1970s and originated in GUI applications, yet became very popular for web applications. Creating HTML and CSS for a web page’s looks is an entirely different skill than implementing a server backend. Therefore, splitting up the UI from the logic makes sense, and MVC is one of the options available. Tailored to a web application, MVC basically works like this (figure 1.1):

 	
 A controller accepts user input (in the case of a web application, data in an HTTP request).

 	
 The controller receives and manipulates a model (often, data from a database) and then assigns this model to a view (usually an HTML page).

 	
 The client receives the view and may use it to create a new request.

 [image: CH01_F01_Wenz]

 Figure 1.1 How model-view-controller works

 In ASP.NET MVC, these components are commonly represented as follows (since ASP.NET MVC is highly configurable, many details may be changed, but we describe the default out-of-the-box behavior):

 	
 The controller is a C# class. Requests are mapped to “action methods,” essentially public C# methods.

 	
 The model is typically a C# object or class, often filled with database content (but not necessarily a 1:1 mapping). Microsoft samples routinely rely on Entity Framework Core, Microsoft’s object-relational mapper (OR mapper, or ORM), but this is certainly not mandatory. The controller accesses this model, may manipulate it, and then provides it to the view, if applicable.

 	
 The view is essentially an HTML page with some extra markup to bind values from the model, or to execute code. Since we are using C#, those HTML pages have the .cshtml extension. The Razor view engine allows inclusion of C# code in these files, using the @ special character. The files are compiled so that the C# code may be run; the browser, of course, receives the resulting HTML.

 When creating a new project in Visual Studio, the framework option you pick will set the technological standard for the app. Figure 1.2 shows some of the available project templates. Note that the fourth option, ASP.NET Core Web App (Model-View-Controller), also offers to include Web API, since they are so similar from a code point of view.

 [image: CH01_F02_Wenz]

 Figure 1.2 Creating a new web application in Visual Studio

 Let’s look at the main elements of a simple sample application. The following listing shows the controller.

 Listing 1.1 The controller of a simple MVC application

 using Microsoft.AspNetCore.Mvc;

namespace AspNetCoreSecurity.MvcSamples.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Index() ❶
 {
 var outcome = new Random().Next(1, 7);

 var roll = new DiceRoll(outcome);

 return View(roll); ❷
 }
 }

 public record DiceRoll(int outcome);
}

 ❶ Shows the action method within the controller

 ❷ Sends the dice roll result to the view, which is returned to the client

 The HomeController class implements the Index() action method, which returns a view with the result of a dice roll. The DiceRoll type is defined in the same file, purely for simplicity. This view is shown in the next listing.

 Listing 1.2 The view of a simple MVC application

 @model AspNetCoreSecurity.MvcSamples.Controllers.DiceRoll ❶
@{
 Layout = null;
}

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Dice Roll - MVC</title>
</head>
<body>
 <h1>Dice Roll: @Model?.outcome</h1> ❷
</body>
</html>

 ❶ Defines the type of the page’s model

 ❷ Outputs the dice roll outcome from the model

 In the view, the outcome of the dice roll, a property named outcome, is shown in an <h1> element.

1.1.3 Razor Pages

 Remember the Razor view engine from the previous section? The simple yet effective syntax was elevated to have its own approach to web development under the ASP.NET Core umbrella.

 Razor Pages are essentially HTML pages with the .cshtml file extension that support the Razor syntax. In contrast to the MVC framework, there is no need for a controller. All the code responsible for retrieving the view and handling user input is now part of the page. For simpler scenarios, this works really well and removes some complexity that is inherent to MVC. The following listing shows the page model of a simple sample application.

 Listing 1.3 The page model of a simple application

 using Microsoft.AspNetCore.Mvc.RazorPages;

namespace AspNetCoreSecurity.RazorSamples
{
 public class IndexModel : PageModel
 {
 public void OnGet() ❶
 {
 var outcome = new Random().Next(1, 7);

 Roll = new DiceRoll(outcome);
 }

 public DiceRoll? Roll { get; set; } ❷

 public record DiceRoll(int outcome);
 }
}

 ❶ Method is called whenever a page is requested via HTTP GET

 ❷ This is the property that will be used by the Razor Page.

