

 inside front cover

 Objectives of the Book

 [image:]

Praise for the First Edition

 A very clear and concise depiction of the best parts of PowerShell.

 —Justin Coulston, Intellectual Technology

 A great resource for those who want to create scripts for task automation.

 —Bruno Sonnino, Revolution Software

 Real-world examples, best practices, and tips from two of the most respected PowerShell MVPs.

 —Roman Levchenko, Microsoft MVP

 It makes you stop and think, not just “read and nod.”

 —Reka Horvath, Wirecard CEE

 The book to read, if you want to become an informed expert in PowerShell Scripting.

 —Shankar Swamy, Stealth Mode IoT Device Startup

 [image:]

 Learn PowerShell Scripting in a Month of Lunches

 Second Edition

 Write and organize scripts and tools

 James Petty, Don Jones, and Jeffrey Hicks

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Frances Lefkowitz

 	
 Technical editor:

 	
 Wes Stahler

 	
 Review editor:

 	
 Kishor Rit

 	
 Production editor:

 	
 Kathy Rossland

 	
 Copy editor:

 	
 Julie McNamee

 	
 Proofreader:

 	
 Mike Beady

 	
 Technical proofreader:

 	
 Krzysztof Kamyczek

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633438989

 dedication

 To Kacielynn, my unwavering source of support and encouragement, thank you for your boundless patience and understanding. Your love has been my anchor, providing the

 stability and inspiration to undertake ambitious projects like this one. This book

 stands as a testament to the strength of our partnership.

 To our two daughters, whose laughter and curiosity fill our home with joy, you

 are my constant reminder of the importance of simplicity and the beauty of learning.

 May this book inspire you to pursue your passions with the same enthusiasm

 that you approach the world.

 —James Petty

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the authors

 Part 1.

 1 Before you begin

 1.1 What is toolmaking?

 1.2 Is this book for you?

 1.3 What you need for this book

 PowerShell version

 Administrative privileges

 Script editor

 1.4 How to use this book

 1.5 Expectations

 1.6 How to ask for help

 2 Setting up your scripting environment

 2.1 The operating system

 2.2 PowerShell

 2.3 Administrative privileges and execution policy

 2.4 Script editors

 2.5 Our lab environment

 2.6 Example code

 2.7 Your turn

 3 WWPD: What would PowerShell do?

 3.1 One tool, one task

 3.2 Naming your tools

 3.3 Naming parameters

 3.4 Producing output

 3.5 Don’t assume

 3.6 Avoid innovation

 4 Review: Parameter binding and the PowerShell pipeline

 4.1 The operating system

 4.2 It’s all in the parameters

 4.3 Pipeline: ByValue

 Introducing Trace-Command

 Tracing the ByValue parameter binding

 When ByValue fails

 4.4 ByPropertyName

 Let’s trace ByPropertyName

 When ByPropertyName fails

 Planning ahead

 5 Scripting language: A crash course

 5.1 Comparisons

 Wildcards

 Collections

 Troubleshooting comparisons

 5.2 The If construct

 5.3 The ForEach construct

 5.4 The Switch construct

 5.5 The Do/While construct

 5.6 The For construct

 5.7 Break

 6 The many forms of scripting (and which to choose)

 6.1 Tools vs. controllers

 6.2 Thinking about tools

 6.3 Thinking about controllers

 6.4 Comparing tools and controllers

 6.5 Some concrete examples

 Emailing users whose passwords are about to expire

 Provisioning new users

 Setting file permissions

 Helping the help desk

 6.6 Control more

 6.7 Lab

 7 Scripts and security

 7.1 Security is number one

 7.2 Execution policy

 Execution scope

 Getting your policies

 Setting an execution policy

 7.3 PowerShell isn’t the default application

 7.4 Running scripts

 7.5 Recommendations

 Part 2.

 8 Always design first

 8.1 Tools do one thing

 8.2 Tools are testable

 8.3 Tools are flexible

 8.4 Tools look native

 8.5 For example

 8.6 Your turn

 Start here

 Your task

 Our take

 9 Avoiding bugs: Start with a command

 9.1 What you need to run

 9.2 Breaking it down, and running it right

 9.3 Running commands and digging deeper

 9.4 Process matters

 9.5 Know what you need

 9.6 Your turn

 Start here

 Your task

 Our take

 10 Building a basic function and script module

 10.1 Starting with a basic function

 Designing the input parameters

 Writing the code

 Designing the output

 10.2 Creating a script module

 10.3 Prereq check

 10.4 Running the command

 10.5 Your turn

 Start here

 Your task

 Our take

 11 Getting started with advanced functions

 11.1 About CmdletBinding and common parameters

 Accepting pipeline input

 Mandatory-ness

 Parameter validation

 Parameter aliases

 Supporting –Confirm and –WhatIf

 11.2 Your turn

 Start here

 Your task

 Our take

 12 Objects: The best kind of output

 12.1 Assembling the information

 12.2 Constructing and emitting output

 12.3 A quick test

 12.4 An object alternative

 12.5 Enriching objects

 12.6 Your turn

 Start here

 Your task

 Our take

 13 Using all the streams

 13.1 Knowing the seven output streams

 13.2 Adding verbose and warning output

 13.3 Doing more with -Verbose

 13.4 Information output

 A detailed Information stream example

 13.5 Your turn

 Start here

 Your task

 Our take

 14 Simple help: Making a comment

 14.1 Where to put your help

 14.2 Getting started

 14.3 Going further with comment-based help

 14.4 Broken help

 14.5 Beyond comments

 14.6 Your turn

 Start here

 Your task

 Our take

 15 Errors and how to deal with them

 15.1 Understanding errors and exceptions

 15.2 Bad handling

 15.3 Two reasons for exception handling

 15.4 Handling exceptions in your tool

 15.5 Capturing the exception

 15.6 Handling exceptions for non-commands

 15.7 Going further with exception handling

 15.8 Your turn

 Start here

 Your task

 Our take

 16 Filling out a manifest

 16.1 Module execution order

 16.2 Creating a new manifest

 16.3 Examining the manifest

 Metadata

 The root module

 Prerequisites

 Scripts, types, and formats

 Exporting members

 16.4 Your turn

 Start here

 Your task

 Our take

 Part 3.

