

 inside front cover

 [image:]

 To enable live reload on a larger scale, we must synchronize the code between our development computer and the container so that changes to the code automatically propagate through to the container.

 An overview of the project for example-3

 [image:]

Praise for the first edition

 Best resource to learn how to make a clean deployment using Docker, Kubernetes, and Terraform. Follow the project to learn the technology; use the book as a great technical resource.

 —Becky Huett, Senior Developer at Maxar Technologies

 A must-read for any software professional wanting to get a quick understanding of Microservices, Docker, Kubernetes, GitHub Actions, and Terraform. It is a highly insightful book that is packed with references, even for the most seasoned software professional.

 —Christopher Forbes, Senior Manager Software Engineering at OneSpan

 This book has been an excellent introduction to microservices with a clear and extensive project that walks you through the implementation of microservices on many of the current technologies with succinct and relevant explanations at every stage of the build. Highly recommend this warmly written and enjoyable book.

 —Frankie Thomas-Hockey, Endpoint and Device Engineer, UK Civil Service

 In case you get bogged down with the term “microservices” and don’t know where to start, then look no further than this book. A valuable resource, whether you are a beginner or a pro, that provides lots of working examples and best practices.

 —Prashant Dwivedi, Technical Architect at NIC

 [image:]

 Bootstrapping Microservices

 Second Edition

 With Docker, Kubernetes, GitHub Actions, and Terraform

 Ashley Davis

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Elesha Hyde

 	
 Technical editor:

 	
 Scott Ling

 	
 Review editors:

 	
 Adriana Sabo and Dunja Nikitović

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Julie McNamee

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Thorsten P. Weber

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633438569

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Why microservices?

 1.1 This book is practical

 1.2 What will you learn?

 1.3 What do you need to know?

 1.4 Managing complexity

 1.5 What is a microservice?

 1.6 What is a microservices application?

 1.7 What’s wrong with the monolith?

 1.8 Why are microservices popular now?

 1.9 Benefits of microservices

 1.10 Drawbacks of microservices

 Higher-level technical skills

 Building distributed applications is hard

 Microservices have scalable difficulty

 People often fear complexity

 Bringing the pain forward

 1.11 Modern tooling for microservices

 1.12 Not just microservices

 1.13 The spectrum of possibilities

 1.14 Designing a microservices application

 Software design

 Design principles

 Domain-driven design

 Don’t repeat yourself

 How much to put in each microservice

 Learning more about design

 1.15 An example application

 2 Creating your first microservice

 2.1 New tools

 2.2 Getting the code

 2.3 Why Node.js?

 2.4 Our philosophy of development

 2.5 Establishing our single-service development environment

 Installing Git

 Cloning the code repository

 Getting VS Code

 Installing Node.js

 2.6 Building an HTTP server for video streaming

 Creating a Node.js project

 Installing Express

 Creating the Express boilerplate

 Running our simple web server

 Adding streaming video

 Configuring our microservice

 Setting up for production

 Live reloading for fast iteration

 Running the finished code from this chapter

 2.7 Node.js review

 2.8 Continue your learning

 3 Publishing your first microservice

 3.1 New tool: Docker

 3.2 Getting the code

 3.3 What is a container?

 3.4 What is an image?

 3.5 Why Docker?

 3.6 Why do we need Docker?

 3.7 Adding Docker to our development environment

 Installing Docker

 Checking your Docker installation

 3.8 Packaging our microservice

 Creating a Dockerfile

 Packaging and checking our Docker image

 Booting our microservice in a container

 Debugging the container

 Stopping the container

 3.9 Publishing our microservice

 Creating a private container registry

 Pushing our microservice to the registry

 Booting our microservice from the registry

 Deleting your container registry

 3.10 Docker review

 3.11 Continue your learning

 4 Data management for microservices

 4.1 New tools

 4.2 Getting the code

 4.3 Developing microservices with Docker Compose

 Why Docker Compose?

 Creating our Docker Compose file

 Booting our microservices application

 Working with the application

 Shutting down the application

 Why Docker Compose for development, but not production?

 4.4 Adding file storage to our application

 Using Azure Storage

 Updating the video-streaming microservice

 Adding our new microservice to the Docker Compose file

 Testing the updated application

 Cloud storage vs. cluster storage

 What did we achieve?

 4.5 Adding a database to our application

 Why MongoDB?

 Adding a database server in development

 Adding a database server in production

 Database-per-microservice or database-per-application?

 What did we achieve?

 4.6 Docker Compose review

 4.7 Continue your learning

 5 Communication between microservices

 5.1 New and familiar tools

 5.2 Getting the code

 5.3 Getting our microservices talking

 5.4 Introducing the history microservice

 5.5 Live reload for fast iterations

 Creating a stub for the history microservice

 Augmenting the microservice for live reload

 Splitting our Dockerfile for development and production

 Updating the Docker Compose file for live reload

 Trying out live reload

 Testing production mode in development

 What have we achieved?

 5.6 Methods of communication for microservices

 Direct messaging

 Indirect messaging

 5.7 Direct messaging with HTTP

 Why HTTP?

 Directly targeting messages at particular microservices

 Sending a message with HTTP POST

 Receiving a message with HTTP POST

 Testing the updated application

 Orchestrating behavior with direct messages

 What have we achieved?

 5.8 Indirect messaging with RabbitMQ

 Why RabbitMQ?

 Indirectly targeting messages to microservices

 Creating a RabbitMQ server

 Investigating the RabbitMQ dashboard

 Connecting our microservice to the message queue

 Single-recipient indirect messaging

 Multiple-recipient messages

 Emergent behavior with indirect messages

 What have we achieved?

 5.9 Microservices communication review

 5.10 Continue your learning

 6 The road to production

 6.1 New tools

 6.2 Getting the code

 6.3 Going to production

 6.4 Hosting microservices on Kubernetes

 Why Kubernetes?

 Pods, nodes, and containers

 Pods, deployments, and services

 6.5 Enabling your local Kubernetes instance

 6.6 Installing the Kubernetes CLI

 6.7 Project structure

 6.8 Deploying to the local Kubernetes instance

 Building the image for the microservice

 No container registry needed (yet)

 Creating configuration for deployment to a local Kubernetes instance

 Connecting kubectl to local Kubernetes

 Deploying a microservice to local Kubernetes

 Testing the locally deployed microservice

 Deleting the deployment

 Why not use local Kubernetes for development?

 What have we achieved?

 6.9 Creating a managed Kubernetes cluster in Azure

 6.10 Working with the Azure CLI

 Installing the Azure CLI

 Authenticating the Azure CLI

 Connecting kubectl to Kubernetes

 6.11 Deploying to the production cluster

 Now we need a container registry

 Publishing the image to the container registry

 Connecting the container registry to the Kubernetes cluster

 Creating a configuration for deployment to Kubernetes

 Deploying the microservice to Kubernetes

 Testing the deployed microservice

 Deleting the deployment

 Destroying your infrastructure

 What have we achieved?

 6.12 Azure CLI tool review

 6.13 Kubectl review

 6.14 Continue your learning

 7 Infrastructure as code

 7.1 New tool

 7.2 Getting the code

 7.3 Prototyping our infrastructure

 7.4 Infrastructure as code

 7.5 Authenticate with your Azure account

 7.6 Which version of Kubernetes?

 7.7 Creating the infrastructure with Terraform

 Why Terraform?

 Installing Terraform

 Terraform project setup

 7.8 Creating an Azure resource group for your application

 Evolutionary architecture with Terraform

 Scripting infrastructure creation

 Fixing provider version numbers

 Initializing Terraform

 By-products of Terraform initialization

 Building your infrastructure

 Understanding Terraform state

 Destroying and recreating our infrastructure

 What have we achieved?

 7.9 Creating our container registry

 Continuing the evolution of our infrastructure

 Creating the container registry

 Terraform outputs

 Outputting sensitive values from Terraform

 Just don’t output sensitive values

 Getting the details of your container registry

 What have we achieved?

 7.10 Refactoring to share configuration data

 Continuing the evolution of our infrastructure

 Introducing Terraform variables

 7.11 Creating our Kubernetes cluster

 Scripting creation of your cluster

 Attaching the registry to the cluster

 Building our cluster

 What have we achieved?

 7.12 Deploying to our cluster

 7.13 Destroying our infrastructure

 7.14 Terraform review

 7.15 Continue your learning

 8 Continuous deployment

 8.1 New tool

 8.2 Getting the code

 8.3 Running the examples in this chapter

 8.4 What is continuous integration?

 8.5 What is continuous deployment?

 8.6 Why automate deployment?

 8.7 An introduction to automation with GitHub Actions

 Why GitHub Actions?

 What is a workflow?

