

 [image: cover]

Get Programming with Haskell

 Will Kurt

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 Development editor: Dan Maharry
Senior technical development editor: Al Sherer
Technical development editor: Palak Mathur
Review editor: Aleksandar Dragosavljević
Project editor: David Novak
Copyeditor: Sharon Wilkey
Proofreader: Melody Dolab
Technical proofreader: Vitaly Bragilevsky
Typesetter: Dottie Marsico
Cover designer: Monica Kamsvaag

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 ISBN 9781617293764

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Dedication

 To Lisa and Archer, my source of endless support and inspiration

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 Lesson 1. Getting started with Haskell

 Unit 1. Foundations of functional programming

 Lesson 2. Functions and functional programming

 Lesson 3. Lambda functions and lexical scope

 Lesson 4. First-class functions

 Lesson 5. Closures and partial application

 Lesson 6. Lists

 Lesson 7. Rules for recursion and pattern matching

 Lesson 8. Writing recursive functions

 Lesson 9. Higher-order functions

 Lesson 10. Capstone: Functional object-oriented programming with robots!

 Unit 2. Introducing types

 Lesson 11. Type basics

 Lesson 12. Creating your own types

 Lesson 13. Type classes

 Lesson 14. Using type classes

 Lesson 15. Capstone: Secret messages!

 Unit 3. Programming in types

 Lesson 16. Creating types with “and” and “or”

 Lesson 17. Design by composition—Semigroups and Monoids

 Lesson 18. Parameterized types

 Lesson 19. The Maybe type: dealing with missing values

 Lesson 20. Capstone: Time series

 Unit 4. IO in Haskell

 Lesson 21. Hello World!—introducing IO types

 Lesson 22. Interacting with the command line and lazy I/O

 Lesson 23. Working with text and Unicode

 Lesson 24. Working with files

 Lesson 25. Working with binary data

 Lesson 26. Capstone: Processing binary files and book data

 Unit 5. Working with type in a context

 Lesson 27. The Functor type class

 Lesson 28. A peek at the Applicative type class: using functions in a context

 Lesson 29. Lists as context: a deeper look at the Applicative type class

 Lesson 30. Introducing the Monad type class

 Lesson 31. Making Monads easier with do-notation

 Lesson 32. The list monad and list comprehensions

 Lesson 33. Capstone: SQL-like queries in Haskell

 Unit 6. Organizing code and building projects

 Lesson 34. Organizing Haskell code with modules

 Lesson 35. Building projects with stack

 Lesson 36. Property testing with QuickCheck

 Lesson 37. Capstone: Building a prime-number library

 Unit 7. Practical Haskell

 Lesson 38. Errors in Haskell and the Either type

 Lesson 39. Making HTTP requests in Haskell

 Lesson 40. Working with JSON data by using Aeson

 Lesson 41. Using databases in Haskell

 Lesson 42. Efficient, stateful arrays in Haskell

 Afterword. What’s next?

 Answers to end-of-lesson exercises

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 Lesson 1. Getting started with Haskell

 1.1. Welcome to Haskell

 1.1.1. The Haskell Platform

 1.1.2. Text editors

 1.2. The Glasgow Haskell Compiler

 1.3. Interacting with Haskell—GHCi

 1.4. Writing and working with Haskell code

 Summary

 Unit 1. Foundations of functional programming

 Lesson 2. Functions and functional programming

 2.1. Functions

 2.2. Functional programming

 2.3. The value of functional programming in practice

 2.3.1. Variables

 2.3.2. Variables that are variable

 Summary

 Lesson 3. Lambda functions and lexical scope

 3.1. Lambda functions

 3.2. Writing your own where clause

 3.3. From lambda to let: making your own variable variables!

 3.4. Practical lambda functions and lexical scope

 Summary

 Lesson 4. First-class functions

 4.1. Functions as arguments

 4.1.1. Lambda functions as arguments

 4.1.2. Example—custom sorting

 4.2. Returning functions

 Summary

 Lesson 5. Closures and partial application

 5.1. Closures—creating functions with functions

 5.2. Example: Generating URLs for an API

 5.2.1. Partial application: making closures simple

 5.3. Putting it all together

 Summary

 Lesson 6. Lists

 6.1. The anatomy of a list

 6.2. Lists and lazy evaluation

 6.3. Common functions on lists

 6.3.1. The !! operator

 6.3.2. length

 6.3.3. reverse

 6.3.4. elem

 6.3.5. take and drop

 6.3.6. zip

 6.3.7. cycle

 Summary

 Lesson 7. Rules for recursion and pattern matching

 7.1. Recursion

 7.2. Rules for recursion

 7.2.1. Rule 1: Identify the end goal(s)

 7.2.2. Rule 2: Determine what happens when a goal is reached

 7.2.3. Rule 3: List all alternate possibilities

 7.2.4. Rule 4: Determine your “Rinse and Repeat”

 7.2.5. Rule 5: Ensure that each alterative moves you toward the goal

 7.3. Your first recursive function: greatest common divisor

 Summary

 Lesson 8. Writing recursive functions

 8.1. Review: Rules of recursion

 8.2. Recursion on lists

 8.2.1. Implementing length

 8.2.2. Implementing take

 8.2.3. Implementing cycle

 8.3. Pathological recursion: Ackerman function and the Collatz conjecture

 8.3.1. The Ackermann function

 8.3.2. The Collatz conjecture

 Summary

 Lesson 9. Higher-order functions

 9.1. Using map

 9.2. Abstracting away recursion with map

 9.3. Filtering a list

 9.4. Folding a list

 Summary

 Lesson 10. Capstone: Functional object-oriented programming with robots!

 10.1. An object with one property: a cup of coffee

 10.1.1. Creating a constructor

 10.1.2. Adding accessors to your object

 10.2. A more complex object: let’s build fighting robots!

 10.2.1. Sending messages between objects

 10.3. Why stateless programming matters

 10.4. Types—objects and so much more!

 Summary

 Extending the exercise

 Unit 2. Introducing types

 Lesson 11. Type basics

 11.1. Types in Haskell

 11.2. Function types

 11.2.1. Functions for converting to and from strings

 11.2.2. Functions with multiple arguments

 11.2.3. Types for first-class functions

 11.3. Type variables

 Summary

 Lesson 12. Creating your own types

 12.1. Using type synonyms

 12.2. Creating new types

 12.3. Using record syntax

 Summary

 Lesson 13. Type classes

 13.1. Further exploring types

 13.2. Type classes

 13.3. The benefits of type classes

 13.4. Defining a type class

 13.5. Common type classes

 13.6. The Ord and Eq type classes

 13.6.1. Bounded

 13.6.2. Show

 13.7. Deriving type classes

 Summary

 Lesson 14. Using type classes

 14.1. A type in need of classes

 14.2. Implementing Show

 14.3. Type classes and polymorphism

 14.4. Default implementation and minimum complete definitions

 14.5. Implementing Ord

 14.6. To derive or not to derive?

 14.7. Type classes for more-complex types

 14.8. Type class roadmap

 Summary

 Lesson 15. Capstone: Secret messages!