 This time, we do not have a controller but rather a model class that (digitally) rolls the dice upon page load. The model, in turn, is tied to a view, which is shown in the next listing.

 Listing 1.4 The Razor Page of a simple application

 @page
@model IndexModel ❶

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport"
 ➥content="width=device-width, initial-scale=1.0" />
 <title>Dice Roll - MVC</title>
</head>
<body>
 <h1>Dice Roll: @Model?.Roll?.outcome</h1> ❷
</body>
</html>

 ❶ References the page model class

 ❷ Outputs the property from the model

 The Razor view looks almost identical to the one from the MVC sample application (listing 1.2). The outcome is shown in the heading of the page.

1.1.4 Web API

 With ASP.NET Web API, Microsoft provides a framework to, well, implement RESTful APIs. It is rather trivial to do a custom implementation of API endpoints—just pull data from a database, and then convert it into JSON or XML and return it. However, with the Web API framework, some of the heavy lifting is done for you:

 	
 Depending on the value of the Accept HTTP request header, the correct format (e.g., JSON or XML) is used.

 	
 Correct formatting of error messages and exceptions.

 	
 An easy way to return the correct HTTP status code.

 	
 API versioning based on HTTP headers, path components, or query strings.

 From a development perspective, Web API works similarly to ASP.NET MVC; only a few base classes are different (and it’s usually faster, since no Razor Pages are involved). But essentially you are working with a class that looks just like a controller and methods that behave—and look—like MVC action methods. The following listing shows the Web API controller of a trivial sample application.

 Listing 1.5 The controller of a simple Web API application

 using Microsoft.AspNetCore.Mvc;

namespace AspNetCoreSecurity.WebApiSamples.Controllers
{
 [ApiController]
 [Route("[controller]")]
 public class DiceRollController : ControllerBase
 {
 [HttpGet]
 public DiceRoll Get() ❶
 {
 var outcome = new Random().Next(1, 7);

 var roll = new DiceRoll(outcome);

 return roll; ❷
 }
 }

 public record DiceRoll(int outcome);
}

 ❶ Depending on the configuration, method is called when a GET request to /DiceRoll is used

 ❷ Return value is automatically converted to (for instance) JSON

 The controller is a class with a method that is called Get() and will be executed when a GET request is sent to the associated endpoint. The return data is automatically converted to JSON.

 Note .NET 6 introduced “minimal APIs,” where less code is used—there’s not even a controller class necessary. There is no functional difference, though, and no additional (or omitted) security implications.

 SignalR

 The most commonly used approach to call APIs from the client is to use JavaScript as the programming language and HTTP as the application protocol. However, from a performance point of view, HTTP is not really optimized for speed. All modern browsers do support a technology called WebSocket, a protocol standardized as far back as 2011 (https://tools.ietf.org/html/rfc6455). It can work over HTTP (and is therefore compatible with existing setups and firewall rules), but does support binary data and works in a bidirectional fashion.

 With ASP.NET SignalR (https://signalr.net/), Microsoft offers an open source library that provides a server API to provide an endpoint and a JavaScript component to communicate with those endpoints. WebSockets are used as the protocol of choice, but if, say, an older browser does not support it, there is an automatic fallback to alternate means such as HTTP requests.

1.1.5 Blazor

 Remember ASP.NET Web Forms, Microsoft’s attempt to motivate developers who dislike web technologies to still be able to create web applications? That ship has more or less sailed, but with Blazor, Microsoft tries a different approach, this time especially catering to developers who are not very fond of JavaScript. All modern browsers support the WebAssembly standard, which defines a binary format for code that runs in the browser. With Blazor, Microsoft compiles C# code down to WebAssembly, which the browser can then execute. Consequently, it is possible to write applications in C# (or other .NET languages), and the browser can run them.

 Blazor currently supports two approaches (and more are coming!), which are sketched in figure 1.3:

 	
 Blazor Server—Only the UI is sent to the browser, whereas all the C# code resides on the web server. Generated JavaScript code automatically calls the server (using SignalR), which then runs the C# code and sends any changes to the DOM (Document Object Model—essentially, the contents) of the page back to the client. Here, the application loads faster but does not really work offline.