 Creating a new workflow

 Example 1 overview

 The “Hello World” shell script

 The “Hello World” workflow

 Invoking commands inline

 Triggering a workflow by code change

 Workflow history

 Triggering a workflow through the UI

 What have we achieved?

 8.8 Implementing continuous integration

 Example 2 overview

 A workflow for automated tests

 What have we achieved?

 8.9 Continuous deployment for a microservice

 Example 3 overview

 Templating our deployment configuration

 Manual deployment precedes automated deployment

 A workflow to deploy our microservice

 Authenticating kubectl

 Installing and configuring kubectl

 Environment variables from GitHub secrets

 Environment variables from GitHub context variables

 Adding GitHub secrets

 Debugging your deployment pipeline

 Deploying directly to production is dangerous

 What have we achieved?

 8.10 Continue your learning

 9 Automated testing for microservices

 9.1 New tools

 9.2 Getting the code

 9.3 Testing for microservices

 9.4 Automated testing

 9.5 Automated testing with Jest

 Why Jest?

 Setting up Jest

 The math library to test

 Our first Jest test

 Running our first test

 Live reload with Jest

 Interpreting test failures

 Invoking Jest with npm

 Populating our test suite

 Mocking with Jest

 What have we achieved?

 9.6 Unit testing for microservices

 The metadata microservice

 Creating unit tests with Jest

 Running the tests

 What have we achieved?

 9.7 Integration testing

 The code to test

 Running a MongoDB database

 Loading database fixtures

 Creating an integration test with Jest

 Running the test

 What have we achieved?

 9.8 End-to-end testing

 Why Playwright?

 Installing Playwright

 Setting up database fixtures

 Booting your application

 Creating an end-to-end test with Playwright

 Invoking Playwright with npm

 What have we achieved?

 9.9 Automated testing in the CI/CD pipeline

 9.10 Review of testing

 9.11 Continue your learning

 10 Shipping FlixTube

 10.1 No new tools!

 10.2 Getting the code

 10.3 Revisiting essential skills

 10.4 Overview of FlixTube

 FlixTube microservices

 Microservice project structure

 The FlixTube monorepo

 10.5 Running FlixTube in development

 Booting an individual microservice

 Booting the entire FlixTube application

 10.6 Testing FlixTube in development

 Testing a microservice with Jest

 Testing the application with Playwright

 10.7 FlixTube deep dive

 Database fixtures

 Mocking the storage microservice

 The gateway

 The FlixTube UI

 Video streaming

 Video upload

 10.8 Deploying FlixTube to our local Kubernetes

 Prerequisites for local deployment

 Local deployment

 Testing the local deployment

 Deleting the local deployment

 10.9 Manually deploying FlixTube to production

 Prerequisites for production deployment

 Production deployment

 Testing the production deployment

 Destroying the production deployment

 10.10 Continuous deployment to production

 Prerequisites for continuous deployment

 Setting up your own code repository

 Deploying infrastructure

 One CD pipeline per microservice

 Testing the CD pipeline

 10.11 FlixTube in the future

 10.12 Continue your learning

 11 Healthy microservices

 11.1 Maintaining healthy microservices

 11.2 Monitoring and managing microservices

 Logging in development

 Error handling

 Logging with Docker Compose

 Basic logging with Kubernetes

 Kubernetes log aggregation

 Enterprise logging, monitoring, and alerts

 Observability for microservices

 Automatic restarts with Kubernetes health checks

 11.3 Debugging microservices

 The debugging process

 Debugging production microservices

 11.4 Reliability and recovery

 Practicing defensive programming

 Practicing defensive testing

 Protecting our data

 Replication and redundancy

 Fault isolation and graceful degradation

 Simple techniques for fault tolerance

 Advanced techniques for fault tolerance

 11.5 Continue your learning

 12 Pathways to scalability

 12.1 Our future is scalable

 12.2 Scaling the development process

 Multiple teams

 Independent code repositories

 Splitting the code repository

 The meta-repo

 Creating multiple environments

 Production workflow

 Separating application configuration from microservices configuration

 12.3 Scaling performance

 Vertically scaling the cluster

 Horizontally scaling the cluster

 Horizontally scaling an individual microservice

 Elastic scaling for the cluster

 Elastic scaling for an individual microservice

 Scaling the database

 Don’t scale too early

 12.4 Mitigating problems caused by changes

 Automated testing and deployment

 Branch protection

 Deploying to our test environment

 Rolling updates

 Blue-green deployments

 12.5 Basic security

 Trust models

 Sensitive configuration

 12.6 Refactoring to microservices

 Do you really need microservices?

 Plan your conversion and involve everyone

 Know your legacy code

 Improve your automation

 Build your microservices platform

 Carve along natural seams

 Prioritize the extraction

 And repeat . . .

 12.7 The spectrum of possibilities

 It doesn’t have to be perfect

 The diminishing return on investment

 The hybrid approach

 12.8 Microservices on a budget

 12.9 From simple beginnings...

 12.10 Continue your learning

 index

 front matter

preface

 I first tried building applications with microservices around 2013. That was the year Docker was initially released, but back then, I hadn’t heard about it. At that time, we built an application with each microservice running on a separate virtual machine. As you might expect, that was an expensive way to run microservices.

 Because of the high running costs, we then opted to create fewer rather than more microservices, pushing more and more functionality into the existing microservices to the point where we couldn’t really call them microservices anymore. It was still a distributed application, of course, and it worked well enough, but the services weren’t as micro-sized as we had hoped.

 I already knew at that stage that microservices were a powerful idea, if only they were cheaper. I put microservices back on the shelf but made a note that I should look at them again later.

 Over the years, I watched from the sidelines as the tools and technology around microservices developed, powered by the rise (and rise) of open source coding. And I looked on as the cost of cloud computing continued to drop, spurred on by competition between vendors. Over time, it was clear that building and running a distributed application with micro-sized components was becoming more cost effective.

 After what seemed like a lifetime, in early 2018, I officially returned to the world of microservices. I had two opportunities for which I believed microservices were the right fit. Both were startups. The first was a contract job to bootstrap a new microservices application for a promising young company. The second was building a microservices application for my own startup.

 To be successful, I knew that I needed new tools. I needed an effective way to package microservices. I needed a computing platform on which I could deploy microservices. Crucially, I needed to be able to automate deployments.

 By then, Docker had already gained a big foothold in our industry, so I knew it was a safe bet as a way to package microservices. I also liked the look of Kubernetes as a computing platform for microservices, but, early on, I was extremely uncertain about it. Kubernetes, however, promised a future of freedom from the tyranny of cloud vendor lock-in—that was very appealing.

 At this point, I’d read quite a few books on microservices. These were all interesting, providing good value on a theoretical level. I do enjoy reading the theory, but these books lacked the practical examples that would have helped me smash through my own learning curve. Even as an experienced developer, I was struggling to know where to start! I knew from past experience that bad technical decisions made at the beginning of a project would haunt me to the end.

 Learning Kubernetes was especially hard. From the outside, it seemed incredibly difficult to penetrate. But I had a job to do, and I needed a way to deliver software, so I pushed on. The going was tough, and I almost gave up on Kubernetes a few times.

 The situation changed when I discovered Terraform. This was the missing piece of the puzzle for me. It’s what made Kubernetes understandable and usable to the point where I could do nothing else but commit to using it.

 Terraform is the tool that allowed me to describe the infrastructure of my application. I began writing infrastructure as code, and it felt like I had moved to the big leagues.

 I forced my way through the learning curve, bolstered by my longtime experience of evaluating technology and learning quickly on the job, with a splash of trial and error mixed in for good measure. My efforts delivered software that is performant, flexible, reliable, scalable, and extensible. Through this time, my desire to write this book sparked and grew to the point where I had to take action.

 A new mission formed—I wanted to make microservices more accessible. I felt compelled to write this book; it’s the book I wanted but didn’t have. I knew I could help people, and the best way to do that was with a practical book—this book. A book that shows you, step-by-step, that microservices don’t have to be difficult or complex; it all depends on your approach and the perspective you take. You now have in your hands the fruits of that labor. I learned the hard way so that you don’t have to.

acknowledgments

 In Bootstrapping Microservices, Second Edition, I share my years of hard-won experience with you. Such experience wouldn’t be possible without being surrounded by people who supported and encouraged me.

 Many people helped me get where I am today. I wouldn’t be a developer without my parents, Garry and Jan, who bought me my first PC. My partner in life, Antonella, has tirelessly supported me through multiple books now. Thank you!

 Of course, I thank Manning for the opportunity and Helen Stergius and Elesha Hyde, who edited the first and second editions of this book. Thanks also go to the entire team at Manning for their efforts.

