

 inside front cover

 Comparison of working with JPA, native Hibernate, and Spring Data JPA

 	
 Framework

 	
 Characteristics

 	
 JPA

 	

 	
 Uses the general JPA API and requires a persistence provider.

 	
 We can switch between persistence providers from the configuration.

 	
 Requires explicit management of the EntityManagerFactory, EntityManager, and transactions.

 	
 The configuration and the amount of code to be written is similar to the native Hibernate native approach.

 	
 We can switch to the JPA approach by constructing an EntityManagerFactory from a native Hibernate configuration.

 	
 Native Hibernate

 	

 	
 Uses the native Hibernate API. You are locked into using this chosen framework.

 	
 Builds its configuration starting with the default Hibernate configuration files (hibernate.cfg.xml or hibernate.properties).

 	
 Requires explicit management of the SessionFactory, Session, and transactions.

 	
 The configuration and the amount of code to be written are similar to the JPA approach.

 	
 We can switch to the native Hibernate native approach by unwrapping a Session-Factory from an EntityManagerFactory or a Session from an EntityManager.

 	
 Spring Data JPA

 	

 	
 Needs additional Spring Data dependencies in the project.

 	
 The configuration will also take care of the creation of beans needed for the project, including the transaction manager.

 	
 The repository interface only needs to be declared, and Spring Data will create an implementation for it as a proxy class with generated methods that interact with the database.

 	
 The necessary repository is injected and not explicitly created by the programmer.

 	
 This approach requires the least amount of code to be written, as the configuration takes care of most of the burden.

 The Java programming language is the most widely used today. Databases are everywhere, with their particular ways to be accessed. There are alternative frameworks for mapping Java classes to a database. What should we choose for a Java application and why? JPA, Native Hibernate, and Spring Data JPA are among the most widely used frameworks to solve this problem. Each of them comes with its own characteristics, advantages, and shortcomings. Selecting one of them should be a decision with appropriate fundamentals.

 [image:]

 Java Persistence with Spring Data and Hibernate

 Cătălin Tudose

 A revised and extended new edition of

 Java Persistence with Hibernate

 Christian Bauer, Gavin King, and Gary Gregory

 Forewords by Dmitry Aleksandrov and Mohamed Taman

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editors:

 	
 Katie Sposato Johnson and Christina Taylor

 	
 Technical development editor:

 	
 Víctor Durán

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Kathleen Rossland

 	
 Copy editor:

 	
 Andy Carroll

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Jean-François Morin

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299186

 dedication

 This book is dedicated to all those people who made it possible:

 family, friends, colleagues, professors, students, readers of previous books, and participants and watchers of my courses.