 15.1. Ciphers for beginners: ROT13

 15.1.1. Implementing your own ROT cipher

 15.1.2. The rotN algorithm

 15.1.3. Rot encoding a string

 15.1.4. The problem with decoded odd-sized alphabets

 15.2. XOR: The magic of cryptography!

 15.3. Representing values as bits

 15.4. The one-time pad

 15.4.1. Implementing your one-time pad

 15.5. A Cipher class

 Summary

 Extending the exercise

 Unit 3. Programming in types

 Lesson 16. Creating types with “and” and “or”

 16.1. Product types—combining types with “and”

 16.1.1. The curse of product types: hierarchical design

 16.2. Sum types—combining types with “or”

 16.3. Putting together your bookstore

 Summary

 Lesson 17. Design by composition—Semigroups and Monoids

 17.1. Intro to composability—combining functions

 17.2. Combining like types: Semigroups

 17.2.1. The Color Semigroup

 17.2.2. Making Color associative and using guards

 17.3. Composing with identity: Monoids

 17.3.1. mconcat: Combining multiple Monoids at once

 17.3.2. Monoid laws

 17.3.3. Practical Monoids—building probability tables

 Summary

 Lesson 18. Parameterized types

 18.1. Types that take arguments

 18.1.1. A more useful parameterized type: Triple

 18.1.2. Lists

 18.2. Types with more than one parameter

 18.2.1. Tuples

 18.2.2. Kinds: types of types

 18.2.3. Data.Map

 Summary

 Lesson 19. The Maybe type: dealing with missing values

 19.1. Introducing Maybe: solving missing values with types

 19.2. The problem with null

 19.2.1. Handling missing values with errors

 19.2.2. Returning null values

 19.2.3. Using Maybe as a solution to missing values

 19.3. Computing with Maybe

 19.4. Back to the lab! More-complex computation with Maybe

 Summary

 Lesson 20. Capstone: Time series

 20.1. Your data and the TS data type

 20.1.1. Building a basic time-series type

 20.2. Stitching together TS data with Semigroup and Monoid

 20.2.1. Making TS an instance of Monoid

 20.3. Performing calculations on your time series

 20.3.1. Calculating the min and max values for your time series

 20.4. Transforming time series

 20.4.1. Moving average

 Summary

 Extending the exercise

 Unit 4. IO in Haskell

 Lesson 21. Hello World!—introducing IO types

 21.1. IO types—dealing with an impure world

 21.1.1. Examples of IO actions

 21.1.2. Keeping values in the context of IO

 21.2. Do-notation

 21.3. An example: command-line pizza cost calculator

 21.3.1. A peek at Monad—do-notation in Maybe

 21.4. Summary

 Lesson 22. Interacting with the command line and lazy I/O

 22.1. Interacting with the command line the nonlazy way

 22.2. Interacting with lazy I/O

 22.2.1. Thinking of your problem as a lazy list

 Summary

 Lesson 23. Working with text and Unicode

 23.1. The Text type

 23.1.1. When to use Text vs. String

 23.2. Using Data.Text

 23.2.1. OverloadedStrings and Haskell extensions

 23.2.2. Basic Text utilities

 23.3. Text and Unicode

 23.3.1. Searching Sanskrit

 23.4. Text I/O

 Summary

 Lesson 24. Working with files

 24.1. Opening and closing files

 24.2. Simple I/O tools

 24.3. The trouble with lazy I/O

 24.4. Strict I/O

 24.4.1. When to use lazy vs. strict

 Summary

 Lesson 25. Working with binary data

 25.1. Working with binary data by using ByteString

 25.2. Glitching JPEGs

 25.2.1. Inserting random bytes

 25.2.2. Sorting random bytes

 25.2.3. Chaining together IO actions with foldM

 25.3. ByteStrings, Char8, and Unicode

 Summary

 Lesson 26. Capstone: Processing binary files and book data

 26.1. Working with book data

 26.2. Working with MARC records

 26.2.1. Understanding the structure of a MARC record

 26.2.2. Getting the data

 26.2.3. Checking the leader and iterating through your records

 26.2.4. Reading the directory

 26.2.5. Using the directory to look up fields

 26.2.6. Processing the directory entries and looking up MARC fields

 26.2.7. Getting Author and Title information from a MARC field

 26.3. Putting it all together

 Summary

 Extending the exercise

 Unit 5. Working with type in a context

 Lesson 27. The Functor type class

 27.1. An example: computing in a Maybe

 27.2. Using functions in context with the Functor type class

 27.3. Functors are everywhere!

 27.3.1. One interface for four problems

 27.3.2. Converting a Maybe RobotPart to Maybe Html

 27.3.3. Converting a list of RobotParts to a list of HTML

 27.3.4. Converting a Map of RobotParts to HTML

 27.3.5. Transforming an IO RobotPart into IO Html

 Summary

 Lesson 28. A peek at the Applicative type class: using functions in a context

 28.1. A command-line application for calculating the distance between cities

 28.1.1. The limitations of Functor

 28.2. Using <*> for partial application in a context

 28.2.1. Introducing the <*> operator

 28.2.2. Using <*> to finish your city distance program

 28.2.3. Using a multi-argument function in IO using <$> and <*>

 28.3. Using <*> to create data in a context

 28.3.1. Creating a user in the context of a Maybe

 Summary

 Lesson 29. Lists as context: a deeper look at the Applicative type class

 29.1. Introducing the Applicative type class

 29.1.1. The pure method

 29.2. Containers vs. contexts

 29.3. List as a context

 29.3.1. Exploring container vs. context with a list

 29.3.2. A game show example

 29.3.3. Generating the first N prime numbers

 29.3.4. Quickly generating large amounts of test data

 Summary

 Lesson 30. Introducing the Monad type class

 30.1. The limitations of Applicative and Functor

 30.1.1. Combining two Map lookups

 30.1.2. Writing a not-so-trivial echo IO action

 30.2. The bind operator: >>=

 30.3. The Monad type class

 30.3.1. Using Monad to build a Hello <Name> program

 Summary

 Lesson 31. Making Monads easier with do-notation

 31.1. Do-notation revisited

 31.2. Using do-notation to reuse the same code in different contexts

 31.2.1. The problem setup

 31.2.2. The IO context—building a command-line tool

 31.2.3. The Maybe context—working with a map of candidates

 31.2.4. The List context—processing a list of candidates

 31.2.5. Putting it all together and writing a monadic function

 Summary

 Lesson 32. The list monad and list comprehensions

 32.1. Building lists with the list monad

 32.1.1. The guard function

 32.2. List comprehensions

 32.3. Monads: much more than just lists

 Summary

 Lesson 33. Capstone: SQL-like queries in Haskell

 33.1. Getting started

 33.2. Basic queries for your list: select and where

 33.2.1. Implementing _select

 33.2.2. Implementing _where

 33.3. Joining Course and Teacher data types

 33.4. Building your HINQ interface and example queries

 33.5. Making a HINQ type for your queries

 33.6. Running your HINQ queries

 33.6.1. Using HINQ with Maybe types

 33.6.2. Joining multiple lists to get all enrollments

 Summary

 Extending the exercise

 Unit 6. Organizing code and building projects

 Lesson 34. Organizing Haskell code with modules

 34.1. What happens when you write a function with the same name as one in Prelude?

 34.2. Building a multifile program with modules

 34.2.1. Creating the Main module

 34.2.2. Putting your improved isPalindrome code in its own module

 34.2.3. Using your Palindrome module in your Main module

 Summary

 Lesson 35. Building projects with stack

 35.1. Starting a new stack project

 35.2. Understanding the project structure

 35.2.1. The project .cabal file and autogenerated files

 35.2.2. The app, src, and test directories

 35.3. Writing your code

 35.4. Building and running your project!

 35.4.1. A quick improvement: getting rid of language pragmas

 Summary

 Lesson 36. Property testing with QuickCheck

 36.1. Starting a new project

 36.2. Different types of testing

 36.2.1. Manual testing and calling GHCi from stack

 36.2.2. Writing your own unit tests and using stack test

 36.3. Property testing QuickCheck

 36.3.1. Testing properties

 36.3.2. Introducing QuickCheck

 36.3.3. Using QuickCheck with more types and installing packages

 Summary

 Lesson 37. Capstone: Building a prime-number library

 37.1. Starting your new project

 37.2. Modifying the default files

 37.3. Writing your core library functions

 37.3.1. Defining primes

 37.3.2. Defining an isPrime function