 A big thanks goes to Scott Ling and Thorsten Weber for making sure the tech and code were up to scratch. I also thank all the reviewers—Adam Wan, Alceu Rodrigues de Freitas Junior, Allan Makura, Antonio Bruno, Becky Huett, Christopher Forbes, Didier Garcia, Fernando Bernardino, Frankie Thomas-Hockey, John Zoetebier, Juan Jose Rubio Guillamon, Kent Spillner, Maqbool Patel, Mikael Dautrey, Prashant Dwivedi, Roland Andriese, Roman Zhuzha, Sachin Rastogi, Sebastian Zaba, Seungjin Kim, and Tan Wee—your suggestions helped make this book what it is.

 Finally, I’d like to thank the first edition readers—your love for this book is what made me come back for a second edition. I wrote this book for you!

about this book

 Building applications with microservices—building distributed applications—can be a complicated process and difficult to learn. If you’re thrown into a modern, complex application, it can be difficult to see the forest for the trees. There’s so much more to consider than simply coding, and this isn’t an easy journey to take on your own.

 To use microservices, we must understand how to build a distributed application. But, by itself, that’s not enough. We also must learn the deep and complex tools that are necessary to develop, test, and deploy such an application. How do we assemble a robust toolkit for development? Where do we start?

 Along the way are many more questions: How do we package and deploy a microservice? How do we configure our development environment for local testing? How do we get our microservices communicating with each other, and how do we manage the data? Most importantly, how do we deploy our microservices to production? Then, once in production, how do we manage, monitor, and fix problems with potentially hundreds of microservices?

 This book, Bootstrapping Microservices, Second Edition, answers these questions and more! It’s your guide to building an application with microservices, using the latest tools. We’ll start from nothing and go all the way to a working microservices application running in production.

 You won’t find much theory in this book. Bootstrapping Microservices, Second Edition, is practical and project based. Together, we’ll work through numerous examples of microservices, eventually getting to production, and covering everything you need to know to be a confident microservices developer.

 Each example in this book comes with working code that is available on GitHub. You can try it out for yourself and make your own experimental changes.

Who should read this book?

 This book is aimed at anyone who wants to learn more about the practical aspects of working with microservices: those who need a clear guide on how to assemble their toolkit and take their application all the way to production. This book doesn’t teach coding, so basic coding skills are advised.

 Note If you have some basic or entry-level experience with modern programming languages such as C#, Java, Python, or JavaScript, you should be able to follow along with this book.

 The code examples are as simple as they can be, but this book isn’t about the code. It’s more about teaching you how to assemble the toolkit you need for building a microservices application.

 If you don’t have coding experience, but you’re a fast learner, you can learn basic JavaScript (through another book, tutorials, videos, etc.) while you read Bootstrapping Microservices, Second Edition. Like I said, the code examples are as simple as they can be, so you stand a good chance of being able to read the code and get the gist of it without much coding experience. Our coding adventure starts in chapter 2, where you learn how to build a simple microservice using JavaScript and Node.js.

How this book is organized: A road map

 In the 12 chapters of this book, we go from building a single microservice all the way to running multiple microservices in a production-ready Kubernetes cluster. Here’s what you’ll find in each chapter:

 	
 Chapter 1 is an introduction to microservices and explains why we want to use them.

 	
 Chapter 2 works through building a simple microservice using Node.js and JavaScript. You learn how to use live reload for a more streamlined development process.

 	
 Chapter 3 introduces Docker for packaging and publishing our microservice to get it ready for deployment.

 	
 Chapter 4 scales up to multiple microservices and introduces Docker Compose for simulating our microservices application on our development computer during development. We then cover data management for microservices, including having a database and external file storage.

 	
 Chapter 5 upgrades our development environment for whole application live reload. We then cover communications among microservices, including HTTP for direct messaging and RabbitMQ for indirect messaging.

 	
 Chapter 6 introduces Kubernetes. We start by deploying our application to our local Kubernetes instance. Then, we create a Kubernetes cluster in the cloud and deploy our application to it.

 	
 Chapter 7 uses Terraform to create our infrastructure (container registry and Kubernetes cluster) using infrastructure as code.

 	
 Chapter 8 builds a continuous deployment (CD) pipeline for a microservice using GitHub Actions.

 	
 Chapter 9 shows how we can apply multiple levels of automated testing to microservices.

 	
 Chapter 10 is an overview of the example application and a review of the skills you learned so far while deploying the example application for yourself.

 	
 Chapter 11 explores the ways we can build reliable and fault-tolerant microservices and then monitor them to help maintain a healthy application.

 	
 Chapter 12 wraps up the book by showing practical ways your microservices application can be scaled to support your growing business and can be organized to manage your growing development team. It also touches on security, refactoring a monolith, and how to build with microservices on a budget.

Changes since the first edition

 A lot has changed since the first edition! Here’s a summary:

 	
 There’s an all-new chapter 6, with revised and improved coverage of Kubernetes, including deployment to the local Kubernetes instance that comes with Docker Desktop.

 	
 I changed the deployment model for Kubernetes to use kubectl and Kubernetes YAML files instead of using Terraform for deployments (originally, I thought this was the simplest way to teach Kubernetes deployments, but since then, I’ve changed my mind).

 	
 There’s an all-new chapter 8 on continuous deployment (CD) with GitHub Actions, replacing the older chapter on BitBucket Pipelines.

 	
 I converted from Cypress to Playwright in chapter 9 on automated testing.

 	
 Observability, which has been gaining in popularity since the first edition, is mentioned in chapter 11.

 	
 Mono-repos and the ability to have multiple CD pipelines per code repository with GitHub are now covered in chapter 12.

 	
 You’ll find expanded coverage of monoliths versus microservices and the spectrum of options in between these.

 	
 All software has been updated to the latest versions.

 	
 Much of the code has been simplified and streamlined for easier understanding.

 	
 Many changes and improvements have been made based on reader feedback from the first edition.

 	
 Many improvements have been made to the text and graphics.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/bootstrapping-microservices-second-edition. The complete code for the examples in the book is available for download from the Manning website at www.manning.com, and from GitHub at https://github.com/bootstrapping-microservices-2nd-edition.

 You can download a zip file to accompany each chapter (chapters 2-10), or you can use Git to clone the Git code repository for each chapter. Each example is designed to be as simple as possible, self-contained, and easy to run. As you progress through the book, you will run the code in different ways.

 We start by running code for a single microservice directly under Node.js (chapter 2), then under Docker (chapter 3). We then run multiple microservices under Docker Compose (chapters 4 and 5).

 Then, we do our first deployments to Kubernetes (chapter 6), followed up by creating our infrastructure using Terraform (chapter 7). Then we set up CD using GitHub Actions (chapter 8). Next, we get into some automated testing using Jest and Playwright (chapter 9). Finally, we review the entire application and deploy it to production (chapter 10).

 Throughout the code examples, I aim to follow standard conventions and best practices. I ask that you provide feedback and report any issues through GitHub.

liveBook discussion forum

 Purchase of Bootstrapping Microservices, Second Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/bootstrapping-microservices-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

Staying up to date

 For infrequent updates on Bootstrapping Microservices, Second Edition, and related content, please join the email list here: www.bootstrapping-microservices.com/.

about the author

 [image:]

 Ashley Davis is a software craftsman, entrepreneur, and author with more than 25 years of experience in software development, from coding to managing teams to founding companies. He has worked for a range of companies, from the tiniest startups to the largest internationals. Along the way, he has contributed back to the community through his writing and open source coding.

 Ashley is the creator of Data-Forge Notebook, a notebook-style desktop application for exploratory coding and data visualization using JavaScript. He is now writing Rapid Fullstack Development (go to https://rapidfullstackdevelopment.com/ to learn more).

 For updates on Ashley’s writing, open source coding, and more, follow him on X @codecapers. For more on Ashley’s background, see his web page (www.codecapers.com.au/about) or his LinkedIn page (www.linkedin.com/in/ashleydavis75).

 About the technical editor

 Scott Ling is an executive technical consultant with more than 30 years of experience covering multiple programming languages, technologies, and business areas. Most recently he has focused on the Rust, Go, and Zig programming languages and various applications of APIs, microservices, AI, and ML across the enterprise.

about the cover illustration

 The figure on the cover of Bootstrapping Microservices, Second Edition, is captioned “Catalan” or a man from Catalonia, in northeast Spain. The illustration is taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Why microservices?

 This chapter covers

 	
The learning approach of this book

 	
The what and why of microservices

 	
The benefits and drawbacks of using microservices

 	
What’s wrong with the monolith?

 	
The basics of microservices design

 	
A quick overview of the application we build

 As software continues to become larger and more complicated, we need improved methods of managing and mitigating its complexity. As it grows alongside our business, we need better ways of dividing up the software so that multiple teams can participate in the construction effort.