brief contents

 Part 1. Getting started with ORM

 1 Understanding object/relational persistence

 2 Starting a project

 3 Domain models and metadata

 4 Working with Spring Data JPA

 Part 2. Mapping strategies

 5 Mapping persistent classes

 6 Mapping value types

 7 Mapping inheritance

 8 Mapping collections and entity associations

 9 Advanced entity association mappings

 Part 3. Transactional data processing

 10 Managing data

 11 Transactions and concurrency

 12 Fetch plans, strategies, and profiles

 13 Filtering data

 Part 4. Building Java persistence applications with Spring

 14 Integrating JPA and Hibernate with Spring

 15 Working with Spring Data JDBC

 16 Working with Spring Data REST

 Part 5. Building Java persistence applications with Spring

 17 Working with Spring Data MongoDB

 18 Working with Hibernate OGM

 Part 6. Writing queries and testing Java persistence applications

 19 Querying JPA with Querydsl

 20 Testing Java persistence applications

 Appendix A. Maven

 Appendix B. Spring Data JPA keyword usage

 Appendix C. Spring Data JDBC keyword usage

 Appendix D. Spring Data MongoDB keyword usage

contents

 forewords

 preface

 acknowledgments

 about this book

 about the author

 authors of Java Persistence with Hibernate, Second Edition

 about the cover illustration

 Part 1. Getting started with ORM

 1 Understanding object/relational persistence

 1.1 What is persistence?

 Relational databases

 Understanding SQL

 Using SQL in Java

 1.2 The paradigm mismatch

 The problem of granularity

 The problem of inheritance

 The problem of identity

 The problem of associations

 The problem of data navigation

 1.3 ORM, JPA, Hibernate, and Spring Data

 2 Starting a project

 2.1 Introducing Hibernate

 2.2 Introducing Spring Data

 2.3 “Hello World” with JPA

 Configuring a persistence unit

 Writing a persistent class

 Storing and loading messages

 2.4 Native Hibernate configuration

 2.5 Switching between JPA and Hibernate

 2.6 “Hello World” with Spring Data JPA

 2.7 Comparing the approaches of persisting entities

 3 Domain models and metadata

 3.1 The example CaveatEmptor application

 A layered architecture

 Analyzing the business domain

 The CaveatEmptor domain model

 3.2 Implementing the domain model

 Addressing leakage of concerns

 Transparent and automated persistence

 Writing persistence-capable classes

 Implementing POJO associations

 3.3 Domain model metadata

 Annotation-based metadata

 Applying constraints to Java objects

 Externalizing metadata with XML files

 Accessing metadata at runtime

 4 Working with Spring Data JPA

 4.1 Introducing Spring Data JPA

 4.2 Starting a new Spring Data JPA project

 4.3 First steps for configuring a Spring Data JPA project

 4.4 Defining query methods with Spring Data JPA

 4.5 Limiting query results, sorting, and paging

 4.6 Streaming results

 4.7 The @Query annotation

 4.8 Projections

 4.9 Modifying queries

 4.10 Query by Example

 Part 2. Mapping strategies

 5 Mapping persistent classes

 5.1 Understanding entities and value types

 Fine-grained domain models

 Defining application concepts

 Distinguishing entities and value types

 5.2 Mapping entities with identity

 Understanding Java identity and equality

 A first entity class and mapping

 Selecting a primary key

 Configuring key generators

 Identifier generator strategies

 5.3 Entity-mapping options

 Controlling names

 Dynamic SQL generation

 Making an entity immutable

 Mapping an entity to a subselect

 6 Mapping value types

 6.1 Mapping basic properties

 Overriding basic property defaults

 Customizing property access

 Using derived properties

 Transforming column values

 Generated and default property values

 The @Temporal annotation

 Mapping enumerations

 6.2 Mapping embeddable components

 The database schema

 Making classes embeddable

 Overriding embedded attributes

 Mapping nested embedded components

 6.3 Mapping Java and SQL types with converters

 Built-in types

 Creating custom JPA converters

 Extending Hibernate with UserTypes

 7 Mapping inheritance

 7.1 Table per concrete class with implicit polymorphism

 7.2 Table per concrete class with unions

 7.3 Table per class hierarchy

 7.4 Table per subclass with joins

 7.5 Mixing inheritance strategies

 7.6 Inheritance of embeddable classes

 7.7 Choosing a strategy

 7.8 Polymorphic associations

 Polymorphic many-to-one associations

 Polymorphic collections

 8 Mapping collections and entity associations

 8.1 Sets, bags, lists, and maps of value types

 The database schema

 Creating and mapping a collection property

 Selecting a collection interface

 Mapping a set

 Mapping an identifier bag

 Mapping a list

 Mapping a map

 Sorted and ordered collections

 8.2 Collections of components

 Equality of component instances

 Set of components

 Bag of components

 Map of component values

 Components as map keys

 Collection in an embeddable component

 8.3 Mapping entity associations

 The simplest possible association

 Making it bidirectional

 Cascading state

 9 Advanced entity association mappings

 9.1 One-to-one associations

 Sharing a primary key

 The foreign primary key generator

 Using a foreign key join column

 Using a join table

 9.2 One-to-many associations

 Considering one-to-many bags

 Unidirectional and bidirectional list mappings

 Optional one-to-many with a join table

 One-to-many association in an embeddable class

 9.3 Many-to-many and ternary associations

 Unidirectional and bidirectional many-to-many associations

 Many-to-many with an intermediate entity

 Ternary associations with components

 9.4 Entity associations with maps

 One-to-many with a property key

 Key/value ternary relationship

 Part 3. Transactional data processing

 10 Managing data

 10.1 The persistence lifecycle

 Entity instance states

 The persistence context

 10.2 The EntityManager interface

 The canonical unit of work

 Making data persistent

 Retrieving and modifying persistent data

 Getting a reference

 Making data transient

 Refreshing data

 Replicating data

 Caching in the persistence context

 Flushing the persistence context

 10.3 Working with detached state

 The identity of detached instances

 Implementing equality methods

 Detaching entity instances

 Merging entity instances

 11 Transactions and concurrency

 11.1 Transaction essentials

 ACID attributes

 Database and system transactions

 11.2 Controlling concurrent access

 Understanding database-level concurrency

 Optimistic concurrency control

 Explicit pessimistic locking

 Avoiding deadlocks

 11.3 Non-transactional data access

 Reading data in auto-commit mode

 Queuing modifications

 11.4 Managing transactions with Spring and Spring Data

 Transaction propagation

 Transaction rollback

 Transaction properties

 Programmatic transaction definition

 Transactional development with Spring and Spring Data

 12 Fetch plans, strategies, and profiles

 12.1 Lazy and eager loading

 Understanding entity proxies

 Lazy persistent collections

 Eager loading of associations and collections

 12.2 Selecting a fetch strategy

 The n+1 selects problem

 The Cartesian product problem

 Prefetching data in batches

 Prefetching collections with subselects

 Eager fetching with multiple SELECTs

 Dynamic eager fetching

 12.3 Using fetch profiles

 Declaring Hibernate fetch profiles

 Working with entity graphs

 13 Filtering data

 13.1 Cascading state transitions

 Available cascading options

 Transitive detachment and merging

 Cascading refresh

 Cascading replication

 13.2 Listening to and intercepting events

 JPA event listeners and callbacks

 Implementing Hibernate interceptors

 The core event system

 13.3 Auditing and versioning with Hibernate Envers

 Enabling audit logging

 Creating an audit trail

 Finding revisions

 Accessing historical data

 13.4 Dynamic data filters

 Defining dynamic filters

 Applying a dynamic filter

 Enabling a dynamic filter

 Filtering collection access

 Part 4. Building Java persistence applications with Spring

 14 Integrating JPA and Hibernate with Spring

 14.1 Spring Framework and dependency injection

 14.2 JPA application using Spring and the DAO pattern

 14.3 Generifying a JPA application that uses Spring and DAO

 14.4 Hibernate application using Spring and the DAO pattern

 14.5 Generifying a Hibernate application that uses Spring and DAO

 15 Working with Spring Data JDBC

 15.1 Creating a Spring Data JDBC project

 15.2 Working with queries in Spring Data JDBC

 Defining query methods with Spring Data JDBC

 Limiting query results, sorting, and paging

 Streaming results

 The @Query annotation

 Modifying queries

 15.3 Modeling relationships with Spring Data JDBC

 Modeling a one-to-one relationship with Spring Data JDBC

 Modeling embedded entities with Spring Data JDBC

 Modeling a one-to-many relationship with Spring Data JDBC

 Modeling a many-to-many relationship with Spring Data JDBC

 16 Working with Spring Data REST

 16.1 Introducing REST applications

 16.2 Creating a Spring Data REST application

 16.3 Using ETags for conditional requests

 16.4 Limiting access to repositories, methods, and fields

 16.5 Working with REST events

 Writing an AnnotatedHandler

 Writing an ApplicationListener

 16.6 Using projections and excerpts

 Part 5. Building Java persistence applications with Spring

 17 Working with Spring Data MongoDB

 17.1 Introducing MongoDB

 17.2 Introducing Spring Data MongoDB

 17.3 Using MongoRepository to access a database

 Defining query methods with Spring Data MongoDB

 Limiting query results, sorting, and paging

 Streaming results

 The @Query annotation

 17.4 Query by Example

 17.5 Referencing other MongoDB documents

 17.6 Using MongoTemplate to access a database

 Configuring access to the database through MongoTemplate

 Executing CRUD operations using MongoTemplate

 18 Working with Hibernate OGM

 18.1 Introducing Hibernate OGM

 18.2 Building a simple MongoDB Hibernate OGM application

 Configuring the Hibernate OGM application

 Creating the entities

 Using the application with MongoDB

 18.3 Switching to the Neo4j NoSQL database

 Part 6. Writing queries and testing Java persistence applications

 19 Querying JPA with Querydsl

 19.1 Introducing Querydsl

 19.2 Creating a Querydsl application

 Configuring the Querydsl application

 Creating the entities

 Creating the test data to query

 19.3 Querying a database with Querydsl

 Filtering data

 Ordering data

 Grouping data and working with aggregates

 Working with subqueries and joins

 Updating entities

 Deleting entities

 20 Testing Java persistence applications

 20.1 Introducing the test pyramid

 20.2 Creating the persistence application to test

 20.3 Using the Spring TestContext Framework

 20.4 The @DirtiesContext annotation

 20.5 @Transactional execution

 20.6 The @BeforeTransaction and @AfterTransaction annotations

 20.7 Working with Spring profiles

 20.8 Working with test execution listeners

 Appendix A. Maven

 Appendix B. Spring Data JPA keyword usage

 Appendix C. Spring Data JDBC keyword usage

 Appendix D. Spring Data MongoDB keyword usage

 references

 index

 front matter

forewords

 When Cătălin asked me to write this foreword, I realized that for 17 years of my career, I’ve mostly been dealing with the problems that are discussed and solved in this book. Historically, we’ve come to a state where most data is persisted in relational DBMSs. The task may sound quite simple; save data in a database, read it, modify it if needed, and finally delete it. Many (even senior) developers don’t realize how much computer science there is in those several operations. Talking to a relational database from an OOP language like Java is like speaking to a person from another world who lives by completely different rules.

 In the early years of my career, I spent most of my time just mapping “ResultSets” to Java objects without any sophisticated logic. It wasn’t hard, but it was really time-consuming. I was only dreaming, thinking that our architects wouldn’t suddenly change the object structure so that I’d have to rewrite everything from scratch. And I wasn’t the only one!

 To save manual work and automate these translation tasks, frameworks like Hibernate, and later Spring Data, were created. They really do a lot of work for you. You just need to add them as a dependency, add some annotations to your code, and the magic will happen! This works perfectly on small projects, but in real life, projects are way bigger with a lot of corner cases!

 Hibernate and Spring Data have quite a long history with tremendous effort invested to make this magic work. In this book, you’ll find definitive descriptions of the functionality of each framework, their corner cases, suggested optimizations, and best practices.

 The flow of this book is designed so that you first understand the fundamental theory of relational databases and the main problems of object/relational mapping (ORM). Then, you’ll see how this is solved with Hibernate, and how the functionality is extended in Spring Data for the Spring Framework universe. Finally, you’ll get acquainted with the usage of ORM for NoSQL solutions.

 And I can say that these technologies are everywhere! Like literally everywhere! Should you open your bank account, buy an airline ticket, send a request to your government, or write a comment on a blog post, behind the curtains, with high probability, Hibernate and/or Spring Data are handling the persistence in those applications! These technologies are important, and this book provides information about their various applications.

 Knowing your tools is essential for doing your job right. In this book, you will find everything you need to work effectively with Hibernate and Spring Data, backed by theory in computer science. It is absolutely a must-read for all Java developers, especially those working in enterprise technology.

 —Dmitry Aleksandrov

 Software Developer at Oracle, Java Champion,

 Co-Lead of Bulgarian Java User Group, Author of Helidon in Action

 Data persistence is a crucial part of any application, and databases are indisputably at the core of the modern enterprise. While programming languages like Java provide an object-oriented view of business entities, the data underlying these entities are usually relational in nature. It is this challenge—bridging relational data and Java objects—that Hibernate and Spring Data take on through object/relational mapping (ORM).

 As Cătălin demonstrates in this book, the effective use of ORM technology in all but the simplest of enterprise environments requires understanding and configuring the mediation between relational data and objects. This demands that the developer be knowledgeable about the application and its data requirements, as well as the SQL query language, relational storage structures, and the potential for optimization.

 This book provides a comprehensive overview of Java persistence using the industry-leading tools Spring Data and Hibernate. It covers how to use their type-mapping capabilities and facilities for modeling associations and inheritance; how to retrieve objects efficiently by querying JPA with Querydsl; how to process and manage transactions with Spring Data and Hibernate; how to create fetch plans, strategies, and profiles; how to filter data; how to configure Hibernate for use in both managed and unmanaged environments; and how to use their commands. In addition, you will learn about building Spring Data REST projects, using Java persistence with non-relational databases, and testing Java persistence applications. Throughout the book, the author provides insights into the underlying problems of ORM and the design choices behind Hibernate. These insights will give the reader a deep understanding of the effective use of ORM as an enterprise technology.

 Java Persistence with Spring Data and Hibernate is the definitive guide to persistence with these popular tools. You will benefit from detailed coverage of Spring Data JPA, Spring Data JDBC, Spring Data REST, JPA, and Hibernate, comparing and contrasting the alternatives to be able to choose what is best for your code in enterprise computing today.

 For two reasons, it is an honor to recommend this book. Firstly, I share with its author the hope that it will assist you in the production of increasingly performant, secure, testable software with a quality upon which others may rely with confidence. Secondly, I know the author personally, and he is outstanding on both personal and technical levels. He has long experience in the software development industry, and his professional activity, including videos, books, and articles, is oriented to benefit the worldwide developer community.