 37.4. Writing tests for your code

 37.4.1. Defining properties for isPrime

 37.4.2. Fixing the bug

 37.5. Adding code to factor numbers

 Summary

 Extending the exercise

 Unit 7. Practical Haskell

 Lesson 38. Errors in Haskell and the Either type

 38.1. Head, partial functions, and errors

 38.1.1. Head and partial functions

 38.2. Handling partial functions with Maybe

 38.3. Introducing the Either type

 38.3.1. Building a prime check with Either

 Summary

 Lesson 39. Making HTTP requests in Haskell

 39.1. Getting your project set up

 39.1.1. Your starter code

 39.2. Using the HTTP.Simple module

 39.3. Making an HTTP request

 39.4. Putting it all together

 Summary

 Lesson 40. Working with JSON data by using Aeson

 40.1. Getting set up

 40.1.1. Setting up stack

 40.2. Using the Aeson library

 40.3. Making your data types instances of FromJSON and ToJSON

 40.3.1. The easy way

 40.3.2. Writing your own instances of FromJSON and ToJSON

 40.4. Putting it all together: reading your NOAA data

 Summary

 Lesson 41. Using databases in Haskell

 41.1. Setting up your project

 41.2. Using SQLite and setting up your database

 41.2.1. Your Haskell data

 41.3. Creating data—inserting users and checking out tools

 41.3.1. Adding new users to your database

 41.3.2. Creating checkouts

 41.4. Reading data from the database and FromRow

 41.4.1. Making your data an instance of FromRow

 41.4.2. Listing users and tools

 41.5. Updating existing data

 41.6. Deleting data from your database

 41.7. Putting it all together

 Summary

 Lesson 42. Efficient, stateful arrays in Haskell

 42.1. Creating efficient arrays in Haskell with the UArray type

 42.1.1. The inefficiencies of lazy lists

 42.1.2. Creating a UArray

 42.1.3. Updating your UArray

 42.2. Mutating state with STUArray

 42.3. Taking values out of the ST context

 42.4. Implementing a bubble sort

 Summary

 Afterword. What’s next?

 A deeper dive into Haskell

 More powerful type systems than Haskell?

 Idris—programming with dependent types

 Liquid Haskell—provable types

 Other functional programming languages

 Recommended programming languages in the Lisp family

 Recommended programming languages in the ML family

 Answers to end-of-lesson exercises

 Unit 1

 Lesson 2

 Lesson 3

 Lesson 4

 Lesson 5

 Lesson 6

 Lesson 7

 Lesson 8

 Lesson 9

 Unit 2

 Lesson 11

 Lesson 12

 Lesson 13

 Lesson 14

 Unit 3

 Lesson 16

 Lesson 17

 Lesson 18

 Lesson 19

 Unit 4

 Lesson 21

 Lesson 22

 Lesson 23

 Lesson 24

 Lesson 25

 Unit 5

 Lesson 27

 Lesson 28

 Lesson 29

 Lesson30

 Lesson 31

 Lesson 32

 Unit 6

 Unit 7

 Lesson 38

 Lesson 39

 Lesson 40

 Lesson 41

 Lesson 42

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 When I was first approached with the idea of writing Get Programming with Haskell, I was unsure of whether I should. At the time, my primary interest was in writing about probability topics on my blog, Count
 Bayesie. Though I had experience teaching both Haskell and functional programming in general, it had been a while, and I was
 frankly a bit rusty. My active interest in data science, probability, and machine learning were somewhat borne out of a personal
 frustration with Haskell. Sure, the language was beautiful and powerful, but in a few ugly lines of R and some linear algebra,
 I could perform sophisticated analysis and build models to predict the future; in Haskell I/O is nontrivial! I was hardly
 the evangelist to write a Haskell book.

 Then I recalled a quote from J.D. Salinger in Seymour: An Introduction, where he describes the trick to writing:

 Ask yourself, as a reader, what piece of writing in all the world ... would [you] most want to read if [you] had [your] heart’s
 choice. The next step is terrible, but so simple I can hardly believe it as I write it. You just sit down shamelessly and
 write the thing yourself.

 I realized this is exactly why I needed to write Get Programming with Haskell. There are a fair number of good Haskell books out there, but none scratched my particular itch for learning Haskell. I’ve
 always wanted to read a book that shows you how to solve practical problems that are often a real pain in Haskell. I don’t
 particularly care to see large, industrial-strength programs, but rather fun experiments that let you explore the world with
 this impressive programming language. I’ve also always wanted to read a Haskell book that’s reasonably short and that, when
 I’m finished, enables me to feel comfortable doing all sorts of fun weekend projects in Haskell. It was with this realization
 that the Haskell book I wanted to read didn’t yet exist that I decided that writing Get Programming with Haskell would be a good idea.

 Now that I’ve finished writing (and reading) this book, I’m thrilled with how much fun I’ve had. Haskell is an endlessly interesting
 language that always offers more to teach. It’s a difficult language to learn, but that’s part of the fun. Nearly every topic
 in this book is likely something you haven’t seen done quite the same way before (unless you’re an experienced Haskeller).
 The joy of Haskell is opening yourself up to a rich learning experience. If you rush to master Haskell, you’ll be in for an
 awful time. If, however, you take the time to explore, to be a beginner again, you’ll find it endlessly rewarding.

Acknowledgments

 Writing a book is an enormous undertaking, and the author is just one of many people essential to making sure the project
 is a success. The first people I have to thank are those who supported me both emotionally and intellectually during this
 great adventure. My wife, Lisa, and son, Archer, have been incredibly patient with my long hours of work and endlessly encouraging
 of me all along the way. I also have to thank my dear friends Dr. Richard Kelley and Xavier Bengoechea, who were a constant
 source of feedback, support, and intellectual stimulation. This book never would have happened if it weren’t for my graduate
 advisor, Dr. Fred Harris, giving me the amazing opportunity to teach Haskell to a group of excited undergraduates. Additionally,
 I want to thank my fellow coworkers at Quick Sprout: Steve Cox, Ian Main, and Hiten Shah, who endured my rambling endlessly
 about Haskell for the last year.

 It’s difficult to overstate how much the incredible team at Manning has contributed to this book; more people have helped
 than can be named in this space. This book would have been a shadow of what it has become without the support of my editor,
 Dan Maharry. Dan has been essential to pushing every good thought I have into a much better one. I also must give Erin Twohey
 credit for being the person who first came up with the crazy idea that I should write a Haskell book. My technical editor,
 Palak Mathur, did a great job of ensuring that the technical content of the book was easy to follow and understand. I also
 want to thank Vitaly Bragilevsky for providing valuable feedback for improving the code in this book, and Sharon Wilkey for
 her patient copyediting. Finally, I’d like to recognize the reviewers who took the time to read and comment on the book: Alexander
 A. Myltsev, Arnaud Bailly, Carlos Aya, Claudio Rodriguez, German Gonzalez-Morris, Hemanth Kapila, James Anaipakos, Kai Gellien,
 Makarand Deshpande, Mikkel Arentoft, Nikita Dyumin, Peter Hampton, Richard Tobias, Sergio Martinez, Victor Tatai, Vitaly Bragilevsky,
 and Yuri Klayman.

About this book

 The aim of Get Programming with Haskell is to give you a thorough-enough introduction to the Haskell programming language that you can write nontrivial, practical
 programs when you finish it. Many other Haskell books focus heavily on the academic foundations of Haskell but often leave
 readers a bit bewildered when it comes to accomplishing tasks that would be mundane in other languages. At the end of this
 book, you should have a solid sense of what makes Haskell interesting as a programming language, and should also be comfortable
 making larger applications that work with I/O, generate random numbers, work with databases, and generally accomplish the
 same things you can in whatever language you’re most comfortable in.