 	
 Blazor WebAssembly—Everything is compiled down to WebAssembly, including those parts of .NET that are used by the application. In this case, it may take a few extra seconds to download the application, but it then runs into the browser without any server interaction except for eventual API calls. The application code may be reverse engineered as a consequence.

 [image: CH01_F03_Wenz]

 Figure 1.3 The two Blazor architecture modes

 The following listing shows a Blazor page as part of a trivial sample application.

 Listing 1.6 A Blazor page of a simple application

 @page "/" ❶

<PageTitle>Dice Roll - Blazor</PageTitle>

@{
 var outcome = new Random().Next(1, 7);
}

<h1>Dice Roll: @outcome</h1>

 ❶ Shows the URL associated with this page

 This time, both the dice roll and the output of the outcome reside in the same file, once again using the Razor syntax featuring the @ character.

1.2 Identifying and mitigating threats

 As you saw in the previous sections, ASP.NET Core provides many options for creating websites: different server frameworks and approaches, and different techniques and formats for client-side aspects. Many components essentially lead to a large attack surface area, so there are many places where things may go wrong security-wise.

1.2.1 Web application components

 In a modern web application, there will also be other components, such as

 	
 Databases

 	
 Other, external services

 	
 Filesystem resources

 	
 CDNs (content delivery networks) holding libraries and other, mostly static, assets

 Figure 1.4 shows a typical application architecture. From a security point of view, most of the components may be at risk, including the connection between them.

 [image: CH01_F04_Wenz]

 Figure 1.4 Components of a typical web application

 Here are some of the things that web applications need to provide safeguards against, which will be covered in this book:

 	
 User data sent to the database might contain malicious commands that are then run on the database. A typical attack is called SQL injection.

 	
 User data sent to the server and later sent to a client may contain unwanted content such as malicious JavaScript code. This is commonly referred to as cross-site scripting.

 	
 Data exchanged between the client and the server may be intercepted or stolen, putting parts of the application at risk. Using a secure transport mechanism can help.

 	
 Insufficient authorization might grant users access to server resources they should not be allowed to see.

 	
 The way authentication works in the web might be abused by crafting HTTP requests, leading to users causing the application to take undesired actions. Cross-site request forgery is a typical attack in this space.

 	
 Unexpected user input—such as too much data, too little data, or incorrect data—leads to unwanted behavior of a web application, or provokes error messages.

 	
 Error messages may reveal internal information about the server, which could be useful for an attacker. On the other hand, internal errors need to be properly handled and logged.

 	
 Assets hosted on a third-party site (think CDNs) may have been manipulated.

1.2.2 Defense in depth

 In web application security, the rule of thumb is this: if something can go wrong, it will go wrong, so we need to anticipate all of the aforementioned risks, and more, by defensively programming our application, expecting the worst, and implementing as many safeguards as possible. The second part of this book will show all the most common currently known attacks, and then it will implement countermeasures.

 Sometimes, redundancy can be helpful when it comes to security measures. Better to use two safeguards than one (or none at all). Also, use security measures in various layers of the application. When talking about performance, redundancy is often considered something bad. Why do two things if one thing is good enough? On the other hand, when it comes to availability, redundancy helps to keep an application working: if one system fails, there’s a backup. Web application security is more closely related to availability, so redundant measures are not a problem; in fact, they are usually welcome. We commonly talk about defense-in-depth mechanisms when we implement multiple layers of security. Even if one of those layers proves to be insufficient, there are hopefully more to keep our application from failing.

 If you work in an office with a receptionist, it’s likely that the door to the office or to the building is locked. You might argue that this is unnecessary since there is a receptionist who is blocking unwanted individuals from entering the premises, but this receptionist might be on a break or distracted. Therefore, defense in depth applies here. Every security measure might be prone to failing, so having another one in place can be extremely helpful. In this book, we encounter several security mechanisms that provide an extra layer of safety, without completely mitigating a risk on their own. In combination with other measures, though, a web application can be a stronghold against attacks.

1.3 Security-related APIs

 Arguably the most important aspect of web application security is the mitigation of risks by anticipating attacks and implementing suitable countermeasures. However, ASP.NET Core and associated technologies come with several security-related APIs that cannot always be directly mapped to a specific attack. Here are a few examples:

 	
 ASP.NET Core Identity provides an API for handling authentication and authorization in a web application, including login/logout, profile data, roles, and more.