 —Mohamed Taman

 Chief Solutions Architect, Nortal

 Java Champion, Oracle ACE, JCP Member

preface

 I am fortunate to have been in the IT industry for more than 25 years. I started programming in C++ and Delphi in my student years and the first years of my career. I made the step from my mathematics background as a teenager to computer science and continuously tried to keep both sides in my mind.

 In 2000, my attention turned for the first time to the Java programming language. It was very new then, but many people were predicting a great future for it. I was part of a development team for online games, and the particular technology we worked with was applets, which was extremely fashionable during those years. Behind the application, the program needed to access a database, and our team spent some time developing the logic to access and interact with the database. Things such as ORM weren’t used yet, but we were able to develop our own library to interact with the database, shaping the incipient ideas of ORM.

 After 2004, I spent more than 90% of my time working with Java. It was the dawn of a new era for me, and things like code refactoring, unit testing, and object/relational mapping were becoming normal in our professional lives.

 Currently, there are a lot of Java programs that access databases and rely on higher-level techniques and frameworks, such as JPA, Hibernate, and Spring Data. The old days of working with JDBC are hardly remembered. One of my activities as Java and Web Technologies Expert and Java Chapter Lead at Luxoft is to conduct courses on Java persistence topics and to coach my colleagues regarding the topic.

 I wrote my first book for Manning Publications in 2020, JUnit in Action, and I have been fortunate to continue working with them. The previous versions of this book focused on Hibernate, whereas today Spring and Spring Data play a more and more important role in Java programs. Of course, we also dedicated a chapter to testing Java persistence applications.

 Object/relational mapping and Java persistence have come a long way since their early days and since I began working with them. These concepts need careful consideration and planning, as particular applications and technologies require particular knowledge and approaches. This book effectively provides that information, with many examples. You’ll also find concise and easy-to-follow procedures to solving a series of tasks. I hope that the methods outlined here will help you decide what to do when you face new situations in your work.

acknowledgments

 First, I would like to thank my professors and colleagues for all their support over the years and to the many participants in my face-to-face and online courses—they stimulated me to achieve top quality work and to always look for improvements.

 I would like to thank Luxoft, where I have been active for almost 20 years and where I currently work as Java and Web Technologies Expert and Java Chapter Lead.

 Many thanks to Christian Bauer, Gavin King, and Gary Gregory, the co-authors of Java Persistence with Hibernate, which provided a strong foundation for this book. I hope to meet all of you in person someday.

 Best thoughts for my colleagues from Luxoft, Vladimir Sonkin and Oleksii Kvitsynskyi, with whom I investigate new technologies and develop Java courses and the Java Chapter. It is a rare opportunity to work so effectively with both a Russian and a Ukrainian engineer at this time in history.

 I would also like to thank the staff at Manning: acquisition editor Mike Stephens, development editors Katie Sposato Johnson and Christina Taylor, technical proofreader Jean-François Morin, copy editor Andy Carroll, as well as the behind-the-scenes production crew. The Manning team helped me to create a high-level book, and I look forward to more opportunities of this kind.

 I am happy that two prominent experts, Dmitry Aleksandrov and Mohamed Taman, appreciated the book and wrote forewords for it—it’s always a great pleasure to analyze technical matters together.

 To all the reviewers: Amrah Umudlu, Andres Sacco, Bernhard Schuhmann, Bhagvan Kommadi, Damián Mazzini, Daniel Carl, Abayomi Otebolaku, Fernando Bernardino, Greg Gendron, Hilde Van Gysel, Jan van Nimwegen, Javid Asgarov, Kim Gabrielsen, Kim Kjærsulf, Marcus Geselle, Matt Deimel, Mladen Knezic, Najeeb Arif, Nathan B. Crocker, Özay Duman, Piotr Gliźniewicz, Rajinder Yadav, Richard Meinsen, Sergiy Pylypets, Steve Prior, Yago Rubio, Yogesh Shetty, and Zorodzayi Mukuy—your suggestions helped make this a better book.

about this book

 Java Persistence with Spring Data and Hibernate explores persistence with the most popular available tools. You’ll benefit from detailed coverage of Spring Data JPA, Spring Data JDBC, Spring Data REST, JPA, and Hibernate, comparing and contrasting the alternatives so you can pick what’s best for your code.

 We’ll begin with a hands-on introduction to object/relational mapping (ORM) and then dive into mapping strategies for linking up objects and your database. You’ll learn about the different approaches to transactions in Hibernate and Spring Data, and even how to deliver Java persistence with non-relational databases. Finally, we’ll explore testing strategies for persistent applications to keep your code clean and bug free.

Who should read this book

 This book is for application developers who are already proficient in writing Java Core code and are interested in learning how to develop applications to interact easily and effectively with databases. You should be familiar with object-oriented programming and have at least a working knowledge of Java. You will also need a working knowledge of Maven and be able to build a Maven project and open a Java program in IntelliJ IDEA, edit it, and launch it in execution. Some of the chapters require basic knowledge about technologies like Spring or REST.

How this book is organized: A road map

 This book has 20 chapters in 6 parts. Part 1 will help you get started with ORM.

 	
 Chapter 1 introduces the object/relational paradigm mismatch and several strategies for dealing with it, foremost object/relational mapping (ORM).

 	
 Chapter 2 guides you step by step through a tutorial with Jakarta Persistence API, Hibernate, and Spring Data—you’ll implement and test a “Hello World” example.

 	
 Chapter 3 teaches you how to design and implement complex business domain models in Java, and which mapping metadata options you have available.

 	
 Chapter 4 will provide a first view of Spring Data JPA, introducing how you can work with it and use its capabilities.

 Part 2 is about ORM, from classes and properties to tables and columns.

 	
 Chapter 5 starts with regular class and property mappings and explains how you can map fine-grained Java domain models.

 	
 Chapter 6 demonstrates how to map basic properties and embeddable components, and how to control mapping between Java and SQL types.

 	
 Chapter 7 demonstrates how to map inheritance hierarchies of entities to the database using four basic inheritance-mapping strategies.

 	
 Chapter 8 is about mapping collections and entity associations.

 	
 Chapter 9 dives deeper into advanced entity association mappings like mapping one-to-one entity associations, one-to-many mapping options, and many-to-many and ternary entity relationships.

 	
 Chapter 10 deals with managing data, examining the lifecycle and states of objects and effectively working with the Jakarta Persistence API.

 Part 3 is about loading and storing data with Hibernate and Java Persistence. It introduces the programming interfaces, how to write transactional applications, and how Hibernate can load data from the database most efficiently.

 	
 Chapter 11 defines database and system transaction essentials and explains how to control concurrent access with Hibernate, JPA, and Spring.

 	
 Chapter 12 examines lazy and eager loading, fetch plans, strategies, and profiles, and wraps up with a discussion of optimizing SQL execution.

 	
 Chapter 13 covers cascading state transitions, listening to and intercepting events, auditing and versioning with Hibernate Envers, and filtering data dynamically.

 Part 4 connects Java persistence with the most widely used Java framework nowadays: Spring.

 	
 Chapter 14 teaches you the most important strategies for creating a JPA or Hibernate application and integrating it with Spring.

 	
 Chapter 15 introduces and analyzes the possibilities for developing persistence applications using another part of the large Spring Data framework: Spring Data JDBC.

 	
 Chapter 16 examines Spring Data REST, which you can use to build applications in the representational state transfer (REST) architectural style.

 Part 5 connects Java applications to frequently used NoSQL databases: MongoDB and Neo4j.

 	
 Chapter 17 teaches you the most important features of the Spring Data MongoDB framework and compares them with the already discussed Spring Data JPA and Spring Data JDBC.

 	
 Chapter 18 introduces the Hibernate OGM framework and demonstrates how to use JPA code to connect to different NoSQL databases (MongoDB and Neo4j).

 Part 6 teaches you how to write queries and how to test Java persistence applications.

 	
 Chapter 19 discusses working with Querydsl, one of the alternatives for querying a database using Java programs.

 	
 Chapter 20 examines how to test Java persistence applications, introducing the testing pyramid and analyzing persistence testing in its context.

About the code

 This book contains (mostly) large blocks of code, rather than short snippets. Therefore, all the code listings are annotated and explained.