 17 Changing your brain when it comes to scripting

 17.1 Example 1

 The critique

 Our take

 Thinking beyond the literal

 17.2 Example 2

 The walkthrough

 Our take

 17.3 Your turn

 Start here

 Your task

 Our take

 18 Professional-grade scripting

 18.1 Using source control

 18.2 Code clarity

 18.3 Effective comments

 18.4 Formatting your code

 18.5 Meaningful variable names

 18.6 Avoiding aliases

 18.7 Logic over complexity

 18.8 Providing help

 18.9 Avoiding Write-Host and Read-Host

 18.10 Sticking with single quotes

 18.11 Not polluting the global scope

 18.12 Being flexible

 18.13 Prioritizing security

 18.14 Striving for elegance

 19 An introduction to source control with Git

 19.1 Why source control?

 19.2 What is Git?

 Installing Git

 Git basics

 19.3 Repository basics

 Creating a repository

 Staging a change

 Committing a change

 Rolling back a change

 Branching and merging

 19.4 Using Git with VS Code

 19.5 Integrating with GitHub

 20 Pestering your script

 20.1 The vision

 20.2 Problems with manual testing

 20.3 Benefits of automated testing

 20.4 Introducing Pester

 20.5 Coding to be tested

 20.6 What do you test?

 Integration tests

 Unit tests

 Don’t test what isn’t yours

 20.7 Writing a basic Pester test

 Creating a fixture

 Writing the first test

 Creating a mock

 Adding more tests

 Code coverage

 21 Signing your script

 21.1 The significance of script signing

 21.2 A word about certificates

 21.3 Configure your script signing policy

 21.4 Code-signing basics

 Acquiring a code-signing certificate

 Trusting self-signed certificates

 Signing your scripts

 Testing script signatures

 22 Publishing your script

 22.1 The importance of publishing

 22.2 Exploring the PowerShell Gallery

 22.3 Other publishing options

 22.4 Before you publish

 Are you reinventing the wheel?

 Updating your manifest

 Getting an API key

 22.5 Ready, set, publish

 Managing revisions

 22.6 Publishing scripts

 Using the Microsoft script repository

 Creating ScriptFileInfo

 Publishing the script

 Managing published scripts

 Part 4.

 23 Squashing bugs

 23.1 The three kinds of bugs

 23.2 Dealing with syntax bugs

 23.3 Dealing with results bugs

 23.4 Dealing with logic bugs

 Setting breakpoints

 Setting watches

 So much more

 Don’t be lazy

 23.5 Your turn

 Start here

 Your task

 Our take

 24 Enhancing script output presentation

 24.1 Our starting point

 24.2 Creating a default view

 Exploring Microsoft’s views

 Adding a custom type name to output objects

 Creating a new view file

 Adding the view file to a module

 24.3 Your turn

 Start here

 Your task

 Our take

 25 Wrapping up the .NET Framework

 25.1 Why PowerShell exists

 A crash course in .Net

 25.2 Exploring a class

 25.3 Making a wrapper

 25.4 A more practical example

 25.5 Your turn

 Start here

 Your task

 Our take

 26 Storing data—not in Excel!

 26.1 Introducing SQL Server!

 26.2 Setting up everything

 26.3 Using your database: Creating a table

 26.4 Saving data to SQL Server

 26.5 Querying data from SQL Server

 27 Never the end

 27.1 Welcome to toolmaking

 27.2 Taking your next step

 27.3 What’s in your future?

 index

 front matter

preface

 As someone who has experienced the transformative power of PowerShell firsthand, I am excited to guide you through a monthlong exploration of its scripting capabilities. Whether you’re a seasoned IT professional or a newcomer to the scripting world, this book is designed to make your learning journey informative and enjoyable.

 In the spirit of the Month of Lunches series, each chapter is crafted to be consumed during your lunch break, making it convenient for even the busiest schedules. The goal is to empower you to become proficient in PowerShell scripting, one step at a time and one lunch break at a time.

 Throughout these pages, you’ll find practical examples, hands-on exercises, and real-world scenarios that will enhance your PowerShell skills and equip you with the confidence to apply them in your daily tasks. This book covers various topics, from the fundamentals to advanced scripting techniques, to ensure a comprehensive understanding of PowerShell.

 As you delve into the world of PowerShell scripting, keep in mind the dedication to my family. They have been my inspiration and motivation to create a resource that is informative but also accessible and enjoyable.

 Wishing you a fulfilling and rewarding journey as you Learn PowerShell Scripting in a Month of Lunches.

 —James Petty

acknowledgments

 I extend my heartfelt gratitude to those who supported and contributed to the creation of this book. Special thanks to my daughters and my wife for their unwavering encouragement.

 I am also grateful to Manning Publications for the opportunity to share my knowledge and for all the support they have shown me during the course of writing this book.

 In particular, I’d like to thank my development editor Frances Lefkowitz, technical proofreader Krzysztof Kamyczek, and all members of the production team for their support with Learn PowerShell Scripting in a Month of Lunches, Second Edition.

 Special thanks go to technical editor Wes Stahler, CISSP, GCWN, GCIH, GSTRT, MCSD, who is an associate director at The Ohio State University Wexner Medical Center. He enjoys evangelizing PowerShell’s merits and has presented nationally at the Microsoft Health Users Group, as well as locally for the Central Ohio PowerShell Users Group and Central Ohio ISSA chapter.

 Thank you to all the reviewers: Al Pezewski, Dave Corun, Glen Thompson, Jeffrey Yao, Keith Kim, Kent Spillner, Maria Ana, Oliver Korten, Peter A. Schott, Piti Champeethong, Ranjit Sahai, Roman Levchenko, and Satej Kumar Sahu—your suggestions helped make this a better book.

about this book

 Learn PowerShell Scripting in a Month of Lunches is a comprehensive guide that navigates readers through a transformative journey in the intricate world of scripting. Divided into four parts, the book systematically builds and enhances PowerShell scripting skills. Part 1 serves as a foundational gateway, laying prerequisites and considerations for script creation. Transitioning to Part 2, readers move from foundational concepts to practical implementation, crafting robust PowerShell scripts focusing on design principles and strategic thinking. Part 3, the sophisticated phase, explores advanced techniques and professional-grade practices, challenging conventional thinking and emphasizing security. The concluding Part 4 delves into advanced scripting intricacies, defining mastery in the scripting domain.

 Catering to IT professionals, system administrators, developers, and enthusiasts, the book’s companion website offers code examples and resources, fostering a comprehensive learning experience. Engage in dynamic discussions in the liveBook forum and benefit from real-world insights from James Petty. The acknowledgments express gratitude to supporters and recognize reviewers’ valuable contributions. Learn PowerShell Scripting in a Month of Lunches is more than a book; it’s a transformative journey, empowering readers to overcome challenges, present scripts with finesse, and embrace perpetual growth in the scripting realm. Let the pursuit of mastery begin!