Who should read this book

 This book is for anyone with existing programming experience who wants to take their programming skills and understanding
 of programming languages to the next level. You can come to your own conclusions about how practical Haskell is, but there
 are two great and practical reasons to learn it.

 First and foremost, even if you never touch Haskell again, learning to be a competent Haskell programmer will make you a better
 programmer in general. Haskell forces you to write safe and functional code, and to model your problems carefully. Learning
 to think in Haskell will make you reason better about abstraction and stop potential bugs in code in any language. I have
 yet to meet a software developer who was proficient in Haskell who was not also an above-average programmer.

 The second benefit of learning Haskell is that it provides a crash course in understanding programming language theory. You
 can’t learn enough Haskell to write nontrivial programs and not come away knowing a fair bit about functional programming,
 lazy evaluation, and sophisticated type systems. This background in programming language theory is not merely beneficial for
 the academically curious, but serves a great pragmatic purpose as well. Language features from Haskell are constantly making
 their way into new programming languages and as new features in existing languages. Knowing Haskell and its features well
 will give you a leg up in understanding what’s coming over the horizon in programming for years to come.

How this book is organized

 The structure of Get Programming with Haskell might be different from many other programming books you’ve read before. Rather than lengthy chapters, the book is divided
 into short, easy-to-digest lessons. The lessons are grouped into seven units that cover a common topic. Except for the last
 unit, all units end with a capstone feature. These capstone exercises combine everything covered in the unit to create a larger
 code example. All lessons contain Quick Check exercises, easy-to-answer questions that ensure you’re keeping up. At the end
 of each lesson, we also provide a few longer exercises (all of the answers to these are in the back of the book). The units
 cover the following content:

 	
Unit 1—This unit sets the foundations for functional programming in general, as well as covering the basics of many of the unique
 features of working with Haskell. After reading this unit, you’ll be familiar enough with the basics of functional programming
 that you could start learning any other functional programming language and find the material familiar.

 	
Unit 2—Here you start looking at Haskell’s powerful type system. This unit covers basic types such as Int, Char, and Boolean, and how to make your own data types in Haskell by using these. You’ll also begin looking at Haskell’s type class system,
 which allows you to use the same function for a variety of types.

 	
Unit 3—Now that you’ve covered the basics of types in Haskell, you can move to more-abstract types and type classes that make Haskell
 so powerful. You’ll see how Haskell allows you to combine types in ways that aren’t possible in most other programming languages.
 You’ll learn about the Monoid and Semigroup type classes, in addition to seeing how the Maybe type can remove an entire class of errors from your programs.

 	
Unit 4—Finally, you’ve learned enough Haskell to discuss I/O. This unit covers all of the basics of performing I/O in Haskell and
 what makes it unique (and sometimes challenging). By the end of this unit, you’ll be comfortable writing command-line tools,
 reading and writing text files, working with Unicode data, and manipulating binary data.

 	
Unit 5—By this point in the book, you’ve seen several types that create a context for other types. Maybe types are a context for possibly missing values, and IO types are values that have the context of being used in I/O. In this unit, you’ll take a deep dive into a family of type
 classes that are essential for working with values in a context: Functor, Applicative, and Monad. Though they have intimidating names, they provide a relatively straightforward role: using any function in the various contexts
 that you use frequently. Although these concepts are abstract, they also allow you to find a single way to work with Maybe types, IO types, and even lists.

 	
Unit 6—With one of the most challenging topics in the book behind you, it’s time to start thinking about writing real-world code.
 The first thing you need is to make sure your code is organized. This unit starts with a lesson on Haskell’s module system.
 You’ll then spend the rest of the unit learning about stack, a powerful tool for creating and maintaining Haskell projects.

 	
Unit 7—We conclude this book by looking at some of the missing pieces for working with Haskell in the real world. This unit begins
 with an overview of handling errors in Haskell, which is different from many other languages. After that, you’ll look at three
 practical tasks in Haskell: using HTTP to make requests to a REST API, parsing JSON data by using the Aeson library, and putting
 together a database-backed application. You’ll end the book by looking at a problem you usually don’t think about using Haskell
 for: efficient, stateful, array-based algorithms.

 The most difficult part of learning (and teaching) Haskell is that you need to cover a fairly large number of topics before
 you can comfortably perform even basic I/O. If your aim is to understand and use Haskell, I recommend that you read each unit
 in succession. But the intention of this book is for you to be able to stop at a few places in the book and still retain something
 of value. Unit 1 is designed to provide you with a solid foundation for any functional programming language. Whether it’s Clojure, Scala,
 F#, Racket, or Common Lisp, all of them share the core features discussed in unit 1. If you already have a background in functional programming, you can feel free to skim unit 1, although you should pay close attention to the lessons on partial application and lazy evaluation. At the end of unit 4, you should know enough Haskell to play around on weekend projects. After unit 5, you should be fairly comfortable moving on to more-advanced topics on your own. Units 6 and 7 are primarily focused on using Haskell for practical projects.

About the code

 This book contains many code samples. The code in this book is presented in a fixed-width font like this to separate it from ordinary text. Many code samples are annotated using numbers to explain each section of the code. More-complicated
 code examples include arrows pointing out each section and explaining it in more detail. When writing Haskell, you’ll make
 heavy use of the REPL to interact with your code. These sections will be different than normal code sections as they’ll have
 the text GHCi> indicating where the user inputs code. There are also occasional references to the command line, in which case $ is used to indicate where a user is to input commands.

 There are many exercises throughout the book. The exercises take the form of quick checks, which can be answered quickly,
 and lesson exercises that take more time and thought. The code solutions for the quick checks are at the end of each lesson,
 and the code for the lesson exercises is in the appendix at the end of the book.

Book forum

 Purchase of Get Programming with Haskell includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/get-programming-with-haskell. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the author

 [image:]

 Will Kurt works as a data scientist at Bombora. With a formal background in both computer science (MS) and English literature
 (BA), he is fascinated with explaining complex technical topics as clearly and generally as possible. He has taught a course
 section on Haskell at the University of Nevada, Reno, and given workshops on functional programming. He also blogs about probability
 at CountBayesie.com.

Lesson 1. Getting started with Haskell

 After reading lesson 1, you’ll be able to

 	Install tools for Haskell development

 	Use GHC and GHCi

 	Use tips for writing Haskell programs

1.1. Welcome to Haskell

 Before you dive into learning Haskell, you need to become familiar with the basic tools you’ll be using on your journey. This
 lesson walks you through getting started with Haskell. The lesson starts with downloading the basics to write, compile, and
 run Haskell programs. You’ll then look at example code and start thinking about how to write code in Haskell. After this lesson,
 you’ll be ready to dive in!

 1.1.1. The Haskell Platform

 The worst part of learning a new programming language is getting your development environment set up for the first time. Fortunately,
 and somewhat surprisingly, this isn’t a problem at all with Haskell. The Haskell community has put together a single, easily
 installable package of useful tools referred to as the Haskell Platform. The Haskell Platform is the “batteries included” model of packaging a programming language.

 The Haskell Platform includes the following:

 	The Glasgow Haskell Compiler (GHC)

 	An interactive interpreter (GHCi)

 	The stack tool for managing Haskell projects

 	A bunch of useful Haskell packages

 The Haskell Platform can be downloaded from www.haskell.org/downloads#platform. From there, follow the directions for installing on your OS of choice. This book uses Haskell version 8.0.1 or higher.