 You can get the full source code for all these examples by downloading it from GitHub at https://github.com/ctudose/java-persistence-spring-data-hibernate. You can also get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/java-persistence-with-spring-data-and-hibernate. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/java-persistence-with-spring-data-and-hibernate.

liveBook discussion forum

 Purchase of Java Persistence with Spring Data and Hibernate includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/java-persistence-with-spring-data-and-hibernate/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 [image:]

 Cătălin Tudose was born in Piteşti, Argeş, Romania and graduated with a degree in computer science in 1997 in Bucharest. He also holds a PhD in this field. He has more than 20 years of experience in the Java area and is currently acting as a Java and web technologies expert at Luxoft Romania. He has taught more than 2,000 hours of courses and applications as a teaching assistant and professor at the Faculty of Automation and Computers in Bucharest. Cătălin has also taught more than 3,000 hours of Java inside the company, including the Corporate Junior Program, which has prepared about 50 new Java programmers in Poland. He has taught online courses at UMUC (University of Maryland University College): Computer Graphics with Java (CMSC 405), Intermediate Programming in Java (CMIS 242), and Advanced Programming in Java (CMIS 440). Cătălin has developed six courses for Pluralsight on topics related to JUnit 5, Spring, and Hibernate: “TDD with JUnit 5,” “Java BDD Fundamentals,” “Implementing a Test Pyramid Strategy in Java,” “Spring Framework: Aspect Oriented Programming with Spring AOP,” “Migrating from the JUnit 4 to the JUnit 5 Testing Platform,” and “Java Persistence with Hibernate 5 Fundamentals.” Besides the IT field and mathematics, Cătălin is interested in world culture and in soccer. He is a lifelong supporter of FC Argeş Piteşti.

authors of Java Persistence with Hibernate, Second Edition

 Christian Bauer is a member of the Hibernate developer team; he works as a trainer and consultant.

 Gavin King is the creator of Hibernate and is a Distinguished Engineer at Red Hat. He helped design JPA and EJB 3, and was the spec lead and author of the CDI specification. He recently worked on Hibernate 6 and Hibernate Reactive, and advised on the design of Quarkus. Gavin has presented at hundreds of conferences and Java user groups around the world.

 Gary Gregory is a principal software engineer at Rocket Software, working on application servers and legacy integration. He is a co-author of Manning’s JUnit in Action and Spring Batch in Action and is a member of the Project Management Committees for the Apache Software Foundation projects: Commons, HttpComponents, Logging Services, and Xalan.

about the cover illustration

 The figure on the cover of Java Persistence with Spring Data and Hibernate is “Homme Maltois,” or “Man from Malta,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. Getting started with ORM

 In part 1 we’ll show you why object persistence is such a complex topic and what solutions you can apply in practice. Chapter 1 introduces the object/ relational paradigm mismatch and several strategies for dealing with it, foremost object/relational mapping (ORM). In chapter 2, we’ll guide you step by step through a tutorial with Jakarta Persistence API (JPA), Hibernate, and Spring Data—you’ll implement and test a “Hello World” example. Thus prepared, in chapter 3 you’ll be ready to learn how to design and implement complex business domain models in Java, and which mapping metadata options you have available. Then chapter 4 will examine working with Spring Data JPA and its features.

 After reading this part of the book, you’ll understand why you need ORM and how JPA, Hibernate, and Spring Data work in practice. You’ll have written your first small project, and you’ll be ready to take on more complex problems. You’ll also understand how real-world business entities can be implemented as Java domain models and in what format you prefer to work with ORM metadata.

1 Understanding object/relational persistence

 This chapter covers

 	
Persisting with SQL databases in Java applications

 	
Analyzing the object/relational paradigm mismatch

 	
Introducing ORM, JPA, Hibernate, and Spring Data

 This book is about JPA, Hibernate, and Spring Data; our focus is on using Hibernate as a provider of the Jakarta Persistence API (formerly Java Persistence API) and Spring Data as a Spring-based programming model for data access. We’ll cover basic and advanced features and describe some ways to develop new applications using the Java Persistence API. Often these recommendations aren’t specific to Hibernate or Spring Data. Sometimes they’re our own ideas about the best ways to do things when working with persistent data, explained in the context of Hibernate and Spring Data.

 The choice of approach to managing persistent data may be a key design decision in many software projects. Persistence has always been a hot topic of debate in the Java community. Is persistence a problem that has already been solved by SQL and extensions such as stored procedures, or is it a more pervasive problem that must be addressed by special Java frameworks? Should we hand-code even the most primitive CRUD (create, read, update, delete) operations in SQL and JDBC, or should this work be handed to an intermediary layer? How can we achieve portability if every database management system has its own SQL dialect? Should we abandon SQL completely and adopt a different database technology, such as object database systems or NoSQL systems? The debate may never end, but a solution called object/relational mapping (ORM) now has wide acceptance. This is due in large part to Hibernate, an open source ORM service implementation, and Spring Data, an umbrella project from the Spring family whose purpose is to unify and facilitate access to different kinds of persistence stores, including relational database systems and NoSQL databases.

 Before we can get started with Hibernate and Spring Data, however, you need to understand the core problems of object persistence and ORM. This chapter explains why you need tools like Hibernate and Spring Data and specifications such as the Jakarta Persistence API (JPA).

 First we’ll define persistent data management in the context of software applications and discuss the relationships between SQL, JDBC, and Java, the underlying technologies and standards that Hibernate and Spring Data build on. We’ll then discuss the so-called object/relational paradigm mismatch and the generic problems we encounter in object-oriented software development with SQL databases. These problems make it clear that we need tools and patterns to minimize the time we have to spend on persistence-related code in our applications.

 The best way to learn Hibernate and Spring Data isn’t necessarily linear. We understand that you may want to try Hibernate or Spring Data right away. If this is how you’d like to proceed, skip to the next chapter and set up a project with the “Hello World” example. We recommend that you return here at some point as you go through this book; that way, you’ll be prepared and have the background concepts you need for the rest of the material.

1.1 What is persistence?

 Most applications require persistent data. Persistence is one of the fundamental concepts in application development. If an information system didn’t preserve data when it was powered off, the system would be of little practical use. Object persistence means individual objects can outlive the application process; they can be saved to a data store and be re-created at a later point in time. When we talk about persistence in Java, we’re generally talking about mapping and storing object instances in a database using SQL.

 We’ll start by taking a brief look at persistence and how it’s used in Java. Armed with this information, we’ll continue our discussion of persistence and look at how it’s implemented in object-oriented applications.

1.1.1 Relational databases

 You, like most other software engineers, have probably worked with SQL and relational databases; many of us handle such systems every day. Relational database management systems have SQL-based application programming interfaces, so we call today’s relational database products SQL database management systems (DBMS) or, when we’re talking about particular systems, SQL databases.

 Relational technology is a well-known technology, and this alone is sufficient reason for many organizations to choose it. Relational databases are also an incredibly flexible and robust approach to data management. Due to the well-researched theoretical foundation of the relational data model, relational databases can guarantee and protect the integrity of stored data, along with having other desirable characteristics. You may be familiar with E.F. Codd’s five-decade-old introduction of the relational model, “A Relational Model of Data for Large Shared Data Banks” (Codd, 1970). A more recent compendium worth reading, with a focus on SQL, is C.J. Date’s SQL and Relational Theory (Date, 2015).

 Relational DBMSs aren’t specific to Java, nor is an SQL database specific to a particular application. This important principle is known as data independence. In other words, data usually lives longer than an application does. Relational technology provides a way of sharing data among different applications, or among different parts of the same overall system (a data entry application and a reporting application, for example). Relational technology is a common denominator of many disparate systems and technology platforms. Hence, the relational data model is often the foundation for the enterprise-wide representation of business entities.

 Before we go into more detail about the practical aspects of SQL databases, we need to mention an important concern: although marketed as relational, a database system providing only an SQL data language interface isn’t really relational, and in many ways it isn’t even close to the original concept. Naturally, this has led to confusion. SQL practitioners blame the relational data model for shortcomings in the SQL language, and relational data management experts blame the SQL standard for being a weak implementation of the relational model and ideals. We’ll highlight some significant aspects of this problem throughout this book, but generally we’ll focus on the practical aspects. If you’re interested in more background material, we highly recommend Fundamentals of Database Systems by Ramez Elmasri and Shamkant B. Navathe (Elmasri, 2016) for the theory and concepts of relational database systems.

1.1.2 Understanding SQL

 To use JPA, Hibernate, and Spring Data effectively, you must start with a solid understanding of the relational model and SQL. You’ll need to understand the relational model and the information model and topics such as normalization to guarantee the integrity of your data, and you’ll need to use your knowledge of SQL to tune the performance of your application—these are all prerequisites for reading this book. Hibernate and Spring Data simplify many repetitive coding tasks, but your knowledge of persistence technology must extend beyond the frameworks themselves if you want to take advantage of the full power of modern SQL databases. To dig deeper, consult the sources in the references list at the end of this book.

 You’ve probably used SQL for many years and are familiar with the basic operations and statements written in this language. Still, we know from our own experience that SQL is sometimes hard to remember, and some terms vary in usage.

 You should be comfortable with them, so let’s briefly review some of the SQL terms we’ll use in this book. SQL is used as a data definition language (DDL), with syntax for creating, altering, and dropping artifacts such as tables and constraints in the catalog of the DBMS. When this schema is ready, you can use SQL as a data manipulation language (DML) to perform operations on data, including insertions, updates, and deletions. You can retrieve data by executing data query language (DQL) statements with restrictions, projections, and Cartesian products. For efficient reporting, you can use SQL to join, aggregate, and group data as necessary. You can even nest SQL statements inside each other—a technique that uses subselects. When your business requirements change, you’ll have to modify the database schema again with DDL statements after data has been stored; this is known as schema evolution. You may also use SQL as a data control language (DCL) to grant and revoke access to the database or parts of it.