Who should read this book

 Designed for IT professionals, system administrators, and those aiming to gain practical skills in PowerShell scripting, Learn PowerShell Scripting in a Month of Lunches is also accessible to beginners. However, we recommend beginners initiate their learning journey with Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), for a comprehensive foundation. Tailored for individuals with limited scripting experience, the content employs a structured, hands-on approach to mastering PowerShell. Whether you’re a newcomer to scripting or pursuing practical automation and system administration skills, this book provides valuable insights. Building on the foundational knowledge in Learn PowerShell in a Month of Lunches enhances the learning experience, facilitating a smoother transition to more advanced scripting concepts within these pages.

 This book, Learn PowerShell Scripting in a Month of Lunches, is geared toward a structured and hands-on learning approach, especially for day-to-day tasks, automation, and system administration. You’ll find this book is an invaluable resource. The Month of Lunches format ensures a manageable and structured learning path, catering to busy professionals aiming to integrate PowerShell into their workflow efficiently. Whether operating in a Windows environment or managing Microsoft technologies, Learn PowerShell Scripting in a Month of Lunches equips you with the essential knowledge and practical skills required to harness PowerShell’s power for scripting and automation tasks.

About the code

 The code provided in this book follows clear conventions to enhance readability and understanding. The code examples, scripts, and additional resources are found in our GitHub repository. Detailed explanations accompany each piece of code, ensuring that readers grasp the syntax and understand the underlying principles of practical scripting.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/learn-powershell-scripting-in-a-month-of-lunches-second-edition. The complete code for the examples in the book is available for download from the Manning website at www.manning.com/books/learn-powershell-scripting-in-a-month-of-lunches-second-edition and from GitHub at https://github.com/psjamesp/MOL-Scripting.

liveBook discussion forum

 Purchase of Learn PowerShell Scripting in a Month of Lunches, Second Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/learn-powershell-scripting-in-a-month-of-lunches-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 [image:]

 James Petty is currently the Director of Information Technology at TextRequest. He is a four-time awardee of the Microsoft MVP award. In a dedicated capacity, he also assumes the role of volunteer CEO at DevOps Collective Inc., a nonprofit organization operating within technology education. The organization’s primary focus revolves around PowerShell, automation, and DevOps. It has garnered recognition for providing an array of free online resources, notably PowerShell.org.

 In the literary domain, James is the lead author of two published works: Learn PowerShell in a Month of Lunches, now in its fourth edition, and Learn PowerShell Scripting in a Month of Lunches, in its second edition. Manning proudly publishes both of these insightful publications.

 At the core of James’s passion lies automation, where he adeptly wields tools such as PowerShell, Azure, and all facets of Windows Server environments. His prowess in this domain has been honed over more than a decade of service as an infrastructure administrator, catering to businesses spanning a diverse range of sizes.

 James has woven his life in the tranquil environs outside Chattanooga, Tennessee, where he resides with his cherished wife, daughters, two dogs, and two cats.

 Don Jones is a 16-year recipient of Microsoft’s MVP Award, a co-founder of PowerShell.org and The DevOps Collective, and the author of more than 60 technology books—including market-defining works like the In a Month of Lunches series and the career-focused Own Your Tech Career (Manning). Don is also the author of over a dozen fantasy and sci-fi novels and can be contacted at DonJones.com/.

 Jeffery Hicks is an IT veteran with over 30 years of experience, much of it spent as an IT infrastructure consultant specializing in Microsoft server technologies with an emphasis on automation and efficiency. He is a multi-year recipient of the Microsoft MVP Award. Jeff is a respected and well-known author, teacher, and consultant. Jeff has taught and presented PowerShell content and the benefits of automation to IT Pros worldwide for the last 20 years. He has authored, co-authored, and edited several books, writes for numerous online sites and print publications, is a Pluralsight author, and is a frequent speaker at technology conferences and user groups. Learn more about Jeff at https://github.com/jdhitsolutions/jdhitsolutions.github.io.

Part 1.

 Welcome to the foundational segment of our scripting journey—Introduction to Scripting. This part serves as your gateway into the intricate yet fascinating world of scripting, designed to empower you with the knowledge and skills needed to navigate the scripting landscape confidently. As you embark on chapter 1, we’ll lay the groundwork for your scripting adventure, discovering essential prerequisites, considerations, and the mindset required before delving into the intricacies of script creation. Chapter 2 guides you through the critical steps of establishing an environment conducive to effective scripting, emphasizing the importance of a well-configured setup for a seamless and efficient scripting experience. We’ll dig into the philosophy of PowerShell scripting in chapter 3, which uncovers the principles and decision-making processes that guide PowerShell and provides valuable insights into crafting scripts aligned with this powerful scripting language. As we progress, chapters 4 to 7 revisit and reinforce fundamental concepts, from parameter binding and the PowerShell pipeline to a crash course in scripting languages and an exploration of diverse scripting forms, all while prioritizing the crucial aspect of script security. Through these chapters, you’ll acquire the fundamental knowledge and skills to embark on the scripting journey. Now, let’s dive in and unravel the art and science of scripting!

1 Before you begin

 PowerShell has been around for more than 15 years, but it’s been a fantastic journey. If you missed the memo, PowerShell is now cross-platform, meaning it’s available on more than just Microsoft Windows. I’m still blown away that Microsoft has open sourced PowerShell. It was initially created to solve the specific problem of automating Windows administrative tasks, but a much simpler “batch file” language would have sufficed. PowerShell’s inventor, Jeffrey Snover, and its entire product team had a grander vision. They wanted something that could appeal to a broad, diverse audience. In their vision, administrators might start very simply by running commands to accomplish administrative tasks quickly—that’s what our previous book, Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), focused on. The team also imagined more complex tasks and processes being automated through varying complex scripts, which is what this book is all about.

 The PowerShell team also envisioned developers using PowerShell to create all-new units of functionality, which we’ll hint at throughout this book. Just as your microwave probably has buttons you’ve never pushed, PowerShell likely has functionalities you may never touch because they don’t apply to you. But with this book, you’re taking a step into PowerShell’s deepest functionality: scripting or—if you buy into our worldview—toolmaking.

1.1 What is toolmaking?

 We see many people jump into PowerShell scripting much the same way they’d jump into batch files, VBScript, Python, and so on, and there’s nothing wrong with that. PowerShell can accommodate a lot of different styles and approaches. But you end up working harder than you need to unless you take a minute to understand how PowerShell wants to work. We believe that toolmaking is the intended way to use PowerShell.