 	
 Secure communication may be enforced by a variety of options and approaches, including redirecting to HTTPS, securing cookies, and even disabling HTTP.

 	
 Security-related HTTP headers may be explicitly set in web.config and controllers, and implicitly set by defining settings in the Program class (in .NET versions prior to 6, the Startup class was the go-to place for this).

 	
 Passwords should not be stored in clear text, but they should be encrypted, or better yet, hashed. ASP.NET Core supports relevant formats and algorithms.

 	
 Cloud providers like Microsoft Azure or AWS (Amazon Web Services) have their own APIs for storing secrets such as connection strings or passwords.

 It is vital to know these APIs and ASP.NET’s security philosophy and mechanisms. In the third part of this book, you will learn exactly how they work and when to use them. In practice, however, actual security vulnerabilities in code are the main culprit, and this author’s security audits confirm this over and over again.

1.4 Security is important

 I can’t stress this enough: web application security is an extremely important topic for everyone involved. Here are the motivations for several typical roles in a web project:

 	
 Developers need to write secure applications. You cannot easily apply a patch on something that is fundamentally broken. They need to understand existing risks and how ASP.NET Core can help mitigate them.

 	
 Project and/or engineering managers need to have an understanding of attacks, have to prioritize security efforts, and may orchestrate security testing as early as during development.

 	
 CTOs (chief technology officers) need to be aware of the consequences of insufficient security and must understand that security does not come for free; it’s an effort that must be budgeted.

 Apart from that, isn’t it fun to try to break applications and get paid for it? But believe me, the less I find after an audit, the happier I am.

Summary

 Let’s review what we have learned so far:

 	
 The vast majority of web applications have some kind of security vulnerabilities, and most of them are caused by the website’s code.

 	
 Most attacks do not rely on the specific server technology being used, but use the common denominator of all web applications: HTML/CSS/JavaScript and HTTP.

 	
 Many parts of a web application may be at risk: the client side, the server, the database, external resources, and the communication paths between them.

 	
 This book will use ASP.NET Core, the web framework of .NET.

 	
 ASP.NET comes with built-in security features, some of them enabled by default, others ready to be configured and activated. For the rest, we need to write custom code.

 With the foundation laid out for us, it’s time to dive deep into web application security, starting with common (and dangerous!) attacks and how to anticipate and defend against them. Better to be paranoid than offline!

Part 2 Mitigating common attacks

 Web application security is a topic that’s over 20 years old. Over time, there have been several novel ways to assail a web application, and new twists to decades-old attacks have been invented. This part of the book will discuss the most common specific attacks against websites and how to mitigate them with ASP.NET Core.

 Chapter 2 will focus on cross-site scripting (XSS), an attack that basically consists of JavaScript injection. Chapter 3 will feature several attacks against state management; sessions are especially at risk.

 In Chapter 4, cross-site request forgery (CSRF) will be explained in detail, including the built-in safeguards of ASP.NET Core and features in modern browsers that make this attack hard to pull off. Chapter 5 covers data validation with ASP.NET Core (and what can go wrong if you don’t do it correctly). Many attacks are enabled by not properly handling incoming data, and this chapter shows effective countermeasures.

 Finally, chapter 6 talks about SQL injection, probably one of the oldest attacks around, yet still dangerous. As usual, ASP.NET Core comes prepared and provides solid mechanisms to protect the application.

2 Cross-site scripting (XSS)

 This chapter covers

 	
Understanding how cross-site scripting (XSS) works

 	
Learning about different types of XSS

 	
Preventing XSS by escaping output

 	
Using Content Security Policy (CSP) against XSS

 	
Judging other browser features against XSS

 In 2014, the BBC reported (https://www.bbc.com/news/technology-29241563) that clicking on certain links on eBay would redirect users to a phishing site: it looked similar to eBay, but, of course, wasn’t legitimate. The security researcher who found the vulnerability supposedly contacted the firm to no avail. An official inquiry by the BBC then sped things up, and the issue was resolved.