 As our demanding customer base grows, we must also be able to expand our software. At the same time, our application should be fault tolerant and able to scale quickly to meet peak demand. How do we then meet the demands of modern business while evolving and developing our application?

 The microservices architectural pattern plays a pivotal role in contemporary software development. A distributed application composed of microservices solves these problems and more, but typically it’s more difficult, more complex, and more time consuming to architect than a traditional monolithic application. If these terms—microservices, distributed application, and monolithic application—are new to you, they will be explained soon.

 Conventional wisdom says that microservices are too difficult. We’re told to start “monolith-first” and later restructure to microservices when necessary to scale. But I argue that this attitude doesn’t make the job of building an application any easier! Your application is always going to tend toward complexity, and, eventually, you’ll need to scale it. When you do decide you need to change, you now have the extremely difficult job of safely converting your monolith to microservices when staff and customers already depend on it.

 Now is also the perfect time to be building microservices. The confluence of various factors—accessible and cheap cloud infrastructure, ever-improving tools, and increasing opportunities for automation—is driving an industry-wide movement toward smaller and smaller services, aka microservices. Applications become more complex over time, but microservices offer us better ways to manage such complexity. There is no better time than now to go “microservices-first.”

 In this book, I’ll show you that a microservices-first approach is no longer as daunting as it once was. I believe the balance is firmly tipping toward microservices. The remaining problem is that learning microservices is difficult. The learning curve is steep and holds back many developers in their quest to build microservices. Together, we’ll break the learning curve. We’ll say “Boo” to the monolith, and we’ll build from the ground up a simple but complete video-streaming application using microservices.

 The architecture spectrum

 Not convinced that microservices are the way to go? Our reality is that we aren’t just making a choice between monolith and microservices. There’s actually a continuum of choices available to us. So, this book isn’t really just about microservices; ultimately, it’s about having a choice of where we position ourselves on that spectrum. For any given project, we might choose monolith, microservices, or somewhere in the middle. But if you don’t know how to use the tools to build with microservices, then you won’t have the choice—you’ll be forced to create a monolith for every project. This book gives you the tools that open up the full monolith-microservices spectrum (more on that soon). It gives you the freedom to choose where you land on that spectrum. Where you go with that is up to you.

1.1 This book is practical

 Why are you reading this book? You’re reading this because you want or need to build a microservices application, which is an important skill set for modern developers, but it’s a difficult skill set to obtain, and you need some guidance. You may have read other books on microservices and been left wondering, where do I begin? I understand your torment.

 Microservices are tough to learn. Not only do you have to learn deep and complicated tools, you must also learn to build a distributed application. This requires new techniques, technologies, and protocols for communication. There’s a lot to learn in anyone’s book.

 In this book though, we cut through the seemingly impenetrable learning curve of building microservices applications. We’ll start as simple as possible, and, piece-by-piece, we’ll build up to deploying a more complex microservices application to production.

 This book is about busting through the learning curve and bootstrapping a working application that will last indefinitely and that we can continuously update and build on to satisfy the ongoing and changing needs of our customers and users. Figure 1.1 illustrates this idea of cutting through the learning curve. While our example application is small and simple, from the start, we’ll build in pathways to scalability that will later allow it to be expanded out to a truly massive distributed application.

 [image:]

 Figure 1.1 Cutting through the learning curve. In this book, we’ll learn only the bare minimum—just enough to bootstrap our application.

 How is this book different from all the other books on microservices? Other books are notably theoretical. That’s a good approach for an experienced developer or architect looking to broaden their knowledge, but acquiring practical skills that way is challenging and doesn’t help you navigate the minefield of bootstrapping a new application. The technical choices you make at project inception can haunt you for a long time.

 This book is different; this book is not theoretical. We’ll take a practical approach to learning. There is a small amount of theory interspersed throughout, and we’ll actually build a substantial microservices application. We’ll start from nothing and work through bringing our application into existence and getting it into production. We’ll build and test the application on our development computer and, ultimately, deploy it to the cloud.

 This book won’t teach you everything; there’s far too much to learn for any single book to do that. Instead, we’ll take a different approach: we’ll learn practically the minimum that is necessary to bootstrap a new application and get it in front of our customers.

 Together, we’ll get our microservices application off the ground without having to learn the deepest details of any of the tools or technologies. An example of this book’s learning model is illustrated in figure 1.2.

 [image:]

 Figure 1.2 The learning model for this book. We’ll skim the surface of these deep and complicated technologies to use only what’s necessary to bootstrap our application.

 This book is about building a microservices application, starting with nothing. But some people have already asked why I didn’t write this book to show how to convert a monolith to a microservices application. This is something that many people would like to learn.

 I wrote the book in this way because it’s much easier to learn how to write an application from scratch than it is to learn how to refactor an existing application. I also believe these skills are useful because, in time, more and more applications will be written microservices-first.

 In any case, refactoring an existing application is much more complicated than building a fresh application. It’s a process with much complexity and depends heavily on the particulars of the legacy codebase. I make the presumption that it will be easier for you to figure out your own monolith conversion strategy once you know (once you’ve experienced) how to create a greenfield (new) microservices application.

 I can assure you that when you can build an application microservices-first, you’ll be much better equipped to clearly see a route from your existing monolith to microservices. That journey from monolith to microservices will no doubt still be demanding, so stay tuned. In chapter 12, we’ll discuss more about converting from monolith to microservices.

 Throughout this book, you’ll learn concrete and practical techniques for getting a microservices application off the ground. Of course, there are many diverse ways to go about this and many different tools you could use. I’m teaching you one single recipe and one set of tools (albeit a popular toolset). You’ll also get many opinions from me, and I’m sure you’ll disagree with at least some of them. That’s okay because this book isn’t intended to be the gospel of microservices—it’s simply a starting point. No doubt, you’ll find many ways to improve on this recipe, add your own techniques to it, throw out the parts you don’t like, and enhance those that you do for your own situation.

 Other experienced developers will, of course, already have their own opinions and their own recipes. What I’m trying to say is that this is my way, and it’s just one of a multitude of ways that can work; however, I can attest that I’ve tried every technique in this book in production on real projects and found these to be a set of techniques that generally work well. So, without further ado, let’s commence our journey into microservices.

1.2 What will you learn?

 You can’t learn everything about building with microservices just from reading a book. But this book will take you a long way, especially if you try running the code examples and then experimenting with them.

 Here is the journey we’ll take together. Starting with nothing, we’ll create a single microservice and run it on our local computer for development and testing. Next, we’ll scale up to running multiple microservices on our local computer, still for development and testing. Eventually, we’ll create a Kubernetes cluster and deploy our microservices to the cloud, thereby completing our journey and getting our application in front of our customers. Along the way,you’ll learn about how to manage data, how our microservices can communicate with each other, how to do testing, and how to create an automated deployment pipeline.

 There’s a lot to cover, but we’ll progress from easy to more difficult. Over 12 chapters, we’ll work up to a more complex application and the infrastructure that supports it, but we’ll do it in incremental steps so that you never get lost. After reading this book and practicing the skills taught, you should be able to

 	
 Create individual microservices

 	
 Package and publish microservices using Docker

 	
 Develop a microservices application on your development computer using Docker Compose

 	
 Test your code, microservices, and application using Jest and Playwright

 	
 Integrate third-party servers into your application (e.g., MongoDB and RabbitMQ)

 	
 Communicate between microservices using HTTP and RabbitMQ messages

 	
 Store the data and files needed by your microservices

 	
 Deploy your microservices to a production Kubernetes cluster

 	
 Create a production infrastructure using Terraform

 	
 Create a continuous deployment pipeline that automatically deploys your application as you push changes to your code repository on GitHub

1.3 What do you need to know?

 You might be wondering what you need to know going into this book. I’ve written this book with as few assumptions as possible about what you already know. We’re going on a journey that takes you from absolute basics all the way through to some very complicated concepts. I think there’s something here for everyone, no matter how much experience you might have already as a developer.

 It’s best coming into this book if you have some entry-level understanding of computer programming. I don’t think you’ll need much, so long as you can read code and get the gist of what it’s doing. But don’t worry; I’ll explain as much as possible about anything important that is happening in the code.

 If you have a background in programming, you’ll have no problem following along with the examples in this book. If you’re learning programming while reading this book, you could find it challenging, but not impossible, and you might have to put in extra work.

 This book uses Node.js for examples of microservices, but starting out, you don’t need to know JavaScript or Node.js. You’ll pick up enough along the way to follow along. This book also uses Microsoft Azure for examples of production deployment. Again, starting out, you don’t need to know anything about Azure either.