 1.1.2. Text editors

 Now that you have the Haskell Platform installed, you’re probably curious about which editor you should use. Haskell is a
 language that strongly encourages you to think before you hack. As a result, Haskell programs tend to be extremely terse. There’s little that an editor can do for you, other than manage
 indentation and provide helpful syntax highlighting. Many Haskell developers use Emacs with haskell-mode. But if you’re not already familiar with Emacs (or don’t like to work with it), it’s certainly not worth the work to learn
 Emacs in addition to Haskell. My recommendation is that you look for a Haskell plugin for whatever editor you use the most.
 A bare-bones text editor, such as Pico or Notepad++, will work just fine for this book, and most full-fledged IDEs have Haskell
 plugins.

1.2. The Glasgow Haskell Compiler

 Haskell is a compiled language, and the Glasgow Haskell Compiler is the reason Haskell is as powerful as it is. The job of
 the compiler is to transform human-readable source code into machine-readable binary. At the end compilation, you’re left
 with an executable binary file. This is different from when you run Ruby, for example, in which another program reads in your
 source code and interprets it on the fly (this is accomplished with an interpreter). The main benefit of a compiler over an interpreter is that because the compiler transforms code in advance, it can perform
 analysis and optimization of the code you’ve written. Because of some other design features of Haskell, namely its powerful
 type system, there’s an adage that if it compiles, it works. Though you’ll use GHC often, never take it for granted. It’s an amazing piece of software in its own right.

 To invoke GHC, open a terminal and type in ghc:

 $ ghc

 In this text, whenever you come across a $ sign, it means you’re typing into a command prompt. Of course, with no file to compile, GHC will complain. To get started,
 you’ll make a simple file called hello.hs. In your text editor of choice, create a new file named hello.hs and enter the following
 code.

 Listing 1.1. hello.hs a Hello World program

 --hello.hs my first Haskell file! 1
main = do 2
 print "Hello World!" 3

 	1 A commented line with the name of your file

 	2 The start of your ‘main’ function

 	3 The main function prints out “Hello World”

 At this point, don’t worry too much about what’s happening in any of the code in this section. Your real aim here is to learn
 the tools you need so that they don’t get in the way while you’re learning Haskell.

 Now that you have a sample file, you can run GHC again, this time passing in your hello.hs file as an argument:

 $ ghc hello.hs
[1 of 1] Compiling Main
Linking hello ...

 If the compilation was successful, GHC will have created three files:

 	hello (hello.exe on Windows)

 	hello.hi

 	hello.o

 Starting out, the most important file is hello, which is your binary executable. Because this file is a binary executable,
 you can simply run the file:

 $./hello
"Hello World!"

 Notice that the default behavior of the compiled program is to execute the logic in main. By default, all Haskell programs you’re compiling need to have a main, which plays a similar role to the Main method in Java/C++/C# or __main__ in Python.

 Like most command-line tools, GHC supports a wide range of optional flags. For example, if you want to compile hello.hs into
 an executable named helloworld, you can use the -o flag:

 $ghc hello.hs -o helloword
[1 of 1] Compiling Main
Linking helloworld

 For a more complete listing of compiler options, call ghc --help (no filename argument is required).

 	

 Quick check 1.1

 Q1:

Copy the code for hello.hs and compile your own executable named testprogram.

 	

 	

 QC 1.1 answer

 1:

Simply copy the code to a file and then run this in the same directory as the file: ghc hello.hs -o testprogram

 	

1.3. Interacting with Haskell—GHCi

 One of the most useful tools for writing Haskell programs is GHCi, an interactive interface for GHC. Just like GHC, GHCi is
 started with a simple command: ghci. When you start GHCi, you’ll be greeted with a new prompt:

 $ ghci
GHCi>

 This book indicates when you’re using GHCi by using GHCi> for lines you input and a blank for lines that are output by GHCi. The first thing to learn about any program you start from
 the command line is how to get out of it! For GHCi, you use the :q command to exit:

 $ ghci
GHCi> :q
Leaving GHCi.

 Working with GHCi is much like working with interpreters in most interpreted programming languages such as Python and Ruby.
 It can be used as a simple calculator:

 GHCi> 1 + 1
2

 You can also write code on the fly in GHCi:

 GHCi> x = 2 + 2
GHCi> x
4

 Prior to version 8 of GHCi, function and variable definitions needed to be prefaced with a let keyword. This is no longer necessary, but many Haskell examples on the web and in older books still include it:

 GHCi> let f x = x + x
GHCi> f 2
4

 The most important use of GHCi is interacting with programs that you’re writing. There are two ways to load an existing file
 into GHCi. The first is to pass the filename as an argument to ghci:

 $ ghci hello.hs
[1 of 1] Compiling Main
Ok, modules loaded: Main.

 The other is to use the :l (or :load) command in the interactive session:

 $ ghci
GHCi> :l hello.hs
[1 of 1] Compiling Main
Ok, modules loaded: Main.

 In either of these cases, you can then call functions you’ve written:

 GHCi> :l hello.hs
GHCi> main
"Hello World!"

 Unlike compiling files in GHC, your files don’t need a main in order to be loaded into GHCi. Anytime you load a file, you’ll overwrite existing definitions of functions and variables.
 You can continually load your file as you work on it and make changes. Haskell is rather unique in having strong compiler
 support as well as a natural and easy-to-use interactive environment. If you’re coming from an interpreted language such as
 Python, Ruby, or JavaScript, you’ll feel right at home using GHCi. If you’re familiar with compiled languages such as Java,
 C#, or C++, you’ll likely be surprised that you’re working with a compiled language when writing Haskell.

 	

 Quick check 1.2

 Q1:

Edit your Hello World script to say Hello <Name> with your name. Reload this into GHCi and test it out.

 	

 	

 QC 1.2 answer

 1:

Edit your file so that it has your name:

 main = do
 print "Hello Will!"

 In GHCi, load your file:

 GHCi> :l hello.hs
GHCi> main
Hello Will!

 	

1.4. Writing and working with Haskell code

 One of the most frustrating issues for newcomers to Haskell is that basic I/O in Haskell is a fairly advanced topic. Often
 when new to a language, it’s a common pattern to print output along the way to make sure you understand how a program works.
 In Haskell, this type of ad hoc debugging is usually impossible. It’s easy to get a bug in a Haskell program, along with a
 fairly sophisticated error, and be at an absolute loss as to how to proceed.

 Compounding this problem is that Haskell’s wonderful compiler is also strict about the correctness of your code. If you’re
 used to writing a program, running it, and quickly fixing any errors you made, Haskell will frustrate you. Haskell strongly
 rewards taking time and thinking through problems before running programs. After you gain experience with Haskell, I’m certain
 that these frustrations will become some of your favorite features of the language. The flipside of being obsessed with correctness
 during compilation is that programs will work, and work as expected far more often than you’re likely used to.

 The trick to writing Haskell code with minimal frustration is to write code in little bits, and play with each bit interactively
 as it’s written. To demonstrate this, you’ll take a messy Haskell program and clean it up so it’s easy to understand each
 piece. For this example, you’ll write a command-line app that will draft thank-you emails to readers from authors. Here’s the first, poorly written, version of the program.

 Listing 1.2. A messy version of first_prog.hs

 messyMain :: IO()
messyMain = do
 print "Who is the email for?"
 recipient <- getLine
 print "What is the Title?"
 title <- getLine
 print "Who is the Author?"
 author <- getLine
 print ("Dear " ++ recipient ++ ",\n" ++
 "Thanks for buying " ++ title ++ "\nthanks,\n" ++
 author)

 The key issue is that this code is in one big monolithic function named messyMain. The advice that it’s good practice to write modular code is fairly universal in software, but in Haskell it’s essential
 for writing code that you can understand and troubleshoot. Despite being messy, this program does work. If you changed the
 name of messyMain to main, you could compile and run this program. But you can also load this code into GHCi as it is, assuming that you’re in the same
 directory as your first_prog.hs:

 $ghci
GHCi> :l first_prog.hs
[1 of 1] Compiling Main (first_prog.hs, interpreted)
Ok, modules loaded: Main.