 If you’re an SQL veteran and you want to know more about optimization and how SQL is executed, get a copy of the excellent book SQL Tuning by Dan Tow (Tow, 2003). For a look at the practical side of SQL through the lens of how not to use SQL, SQL Antipatterns: Avoiding the Pitfalls of Database Programming, by Bill Karwin (Karwin, 2010) is a good resource.

 Although the SQL database is one part of ORM, the other part, of course, consists of the data in your Java application that needs to be persisted to and loaded from the database.

1.1.3 Using SQL in Java

 When you work with an SQL database in a Java application, you issue SQL statements to the database via the Java Database Connectivity (JDBC) API. Whether the SQL was written by hand and embedded in the Java code or generated on the fly by Java code, you use the JDBC API to bind arguments when preparing query parameters, executing a query, scrolling through query results, retrieving values from a result set, and so on. These are low-level data access tasks; as application engineers, we’re more interested in the business problem that requires this data access. What we’d really like to write is code that saves and retrieves instances of our classes, relieving us of this low-level labor.

 Because these data access tasks are often so tedious, we have to ask: are the relational data model and (especially) SQL the right choices for persistence in object-oriented applications? We can answer this question unequivocally: yes! There are many reasons why SQL databases dominate the computing industry—relational database management systems are the only proven generic data management technology, and they’re almost always a requirement in Java projects.

 Note that we aren’t claiming that relational technology is always the best solution. Many data management requirements warrant a completely different approach. For example, internet-scale distributed systems (web search engines, content distribution networks, peer-to-peer sharing, instant messaging) have to deal with exceptional transaction volumes. Many of these systems don’t require that after a data update completes, all processes see the same updated data (strong transactional consistency). Users might be happy with weak consistency; after an update, there might be a window of inconsistency before all processes see the updated data. In contrast, some scientific applications work with enormous but very specialized datasets. Such systems and their unique challenges typically require equally unique and often custom-made persistence solutions. Generic data management tools such as ACID-compliant transactional SQL databases, JDBC, Hibernate, and Spring Data would play only a minor role for these types of systems.

 Relational systems at internet scale

 To understand why relational systems, and the data-integrity guarantees associated with them, are difficult to scale, we recommend that you first familiarize yourself with the CAP theorem. According to this rule, a distributed system cannot be consistent, available, and tolerant against partition failures all at the same time.

 A system may guarantee that all nodes will see the same data at the same time and that data read and write requests are always answered. But when a part of the system fails due to a host, network, or data center problem, you must either give up strong consistency or 100% availability. In practice, this means you need a strategy that detects partition failures and restores either consistency or availability to a certain degree (for example, by making some part of the system temporarily unavailable so data synchronization can occur in the background). Often, the data, the user, or the operation will determine whether strong consistency is necessary.

 In this book, we’ll consider the problems of data storage and sharing in the context of an object-oriented application that uses a domain model. Instead of directly working with the rows and columns of a java.sql.ResultSet, the business logic of the application will interact with the application-specific object-oriented domain model. If the SQL database schema of an online auction system has ITEM and BID tables, for example, the Java application defines corresponding Item and Bid classes. Instead of reading and writing the value of a particular row and column with the ResultSet API, the application loads and stores instances of Item and Bid classes.

 At runtime, the application therefore operates with instances of these classes. Each instance of a Bid has a reference to an auction Item, and each Item may have a collection of references to Bid instances. The business logic isn’t executed in the database (as an SQL stored procedure); it’s implemented in Java and executed in the application tier. This allows the business logic to use sophisticated object-oriented concepts such as inheritance and polymorphism. For example, we could use well-known design patterns such as strategy, mediator, and composite (see Design Patterns: Elements of Reusable Object-Oriented Software [Gamma, 1994]), all of which depend on polymorphic method calls.

 Now a warning: not all Java applications are designed this way, nor should they be. Simple applications may be much better off without a domain model. Use the JDBC ResultSet if that’s all you need. Call existing stored procedures, and read their SQL result sets, too. Many applications need to execute procedures that modify large sets of data, close to the data. You might also implement some reporting functionality with plain SQL queries and render the results directly onscreen. SQL and the JDBC API are perfectly serviceable for dealing with tabular data representations, and the JDBC RowSet makes CRUD operations even easier. Working with such a representation of persistent data is straightforward and well understood.

 But for applications with nontrivial business logic, the domain model approach helps to improve code reuse and maintainability significantly. In practice, both strategies are common and needed.

 For several decades, developers have spoken of a paradigm mismatch. The paradigms referred to are object modeling and relational modeling, or, more practically, object-oriented programming and SQL. This mismatch explains why every enterprise project expends so much effort on persistence-related concerns. With this conception, you can begin to see the problems—some well understood and some less well understood—that must be solved in an application that combines an object-oriented domain model and a persistent relational model. Let’s take a closer look at this so-called paradigm mismatch.

1.2 The paradigm mismatch

 The object/relational paradigm mismatch can be broken into several parts, which we’ll examine one at a time. Let’s start our exploration with a simple example that is problem-free. As we build on it, you’ll see the mismatch begin to appear.

 Suppose you have to design and implement an online e-commerce application. In this application, you need a class to represent information about a user of the system, and you need another class to represent information about the user’s billing details, as shown in figure 1.1.

 [image:]

 Figure 1.1 A simple UML diagram of the User and BillingDetails entities

 In this diagram, you can see that a User has many BillingDetails. This is a composition, indicated by the full diamond. A composition is the type of association where an object (BillingDetails in our case) cannot conceptually exist without the container (User in our case). You can navigate the relationship between the classes in both directions; this means you can iterate through collections or call methods to get to the “other” side of the relationship. The classes representing these entities may be extremely simple:

 Path: Ch01/e-commerce/src/com/manning/javapersistence/ch01/User.java

public class User {
 private String username;
 private String address;
 private Set<BillingDetails> billingDetails = new HashSet<>();

 // Constructor, accessor methods (getters/setters), business methods
}

Path: Ch01/e-commerce/src/com/manning/javapersistence/ch01
➥ /BillingDetails.java

public class BillingDetails {
 private String account;
 private String bankname;
 private User user;

 // Constructor, accessor methods (getters/setters), business methods
}

 Note that we’re only interested in the state of the entities’ persistence, so we’ve omitted the implementation of constructors, accessor methods, and business methods.

 It’s easy to come up with an SQL schema design for this case (the syntax of the following queries is applicable to MySQL):

 CREATE TABLE USERS (
 USERNAME VARCHAR(15) NOT NULL PRIMARY KEY,
 ADDRESS VARCHAR(255) NOT NULL
);

CREATE TABLE BILLINGDETAILS (
 ACCOUNT VARCHAR(15) NOT NULL PRIMARY KEY,
 BANKNAME VARCHAR(255) NOT NULL,
 USERNAME VARCHAR(15) NOT NULL,
 FOREIGN KEY (USERNAME) REFERENCES USERS(USERNAME)
);

 The foreign key–constrained column USERNAME in BILLINGDETAILS represents the relationship between the two entities. For this simple domain model, the object/ relational mismatch is barely in evidence; it’s straightforward to write JDBC code to insert, update, and delete information about users and billing details.

 Now let’s see what happens when we consider something a little more realistic. The paradigm mismatch will be visible when we add more entities and entity relationships to the application.

1.2.1 The problem of granularity

 The most obvious problem with the current implementation is that we’ve designed an address as a simple String value. In most systems, it’s necessary to store street, city, state, country, and ZIP code information separately. Of course, you could add these properties directly to the User class, but because other classes in the system will likely also carry address information, it makes more sense to create an Address class to reuse it. Figure 1.2 shows the updated model.

 [image:]

 Figure 1.2 The User has an Address.

 The relationship between User and Address is an aggregation, indicated by the empty diamond. Should we also add an ADDRESS table? Not necessarily; it’s common to keep address information in the USERS table, in individual columns. This design is likely to perform better because a table join isn’t needed if you want to retrieve the user and address in a single query. The nicest solution may be to create a new SQL data type to represent addresses and to add a single column of that new type in the USERS table, instead of adding several new columns.

 This choice of adding either several columns or a single column of a new SQL data type is a problem of granularity. Broadly speaking, granularity refers to the relative size of the types you’re working with.

 Let’s return to the example. Adding a new data type to the database catalog to store Address Java instances in a single column sounds like the best approach:

 CREATE TABLE USERS (
 USERNAME VARCHAR(15) NOT NULL PRIMARY KEY,
 ADDRESS ADDRESS NOT NULL
);

 A new Address type (class) in Java and a new ADDRESS SQL data type should guarantee interoperability. But you’ll find various problems if you check on the support for user-defined data types (UDTs) in today’s SQL database management systems.