 About 10 years earlier, a security researcher managed to pull a similar stunt, redirecting eBay users to phishing sites where they were prompted for their credentials—and this happened live on German television! eBay obtained an injunction against one researcher who announced he would demonstrate the exploit. However, the TV show had already contracted a second researcher who was not covered by the injunction.

 In both cases, the researchers (or, more generally, the attackers) managed to inject JavaScript code into the website, which then took care of the redirection to the phishing site. Let’s have a look at how such an attack—which usually consists of injecting JavaScript code (and other content) into a website—works.

 note This attack should probably be called “JavaScript injection”; in early 2000, a group of Microsoft security engineers came up with cross-site scripting (XSS) instead, and that name stuck. In case you are wondering, the acronym CSS was already used for Cascading Style Sheets, so XSS it was.

2.1 Anatomy of a cross-site scripting attack

 The most common flavor of XSS is injecting JavaScript code into a page, although there are also attack vectors that use HTML or CSS. A great example to demonstrate this—and a typical place to find a security vulnerability in many websites—is the search feature. It shows a typical pattern: the user sends data (a search term), and that data is shown on the output page. This might offer an opening for an attack.

 Note When explaining the attack, we will first hack ourselves—it’s just easier to get accustomed to XSS that way. But don’t worry; later on we will discuss how an attacker will actually pull this off.

 Let’s look at a simple search page using Razor Pages. The .cshtml page is shown in the following listing.

 Listing 2.1 A Razor Page with a search UI

 @page
@model AspNetCoreSecurity.RazorSamples.Pages.SearchPageModel

<h1>Search</h1>

<div class="row">
 <div class="col-md-12">
 <form method="get" action="">
 <div class="form-group">
 <label class="control-label" for="searchTerm"></label>
 <input id="searchTerm" name="searchTerm" class="form-control"
 ➥/>
 </div>
 <div class="form-group">
 <input type="submit" id="btn" value="Search" class="btn
 ➥btn-primary" />
 </div>
 </form>
 </div>
</div>
<div class="row">
 <div class="col-md-12">
 @Html.Raw(Model.Result) ❶
 </div>
</div>

 ❶ Outputs the Result property of the model

 The associated C# file containing the model and the logic can be seen in the next listing.

 Listing 2.2 The page model for the search page

 using Microsoft.AspNetCore.Mvc.RazorPages;

namespace AspNetCoreSecurity.RazorSamples.Pages
{
 public class SearchPageModel : PageModel
 {
 public string Result { get; set; } = string.Empty;

 public void OnGet(string searchTerm)
 {
 this.Result = string.IsNullOrEmpty(searchTerm) ?
 "" :
 $"Your search for <i>{searchTerm}</i> did not yield any
 ➥results.";
 }
 }
}

 Not much happens here—the code takes the search term from the page and then constructs an HTML-formatted output containing the search term, and because no actual searching takes place in this demo, zero matches are found.

 note For the sake of argument, this is good enough. Even if there was a database backend and matches were found, the output would probably still contain the search term, which will become relevant shortly.

 If you load the page in the browser and issue a search, you will get the expected result (figure 2.1).

 [image: CH02_F01_Wenz]

 Figure 2.1 The search works (except for the lack of results).

 The search term (which can be seen in the URL) appears on the page. However, what happens if the search term is a <script> tag with some code? An easy way to verify whether that works is to try some JavaScript that shows a modal window:

 <script>alert('Hacked!')</script>

 Figure 2.2 shows what happens if you use this as a search term.

 [image: CH02_F02_Wenz]

 Figure 2.2 Where does this modal window come from?

 The browser does not show the search term, but rather, a modal window. If you look at the generated HTML markup in the browser, you will see the following fragment within the page:

 <div class="row">
 <div class="col-md-12">
 Your search for <i><script>alert('Hacked!')</script></i> did not
 ➥yield any results.
 </div>
</div>

 Here is what happened: the user sent a search term to the server, and the server replied with HTML that contained You searched for <search term>. But in the case of this attack, the search term contained angle brackets, < >. The browser did (correctly, but probably undesirably) interpret the search term as HTML markup. The attacker successfully injected JavaScript code, and thus we have cross-site scripting.