 If you get the Ok from GHCi, you know that your code compiled and works just fine! Notice that GHCi doesn’t care if you have a main function. This is great, as you can still interact with files that don’t have a main. Now you can take your code for a test drive:

 GHCi> messyMain
"Who is the email for?"
Happy Reader
"What is the Title?"
Learn Haskell
"Who is the Author?"
Will Kurt
"Dear Happy Reader,\nThanks for buying Learn Haskell\nthanks,\nWill Kurt"

 Everything works fine, but it’d be much easier to work with if this code was broken up a bit. Your primary goal is to create
 an email, but it’s easy to see that the email consists of tying together three parts: the recipient section, the body, and
 the signature. You’ll start by pulling out these parts into their own functions. The following code is written into your first_prog.hs
 file. Nearly all of the functions and values defined in this book can be assumed to be written into a file you’re currently
 working with. You’ll start with just the toPart function:

 toPart recipient = "Dear" ++ recipient ++ ",\n"

 In this example, you could easily write these three functions together, but it’s often worth it to work slowly and test each
 function as you go. To test this out, you’ll load your file again in GHCi:

 GHCi> :l "first_prog.hs"
[1 of 1] Compiling Main (first_prog.hs, interpreted)
Ok, modules loaded: Main.
GHCi> toPart "Happy Reader"
"DearHappy Reader,\n"
GHCi> toPart "Bob Smith"
"DearBob Smith,\n"

 This pattern of writing code in an editor and then loading and reloading it into GHCi will be your primary means of working
 with code throughout the book. To avoid repetition, the :l "first_prog.hs" will be assumed rather than explicitly written from here on.

 Now that you’ve loaded this into GHCi, you see there’s a slight error, a missing space between Dear and the recipient’s name. Let’s see how to fix this.

 Listing 1.3. Corrected toPart function

 toPart recipient = "Dear " ++ recipient ++ ",\n"

 And back to GHCi:

 GHCi> toPart "Jane Doe"
"Dear Jane Doe,\n"

 Everything looks good. Now to define your two other functions. This time you’ll write them both at the same time. While following
 along, it’s still a good idea to write code one function at a time, load it into GHCi, and make sure it all works before moving
 on.

 Listing 1.4. Defining the bodyPart and fromPart functions

 bodyPart bookTitle = "Thanks for buying " ++ bookTitle ++ ".\n"
fromPart author = "Thanks,\n"++author

 You can test these out as well:

 GHCi> bodyPart "Learn Haskell"
"Thanks for buying Learn Haskell.\n"
GHCi> fromPart "Will Kurt"
"Thanks,\nWill Kurt"

 Everything is looking good! Now you need a function to tie it all together.

 Listing 1.5. Defining the createEmail function

 createEmail recipient bookTitle author = toPart recipient ++
 bodyPart bookTitle ++
 fromPart author

 Notice the alignment of the three function calls. Haskell makes limited use of significant whitespace (but nothing as intense
 as Python). Assume that any formatting in this text is intentional; if sections of code are lined up, it’s for a reason. Most
 editors can handle this automatically with a Haskell plugin.

 With all your functions written, you can test createEmail:

 GHCi> createEmail "Happy Reader" "Learn Haskell" "Will Kurt"
"Dear Happy Reader,\nThanks for buying Learn Haskell.\nThanks,\nWill Kurt"

 Your functions each work as expected. Now you can put them all together in your main.

 Listing 1.6. Improved first_prog.hs with a cleaned-up main

 main = do
 print "Who is the email for?"
 recipient <- getLine
 print "What is the Title?"
 title <- getLine
 print "Who is the Author?"
 author <- getLine
 print (createEmail recipient title author)

 You should be all set to compile, but it’s always a good idea to test in GHCi first:

 GHCi> main
"Who is the email for?"
 Happy Reader
"What is the Title?"
 Learn Haskell
"Who is the Author?"
 Will Kurt
"Dear Happy Reader,\nThanks for buying Learn Haskell.\nThanks,\nWill Kurt"

 It looks like all your pieces are working together, and you were able to play with them each individually to make sure they
 worked as expected. Finally, you can compile your program:

 $ ghc first_prog.hs
[1 of 1] Compiling Main (first_prog.hs, first_prog.o)
Linking first_prog ...
$./first_prog
"Who is the email for?"
Happy Reader
"What is the Title?"
Learn Haskell
"Who is the Author?"
Will Kurt
"Dear Happy Reader,\nThanks for buying Learn Haskell.\nThanks,\nWill Kurt"

 You’ve just finished your first successful Haskell program. With your basic workflow understood, you can now dive into the
 amazing world of Haskell!

Summary

 In this lesson, our objective was to get you started with Haskell. You started by installing the Haskell Platform, which bundles
 together the tools you’ll be using through this book. These tools include GHC, Haskell’s compiler; GHCi, the interactive interpreter
 for Haskell; and stack, a build tool you’ll use later in the book. The rest of this lesson covered the basics of writing,
 refactoring, interacting with, and compiling Haskell programs. Let’s see if you got this.

 Q1.1

In GHCi, find out what 2123 is.

 Q1.2

Modify the text in each of the functions in first_prog.hs, test them out in GHCi while you do this, and, finally, compile
 a new version of your email templating program so that the executable is named email.

Unit 1. Foundations of functional programming

 There are two major ways to understand the act of programming. The first, and historically more common, is the view that the
 programmer provides a sequence of instructions to a computer in order to make it behave a certain way. This model of programming
 ties the programmer to the design of a particular tool for programming, namely a computer. In this type of programming, the
 computer is a device that takes input, accesses memory, sends instructions to a processing unit, and finally delivers output
 to the user. This model of a computer is called von Neumann architecture, after the famous mathematician and physicist John von Neumann.

 The programming language that best embodies this way of thinking about programs is C. A C program takes in data from the standard
 input controlled by the operating system, stores and retrieves necessary values in physical memory that frequently must be
 manually managed, requires the handling of pointers to a specific block of memory, and finally returns all output through
 the standard output controlled by the OS. When writing C programs, programmers must understand as much about the problem at
 hand as the physical architecture of the computer in front of them.

 But a computer built with von Neumann architecture isn’t the only way to perform computation. Humans perform a wide variety
 of computations that have nothing to do with thinking of memory allocation and instruction sets: sorting books on a shelf,
 solving a derivative of a function in calculus, giving directions to friends, and so forth. When we write C code, we’re programming
 to a specific implementation of computation. John Backus, who led the team that created Fortran, asked in his Turing Award
 lecture, “Can programming be liberated from the von Neumann style?”

 This question leads to the second way to understand programming, which is the subject of the first unit in this book. Functional programming attempts to liberate programming from the von Neumann style. The foundations of functional programming are abstract, mathematical
 notions of computation that transcend a specific implementation. This leads to a method of programming that often solves problems
 simply by describing them. By focusing on computation, not computers, functional programming allows the programmer access
 to powerful abstractions that can make many challenging problems much easier to solve.

 The price of this is that getting started can be much more difficult. Ideas in functional programming are often abstract,
 and we must start by building the idea of programming up from first principles. Many concepts need to be learned before we
 can build useful programs. When working through this first unit, remember that you’re learning to program in a way that transcends
 programming a computer.

 Just as C is the nearly perfect embodiment of the von Neumann style of programming, Haskell is the purest functional programming
 language you can learn. As a language, Haskell commits fully to Backus’s dream and doesn’t allow you to stray back to more-familiar
 styles of programming. This makes learning Haskell more difficult than many other languages, but learning Haskell makes it
 impossible for you to not gain deep insights into functional programming as you go. By the end of this unit, you’ll have a
 strong enough foundation in functional programming to understand the basics of all other functional programming languages,
 as well as being prepared for your journey to learn Haskell.