 UDT support is one of several so-called object/relational extensions to traditional SQL. This term alone is confusing, because it means the database management system has (or is supposed to support) a sophisticated data type system. Unfortunately, UDT support is a somewhat obscure feature of most SQL DBMSs, and it certainly isn’t portable between different products. Furthermore, the SQL standard supports user-defined data types, but poorly.

 This limitation isn’t the fault of the relational data model. You can consider the failure to standardize such an important piece of functionality to be a result of the object/relational database wars between vendors in the mid-1990s. Today most engineers accept that SQL products have limited type systems—no questions asked. Even with a sophisticated UDT system in your SQL DBMS, you would still likely duplicate the type declarations, writing the new type in Java and again in SQL. Attempts to find a better solution for the Java space, such as SQLJ, unfortunately have not had much success. DBMS products rarely support deploying and executing Java classes directly on the database, and if support is available, it’s typically limited to very basic functionality in everyday usage.

 For these and whatever other reasons, the use of UDTs or Java types in an SQL database isn’t common practice at this time, and it’s unlikely that you’ll encounter a legacy schema that makes extensive use of UDTs. We therefore can’t and won’t store instances of our new Address class in a single new column that has the same data type as the Java layer.

 The pragmatic solution for this problem has several columns of built-in vendor-defined SQL types (such as Boolean, numeric, and string data types). You’d usually define the USERS table as follows:

 CREATE TABLE USERS (
 USERNAME VARCHAR(15) NOT NULL PRIMARY KEY,
 ADDRESS_STREET VARCHAR(255) NOT NULL,
 ADDRESS_ZIPCODE VARCHAR(5) NOT NULL,
 ADDRESS_CITY VARCHAR(255) NOT NULL
);

 Classes in the Java domain model come in a range of levels of granularity: from coarse-grained entity classes like User to finer-grained classes like Address, down to simple SwissZipCode extending AbstractNumericZipCode (or whatever your desired level of abstraction is). In contrast, just two levels of type granularity are visible in the SQL database: relation types created by you, like USERS and BILLINGDETAILS, and built-in data types such as VARCHAR, BIGINT, and TIMESTAMP.

 Many simple persistence mechanisms fail to recognize this mismatch and so end up forcing the less flexible representation of SQL products on the object-oriented model, effectively flattening it. It turns out that the granularity problem isn’t especially difficult to solve, even if it’s visible in so many existing systems. We’ll look at the solution to this problem in section 5.1.1.

 A much more difficult and interesting problem arises when we consider domain models that rely on inheritance, a feature of object-oriented design you may use to bill the users of your e-commerce application in new and interesting ways.

1.2.2 The problem of inheritance

 In Java, you implement type inheritance using superclasses and subclasses. To illustrate why this can present a mismatch problem, let’s modify our e-commerce application so that we now can accept not only bank account billing, but also credit cards. The most natural way to reflect this change in the model is to use inheritance for the BillingDetails superclass, along with multiple concrete subclasses: CreditCard, BankAccount. Each of these subclasses defines slightly different data (and completely different functionality that acts on that data). The UML class diagram in figure 1.3 illustrates this model.

 [image:]

 Figure 1.3 Using inheritance for different billing strategies

 What changes must we make to support this updated Java class structure? Can we create a CREDITCARD table that extends BILLINGDETAILS? SQL database products don’t generally implement table inheritance (or even data type inheritance), and if they do implement it, they don’t follow a standard syntax.

 We haven’t finished with inheritance. As soon as we introduce inheritance into the model, we have the possibility of polymorphism. The User class has a polymorphic association with the BillingDetails superclass. At runtime, a User instance may reference an instance of any of the subclasses of BillingDetails. Similarly, we want to be able to write polymorphic queries that refer to the BillingDetails class and have the query return instances of its subclasses.

 SQL databases lack an obvious way (or at least a standardized way) to represent a polymorphic association. A foreign key constraint refers to exactly one target table; it isn’t straightforward to define a foreign key that refers to multiple tables.

 The result of this mismatch of subtypes is that the inheritance structure in a model must be persisted in an SQL database that doesn’t offer an inheritance mechanism. In chapter 7 we’ll discuss how ORM solutions such as Hibernate solve the problem of persisting a class hierarchy to an SQL database table or tables, and how polymorphic behavior can be implemented. Fortunately, this problem is now well understood in the community, and most solutions support approximately the same functionality.

 The next aspect of the object/relational mismatch problem is the issue of object identity.

1.2.3 The problem of identity

 You probably noticed that the example defined USERNAME as the primary key of the USERS table. Was that a good choice? How do you handle identical objects in Java?

 Although the problem of identity may not be obvious at first, you’ll encounter it often in your growing and expanding e-commerce system, such as when you need to check whether two instances are identical. There are three ways to tackle this problem: two in the Java world and one in the SQL database. As expected, they work together only with some help.

 Java defines two different notions of sameness:

 	
 Instance identity (roughly equivalent to a memory location, checked with a == b)

 	
 Instance equality, as determined by the implementation of the equals() method (also called equality by value)

 On the other hand, the identity of a database row is expressed as a comparison of primary key values. As you’ll see in section 9.1.2, neither equals() nor == is always equivalent to a comparison of primary key values. It’s common for several non-identical instances in Java to simultaneously represent the same row of a database, such as in concurrently running application threads. Furthermore, some subtle difficulties are involved in implementing equals() correctly for a persistent class and in understanding when this might be necessary.

 Let’s use an example to discuss another problem related to database identity. In the table definition for USERS, USERNAME is the primary key. Unfortunately, this decision makes it difficult to change a user’s name; you need to update not only the row in USERS but also the foreign key values in (many) rows of BILLINGDETAILS. To solve this problem, later in this book we’ll recommend that you use surrogate keys whenever you can’t find a good natural key. We’ll also discuss what makes a good primary key. A surrogate key column is a primary key column with no meaning to the application user—in other words, a key that isn’t presented to the application user. Its only purpose is to identify data inside the application.

 For example, you may change your table definitions to look like this:

 CREATE TABLE USERS (
 ID BIGINT NOT NULL PRIMARY KEY,
 USERNAME VARCHAR(15) NOT NULL UNIQUE,
 . . .
);
CREATE TABLE BILLINGDETAILS (
 ID BIGINT NOT NULL PRIMARY KEY,
 ACCOUNT VARCHAR(15) NOT NULL,
 BANKNAME VARCHAR(255) NOT NULL,
 USER_ID BIGINT NOT NULL,
 FOREIGN KEY (USER_ID) REFERENCES USERS(ID)
);

 The ID columns contain system-generated values. These columns were introduced purely for the benefit of the data model, so how (if at all) should they be represented in the Java domain model? We’ll discuss this question in section 5.2, and we’ll find a solution with ORM.

 In the context of persistence, identity is closely related to how the system handles caching and transactions. Different persistence solutions have chosen different strategies, and this has been an area of confusion. We’ll cover all these interesting topics—and look at how they’re related—in section 9.1.

 So far, the skeleton e-commerce application we’ve designed has exposed the paradigm mismatch problems with mapping granularity, subtypes, and identity. We need to discuss further the important concept of associations: how the relationships between entities are mapped and handled. Is the foreign key constraint in the database all you need?

1.2.4 The problem of associations

 In the domain model, associations represent the relationships between entities. The User, Address, and BillingDetails classes are all associated; but unlike Address, BillingDetails stands on its own. BillingDetails instances are stored in their own table. Association mapping and the management of entity associations are central concepts in any object persistence solution.

 Object-oriented languages represent associations using object references, but in the relational world, a foreign key–constrained column represents an association with copies of key values. The constraint is a rule that guarantees the integrity of the association. There are substantial differences between the two mechanisms.

 Object references are inherently directional; the association is from one instance to the other. They’re pointers. If an association between instances should be navigable in both directions, you must define the association twice, once in each of the associated classes. The UML class diagram in figure 1.4 illustrates this model with a one-to-many association.

 [image:]

 Figure 1.4 One-to-many association between User and BillingDetails

 You’ve already seen this in the domain model classes:

 Path: Ch01/e-commerce/src/com/manning/javapersistence/ch01/User.java

public class User {
 private Set<BillingDetails> billingDetails = new HashSet<>();
}

Path: Ch01/e-commerce/src/com/manning/javapersistence/ch01
➥ /BillingDetails.java

public class BillingDetails {
 private User user;
}

 Navigation in a particular direction has no meaning for a relational data model because you can create data associations with join and projection operators. The challenge is to map a completely open data model that is independent of the application that works with the data to an application-dependent navigational model—a constrained view of the associations needed by this particular application.

 Java associations can have many-to-many multiplicity. The UML class diagram in figure 1.5 illustrates this model.