 This example was rather obvious, but XSS may also happen when things get a little bit more complicated. Let’s look at the following listing, where—as part of an ASP.NET Core MVC project—a JSON endpoint is implemented.

 Listing 2.3 A (too) naïve JSON endpoint

 using AspNetCoreSecurity.MvcSamples.Models;
using Microsoft.AspNetCore.Mvc;

namespace AspNetCoreSecurity.MvcSamples.Controllers
{
 public class HomeController : Controller
 {
 public IActionResult Search()
 {
 return View(); ❶
 }

 public ContentResult SearchAPI(string searchTerm)
 {
 var results = new List<string>() { ❷
 searchTerm + " 1", ❷
 searchTerm + " 2", ❷
 searchTerm + " 3" ❷
 }; ❷

 return new ContentResult
 {
 ContentType = "text/html",
 Content = $"[\"{string.Join("\", \"", results)}\"]" ❸
 };
 }
 }
}

 ❶ Returns the search HTML page/view

 ❷ Generates search results (simplified implementation)

 ❸ Creates JSON

 The SearchAPI endpoint takes a search term, generates some dummy search results, and is then essentially using string concatenation to create a JSON representation of those search terms. The following listing shows the frontend side of things.

 Listing 2.4 Calling the search API

 <h1>Search</h1>

<div class="row">
 <div class="col-md-4">
 <form>
 <div class="form-group">
 <label class="control-label" for="searchTerm"></label>
 <input id="searchTerm" class="form-control" />
 </div>
 <div class="form-group">
 <input type="button" id="btn" value="Search" class="btn
 ➥btn-primary" />
 </div>
 </form>
 </div>
</div>
<div class="row">
 <div class="col-md-4">
 <ul class="list-group" id="results">

 </div>
</div>

<script>
 document.getElementById("btn").onclick = () => {
 let list = document.getElementById("results");
 list.innerHTML = "";
 let searchTerm = document.getElementById("searchTerm").value; ❶
 fetch("/Home/SearchAPI?searchTerm=" + encodeURIComponent(searchTerm))❷
 .then(response => response.json())
 .then(data => data.forEach(item => { ❸
 let li = document.createElement("li"); ❹
 li.className = "list-group-item"; ❹
 li.innerHTML = item; ❹
 list.appendChild(li); ❹
 }));
 }
</script>

 ❶ Retrieves the search term from the form

 ❷ Calls the endpoint

 ❸ Iterates over results

 ❹ Creates one list item per result and adds it to the page

 Figure 2.3 shows what happens if you enter <script>alert('Hacked!')</script> into the field: not only does the search work, but it also seems to prevent the attack we looked at before.

 [image: CH02_F03_Wenz]

 Figure 2.3 The search now returns results (of questionable quality).

 Even though the search term contains a <script> tag, the browser does not execute it after it is dynamically added to the page. But does that mean that we are protected from XSS here? Unfortunately, no. The search API can also be directly called in the browser by using a URL like this (you need to replace 12345 with the port on your system):

 http://localhost:12345/Home/SearchAPI?searchTerm=XSS

 And if we use a <script> tag again?

 http://localhost:12345/Home/SearchAPI?searchTerm=<script>alert('Hacked!')</script>

 Figure 2.4 has an answer to this question.

 [image: CH02_F04_Wenz]

 Figure 2.4 The search API is vulnerable to cross-site scripting.

 The JavaScript code is once again executed. Here is the (lightly formatted) output of the search API:

 [
 "<script>alert('Hacked!')</script> 1",
 "<script>alert('Hacked!')</script> 2",
 "<script>alert('Hacked!')</script> 3"
]

 This is valid JSON code and unproblematic in a JSON context, but when interpreted as HTML, it’s some gibberish and three <script> tags with code.

 You may now interpose that, so far, we have attacked ourselves. That is correct, but if you look back at figures 2.2 and 2.4, you will notice that both attacks used HTTP GET requests. That means that whoever called the URL would be attacked. In the real world, the following would now happen: a real attacker would craft a URL where the malicious JavaScript code would be successfully injected and then distribute that URL

 	
 To a specific target (e.g., via email)

 	
 To random targets, via email or public posts on social media, or in a forum

 As experience will tell us, there are enough people who just click on links without thinking twice. But what if there is a POST request involved? We could change listing 2.1 to use method="post" in the <form> tag and replace OnGet() with OnPost() in the page model class. Now the attack does not work with just the URL anymore. But the following listing can change that.