Lesson 2. Functions and functional programming

 After reading lesson 2, you’ll be able to

 	Understand the general idea of functional programming

 	Define simple functions in Haskell

 	Declare variables in Haskell

 	Explain the benefits of functional programming

 The first topic you need to understand when learning Haskell is, what is functional programming? Functional programming has
 a reputation for being a challenging topic to master. Although this is undoubtedly true, the foundations of functional programming
 are surprisingly straightforward. The first thing you need to learn is what it means to have a function in a functional programming language. You likely already have a good idea of what using a function means. In this lesson,
 you’ll see the simple rules that functions must obey in Haskell that not only make your code easier to reason about, but also
 lead to entirely new ways of thinking about programming.

 	

 Consider this

 You and your friends are out getting pizza. On the menu are three sizes of pizza pie with three different prices:

 	18 inches for $20

 	16 inches for $15

 	12 inches for $10

 You want to know which choice gives you the most pizza for your dollar. You want to write a function that will give you the
 dollar-per-square-inch cost of the pizza.

 	

2.1. Functions

 What exactly is a function? This is an important question to ask and understand if you’re going to be exploring functional programming.
 The behavior of functions in Haskell comes directly from mathematics. In math, we often say things like f(x) = y, meaning there’s some function f that takes a parameter x and maps to a value y. In mathematics, every x can map to one and only one y. If f(2) = 2,000,000 for a given function f, it can never be the case that f(2) = 2,000,001.

 The thoughtful reader may ask, “What about the square-root function? 4 has two roots, 2 and –2, so how can sqrt x be a true function when it clearly points to two ys!” The key thing to realize is that x and y don’t have to be the same thing. We can say that sqrt x is the positive root, so both x and y are positive real numbers, which resolves this issue. But we can also have sqrt x be a function from a positive real number to pairs of real numbers. In this case, each x maps to exactly one pair.

 In Haskell, functions work exactly as they do in mathematics. Figure 2.1 shows a function named simple.

 Figure 2.1. Defining a simple function

 [image:]

 The simple function takes a single argument x and then returns this argument untouched. Notice that unlike many other programming languages, in Haskell you don’t need
 to specify that you’re returning a value. In Haskell, functions must return a value, so there’s never a need to make this
 explicit. You can load your simple function into GHCi and see how it behaves. To load a function, all you have to do is have
 it in a file and use :load <filename> in GHCi:

 GHCi> simple^2
2
GHCi> simple "dog"
"dog"

 	

 Note

 In this section, we’re using GHCi—Haskell’s Interactive Read-Eval-Print Loop (REPL)—to run commands and get results.

 	

 All functions in Haskell follow three rules that force them to behave like functions in math:

 	All functions must take an argument.

 	All functions must return a value.

 	Anytime a function is called with the same argument, it must return the same value.

 The third rule is part of the basic mathematical definition of a function. When the rule that the same argument must always
 produce the same result is applied to function in a programming language, it’s called referential transparency.

2.2. Functional programming

 If functions are just mappings from a bunch of xs (that’s the plural of x—“exes”) to a bunch of ys (that’s the plural of y—“whys”) what do they have to do with programming? In the 1930s, a mathematician named Alonzo Church attempted to create a
 system of logic that used only functions and variables (xs and ys). This system of logic is called lambda calculus. In lambda calculus, you represent everything as functions: true and false are functions, and even all the integers can be
 represented as functions.

 Church’s goal was initially to resolve some problems in the mathematical field of set theory. Unfortunately, lambda calculus
 didn’t solve these problems, but something much more interesting came out of Church’s work. It turns out that lambda calculus
 allows for a universal model of computation, equivalent to a Turing machine!

 	

 What is a Turing machine?

 A Turing machine is an abstract model of a computer developed by the famous computer scientist Alan Turing. From a theoretical
 standpoint, the Turing machine is useful because it allows you to reason about what can and can’t be computed, not just on
 a digital computer, but any possible computer. This model also allows computer scientists to show equivalence between computing
 systems if they can each simulate a Turing machine. You can use this to show, for example, that there’s nothing that you can
 compute in Java that you can’t also compute in assembly language.

 	

 This discovery of the relationship between lambda calculus and computing is called the Church-Turing thesis (for more information, see www.alanturing.net/turing_archive/pages/reference%20articles/The%20Turing-Church%20Thesis.html). The wonderful thing about this discovery is that you have a mathematically sound model for programming!

 Most programming languages that you use are marvelous pieces of engineering but provide little assurance about how programs
 will behave. With a mathematical foundation, Haskell is able to remove entire classes of bugs and errors from the code you
 write. Cutting-edge research in programming languages is experimenting with ways to mathematically prove that programs will
 do exactly what you expect. Additionally, the nonmathematical nature of most programming language designs means the abstractions
 you can use are limited by engineering decisions in the language. If you could program math, you’d be able to both prove things
 about your code and have access to the nearly limitless abstractions that mathematics allows. This is the aim of functional
 programming: to bring the power of mathematics to the programmer in a usable way.

2.3. The value of functional programming in practice

 This mathematical model for programming has a variety of practical implications. Because of the simple rules that all functions
 must take and return values, and must always return the same value for the same argument, Haskell is a safe programming language. Programs are safe when they always behave exactly the way you expect them to and you can easily reason
 about their behavior. A safe programming language is one that forces your programs to behave as expected.

 Let’s look at code that isn’t safe and violates our simple rules for functions. Suppose you’re reading through a new code
 base and you come across lines of code that look like the following.

 Listing 2.1. Hidden state in function calls

 tick()
if(timeToReset){
 reset()
}

 This code clearly isn’t Haskell, because both tick and reset violate the rules we established. Neither function takes any arguments nor returns any value. The question is, then, what
 are these functions doing, and how is this different from functions in Haskell? It’s not a long shot to suppose that tick is incrementing a counter and that reset restores that counter to its starting value. Even if we’re not exactly right, this reasoning gives us insight into our question.
 If you aren’t passing an argument to a function, you must be accessing a value in your environment, and if you aren’t returning
 a value, you must also be changing a value in your environment. When you change a value in your programming environment, you’re
 changing the program’s state. Changing state creates side effects in your code, and these side effects can make code hard to reason about and therefore unsafe.

 It’s likely that both tick and reset are accessing a global variable (a variable reachable from anywhere in the program), which in any programming language is considered poor design. But side
 effects make it hard to reason about even the simplest, well-written code. To see this, you’ll look at a collection of values,
 myList, and reverse it by using built-in functionality. The following code is valid Python, Ruby, and JavaScript; see if you can
 figure out what it does.

 Listing 2.2. Confusing behavior in standard libraries

 myList = [1,2,3]
myList.reverse()
newList = myList.reverse()

 Now what do you expect the value of newList to be? Because this is a valid program in Ruby, Python, and JavaScript, it seems reasonable to assume that the value of newList should be the same. Here are the answers for all three languages:

 Ruby -> [3,2,1]
Python -> None
JavaScript -> [1,2,3]

 Three completely different answers for the exact same code in three languages! Python and JavaScript both have side effects
 that occur when reverse is called. Because the side effects of calling reverse are different for each language and aren’t made visible to the programmer, both languages give different answers. The Ruby
 code here behaves like Haskell, without side effects. Here you see the value of referential transparency. With Haskell, you
 can always see which effects each function has. When you called reset and tick earlier, the changes they made were invisible to you. Without looking at the source code, you have no way of knowing exactly
 which or even how many other values they’re using and changing. Haskell doesn’t allow functions to have side effects, which
 explains why all Haskell functions must take an argument and return a value. If Haskell functions didn’t always return a value,
 they’d have to change a hidden state in the program; otherwise, they’d be useless. If they didn’t take an argument, they’d
 have to access a hidden one, which would mean they’re no longer transparent.