 PowerShell can be used to create highly reusable, context-independent tools, which it refers to as commands. Commands typically do one small thing and do it very well. A command might not be helpful, but PowerShell is designed to make it easy to “snap” commands together. A single LEGO brick might not be much fun (if you’ve ever stepped on one in bare feet, you know what we mean), but a box of those bricks, when snapped together, can be amazing (hello, Death Star!). That’s the approach we take to scripting in this book, and it’s why we use the word toolmaking to describe that approach. Your effort is best spent making small, self-contained tools that can “snap on” to other tools. This approach makes your code usable across more situations, which saves you work, and it reduces debugging and maintenance overhead, which saves your sanity.

 Scripting with PowerShell involves creating sequences of PowerShell commands and instructions in a text file, usually with the .ps1 file extension. These scripts are essentially programs written in the PowerShell scripting language, which is designed for task automation and configuration management in Windows systems. PowerShell scripts can be used to perform a wide range of tasks, from simple administrative tasks to complex automation workflows.

 Here are some key aspects that differentiate scriptmaking with PowerShell from working with commands in the PowerShell console:

 	
 Reusability—In a PowerShell script, you can define a set of instructions or functions that can be reused across different tasks. This allows for modular and maintainable code. In contrast, when working in the command line at the PowerShell console, you often type commands interactively, and reusability is limited to the history of commands or manually copying and pasting.

 	
 Script structure—PowerShell scripts have a structured format with elements such as variables, loops, conditions, and functions, making them suitable for more complex and organized tasks. Command-line usage in the PowerShell console typically involves entering one-off commands, which can be less organized and harder to manage for complex operations.

 	
 Automation—PowerShell scripts excel at automation. By scripting sequences of commands, you can automate repetitive tasks, perform bulk operations, and schedule scripts to run at specific times. This level of automation isn’t easily achievable through the interactive use of commands in the console.

 	
 Interactivity versus noninteractivity—When working in the PowerShell console, you can interactively enter commands and see immediate results. In contrast, scripts are typically noninteractive, running a series of commands without user input. However, scripts can also be designed to prompt for user input or accept parameters to make them more flexible.

 	
 Script execution policy—PowerShell scripts may be subject to execution policies that control their ability to run. These policies help prevent the inadvertent execution of malicious scripts. When working with commands in the console, there’s no analogous execution policy by default, as each command is executed individually.

 	
 Error handling—PowerShell scripts can include error-handling mechanisms, allowing you to gracefully manage errors and exceptions. When entering commands in the console, error handling is more limited, and you often must rely on manual intervention or debugging after an error occurs.

 Scriptmaking with PowerShell involves creating reusable, structured sequences of commands to automate tasks, whereas working with commands in the PowerShell console is more interactive and typically used for immediate, one-off tasks. PowerShell scripts provide a powerful tool for system administrators and IT professionals to streamline and automate Windows management tasks.

1.2 Is this book for you?

 Before you go any further, you should ensure this is the right place for you. This is the second book in the Month of Lunches series, and it’s designed for those who are already comfortable with using PowerShell at the command line and creating reusable scripts. Because this book focuses as much on process and approach as on syntax, it’s okay if you’ve been scripting for a while and are just looking to improve your technique or validate your skill set. That said, this is not an entry-level book on PowerShell itself. To continue successfully with this book, you should be able to answer the following questions right off the top of your head:

 	
 What command would you use to query all instances of Win32_LogicalDisk from a remote computer? (Hint: if you answered Get-WmiObject, you’re behind the times and need to catch up for this book to be useful to you.)

 	
 What are the two ways PowerShell can pass data from one command to another in the pipeline?

 	
 Well-written PowerShell commands don’t output text. What do they output? What commands can you use to make that output prettier on the screen?

 	
 How would you figure out how to use the Get-WinEvent command if you had never used it before?

 	
 What are the different shell execution policies, and what does each one mean?

 We’re not providing answers to these questions—if you’re unsure of any of them, this isn’t the right book for you. Instead, we’d recommend Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022; http://mng.bz/ddVz). Once you’ve worked through that book and its many hands-on exercises, this book will be a logical next step in your PowerShell education. We also assume you’re fairly experienced with the Windows operating system because our examples will pertain to that.

1.3 What you need for this book

 Let’s quickly run down some of what you’ll need to follow along with this book.

1.3.1 PowerShell version

 We wrote this book using PowerShell 7.2, but 99% of the book applies to earlier versions of Windows PowerShell. Download PowerShell from https://docs.microsoft.com/en-us/PowerShell/. Now, look—don’t install new versions of PowerShell on your server computers without doing some research. Many server applications (we’re looking at you, Exchange Server) are picky about which version of PowerShell they’ll work with, and installing the wrong one can break things. In addition, be aware that each version of PowerShell supports only specific versions of Windows—for this book, we’re using Windows 11 and macOS.

 We’re using PowerShell 7.2 (or higher as the newer version comes out), but most of the content will work on Windows PowerShell (5.1), although we haven’t tested everything against that version. The content we’re covering is so core to PowerShell, so stable, and so mature that it’s essentially evergreen, meaning it doesn’t change from season to season. We use free e-books on https://PowerShell.org to help teach the of-the-moment, new-and-shiny stuff related to a specific version of PowerShell; this book is all about the solid core that remains stable.

1.3.2 Administrative privileges

 You need to be able to run the PowerShell console and your editor As Administrator (as shown on the Start menu) on your computer, mainly so that the administrative examples we’re sharing with you will work. If you don’t know how to run PowerShell as an administrator of your computer, this probably isn’t the right book for you.

1.3.3 Script editor

 Finally, you’ll need a script editor. Windows PowerShell’s Integrated Script Editor (ISE) is included on client versions of Windows and only works with Windows PowerShell. We recommend you remove this from your machine, as the PowerShell team hasn’t performed any maintenance or support since Windows 7 was released. These days, Microsoft recommends Visual Studio Code (VS Code), which is free and cross-platform. Download that, and in chapter 2, we’ll show you how to set it up for use with PowerShell. Start the download at https://code.visualstudio.com/.

 NOTE VS Code and PowerShell are both cross-platform. Every concept and practice in this book applies to PowerShell running on systems other than Windows. But the examples we use will only run on Windows as of this writing. We recommend sticking with Windows unless you’re willing to be very patient and perhaps translate our running examples into ones running on other operating systems.