 [image:]

 Figure 1.5 Many-to-many association between User and BillingDetails

 The classes could look like this:

 Path: Ch01/e-commerce/src/com/manning/javapersistence/ch01/User.java

public class User {
 private Set<BillingDetails> billingDetails = new HashSet<>();
}

Path: Ch01/e-commerce/src/com/manning/javapersistence/ch01
➥ /BillingDetails.java

public class BillingDetails {
 private Set<User> users = new HashSet<>();
}

 However, the foreign key declaration on the BILLINGDETAILS table is a many-to-one association: each bank account is linked to a particular user, but each user may have multiple linked bank accounts.

 If you wish to represent a many-to-many association in an SQL database, you must introduce a new table, usually called a link table. In most cases, this table doesn’t appear anywhere in the domain model. For this example, if you consider the relationship between the user and the billing information to be many-to-many, you would define the link table as follows:

 CREATE TABLE USER_BILLINGDETAILS (
 USER_ID BIGINT,
 BILLINGDETAILS_ID BIGINT,
 PRIMARY KEY (USER_ID, BILLINGDETAILS_ID),
 FOREIGN KEY (USER_ID) REFERENCES USERS(ID),
 FOREIGN KEY (BILLINGDETAILS_ID) REFERENCES BILLINGDETAILS(ID)
);

 You no longer need the USER_ID foreign key column and constraint on the BILLINGDETAILS table; this additional table now manages the links between the two entities. We’ll discuss association and collection mappings in detail in chapter 8.

 So far, the problems we’ve considered are mainly structural: you can see them by considering a purely static view of the system. Perhaps the most difficult problem in object persistence is a dynamic problem: how data is accessed at runtime.

1.2.5 The problem of data navigation

 There is a fundamental difference between how you access data in Java code and within a relational database. In Java, when you access a user’s billing information, you call someUser.getBillingDetails().iterator().next() or something similar. Or, starting from Java 8, you may call someUser.getBillingDetails().stream() .filter(someCondition).map(someMapping).forEach(billingDetails-> {doSomething (billingDetails)}). This is the most natural way to access object-oriented data, and it’s often described as walking the object network. You navigate from one instance to another, even iterating collections, following prepared pointers between classes. Unfortunately, this isn’t an efficient way to retrieve data from an SQL database.

 The single most important thing you can do to improve the performance of data access code is to minimize the number of requests to the database. The most obvious way to do this is to minimize the number of SQL queries. (Of course, other, more sophisticated, ways—such as extensive caching—follow as a second step.)

 Therefore, efficient access to relational data with SQL usually requires joins between the tables of interest. The number of tables included in the join when retrieving data determines the depth of the object network you can navigate in memory. For example, if you need to retrieve a User and aren’t interested in the user’s billing information, you can write this simple query:

 SELECT * FROM USERS WHERE ID = 123

 On the other hand, if you need to retrieve a User and then subsequently visit each of the associated BillingDetails instances (let’s say, to list the user’s bank accounts), you would write a different query:

 SELECT * FROM USERS, BILLINGDETAILS
WHERE USERS.ID = 123 AND
BILLINGDETAILS.ID = USERS.ID

 As you can see, to use joins efficiently you need to know what portion of the object network you plan to access before you start navigating the object network! Careful, though: if you retrieve too much data (probably more than you might need), you’re wasting memory in the application tier. You may also overwhelm the SQL database with huge Cartesian product result sets. Imagine retrieving not only users and bank accounts in one query, but also all orders paid from each bank account, the products in each order, and so on.

 Any object persistence solution permits you to fetch the data of associated instances only when the association is first accessed in the Java code. This is known as lazy loading : retrieving data only on demand. This piecemeal style of data access is fundamentally inefficient in the context of an SQL database, because it requires executing one statement for each node or collection of the object network that is accessed. This is the dreaded n+1 selects problem. In our example, you will need one select to retrieve a User and then n selects for each of the n associated BillingDetails instances.

 This mismatch in the way you access data in Java code and within a relational database is perhaps the single most common source of performance problems in Java information systems. Avoiding the Cartesian product and n+1 selects problems is still a problem for many Java programmers. Hibernate provides sophisticated features for efficiently and transparently fetching networks of objects from the database to the application accessing them. We’ll discuss these features in chapter 12.

 We now have quite a list of object/relational mismatch problems: the problem of granularity, the problem of inheritance, the problem of identity, the problem of associations, and the problem of data navigation. It can be costly (in time and effort) to find solutions, as you may know from experience. It will take us a large part of this book to provide detailed answers to these questions and to demonstrate ORM as a viable solution. Let’s get started with an overview of ORM, the Java Persistence standard (JPA), and the Hibernate and Spring Data projects.

1.3 ORM, JPA, Hibernate, and Spring Data

 In a nutshell, object/relational mapping (ORM) is the automated (and transparent) persistence of objects in a Java application to the tables in an RDBMS (relational database management system), using metadata that describes the mapping between the classes of the application and the schema of the SQL database. In essence, ORM works by transforming (reversibly) data from one representation to another. A program using ORM will provide the meta-information about how to map the objects from the memory to the database, and the effective transformation will be fulfilled by ORM.

 Some people may consider one advantage of ORM to be that it shields developers from messy SQL. This view holds that object-oriented developers shouldn’t be expected to go deep into SQL or relational databases. On the contrary, Java developers must have a sufficient level of familiarity with—and appreciation of—relational modeling and SQL to work with Hibernate and Spring Data. ORM is an advanced technique used by developers who have already done it the hard way.

 JPA (Jakarta Persistence API, formerly Java Persistence API) is a specification defining an API that manages the persistence of objects and object/relational mappings. Hibernate is the most popular implementation of this specification. So, JPA will specify what must be done to persist objects, while Hibernate will determine how to do it. Spring Data Commons, as part of the Spring Data family, provides the core Spring framework concepts that support all Spring Data modules. Spring Data JPA, another project from the Spring Data family, is an additional layer on top of JPA implementations (such as Hibernate). Not only can Spring Data JPA use all the capabilities of JPA, but it adds its own capabilities, such as generating database queries from method names. We’ll go into many details in this book, but if you would like an overall view right now, you can quickly jump ahead to figure 4.1.

 To use Hibernate effectively, you must be able to view and interpret the SQL statements it issues and understand their performance implications. To take advantage of the benefits of Spring Data, you must be able to anticipate how the boilerplate code and the generated queries are created.

 The JPA specification defines the following:

 	
 A facility for specifying mapping metadata—how persistent classes and their properties relate to the database schema. JPA relies heavily on Java annotations in domain model classes, but you can also write mappings in XML files.

 	
 APIs for performing basic CRUD operations on instances of persistent classes, most prominently javax.persistence.EntityManager for storing and loading data.

 	
 A language and APIs for specifying queries that refer to classes and properties of classes. This language is the Jakarta Persistence Query Language (JPQL) and it looks similar to SQL. The standardized API allows for the programmatic creation of criteria queries without string manipulation.

 	
 How the persistence engine interacts with transactional instances to perform dirty checking, association fetching, and other optimization functions. The JPA specification covers some basic caching strategies.

 Hibernate implements JPA and supports all the standardized mappings, queries, and programming interfaces. Let’s look at some of the benefits of Hibernate:

 	
 Productivity—Hibernate eliminates much of the repetitive work (more than you’d expect) and lets you concentrate on the business problem. No matter which application-development strategy you prefer—top-down (starting with a domain model) or bottom-up (starting with an existing database schema)—Hibernate, used together with the appropriate tools, will significantly reduce development time.

 	
 Maintainability—Automated ORM with Hibernate reduces lines of code, making the system more understandable and easier to refactor. Hibernate provides a buffer between the domain model and the SQL schema, isolating each model from minor changes to the other.

 	
 Performance—Although hand-coded persistence might be faster in the same sense that assembly code can be faster than Java code, automated solutions like Hibernate allow the use of many optimizations at all times. One example is the efficient and easily tunable caching in the application tier. This means developers can spend more energy hand-optimizing the few remaining real bottlenecks instead of prematurely optimizing everything.

 	
 Vendor independence—Hibernate can help mitigate some of the risks associated with vendor lock-in. Even if you plan never to change your DBMS product, ORM tools that support several different DBMSs enable a certain level of portability. Also, DBMS independence helps in development scenarios where engineers use a lightweight local database but deploy for testing and production on a different system.

 Spring Data makes the implementation of the persistence layer even more efficient. Spring Data JPA, one of the projects of the family, sits on top of the JPA layer. Spring Data JDBC, another project of the family, sits on top of JDBC. Let’s look at some of the benefits of Spring Data:

 	
 Shared infrastructure—Spring Data Commons, part of the umbrella Spring Data project, provides a metadata model for persisting Java classes and technology-neutral repository interfaces. It provides its capabilities to the other Spring Data projects.

 	
 Removes DAO implementations—JPA implementations use the data access object (DAO) pattern. This pattern starts with the idea of an abstract interface to a database and maps application calls to the persistence layer while hiding the details of the database. Spring Data JPA makes it possible to fully remove DAO implementations, so the code will be shorter.