 Listing 2.5 Exploiting XSS with HTTP POST

 <form method="post" action="https://localhost:12345/SearchPagePost">
 <input type="hidden"
 name="searchTerm"
 value="<script>alert('Hacked!')</script>"> ❶
</form>

<script>
 document.forms[0].submit();
</script>

 ❶ Shows an HTML-encoded <script> tag

 The page contains an HTML form with exactly the form field name that the original search form was using. The only difference is that this time, it’s a hidden form field. A <script> block then contains code to submit this form and post the XSS payload to the target page.

 In the end, the browser sends a POST request to our page, with XSS payload, and the attack is successful. This time, the villain needs to distribute a link to the HTML page (which may be hosted anywhere). Now that we have seen cross-site scripting, it’s time to find out what can be done to protect against this attack.

 note As we will see in chapter 4, there is a built-in security mechanism in ASP.NET Core that makes these POST requests less predictable and can prevent this specific attack vector. However, for our discussion of XSS, this feature is not relevant.

 Types of cross-site scripting

 The Open Web Application Security Project (OWASP), a nonprofit organization for everything web security, defines several types of cross-site scripting (https://owasp.org/ www-community/Types_of_Cross-Site_Scripting). The two main ones are as follows:

 	
 Stored cross-site scripting (type 1)—Also called persistent XSS, where the web application stores the malicious JavaScript code. Every user is now a potential victim, with no actions required of them. Just loading a page in the application where JavaScript has been injected leads to code execution.

 	
 Reflected cross-site scripting (type 2)—Also called nonpersistent XSS, where the malicious JavaScript code is part of the HTTP request and then appears in the HTTP response. This is the type of XSS that we have seen so far, and it at least requires that the user click on a specially crafted link.

 There is a third type of XSS, called DOM-based XSS, which we will cover later in this chapter. You can find more on OWASP in chapter 16.

2.2 Preventing cross-site scripting

 Of course, no one is afraid of a modal window with some text injected on a page—it’s embarrassing, yes, but is this really a major threat? In my opinion, the best way to understand the dangers of getting someone else’s JavaScript code injected in your page is to look at the (some say only) security feature that JavaScript has: the same-origin policy (SOP).

2.2.1 Understanding the same-origin policy

 Simply put, the SOP dictates that JavaScript code has access only to elements that have the same origin as the code. The term origin is defined by the Internet Engineering Task Force (IETF) as the following three values:

 	
 Scheme—http: or https:

 	
 Fully qualified domain name—www.example.com

 	
 Port—By default, 80 for HTTP and 443 for HTTPS (when a default port is used, it is commonly not part of the “origin” value)

 If all three pieces of information are identical, the origin is the same. For instance, www.example.com and example.com are not the same origin, since the domain names do not exactly match. The IETF’s “Web Origin Concept” (https://datatracker.ietf.org/doc/html/rfc6454), which defines the same-origin policy, specifies “trust by URI.” Depending on the URI (uniform resource identifier), the browser will trust content.

 The term origin is not always intuitive in a web context, though. Imagine a web page residing on https://example.com that contains three <script> tags (figure 2.5):

 	
 One with inline JavaScript code

 	
 One referencing a JavaScript file on the same server as the current HTML page

 	
 One referencing a JavaScript library from a CDN; for instance, the one from Google (https://ajax.googleapis.com)

 [image: CH02_F05_Wenz]

 Figure 2.5 One page, three times JavaScript

 The origins of the code from the first two <script> tags are obviously https://example.com. But what about the third one? The intuitive answer would be https://ajax.googleapis.com, but if that was the case, the JavaScript library would have a different origin than the current HTML page. Consequently, the code could not access any of the elements on the page. Yet, the library features that access the page’s DOM would be the main reasons to use the library in the first place.

 Therefore, the origin of the file from the CDN is https://example.com as well! Or, to put it more generally, the origin of JavaScript code is the origin of the HTML page that contains or loads it. I personally prefer the term security context instead of origin.