1.4 How to use this book

 You’re meant to read one chapter of this book daily, and it should take you under an hour to do so—except in one case, where we have a Special Bonus Double Chapter, which we’ll call to your attention when we get there. Spend additional time, even a day or two, completing any hands-on exercises at the chapter’s end. Do not feel the need to press ahead and binge-read several chapters at once, even if you have an exceptionally long lunch “hour.” Here’s why: we’re going to be throwing a lot of new facts at you. The human brain needs time—and sleep!—to sort through those facts, connect them to things you already know, and start turning them into knowledge. Cognitive science has identified some consistent limits to how much your brain can successfully digest in a day, and we’ve been careful to construct each chapter with those limits in mind. So, seriously—just read one chapter per day. Try to get in at least three or four chapters per week to keep the narrative in mind, and make sure you’re doing the hands-on exercises we’ve provided.

 TIP We’d rather you repeat a chapter and its hands-on exercises for two or three days to ensure it’s cemented in your mind than try to binge-read many chapters in just a day or two. Doing the former will get this stuff into your brain more reliably.

 Speaking of those exercises—do not just skip ahead and read the sample solutions we’ve provided. Again, cognitive science clearly states that the human brain works best when it learns new facts and immediately uses them. Even if you find a particular exercise a struggle, the struggle itself forces your brain to focus and bring facts together. Before you consult the sample solution for an easy answer, it’s better to go back and skim through previous chapters. Constructing the response in that fashion will make the information stick for you. It’s a bit more work for you, but it’ll pay off. If you take the lazy approach, you’re just cheating yourself, and we don’t want that for you.

1.5 Expectations

 Before you get too far into the book, we want to ensure you know what to expect. As you might imagine, the book’s topic is pretty big, and we could cover a lot of material. But this book is designed for you to complete in a month of lunches, so we had to draw the line somewhere. We aim to provide you with fundamental information that everyone should have to start scripting and creating basic PowerShell tools. This book was never intended as an all-inclusive tutorial.

1.6 How to ask for help

 You’re welcome to ask us for help in Manning’s online author forum, which you can access at http://mng.bz/rjgE, but we encourage you to consider an online forum such as https://PowerShell.org. We monitor the Q&A forums there, but, more importantly, you’ll find hundreds of other like-minded individuals asking and answering questions. The critical thing with PowerShell is for you to engage and become part of its community, meet your peers and colleagues, and become a contributor yourself in time. PowerShell.org offers tips-and-tricks videos, free e-books, an annual in-person conference, and a ton more, and it’s a great way to start making PowerShell a formal part of your career path.

Summary

 Hopefully, at this point, you’re eager to dive in and start scripting—or, better yet, to start toolmaking. You should have your prerequisite software lined up and ready to go, and you should have a good idea of how much time you’ll need to devote to this book each week. Let’s get started.

2 Setting up your scripting environment

 We know you’re ready to jump feetfirst into the deep end of the scripting pool. But first, we need to take some time to make sure you have an adequate environment set up to use throughout this book. This chapter may be a lunch and a half, but you must follow along with each step to ensure you have an environment where you can safely complete the hands-on labs that will appear at the end of most chapters.

2.1 The operating system

 While PowerShell is cross-platform for this book’s duration, we’ll primarily focus on the Windows operating system because PowerShell is still prominently used on Windows devices. You’ll first need a computer running Windows 10 or 11. You could use a Windows 7 computer, but that’s out of support by now, so you should probably upgrade if you can. While PowerShell is cross-platform, some of the examples we use are Windows specific, which is why we recommend following along on a Windows machine. If you don’t own a Windows computer (maybe you’re a Mac or Linux person), you can spin up a Windows 11 virtual machine (VM) in your favorite cloud provider. Power it on when you need it, and turn it off when you’re done with lunch for the day. You can also follow along with a Windows Server (2019 or higher) if that’s what you have available.

2.2 PowerShell

 It shouldn’t be surprising that you need PowerShell installed for the remainder of this book. However, note that we’ll be using PowerShell 7, not the Windows PowerShell (5.1) installed by default on your system. PowerShell 7 (which, from this point forward, will be referred to as simply PowerShell) needs to be installed. If you followed along with Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), you should have this installed already. Instructions on how to install PowerShell can be found all over the internet, but here is a link to the official GitHub repository with the latest installation instructions: https://github.com/PowerShell/PowerShell. You can also use your favorite package manager such as Chocolatey or Winget. We don’t recommend installing a prelease, preview, or beta version. We’ll stick with PowerShell 7.2.x for this book as that is the long-term support version of PowerShell. You can follow along with 7.3 or higher if you wish, and there shouldn’t be any problems.

2.3 Administrative privileges and execution policy

 You need to ensure that you can run PowerShell As Administrator on your computer. That might not be possible on a company-owned computer, so it’s worth checking. First, start the PowerShell console (press Windows-R, type PowerShell, and press Enter). If Administrator doesn’t appear in the window’s title bar, right-click the PowerShell icon in the taskbar, and select Run as Administrator. That should open a new window that does display Administrator in the title bar (you may get a User Access Control prompt beforehand, which you’ll need to allow). If that doesn’t work, stop. You’ll have difficulty following along with the examples in this book, and you need to resolve your administrator access before proceeding.

 With the shell open as Administrator, run Get-ExecutionPolicy. This must return something other than AllSigned, such as RemoteSigned, Unrestricted, or Bypass. If it doesn’t, you can try running Set-ExecutionPolicy RemoteSigned. If that works, you’re good to go. But if you get any errors or warnings, then your execution policy probably won’t change, and you need to resolve that with your company’s IT team before you can follow along with this book. Pop over to the forums on PowerShell.org (https://forums.PowerShell.org/) if you need help figuring this out!

2.4 Script editors

 You’re going to need a scripting editor to follow along with the examples and labs. In 2017, Microsoft announced it would deprecate the Integrated Script Editor (ISE), and PowerShell 7 doesn’t run in the ISE. We recommend (and will be using) Microsoft’s free, cross-platform Visual Studio Code (VS Code). Head over to https://code.visualstudio.com to download and install it. As always, we recommend you download and install the latest stable release and not the preview or insider build. You can use any editor you prefer, but for this book, we’ll be using VS Code, and we’ll assume you are as well.

 Once you have VS Code installed, it will look similar to figure 2.1. We’ve changed to the Light+ theme so you can see it when it’s printed.

 [image:]

 Figure 2.1 Opening VS Code

 Occasionally, you’ll find that VS Code has updated itself and wants to restart. Let it—the update takes only a second, and it’s a good way to make sure you have the most stable release.

 Right away, you’ll want to install the extension that lets VS Code understand PowerShell. In the vertical ribbon on the left, the bottom icon provides access to VS Code’s extensions. Selecting that should bring up a screen somewhat like the one in figure 2.2; you’ll notice that we have several extensions already installed.

 [image:]

 Figure 2.2 The Extensions panel lets you install and manage VS Code add-ins.