 Rest assured that this book isn’t about Node.js or Azure; it’s about building microservices applications using modern tooling such as Docker, Kubernetes, and Terraform. Most of the skills you’ll take away from this book are transferable to other languages and other cloud providers, but I had to pick a programming language and cloud vendor that I could use to demonstrate the techniques in this book, so I chose Node.js and Azure. That’s a combination I’ve used extensively in production for my own software products.

 If Node.js and Azure aren’t your thing, with some extra research and experimentation on your part, you’ll be able to figure out how to replace Node.js and JavaScript with your favorite programming language and replace Azure with your preferred cloud vendor. In fact, the main reason I use Docker, Kubernetes, and Terraform in the first place is that these tools offer freedom—freedom of choice for programming language and freedom from cloud vendor lock-in.

1.4 Managing complexity

 A microservice application, like any application, will become more complex over time—but it doesn’t need to start that way! This book takes the approach that we can begin from a simple starting point and that each iteration of development can also be just as simple. In addition, each microservice is small and simple. Microservices are known to be more difficult than building a monolith, but I’m hoping this book will help you find an easier path through the difficulty.

 Microservices give us a way to manage complexity at a granular level, and it’s the level we work at almost every day—the level of a single microservice. At that level, microservices aren’t complex. In fact, to earn the name microservice, they have to be small and simple. A single microservice is intended to be manageable by a single developer or a small team!

 We’ll use microservices to divide up our complex application into small and simple parts that have hard boundaries. We can divide up a monolith in the same way, but it’s much harder to keep the parts distinct from each other—they tend to become tangled up over time. This difference between monolith and microservices is illustrated in figure 1.3.

 [image:]

 Figure 1.3 The complexity in both monolith and microservices can be decomposed into simple parts, but with microservices those parts have hard boundaries to ensure that code doesn’t get tangled up between the parts.

 It’s true, though, that through continued development and evolution, a complex system will emerge. There’s no denying that a microservices application will become complex. But such complexity doesn’t evolve immediately; it takes time. Although our applications tend toward complexity, microservices themselves are the cure to, rather than the cause of, that complexity. Through development and operations, we can use the microservices architecture to manage the growing complexity of our application so that it doesn’t become a burden.

 It might seem that the infrastructure required for microservices can add significant complexity to our development process. Yes, to some extent this is the truth, but then again, all applications require infrastructure, and, in my experience, microservices don’t add a whole lot more. In fact, you’ll see that, by chapter 8, we’ll build a continuous deployment pipeline that automates deployment of our application code to production. For any team that does this, they will find that the deployment and operational complexity of microservices tends to fade into the background and seems like magic.

 Maybe it’s just that we’re noticing the complexity of our infrastructure more now because we have to deal with it more frequently. In the past, we had an operations team and possibly a build or testing team that would handle most of that work for us and hide the complexity. More and more, though, microservices are handing power back to the developers, allowing us to clearly see the complexity that was always there in our development, testing, and operational infrastructure.

 Any complexity added by microservices must be offset by their benefits. Like all design or architectural patterns, to get value from microservices, we must be sure that their advantages outweigh the cost of using them. That’s a tough call that we must make on a project-by-project basis, but for an increasing number of scenarios, microservices will more than pull their weight.

 A microservices application is a form of complex adaptive system, where complexity emerges naturally from the interactions of its constituent parts. Even though the system as a whole can become far too complex for any mere mortal to understand, each of its components remains small, manageable, and easy to understand. That’s how microservices help us deal with complexity: by breaking the complexity apart into small, simple, and manageable chunks. But don’t worry—the example application we’ll build in this book isn’t very complex.

 Development with microservices (with help from our tools and automation) allows us to build extremely large and scalable applications without being overwhelmed by the complexity. And, after reading this book, you’ll be able to zoom in and look at any part of the most complex microservices application and find its components to be straightforward and understandable.

1.5 What is a microservice?

 Before we can understand a microservices application, we must first understand what it means to be a microservice.

 Definition A microservice is a small and independent software process (an instance of a computer program) that runs on its own deployment schedule and can be updated independently.

 Let’s break that definition down. A microservice is a small, independent software process that has its own separate deployment frequency, which means it must be possible to update each microservice independently from other microservices.

 A microservice can be owned and operated either by a single developer or a team of developers. A developer or team might also manage multiple other microservices. Each developer/team is responsible for the microservice(s) they own. In the modern world, this often includes development, testing, deployment, and operations. We might find, however, that when we work for a small company or a startup (as I do) or when we’re learning (as you are in this book), we must manage multiple microservices or, indeed, even an entire microservices application on our own.

 An individual microservice might be exposed to the outside world so our customers can interact with it, or it might be purely an internal service and not externally accessible. The microservice typically has access to a database, file storage, or some other method of state persistence. Figure 1.4 illustrates these internal and external relationships.

 [image:]

 Figure 1.4 A single microservice can have connections to the outside world or other services, and it also can have a database and/or attached file storage.

 By itself, a single microservice doesn’t do much. A well-designed system, however, can be decomposed into such simple services. The services must collaborate with each other to provide the features and functionality of the greater application. This brings us to the microservices application.

1.6 What is a microservices application?

 A microservices application is traditionally known as a distributed application, a system composed of components that live in separate processes and communicate via the network. Each service or component resides on a logically distinct (virtual) computer and sometimes even on a physically separate computer.

 Definition A microservices application is a distributed program composed of many small services that collaborate to achieve the features and functionality of the overall project.

 Typically, a microservices application has one or more services that are externally exposed to allow users to interact with the system. Figure 1.5 shows two such services acting as gateways for web-based and mobile phone users. You can also see in figure 1.5 that many services are working together within the cluster. It’s called a cluster because it’s a group of computers that are represented to us (the developers) as a single cohesive slab of computing power to be directed however we like. Somewhere close by, we also have a database server. In figure 1.5, it’s shown to be outside the cluster, but it could just as easily be hosted inside the cluster. We’ll talk more about this in chapter 4.

 The cluster is hosted on a cluster orchestration platform; in this book, we use Kubernetes for that purpose. Orchestration is the automated management of our services. This is what Kubernetes does for us—it helps us deploy and manage our services.

 The cluster itself, our database, and other virtual infrastructure are all hosted on our chosen cloud vendor. We’ll learn how to deploy this infrastructure on Microsoft Azure, but with some work on your own, you can change the examples in this book to deploy to Amazon Web Services (AWS) or Google Cloud Platform (GCP).

 [image:]

 Figure 1.5 A microservices application is composed of multiple, small independent services running in a cluster.

 A microservices application can take many forms, is very flexible, and can be arranged to suit many situations. Any particular application might have a familiar overall structure, but the services it contains will do different jobs, depending on the needs of our customers and the domain of our business.

1.7 What’s wrong with the monolith?

 What is a monolith and what is so wrong with it that we’d like to use microservices instead? Although distributed computing has been around for decades, applications were often built in the monolithic form. This is the way the majority of software was developed before the cloud revolution and microservices. Figure 1.6 shows what the services in a simple video-streaming application might look like and compares a monolithic version of the application with a microservices version.

 [image:]

 Figure 1.6 Monolith versus microservices. You can see that building with microservices offers many advantages over the traditional monolithic application.

 Definition A monolith is an entire application that runs in a single process.

 It’s much easier to build a monolith than a microservices application. You need fewer technical and architectural skills. It’s a great starting point when building a new application, say, for an early-stage product, and you want to test the validity of the business model before you commit to the higher technical investment required by a microservices application.

 A monolith is a great option for early throwaway prototyping. It also might be all that you need for an application that has a small scope or an application that stabilizes quickly and doesn’t need to evolve or grow over its lifetime. If your application will always be this small, it makes sense for it to be a monolith.

 Deciding whether to go monolith-first or microservices-first is a balancing act that has traditionally been won by the monolith. However, in this book, I’ll show you, given the improvements in modern tooling and with cheap and convenient cloud infrastructure, that it’s important to consider going microservices-first or at least push toward the microservices end of the spectrum (more on the spectrum of possibilities soon).

 Most products generally need to grow and evolve, and as your monolith grows bigger and has more useful features, it becomes more difficult to justify throwing away the throwaway prototype. So, down the road, you might find yourself stuck with the monolith at a time when what you really need is the flexibility, security, and scalability of a microservices application.

 Monoliths come with a host of potential problems. They always start out small, and we always have the best of intentions of keeping the code clean and well organized. A good team of developers can keep a monolith elegant and well organized for many years. But as time passes, the vision can be lost, or sometimes there wasn’t a strong vision in the first place. All the code runs in the same process, so there are no barriers and nothing to stop us from writing a huge mess of spaghetti code that will be nearly impossible to pick apart later.