 This small property of Haskell’s functions leads to code that’s dramatically easier to predict. Even in Ruby, the programmer
 is allowed to use side effects. When using another programmer’s code, you still can’t assume anything about what’s happening
 when you call a function or method. Because Haskell doesn’t allow this, you can look at any code, written by any programmer,
 and reason about its behavior.

 	

 Quick check 2.1

 Q1:

Many languages use the ++ operator to increment a value; for example, x++ increments x. Do you think Haskell has an operator or function that works this way?

 	

 	

 QC 2.1 answer

 1:

The ++ operator used in languages such as C++ couldn’t exist in Haskell because it violates our mathematical rules for functions.
 The most obvious rule is that each time you call ++ on a variable, the result is different.

 	

 2.3.1. Variables

 Variables in Haskell are straightforward. Here you’re assigning 2 to the variable x.

 Listing 2.3. Defining your first variable

 x = 2

 The only catch with variables in Haskell is that they’re not really variable at all! If you were to try to compile the following
 bit of Haskell, you’d get an error, as shown in the next listing.

 Listing 2.4. Variables aren’t variable!

 x = 2
x = 3 1

 	
1 Won’t compile because it changes the value of x

 A better way to think about variables in Haskell is as definitions. Once again, you see mathematical thinking replace the
 way you typically think about code. The problem is that in most programming languages, variable reassignment is essential
 to solving many problems. The inability to change variables is also related to referential transparency. This may seem like
 a strict rule to follow, but the reward is that you always know that after calling a function, the world remains the same.

 	

 Quick check 2.2

 Q1:

Even languages that don’t have a ++ operator allow for a += operator, often also used for incrementing a value. For example, x += 2 increments x by 2. You can think of += as a function that follows our rules: it takes a value and returns a value. Does this mean += can exist in Haskell?

 	

 	

 QC 2.2 answer

 1:

Although the += operator returns and takes an argument, just like ++, every time you call +=, you get a different result.

 	

 The key benefit of variables in programming is to clarify your code and avoid repetition. For example, suppose you want a
 function called calcChange. This function takes two arguments: how much is owed and how much is given. If you’re given enough money, you return the
 difference. But if you aren’t given enough money, you don’t want to give negative dollars; you’ll return 0. Here’s one way
 to write this.

 Listing 2.5. calcChange v.1

 calcChange owed given = if given - owed > 0
 then given - owed
 else 0

 Two things are wrong with this function:

 	Even for a tiny function, it’s hard to read. Each time you see the expression given - owed, you have to reason about what’s happening. For anything more complicated than subtraction, this would be unpleasant.

 	
You’re repeating your computation! Subtraction is a cheap operation, but if this had been a costlier operation, you’d be needlessly
 wasting resources.

 Haskell solves these problems by using a special where clause. Here’s the previous function written with a where clause.

 Listing 2.6. calcChange v.2

 calcChange owed given = if change > 0
 then change
 else 0
 where change = given – owed 1

 	1 given – owed is computed only once and assigned to change.

 The first thing that should strike you as interesting is that a where clause reverses the normal order used to write variables. In most programming languages, variables are declared before they’re
 used. This convention in most programming languages is partially the byproduct of being able to change state. Variable order
 matters because you can always reassign the value of something after you’ve assigned it. In Haskell, because of referential
 transparency, this isn’t an issue. There’s also a readability gain with the Haskell approach: if you read the algorithm, the
 intention is clear right away.

 	

 Quick check 2.3

 Q1:

Fill in the missing part of the following where clause:

 doublePlusTwo x = doubleX + 2
 where doubleX = __________

 	

 	

 QC 2.3 answer

 1:

doublePlusTwo x = doubleX + 2
 where doubleX = x*2

 	

 2.3.2. Variables that are variable

 Because change is an inevitable part of life, sometimes it makes sense to have variables that can be reassigned. One of these
 cases occurs when working in the Haskell REPL, GHCi. When working in GHCi, you’re allowed to reassign variables. Here’s an
 example:

 GHCi> x = 7
GHCi> x
7
GHCi> x = [1,2,3]
GHCi> x
[1,2,3]

 Prior to version 8 of GHC, variables in GHCi needed to be prefaced with the let keyword to mark them as different from other variables in Haskell. You can still define variables by using let in GHCi if you like:

 GHCi> let x = 7
GHCi> x
7

 It’s also worth noting that one-line functions can be defined in the same way:

 GHCi> let f x = x^2
GHCi> f 8
64

 In a few other special contexts in Haskell, you’ll see let used in this way. It can be confusing, but this difference is primarily to make real-world tasks less frustrating.

 It’s important to acknowledge that being able to change the definition of variables in GHCi is a special case. Although Haskell
 may be strict, having to restart GHCi every time you wanted to experiment with a different variable would be frustrating.

 	

 Quick check 2.4

 Q1:

What’s the final value of the x variable in the following code?

 GHCi> let x = simple simple
GHCi> let x = 6

 	

 	

 QC 2.4 answer

 1:

Because you can reassign values, the final value of x is 6.

 	

Summary

 In this lesson, our objective was to introduce you to functional programming and writing basic functions in Haskell. You saw
 that functional programming puts restrictions on the behavior of a function. These restrictions are as follows:

 	A function must always take an argument.

 	A function must always return a value.

 	Calling the same function with the same argument must always return the same result.

 These three rules have profound consequences for the way you write programs in Haskell. The major benefit of writing code
 in this style is that your programs are much easier to reason about, and behave predictably. Let’s see if you got this.

 Q2.1

You used Haskell’s if then else expression to write calcChange. In Haskell, all if statements must include an else component. Given our three rules for functions, why can’t you have an if statement all by itself?

 Q2.2

Write functions named inc, double, and square that increment, double, and square an argument n, respectively.

 Q2.3

Write a function that takes a value n. If n is even, the function returns n - 2, and if the number is odd, the function returns 3 × n + 1. To check whether the number is even, you can use either Haskell’s even function or mod (Haskell’s modulo function).

Lesson 3. Lambda functions and lexical scope

 After reading lesson 3, you’ll be able to

 	Write lambda functions in Haskell

 	Use lambda functions for ad hoc function definitions

 	Understand lexical scope

 	Create scope with a lambda function

 In this lesson, you’re going to continue your journey into understanding functional programming and Haskell by learning about
 one of the most foundational concepts in all of functional programming: the lambda function. On the surface, a lambda function—which is a function with no name—seems almost too simple to be interesting. But lambda functions provide incredible theoretical
 benefits as well as a surprising amount of real-world usefulness.

 	

 Consider this

 You’re messing around in GHCi and want to quickly calculate the difference between the square of the sum of three values and
 the sum of the squares of three values: 4, 10, 22. You could write this out by hand:

 GHCi> (4 + 10 + 22)^2 - (4^2 + 10^2 + 22^2)

 But this makes it easy to have a typo that causes your expression to create an error. Additionally, it’s difficult to change
 these values if you want to edit this item from your GHCi command history (press the up arrow in GHCi to get the previous
 item). Is there a way to make this a bit cleaner without having to explicitly define a function?

OEBPS/02fig01.jpg
Function All functions take at
name least one argument.

simple x = x

All functions in The function’s behavior is

Haskell start with defined here. In this case

a lowercase letter. you're just returning
your argument.

OEBPS/common01.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/xivfig01.jpg

OEBPS/common02.jpg

OEBPS/cover.jpg
GET PROGRAMMING

HASKELL
EE

. I -