 The PowerShell extension hasn’t been installed yet, so let’s install it. In the search bar, enter PowerShell, as shown in figure 2.3. Click the PowerShell extension (make sure it’s not the preview version), and then click Install.

 [image:]

 Figure 2.3 Installing the PowerShell extension

 The PowerShell extension for VS Code is updated frequently, and you’ll get a notification in the bottom-right corner of the VS Code window. We always encourage you to update the extension whenever a new release is available. Here are a few more useful settings:

 	
 To easily find the settings.json file, open the Command Palate by clicking View a Command Palette. For you keyboard junkies, you also can press Ctrl-Shift-P.

 	
 You can set the default file extension to PS1 by adding this to your settings.json file: "files.defaultLanguage": "powershell" (the value powershell must be in all lowercase).

 	
 We highly encourage you to add colors to your brackets. Add the following to your settings.json file (this may already be enabled by default):

 "editor.bracketPairColorization.enabled": true

 This book isn’t intended to be a tutorial on VS Code, of course, but as we go, we’ll point out useful tips and tricks for working more efficiently with PowerShell in this editor.

 NOTE We know a lot of you are still stuck with Windows PowerShell. Go ahead if you’re bound and determined to use the PowerShell ISE and Windows PowerShell (5.1). You’ll have a lot less functionality (even with stellar add-ons such as ISESteroids), especially when it comes to debugging. At this point, VS Code is the official editor for PowerShell, and we don’t know why you wouldn’t want to use it, but it’s your computer!

2.5 Our lab environment

 For this book, we have a lab setup of four machines with the following names and operating systems:

 	
 Srv01—Windows Server 2022

 	
 Srv02—Windows Server 2022

 	
 DC01—Windows Server 2022

 	
 Client1—Windows 11

 We suggest that you set up an environment similar to this if possible to make it easier for you because your screen will look like the one used to run the examples and write this book. There are a few options for creating your lab. Of course, if you can deploy four VMs in a lab or dedicated space at work, that’s the best scenario. If you’re running Windows 10 or 11 Pro or Enterprise, you can enable Hyper-V and create a virtual lab on your local machine. There are other free, open source, and paid versions to create VMs on your local machine; pick one that is right for you.

 AutomatedLab was used to create the lab for this book. AutomatedLab is a free and open source project that works great for our needs. The lab definition file is included in the Resources folder of this book for your reference.

2.6 Example code

 Finally, we strongly recommend that you download this book’s sample code. Manning hosts it in a zip file on this book’s page: https://github.com/psjamesp/MOL-Scripting. The file is organized by chapter; there’s a text file for everything formatted as a code listing in the chapter. Later in the book, we’ll introduce some modules, which are also organized under each chapter.

 You can download the Zip file from GitHub, or you can clone the repository to your local computer. We suggest the clone so that you can always make sure you have the updated files if we make any changes. As you look through the code samples, you’ll see that the module names are repeated. That’s because subsequent chapters build on what came before. We don’t necessarily expect you to import and use the modules, although we’ll provide instructions to do so.

 Finally, so there are no misunderstandings, let’s be crystal clear that all the code samples in the book are for educational purposes only. Nothing should be considered ready for use in a production environment, even though you may be tempted.

2.7 Your turn

 Take some time to make sure you’ve downloaded the sample code and successfully installed VS Code and its PowerShell extension. If VS Code is working, you should be able to save an empty file with a .ps1 filename extension and then, in the editor, type something like Get-P. VS Code’s IntelliSense should kick in and offer to autocomplete command names such as Get-Process for you. If that’s working, then you’re clear to proceed. If not, stop here, and get it working. Again, we’ll keep an eye on the forums at https://forums.PowerShell.org for questions; you’re welcome to drop by there if you need help. Manning also has a great liveBook forum for this book (and many others) that can also be a great resource.

Summary

 As we wrap up this chapter on setting up your scripting environment, we must emphasize key takeaways. Firstly, ensure an environment conducive to completing the hands-on labs presented throughout this book. This includes having access to a Windows 10 or 11 computer, preferably with administrative privileges, and PowerShell 7 installed. Additionally, setting up Visual Studio Code (VS Code) as your scripting editor, along with installing the PowerShell extension, will greatly enhance your scripting experience.

 Furthermore, we’ve provided insights into creating a lab environment similar to ours, facilitating smoother navigation through the examples and exercises. Whether deploying virtual machines locally or utilizing tools like AutomatedLab, having a lab setup like ours will optimize your learning journey.

 Lastly, we stressed the importance of downloading the sample code provided with this book and familiarizing yourself with VS Code’s features, such as IntelliSense. Remember, the code samples are for educational purposes only, and caution should be exercised before implementing them in a production environment. By ensuring you have the necessary tools and resources, you’re now well-equipped to delve into the exciting world of scripting with PowerShell. If you encounter any difficulties along the way, don’t hesitate to contact the supportive communities available online for assistance. Happy scripting!

3 WWPD: What would PowerShell do?

 Before we dive in, let’s have a quick conversation about the “right way” to do things in PowerShell. One of PowerShell’s advantages—and one of its biggest disadvantages—is that it’s pretty happy to let you take a variety of approaches when you code. If you come from a VBScript background, PowerShell will let you write scripts that look a lot like VBScript. If you’re a C# person, PowerShell will happily run scripts that strongly resemble C#. But PowerShell is neither VBScript nor C#; if you want to take advantage of PowerShell and let it do as much heavy lifting for you as possible, you must understand the PowerShell way of doing things. We’ll harp on this a lot in this book, starting here. But it’s also important to keep in mind that just because we do things a certain way, that doesn’t mean it’s the only way—it’s just the way we prefer to do things. We generally follow the community’s best practices when it comes to scripting.

 Think of it this way: a car is useful for getting from point A to point B, but there are many different ways in which you could do so. You could, for example, put the car in neutral, get out, and push it to point B. You could walk, ride a bike, or take the bus. Or, you could hitch a horse to the car and let the horse pull it. Horses have been a great approach to transportation for centuries, so why change? But the most efficient way is to use the car as it was meant to be used: fill it with gas, get in, and step on the accelerator. You’ll go faster than the horse could, you’ll expend less effort than you would by pushing, and you’ll be a happier, healthier traveler overall.

 That’s what we want to do with PowerShell. Unhitch the horse, get in the car, and go.

3.1 One tool, one task

 Be sure to pay attention to what you see in figure 3.1 because it’s the most critical rule you need to learn in the book.