 Staff turnover has a big effect. As developers leave the team, they take crucial knowledge with them, and they are replaced by new developers who will have to develop their own mental model of the application, which could easily be at odds with the original vision. Time passes, code changes hands many times, and these negative forces conspire to devolve the codebase into what is called a big ball of mud. This name denotes the messy state of the application when there is no longer a discernible architecture.

 Updating the code for a monolith is a risky affair—it’s all or nothing. When you push a code change that breaks the monolith, the entire application ceases operation, your customers are left high and dry, and your company bleeds money. We might only want to change a single line of code, but still, we must deploy the entire monolith and risk breaking it. This risk stokes deployment fear, and fear slows our pace of development.

 In addition, as the structure of the monolith degenerates, our risk of breaking it in unanticipated ways increases. Testing becomes harder and breeds yet more deployment fear. Experimentation and innovation eventually grind to a halt. Have I convinced you that you should try microservices? Wait, there’s more!

 Due to the sheer size of an established monolith, testing is problematic, and because of its extremely low level of granularity, it’s difficult to scale. Eventually, the monolith expands to consume the physical limits of the machine it runs on. As the aging monolith consumes more and more physical resources, it becomes very expensive to run. I’ve witnessed this! To be fair, this kind of eventuality might be a long way off for any monolith, but even after just a few years of growth, the monolith leads to a place that we would prefer not to be.

 Despite the eventual difficulties with the monolith, it remains the simplest way to bootstrap a new application. Shouldn’t we always start with a monolith and later restructure when we need to scale? My answer: it depends.

 Many applications will always be small. There are plenty of small monoliths in the wild that do their job well and don’t need to be scaled or evolved. They aren’t growing, and they don’t suffer the problems of growth. If you believe your application will remain small and simple and doesn’t need to evolve, you should definitely build it as a monolith.

 However, there are many applications that we can easily predict will benefit from a microservices-first approach. These are the kinds of applications we know will continually be evolved over many years. Other applications that can benefit are those that need to be flexible or scalable or that have security constraints from the start. Building these types of applications is much easier if you start with microservices because converting from an existing monolith is difficult and risky.

 By all means, if you need to validate your business idea first, do so by initially building a monolith. However, even in this case, I would argue that with the right tooling, prototyping with microservices isn’t much more difficult than prototyping with a monolith. After all, what is a monolith if not a single large service?

 You might even consider using the techniques in this book to bootstrap your monolith as a single service within a Kubernetes cluster. When the time comes to decompose to microservices, you’re already in the best possible position to do so, and, at your leisure, you can start chipping microservices off the monolith. With the ease of automated deployment that modern tooling offers, it’s easy to tear down and recreate your application or create replica environments for development and testing. If you want or need to create a monolith first, you can still benefit from the techniques and technologies presented in this book.

 If you do start with a monolith, for your own sanity and as early as possible, either throw it away and replace it or incrementally restructure it into microservices. We’ll talk more about breaking up an existing monolith in chapter 12.

1.8 Why are microservices popular now?

 Why does it seem that microservices are exploding in popularity right now? Is this just a passing fad? No, it’s not a passing fad. Distributed computing has been around for a long time and has always had many advantages over monolithic applications. Traditionally, though, it has been more complex and more costly to build applications in this way. Developers only reached for these more powerful application architectures for the most demanding problems: those where the value of the solution would far outweigh the cost of the implementation.

 In recent times, however, with the advent of cloud technology, virtualization, and the creation of automated tools for managing our virtual infrastructure, it has become much less expensive to build such distributed systems. As it became cheaper to replace monolithic applications with distributed applications, we naturally considered the ways this could improve the structure of our applications. In doing so, the components of our distributed systems have shrunk to the tiniest possible size so that now we call them microservices.

 That’s why microservices are popular now. Not only are they a good way to build complex modern applications, but they are also increasingly cost effective. Distributed computing has become more accessible than ever before, so naturally more developers are using it. Right now, it appears to be nearing critical mass, so it’s reaching the mainstream.

 But why are microservices so good? How do they improve the structure of our application? This question leads to the benefits of microservices.

1.9 Benefits of microservices

 Building distributed applications provides many advantages. Each service can potentially have its own dedicated CPU, memory, and other resources. Typically, though, we share physical infrastructure between many services, and that’s what makes microservices cost effective. But we’re also able to separate these out when necessary so that the services with the heaviest workloads can be allocated dedicated resources. We can say that each small service is independently scalable, and this gives us a fine-grained ability to tune the performance of our application. Here are the benefits of microservices:

 	
 Allow for fine-grained control—Microservices allow us to build an application with fine-grained control over scalability.

 	
 Minimize deployment risk—Microservices help us minimize deployment risk while maximizing the pace of development.

 	
 Allow us to choose our own tech stack—Microservices allow us to choose the right stack for the task at hand so that we aren’t constrained to a single tech stack.

 Having a distributed application offers us the potential for better reliability and reduced deployment risk. When we update a particular service, we can do so without the risk of breaking the entire application. Of course, we might still risk breaking a part of the application, but that is better and easier to recover from than bringing down the entire application. When problems occur, it’s easier to roll back just a small part of the system rather than the whole. Reduced deployment risk has the knock-on effect of promoting frequent deployments, and this is essential to agility and sustaining a fast pace of development.

 These benefits are nothing new. After all, we’ve been building distributed applications for a long time, but such systems are now cheaper to build, and the tools are now easier to use. It’s easier than ever before to build applications this way and to reap the rewards. As costs decreased and deployment convenience increased, our services tended toward the micro level, and this brought its own complement of benefits.

 Smaller services are quicker to boot than larger services. This helps make our system easier to scale because we can quickly replicate any service that becomes overloaded. Smaller services are also easier to test and troubleshoot. Even though testing an overall microservices system can still be difficult, we can more easily prove that each individual part of it is working as expected.

 Building applications with many small and independently upgradeable parts means we can have an application that is more amenable to being extended, evolved, and rearranged over its lifetime. This combination of flexibility and safety encourages experimentation and innovation that can really benefit the business. The fact that we’ve enforced process boundaries between our components means that we’ll never be tempted to write spaghetti code. However, if we do write terrible code (we all have bad days, right?), the effect of bad code is controlled and isolated because every microservice (to earn the name) should be small enough that it can be thrown away and rewritten within a matter of weeks, if not days. In this sense, we’re designing our code for disposability. We’re designing it to be replaced over time. The ongoing and iterative replacement of our application is not only made possible but also actively encouraged, and this is what we need for our application architecture to survive the continuously evolving needs of the modern business.

 Another benefit that really excites developers using microservices is that we’re no longer constrained to a single technology stack for our application. Each service in our application can potentially contain any tech stack. For larger companies, this means that different teams can choose their own tech stack based on their experience or based on the stack that is best for the job at hand. Various tech stacks can coexist within our cluster and work together using shared protocols and communication mechanisms.

 Being able to change between tech stacks is important for the long-term health of the application. As the tech landscape evolves, and it always does, older tech stacks fall out of favor and must eventually be replaced by new ones. Microservices create a structure that can be progressively converted to newer tech stacks. As developers, we no longer need to languish on out-of-date technologies.

 Technology (tech) stack

 Your technology stack is the combination of tools, software, and frameworks on which you build each microservice. You can think of it as the fundamental underlying elements needed by your application.

 Some stacks have names, for example, MEAN (MongoDB, Express, Angular, Node.js) or LAMP (Linux, Apache, MySQL, PHP). But your stack is just the combination of tools you use, and it doesn’t need a name to be valid.

 When building a monolith, we have to choose a single tech stack, and we have to stay with that stack for as long as the monolith remains in operation. The microservices architecture is appealing because it gives us the potential to use multiple tech stacks within one application. This allows us to change our tech stack over time as we evolve our application.

1.10 Drawbacks of microservices

 This chapter would not be complete without addressing the main problems that people have with microservices:

 	
 Microservices require a higher level of technical skills.

 	
 Building distributed applications is hard.

 	
 Microservices have scalable difficulty.

 	
 People often fear complexity.

1.10.1 Higher-level technical skills

 The first problem is the steep learning curve. Learning how to build microservices requires that we learn a complicated and deep set of technologies. Although learning how to build microservices will still be difficult, this book will help you shortcut the learning curve.

 Note I can understand if you feel daunted by what’s in front of you. But recently, huge progress has been made in the development of tooling for building distributed applications. Our tools are now more sophisticated, easier to use, and most importantly, more automatable than ever before.

 Ordinarily, it might take months or longer to conquer the learning curve on your own—mastering any of these tools takes significant time! But this book takes a different approach. Together, we’ll only learn the bare minimum necessary to bootstrap our application and get it running in production. Then, we’ll produce a simple but working microservices application.