 [image:]

 Figure 3.1 The single, most important rule you need to remember

 PowerShell is predicated on using small, single-purpose tools (you know them as cmdlets and functions) that you can string together in a pipelined expression to achieve amazing results with minimal effort. If you come from another programming or scripting background, you know how long the code can be for some commands. The Sort-Object command alone can be tens of lines long in some languages. For instance, here’s how you’d write that command:

 Get-ciminstance win32_logicaldisk -filter 'drivetype=3' `
➥ -computername SRV1| Select PSComputername,DeviceID,`
➥ Size,FreeSpace | Select-Object FreeSpace

 It would be best to embrace this golden rule in your toolmaking endeavors. This is so critical that you’ll see this more than once, we can promise. Please don’t try to create one gigantic script that does a dozen different things. Write small, single-purpose tools that do one thing and do it very well. The tools you create should act and behave no differently than any other PowerShell command you get out of the box.

 The single-task tool rant

 A lot of folks have a hard time with the “single-task tool” principle. We get it—it’s a new concept to many people, and it’s hard to adjust to it. Chapter 17 will focus on some before-and-after examples to help make the point even clearer, but we want to say something specific about it now.

 It’s easy to think, for example, that provisioning a new user is a single task, but, no, it isn’t. It’s a process, and if you think about how you’d perform it manually, you’d instantly realize that it consists of multiple tasks. You have to create the user, set up a home folder, assign a Microsoft 365 (M365) license, create a mailbox, create a user library in SharePoint, and so on. Were you to start coding the process, you’d create a tool for each task: new user, new home folder, M365 tasks, SharePoint account, and so forth (many of those tasks can be accomplished using tools Microsoft has already written). You’d then “connect” those tools into a process by writing a controller script. We’ll cover those later in the book.

 Even something as simple as writing information to a CSV file is a single task (and PowerShell has a tool that does that). If you have a script that produces new information and takes the time to format it as a CSV and write it to a file, you’re not only doing it wrong, you’re also working too hard.

 From this point on, start thinking about making things smaller. For any given process that you need to automate, ask yourself these questions: What are the smallest units of work you can create to accomplish each task? Can anything be made smaller or broken into multiple discrete pieces? This is the essence of toolmaking. We do this for two reasons. The first is to make our code reusable so that we’re not reinventing the wheel repeatedly, and the second is for speed.

3.2 Naming your tools

 We’ll cover quite a few hot topics in this book. If you browse the PowerShell forums (https://forums.PowerShell.org) or talk to anyone in any of the PowerShell Slack or Discord channels, you’ll find people who will stand their ground and argue with you on the “correct” way to write code. That’s usually fine; their way isn’t wrong, and everyone has a valid opinion. That’s one of the beauties of PowerShell being open source and community driven. There are multiple ways to do things. Just because we show one way to do something in this book doesn’t mean it’s the only way. It’s just how we feel is the best way to do things.

 When it comes to naming your tools, what naming convention should you use? A tool named ListAllIISWebServersInTheIISWebFarm is self-explanatory but doesn’t fit into the PowerShell model. As discussed in the previous book Learn PowerShell in a Month of Lunches, Fourth Edition, PowerShell follows a Verb-Noun naming syntax.

 Try it Now Run the command Get-Verb, and look at the output.

 	
 For the noun, always use a singular noun, for example, User as opposed to Users.

 	
 Prefix the noun with something meaningful to your company (never us “PS”). If your company name is Globalmantics, then your tool could be called Get-GlobalUser.

 	
 Start with a verb—but not just any verb as PowerShell has a list of approved verbs. (These “approved” verbs are more like suggestions because you can actually use any verb, but let’s stick with the approved ones.) The PowerShell team does occasionally add new verbs to the list.

 We are so picky here because PowerShell has a lot of code built around this naming convention and the specifically approved verbs. Get-Command, for example, understands the difference between a verb and a noun and can help locate commands based on either. As another example, Import-Module knows the approved verb list and issues warnings when you attempt to load unapproved verbs. Perhaps most importantly, all the cool kids in the PowerShell community will chuckle at you for using improperly constructed command names.

 You can easily find the full list of approved verbs by running the Get-Verb command, or you can go to http://mng.bz/VRzr.

3.3 Naming parameters

 Believe it or not, parameter naming is just as important (some may say even more important) than command naming. As you’ll learn, parameter naming is key to enabling commands to connect to each other in the pipeline. Parameter naming is also crucial for command discovery by using Get-Command.

 Quiz Time

 	
 If you write a command that can connect to remote computers, what parameter name will accept those remote computer names or addresses?

 	
 If you write a command that can output a data file, what parameter name will accept the file location and name?

 	
 What parameter name might accept the session object to use if you write a command that can work over an existing PowerShell remoting session?

 You may need to research a bit to answer these quiz questions—and that’s the point.

 When deciding on a parameter name, focus on the core, native PowerShell commands (rather than add-in modules such as Active Directory). What would they use in the same situation? Core commands invariably use –ComputerName rather than an alternative such as –Host, –MachineName, or something else. Here are a couple more examples:

 	
 Core commands are a bit inconsistent here, but most use either –FilePath or –Path. We’d use a command like Out-File, which uses –FilePath, as our exemplar.

 	
 The core remoting commands, such as Invoke-Command, perform this task, and they do so using a –PSSession parameter.

 Wondering if a parameter name is a good choice? Use PowerShell to see if other commands are using it:

 get-command -CommandType Cmdlet -ParameterName ComputerName

 If you don’t find a match, that doesn’t mean you shouldn’t use it, but there might be a better alternative.

 The idea is to be consistent. Again, you’ll see how this becomes crucial when wiring up commands so that they can connect in the pipeline. A lot of under-the-hood stuff relies on consistent parameter naming, so don’t think you’ve got a great reason to diverge from the norm.

 Quiz Time

 	
 Why do you think using the parameter -Host is a bad idea?

 	
 When using Invoke-Command or Enter-PSSession, we can use -ComputerName or -hostname. ComputerName uses Windows Remote Management (WinRM) and Hostname uses SSH to connect to the remote machine.

3.4 Producing output

 Output is an area where observing PowerShell’s native approach can be misleading because a lot goes on under the hood with PowerShell output. If you’ve read our book Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), then you know some of this; if you haven’t, we heartily recommend you do so. But in brief, here’s what you need to know about PowerShell output:

 	
 PowerShell commands produce objects as output as you’ll learn in this book. Objects are a form of structured data, not unlike an Excel spreadsheet. An object represents a row in the sheet, and each column is essentially a property of the object. By referring to the property names, you can access their contents. Structured data output—objects—are at the deep core of what PowerShell is. If you ignore this maxim, your PowerShell experience will be miserable.