1.10.2 Building distributed applications is hard

 Not only must we learn new technologies to build with microservices, we must also learn the new techniques, principles, patterns, and tradeoffs required for building distributed applications. Building distributed applications is hard. Running them is also hard! Understanding them in their entirety is even more difficult. To consider any new sort of technology, we must understand the costs versus the benefits. Microservices are no different. Microservices come with important benefits, but we still have to ask ourselves, are the benefits worth how much it will cost us?

 To better understand how hard it is to build software this way, read this summary of the “Eight Fallacies of Distributed Computing” to see the kinds of false assumptions we make when building these kinds of applications: https://nighthacks.com/jag/res/Fallacies.html.

 In this book, you’ll learn the basics of structuring distributed applications. We’ll cut through the confusion and just focus on the practical concerns of getting our application to our customers.

1.10.3 Microservices have scalable difficulty

 I hate to break it to you, but microservices aren’t silver bullets. Microservices can’t solve all our problems, and, in fact, they can even make our problems significantly worse. Microservices are scalable not only for performance and development but also for difficulty! Microservices can scale up whatever problems you’re already having with your monolith.

 It’s more difficult to build a microservices application than to build a monolith. We need the skills (see section 1.10.1), and, above all, we need to have invested in good automation. We also need good tools to help us manage the system. Just understanding how microservices communicate with each other is a problem that grows exponentially with the number of services in our application.

 Having the right skillset combined with good automation and good tooling makes all the difference and can make microservices seem easy. But you’re in for a big shock if you can’t or won’t invest in skills, automation, and tooling. Even though you can survive in the early days of your microservices application without much, managing a growing fleet of microservices will become increasingly overwhelming, and you’ll need all the help you can get to be successful in managing it.

1.10.4 People often fear complexity

 Building a microservices application, or any distributed application, is going to be more complicated than building the equivalent monolith. It’s hard to argue with this. The first thing I would say is that, yes, building a monolith is simpler in the beginning, and, in many cases, it’s the right decision. If your application is one of those that must later be converted or restructured to microservices, however, then you should consider the eventual cost of unraveling your big ball of mud.

 My main advice is not to be frightened by complexity; it happens whether we like it or not. Fortunately, microservices offer us tangible ways of managing complexity.

 If you’ve thought through the benefits versus the costs, you might concede that building with microservices, at least in certain situations, is actually less complicated than building a monolith. Consider this: any significant application is going to become complex. If not at the start, it will grow more complex over time. You can’t hide from complexity in modern software development; it always catches up with you eventually. Instead, let’s take control of this situation and meet the complexity head-on. What we want are better tools to help manage complexity. Microservices as an architectural pattern is one such tool.

1.10.5 Bringing the pain forward

 Think of microservices as a way to bring the pain forward to a place where it’s more economical to deal with. Yes, it can be more difficult working with microservices than working with a monolith, but sometimes dealing with problems (e.g., complexity) earlier can pay dividends throughout the life of the project.

 What do we get in return for the effort we invest? Microservices help us deal with complexity in our application. They provide hard boundaries that prevent us from writing spaghetti code. Microservices allow us to more easily rewire, scale, upgrade, and replace our application over time. Microservices also force us to apply better design. We can’t prevent complexity, but we can manage it, and modern tooling for distributed applications is already here to help us.

1.11 Modern tooling for microservices

 This book is all about the tooling. Together, we’ll learn the basics of a number of different tools. To start with, we must be able to create a microservice. We’ll use JavaScript and Node.js to do this, and we’ll cover the basics of that in the next chapter.

 We’re using Node.js because that’s my weapon of choice. However, as far as microservices are concerned, the tech stack within the service isn’t particularly important. We could just as easily build our microservices with Python, Ruby, Java, Go, or virtually any other language.

 We’ll encounter numerous tools along our journey, but these are the most important ones:

 	
 Docker—To package and publish our services

 	
 Docker Compose—To test our microservices application on our development computer

 	
 Kubernetes—To host our application in the cloud

 	
 Terraform—To build our production infrastructure in the cloud

 	
 GitHub Actions—To build a continuous deployment pipeline

 The technological landscape is always changing, and so are the tools. So why should we learn any particular toolset when the tools are constantly outdated and replaced? Well, it’s because we’ll always need good tools to work effectively. And with better tools, we can do a better job, or maybe we just get to do the same job but more effectively. Either way, our tools help us be more productive.

 I selected the tools for this book because they make the job of building microservices applications significantly easier and quicker. All technologies change over time, but I don’t think these particular tools are going anywhere soon. They are popular, are currently the best we have, and all fill useful positions in our toolkit.

 Of course, these tools will eventually be replaced, but hopefully, in the meantime, we’ll have extracted significant value and built many good applications. When the tools do change, they will certainly be replaced by better tools (if they aren’t better, we won’t migrate) that lift the bar of abstraction even higher, making our jobs easier and less frustrating.

 Docker is the one tool of them all that is ubiquitous. It seems to have come from nowhere and taken over our industry. Kubernetes isn’t quite as ubiquitous as Docker, although it does have a strong future and seems on track to be the computing platform of choice for microservices.

 Kubernetes allows us to transcend the boundaries of cloud vendors. This is good news if you have ever felt trapped with any cloud provider. We can run our Kubernetes-based application on pretty much any cloud platform, and we have freedom of movement when needed.

 Terraform is a relative newcomer, but I think it’s a game changer. It’s a declarative configuration language that allows us to script the creation of infrastructure in the cloud. The important thing about Terraform is that it’s one language that can work with potentially any cloud vendor. No matter which cloud vendor you choose, now or in the future, chances are that Terraform will support it, and you won’t have to learn something new.

 Think about this for a moment: Terraform means we can easily code the creation of cloud infrastructure. This is something! In the past, we would laboriously and physically piece together infrastructure, but now we’re able to create it with code, a concept that is called infrastructure as code, which we’ll look at in chapter 7.

1.12 Not just microservices

 You might already know this, but the tools we use in this book weren’t actually designed for building microservices—we can also use Docker, Kubernetes, Terraform, and GitHub Actions for building monolithic applications! Although, it might be overkill to create a Kubernetes cluster to host just a single process.

 As I’ve mentioned before, microservices have become popular, in part, because these tools have helped make microservices and the underlying infrastructure easier to build, but you really can use these tools to build distributed applications with services of any size, not just microservices. I don’t want you to think that I’m particularly dogmatic about microservices. In fact, I’d rather we replace the term microservices with right-sized services to indicate that the size doesn’t really matter—different situations demand different sizes of services. However, for the purpose of this book, microservices make up the compelling vehicle through which we can learn this toolset—but the skills you learn here can take you far beyond microservices.

 How you use these tools in the future—be it for monolith, for microservices, or, more likely, somewhere in between—is entirely up to you. Let’s be pragmatic and acknowledge that real-world solutions are never as clean as the phrase monolith versus microservices wants you to believe.

 Many developers don’t care either way, so long as they are building useful software and have a reasonably good development experience. Your customers definitely don’t care: they want a good user experience, but they really don’t know or care about how the developers structure the software they are using.

1.13 The spectrum of possibilities

 The truth of the matter is that it’s not just a black-and-white choice between monolith and microservices. There’s actually a spectrum of possibilities, as shown in figure 1.7.

 [image:]

 Figure 1.7 It’s not just monolith versus microservices: there’s actually a spectrum of possibilities.

 Despite this being a book about microservices, I don’t advocate that we adopt any specific position on this continuum. Do you want a monolith? That’s great; it’s totally okay to have a monolith. Do you need microservices? Awesome, microservices can bring many benefits.

 Most likely, you’ll be somewhere in the middle of the spectrum. In fact, somewhere in between is what the real world often looks like! Maybe toward the left with a monolith and some helper services, or maybe toward the right with many small services and a few bigger services. There’s no right answer to this question. You must take an appropriate position to improve things for yourself, your team, your company, and ultimately who you really should care about—your customers.

 In this book, I promote an idealized version of microservices development, what I like to call “the developer’s utopia of microservices.” It’s a form of development that’s most achievable when starting a greenfield (new) application and, even then, only when you can stay true to that path going into the future. I believe this is an amazing way to work, assuming we can maintain the discipline. But please don’t stress when you see that real-world development is never quite this perfect.

 The nature of development is that it’s complicated and messy. The techniques in this book can help you bring back some level of control, but it can be difficult to apply them in practice, especially when you’re up against a legacy codebase and constantly changing requirements from the business.

 The good news is that we don’t need a perfect implementation of microservices for them to start providing benefits to our application and development process. We can simply push toward the microservices end of the spectrum, and any kind of movement in that direction will be beneficial. We’ll return to the spectrum of possibilities in chapter 12.

1.14 Designing a microservices application

 This isn’t a book about theory, and it’s not about software design either. But there are some things I’d like to say about software design before we get into the practical parts of this book.

1.14.1 Software design

 Designing a microservices application isn’t particularly different from designing any software. You can read any good book on software design and apply those same principles and techniques to microservices. There aren’t many hard and fast rules that I follow, but I feel these few are especially important:

 	
 Don’t overdesign or try to future proof your architecture. Start with a simple design for your application.

 	
 Apply continuous refactoring during development to keep it as simple as it can be.

 	
 Let a good design emerge naturally.

 I feel that the last rule is especially encouraged by microservices. You can’t conclusively preplan a big microservices application. The architecture has to emerge during development and over the lifetime of the application.

 I’m not saying that you shouldn’t do any planning. You definitely should be planning at each and every iteration of development. What I’m saying is that you should be planning for your plan to change! You should be able to respond quickly to changing circumstances, and that’s something also well supported by microservices.

1.14.2 Design principles

 Let’s briefly discuss some design principles that seem particularly relevant to microservices:

 	
 Single responsibility principle

 	
 Separation of concerns

 	
 Loose coupling

 	
 High cohesion

 Generally, we’d like to have each microservice be as small and simple as possible. One individual service should cover only a single conceptual area of the business; that is, each service should have a single, well-defined area of responsibility. This is known as the single responsibility principle. Each microservice having its own area of concern naturally leads to separation of concerns, that is, clear separation of responsibilities rather than intermingled responsibilities, which helps make each microservice simpler and easier to understand.

 Microservices should be loosely coupled and have high cohesion. Loosely coupled means that the connections between services are minimal and that they don’t share information unless necessary. When we reduce the connections and dependencies between microservices, we make it easier to upgrade individual services without having problems ripple through our application. Loose coupling helps us pull apart and rewire our application into new configurations. This makes our application more flexible and responsive to the changing needs of the business.

 The code contained within a microservice should be highly cohesive. This means that all the code in a microservice belongs together and contributes to solving the problem that is the service’s area of responsibility. If a microservice solves more than one problem or has a larger area of responsibility, then this is an indication that it’s not highly cohesive.

1.14.3 Domain-driven design

 One design paradigm that works well for microservices is called domain-driven design (DDD). Using DDD is a great way to understand the domain of a business and to model the business as software. The technique comes from the book, Domain-Driven Design, by Eric Evans (Addison-Wesley Professional, 2003). I’ve used it multiple times myself and find that it maps well to designing distributed applications. Specifically, the concept of the bounded context fits well with the boundary of a microservice, as illustrated in figure 1.8.

 [image:]

 Figure 1.8 Bounded contexts from DDD equate to the boundaries of microservices.

 Figure 1.8 shows how the boundaries of concepts in our video-streaming domain might fit into microservices. Concepts such as User, Like, and Video live within our microservices, and some concepts (e.g., Video) create the relationships between microservices. For example, in figure 1.8, the idea of a video is almost the same (but there can be differences) between the recommendations and the video-storage microservices.

 A bounded context is a conceptual bubble within the domain model in which all the terms, entities, and logic within the bubble make sense together, belong together, and are consistent with each other. Creating bounded contexts is a way to carve up our domain models into logical and self-contained parts. The process of DDD can help us figure out the answer to this question: What goes into each microservice?

1.14.4 Don’t repeat yourself

 There is a coding principle that seems like it might be under attack by microservices. Many developers live by the motto Don’t repeat yourself (DRY). But in the world of microservices, we’re developing a higher tolerance for duplicated code than what was previously considered acceptable. This is partly because the cost of duplicated code is usually less than the cost of the bad abstraction we might create to share the code. But also, it’s because sharing code is just hard and can even be harder with microservices.

 The hard process boundaries in a microservices application certainly make it more difficult to share code, and the practice of DDD seems to encourage duplicating concepts, if not replicating code. In addition, when microservices are owned by separate teams, we then encounter all the usual barriers to sharing code that already exist between teams.

 Be assured there are good ways to share code between microservices, and we aren’t simply going to throw out DRY. We’d still like to share code between microservices when it makes sense to do so.

1.14.5 How much to put in each microservice

 Here is an aspect of design that causes much argument: Exactly how much code should we put in each microservice? There is no right answer to this question. But the “micro” part of the name microservices has unfortunately pushed some people to think that the smaller their services are, the better. This isn’t true. In fact, I don’t even like the term “microservices” because I think it implicitly pushes people to make their services too small. Is it too late to rename “microservices” to “right-sized services”? Your services should be whatever size works best for your circumstances, and we shouldn’t be competing to create the smallest services.

 Services that are too small need to communicate more with the system to get work done. The smaller we make our services, the higher we make the overall complexity of our system. So instead of building services around the goal of making them as small as possible, we should be building them around the concepts in our domain and to whatever size feels natural for that domain (hence, section 1.14.3 on DDD).

 The problem of how much to put in each microservice is the same kind of problem we encounter in every other part of software development. How much code should I put in each function? How much code should I put in each class or module? These questions have no right answers, except to say that design principles like those from section 1.14.2 can help guide us in the right direction.

1.14.6 Learning more about design

 This book is about the practical aspects of building microservices, not about designing them. So, what’s coming up is much more practical than theoretical. Whatever your preferred flavor of development (e.g., object-oriented versus functional), there are many good books about software design available. Pick one that appeals to you and read it.

 Specifically, to learn about designing microservices, I recommend you read Designing Microservices (Manning, in press) by S. Ramesh. Another book with some great information on designing distributed applications that goes really well with this book is Micro Frontends in Action by Michael Geers (Manning, 2020). To keep up to date with new content relating to this book, join the mailing list at www.bootstrapping-microservices.com.

1.15 An example application

 By the end of this book, we’ll have built a simple but complete microservices application. In this section, we’ll develop an idea of what the final product looks like.

 The example product we’ll build is a video-streaming application. Every good product deserves a name, so after much brainstorming and throwing around various ideas, I’ve landed on the name FlixTube, the future king of the video-streaming world. Got to start somewhere, right?

 Why choose video streaming as the example? Simply because it’s a fun example and is surprisingly easy to create (at least in a simple form). It’s also a well-known use case for microservices, being the approach successfully taken to the extreme by Netflix. (Reports vary, but we know they run hundreds, if not thousands, of microservices.)

 We’ll use the FlixTube example application to demonstrate the process of constructing a microservices application. It will only have a small number of microservices, but we’ll build in the pathways we need for future scalability, including adding more virtual machines to the cluster, replicating services for scale and redundancy, and having separate deployment schedules for our services.

 Our application will have a browser-based frontend so our users can view a list of videos. From there, they can select a video, and it will begin playing. We’ll build and publish Docker images for our microservices in chapter 3. During development, we’ll boot our application using Docker Compose, which we’ll cover in chapters 4 and 5. In chapters 6, 7, and 8, we’ll deploy our application to production and set up continuous deployment. In chapter 9, we’ll swing back to development for some automated testing.

 Our application will contain services for video streaming, storage, and upload, plus a gateway for the customer-facing frontend. We’ll work up to deploying the full application (see figure 1.9) in chapter 10. In chapters 11 and 12, we’ll look at all the ways this architecture can help us scale in the future as our application grows. Are you ready to start building with microservices?

 [image:]

 Figure 1.9 Our example application running in production on Kubernetes

Summary

 	
 We take a practical rather than a theoretical approach to learning how to build a microservices application.

 	
 Microservices are small and independent processes that each do one thing well.

 	
 A microservices application is composed of numerous small processes working together to create the application’s features.

 	
 A monolith is an application composed of a single massive service.

 	
 Although building a microservices application is more complicated than building a monolith, it’s not as difficult as you might think.

 	
 Applications built from microservices are more flexible, scalable, reliable, and fault tolerant than monolithic applications.

 	
 All applications, monolith or microservices, grow complex—using microservices is an architecture that can help us manage complexity instead of being overwhelmed by it.

OEBPS/OEBPS/Images/CH01_F01_Davis6.png

OEBPS/OEBPS/Images/CH01_F04_Davis6.png

OEBPS/OEBPS/Images/CH01_F08_Davis6.png

OEBPS/OEBPS/Images/IFC_F01_Davis6.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/CH01_F07_Davis6.png

OEBPS/OEBPS/Images/Ashley-Davis_author-photo.png

OEBPS/OEBPS/Images/CH01_F03_Davis6.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F06_Davis6.png

OEBPS/OEBPS/Images/CH01_F02_Davis6.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F05_Davis6.png

OEBPS/OEBPS/Images/IFC_F02_Davis6.png

OEBPS/OEBPS/Images/CH01_F09_Davis6.png