 	
 Objects are output and placed into the PowerShell pipeline, which ferries the objects to the next command in the pipeline. Therefore, commands need to, in many cases, accept input from the pipeline so that they can work in this execution model. You can continue this process for as long as you need. But realize that objects may change in the pipeline depending on what cmdlets you’re using.

 	
 When the last command has output its objects to the pipeline, the pipeline carries the objects to the formatting system. At this point, the objects are still just structured data. Their properties don’t appear in any particular order and aren’t explicitly destined to be displayed in any particular way.

 	
 The formatting system, through a fairly complex set of rules we covered in Learn PowerShell in a Month of Lunches, Fourth Edition (Manning, 2022), decides how to draw an onscreen display for the objects. This involves deciding to display a list or a table, coming up with column headers, and so on.

 	
 The result of the formatting system is a bunch of specialized formatting directives, meaning the original structured data is gone. These directives are useful only for drawing an onscreen display or sending an equivalent to a text file, a printer, or an output device.

 Your tools shouldn’t be doing any work in steps 4 or 5. That is, you should focus on outputting useful, structured data in the form of objects—and explicitly not worry about the onscreen results. We can’t tell you how many people we’ve seen bang their heads against their desks trying to create “attractive” output. We’ll show you how to do that the PowerShell way, which essentially involves educating the formatting system that fires off in step 4. But for your tools, focus on getting the right data into the output, and don’t worry about what that will look like on the screen.

3.5 Don’t assume

 We’ve spent years teaching, writing, and speaking about PowerShell to IT professionals all over the world. If there’s one constant challenge we see people encounter, it’s making assumptions about what PowerShell is and how it should behave. As the ancient Greek philosopher Epictetus said, “It is impossible for a man to begin learning what he thinks he knows.”

 You’ll recognize many patterns as you work with PowerShell, especially if you have other programming or scripting experience. That is to be expected. When PowerShell was being developed, the product team looked at many languages to adopt ideas and principles that fit the paradigm they were building. (Check out Don Jones’s book, Shell of an Idea (2020), if you want to know more about the history of how PowerShell was developed.) But just because you recognize something that looks like Python, don’t assume it will behave like Python. We find that those who approach PowerShell thinking they can treat it like some other language they know are the most frustrated. Here are some things to keep in mind:

 	
 Although PowerShell has a rich and robust pipeline, it isn’t Bash. PowerShell’s pipeline works completely differently.

OEBPS/OEBPS/Images/Petty.png

OEBPS/OEBPS/Images/02-02.png
ile Edit Selection View Go Run Terminal Help Serpting - Visual Studio Code B3 - @ X

ssons)

Search Extensions in Marketplace

e .
Code Spll Chackar ©3oms
[e
@ street ide Soft &
S5 Formatter
Fommater for 55
Martin Aeschlimann @
it Pull e ©5ms
Q Pull Request and s Pro,
B GitHub &
Markdown All in One
(PR3] Al younend o
YuZhang &
Red Hat Commans
[Qe
Sreirin 3 >
Remote WSl ©ties ol ED-B
@ Open nyfldr i the Wi
B Microsoft @ inFiles cul +[E
 Recounoe s

Powershell @541 35
Develop Powershell modul,
B Microsoft

gle Terminal cul +

Debugger fo... 121 * 45
Debug your web applicato.

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/02-01.png
ile Edit Selection View Go Run Terminal Help Scrpting - Visual Studio Code BB - @ X

 OPEN EDITORS
~ ScRPTING

> outune

> TIMEUNE

OEBPS/OEBPS/Images/03-01.png
Rule number

A script should
accomplish a single
task

OEBPS/cover.jpeg
SECOND EDITION

LEARN
POWERSHELL

SCRIPTING
IN'A MONTH OF LUNCHES

Write and organize scripts and tools

= Avoiding bugs
« Basic function
» Advanced functions
« Script module

+ Errors
+ Source control with git
+ Comments

« Professional-grade
scripting

JAMES PETTY - DON JONES
AND JEFFREY HICKS

/" MANNING

OEBPS/OEBPS/Images/IFC_petty.png
Goal 1: Establishing Fundamentals
« Objective: Understand the basics of PowerShell and
its syntax.

Goal 2: Building Scripting Basics
« Objective: Develop fundamental scripting skills.

Goal 3: Mastering File and Resource Management
« Objective: Gain expertise in managing files, folders, and
resources.

Goal 4: Advancing Scripting and Integration
« Objective: Dive into advanced scripting and integration
techniques.

Goal 5: Exploring Advanced Scripting Techniques
« Objective: Develop proficiency in advanced scripting

Goal 6: Integrating PowerShell with Systems
« Objective: Apply PowerShell to system administration
tasks.

Goal 7: Creating Practical Scripts
« Objective: Apply PowerShell knowledge to real-world
scenarios.

OEBPS/OEBPS/Images/02-03.png
ile Edit Selection View Go Run Terminal Help Extension: PowerShell - Srpting - Visual Studio Code. BB - 8 x

EXTENSIONS: MARKE.. ¥ O Extension: PowerShell X o

Powershel
PowerShell vzez.12.0
@ Microsoft | < 5484504 | Kk k% & (139)

Develop Powershell modules, commands and scripts in V.

Powershall... 1156 % 45
-

(Preview) Develop Poversh.

Bicosort

PowerShell Pr.. © 133 3 Details Feature Contributions Changelog Dependencies
Powerflextesions forPo.

ronman Sotware

Powershell @ 54M X35
Develop Powershell modul,
& Microsoft nsal

Categories
PowerShall Un... @ 156 % 5
Vo S oo o PowerShell Language
ronman Softvare [IE Support for Visual Studio Uanguaes
PowerShallSta... © 266 % 4
Search for selected text + t. Code Suews] Ly
DougFinke Debuggers

Run in Powers... 196 5

B¥F vunsscipts in new pover Visua Studio Marketplace v2021.12.0 | nstals 5:49 | e
<

Powershell The... @66 5 Repository

Inigne m Tis extension prvides ichPowershelllanguage eese
supportforVisualStudio Code (VS Code). Nowyou can
Inline Values s... 15¢ % 5 wite and debug PowerShell scripts using the excellent Marketplace Info

Enables inine values for var.
1DE-fike interface that Visual Studio Code provides.
[]

B1yier Leonharat Released 111772
on 195038
st 1222021

updated 165627

PowerShell UDStudio < 6¢ This extension is powered by the Powershell lang
Toolkitfor developing solut. server, PowershellEditor Senvices. This leverages the

OEBPS/OEBPS/Images/Manning_copyright.png