 	
 Automatic class creation—Using Spring Data JPA, a DAO interface needs to extend the JPA-specific Repository interface—JpaRepository. Spring Data JPA will automatically create an implementation for this interface—the programmer will not have to take care of this.

 	
 Default implementations for methods—Spring Data JPA will generate default implementations for each method defined by its repository interfaces. Basic CRUD operations do not need to be implemented any longer. This reduces the boilerplate code, speeds up development, and removes the possibility of introducing bugs.

 	
 Generated queries—You may define a method on your repository interface following a naming pattern. There’s no need to write your queries by hand; Spring Data JPA will parse the method name and create a query for it.

 	
 Close to the database if needed—Spring Data JDBC can communicate directly with the database and avoid the “magic” of Spring Data JPA. It allows you to interact with the database through JDBC, but it removes the boilerplate code by using the Spring framework facilities.

 This chapter has focused on understanding object/relational persistence and the problems generated by the object/relational paradigm mismatch. Chapter 2 will look at some of the persistence alternatives for a Java application: JPA, Hibernate Native, and Spring Data JPA.

Summary

 	
 With object persistence, individual objects can outlive their application process, be saved to a data store, and be re-created later. The object/relational mismatch comes into play when the data store is an SQL-based relational database management system. For example, a network of objects can’t be saved to a database table; it must be disassembled and persisted to columns of portable SQL data types. A good solution to this problem is object/relational mapping (ORM).

 	
 ORM isn’t a silver bullet for all persistence tasks; its job is to relieve the developer of about 95% of object persistence work, such as writing complex SQL statements with many table joins and copying values from JDBC result sets to objects or graphs of objects.

 	
 A full-featured ORM middleware solution may provide database portability, certain optimization techniques like caching, and other viable functions that aren’t easy to hand-code in a limited time with SQL and JDBC. An ORM solution implies, in the Java world, the JPA specification and a JPA implementation—Hibernate being the most popular nowadays.

 	
 Spring Data may come on top of the JPA implementations, and it simplifies, even more, the data persistence process. It is an umbrella project that adheres to the Spring framework principles and comes with an even simpler approach, including removing the DAO pattern, automatic code generation, and automatic query generation.

2 Starting a project

 This chapter covers

 	
Introducing the Hibernate and Spring Data projects

 	
Developing a “Hello World” with Jakarta Persistence API, Hibernate, and Spring Data

 	
Examining the configuration and integration options

 In this chapter, we’ll start with the Jakarta Persistence API (JPA), Hibernate, and Spring Data and work through a step-by-step example. We’ll look at the persistence APIs and see the benefits of using either standardized JPA, native Hibernate, or Spring Data.

 We’ll begin with a tour through JPA, Hibernate, and Spring Data, looking at a straightforward “Hello World” application. JPA (Jakarta Persistence API, formerly Java Persistence API) is the specification defining an API that manages the persistence of objects and object/relational mappings—it specifies what must be done to persist objects. Hibernate, the most popular implementation of this specification, will make the persistence happen. Spring Data makes the implementation of the persistence layer even more efficient; it’s an umbrella project that adheres to the Spring framework principles and offers an even simpler approach.

2.1 Introducing Hibernate

 Object/relational mapping (ORM) is a programming technique for making the connection between the incompatible worlds of object-oriented systems and relational databases. Hibernate is an ambitious project that aims to provide a complete solution to the problem of managing persistent data in Java. Today, Hibernate is not only an ORM service but also a collection of data management tools extending well beyond ORM.

 The Hibernate project suite includes the following:

 	
 Hibernate ORM—Hibernate ORM consists of a core, a base service for persistence with SQL databases, and a native proprietary API. Hibernate ORM is the foundation for several of the other projects in the suite, and it’s the oldest Hibernate project. You can use Hibernate ORM on its own, independent of any framework or any particular runtime environment with all JDKs. As long as a data source is accessible, you can configure it for Hibernate, and it works.

 	
 Hibernate EntityManager—This is Hibernate’s implementation of the standard Jakarta Persistence API. It’s an optional module you can stack on top of Hibernate ORM. Hibernate’s native features are a superset of the JPA persistence features in every respect.

 	
 Hibernate Validator—Hibernate provides the reference implementation of the Bean Validation (JSR 303) specification. Independent of other Hibernate projects, it provides declarative validation for domain model (or any other) classes.

 	
 Hibernate Envers—Envers is dedicated to audit logging and keeping multiple versions of data in the SQL database. This helps add data history and audit trails to the application, similar to any version control systems you might already be familiar with, such as Subversion or Git.

 	
 Hibernate Search—Hibernate Search keeps an index of the domain model data up to date in an Apache Lucene database. It lets you query this database with a powerful and naturally integrated API. Many projects use Hibernate Search in addition to Hibernate ORM, adding full-text search capabilities. If you have a free text search form in your application’s user interface, and you want happy users, work with Hibernate Search. Hibernate Search isn’t covered in this book, but you can get a good start with Hibernate Search in Action by Emmanuel Bernard (Bernard, 2008).

 	
 Hibernate OGM—This Hibernate project is an object/grid mapper. It provides JPA support for NoSQL solutions, reusing the Hibernate core engine but persisting mapped entities into key/value-, document-, or graph-oriented data stores.

 	
 Hibernate Reactive—Hibernate Reactive is a reactive API for Hibernate ORM, interacting with a database in a non-blocking manner. It supports non-blocking database drivers. Hibernate Reactive isn’t covered in this book.

 The Hibernate source code is freely downloadable from https://github.com/hibernate.

2.2 Introducing Spring Data

 Spring Data is a family of projects belonging to the Spring framework whose purpose is to simplify access to both relational and NoSQL databases:

 	
 Spring Data Commons—Spring Data Commons, part of the umbrella Spring Data project, provides a metadata model for persisting Java classes and technology-neutral repository interfaces.

 	
 Spring Data JPA—Spring Data JPA deals with the implementation of JPA-based repositories. It provides improved support for JPA-based data access layers by reducing the boilerplate code and creating implementations for the repository interfaces.

 	
 Spring Data JDBC—Spring Data JDBC deals with the implementation of JDBC-based repositories. It provides improved support for JDBC-based data access layers. It does not offer a series of JPA capabilities, such as caching or lazy loading, resulting in a simpler and limited ORM.

 	
 Spring Data REST—Spring Data REST deals with exporting Spring Data repositories as RESTful resources.

 	
 Spring Data MongoDB—Spring Data MongoDB deals with access to the MongoDB document database. It relies on the repository-style data access layer and the POJO programming model.

 	
 Spring Data Redis—Spring Data Redis deals with access to the Redis key/value database. It relies on freeing the developer from managing the infrastructure and providing high- and low-level abstractions for access to the data store. Spring Data Redis isn’t covered in this book.

 The Spring Data source code (together with other Spring projects) is freely downloadable from https://github.com/spring-projects.

 Let’s get started with our first JPA, Hibernate, and Spring Data project.

2.3 “Hello World” with JPA

 In this section we’ll write our first JPA application, which will store a message in the database and then retrieve it. The machine we are running our code on has MySQL Release 8.0 installed. To install MySQL Release 8.0, follow the instructions in the official documentation: https://dev.mysql.com/doc/refman/8.0/en/installing.html.

 In order to execute the examples in the source code, you’ll need first to run the Ch02.sql script, as shown in figure 2.1. Open MySQL Workbench, go to File > Open SQL Script, and choose the SQL file and run it. The examples use a MySQL server with the default credentials: the username root and no password.

 [image:]

 Figure 2.1 Creating the MySQL database by running the Ch02.sql script

 In the “Hello World” application, we want to store messages in the database and load them from the database. Hibernate applications define persistent classes that are mapped to database tables. We define these classes based on our analysis of the business domain; hence, they’re a model of the domain. This example will consist of one class and its mapping. We’ll write the examples as executable tests, with assertions that verify the correct outcome of each operation. We’ve tested all the examples in this book, so we can be sure they work properly.

 Let’s start by installing and configuring JPA, Hibernate, and the other needed dependencies. We’ll use Apache Maven as the project build tool for all the examples in this book. For basic Maven concepts and details on how to set up Maven, see appendix A.

 We’ll declare the dependencies shown in the following listing.

 Listing 2.1 The Maven dependencies on Hibernate, JUnit Jupiter, and MySQL

 Path: Ch02/helloworld/pom.xml

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>5.6.9.Final</version>
</dependency>
<dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter-engine</artifactId>
 <version>5.8.2</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>8.0.29</version>
</dependency>

 The hibernate-entitymanager module includes transitive dependencies on other modules we’ll need, such as hibernate-core and the JPA interface stubs. We also need the junit-jupiter-engine dependency to run the tests with the help of JUnit 5, and the mysql-connector-java dependency, which is the official JDBC driver for MySQL.

 Our starting point in JPA is the persistence unit. A persistence unit is a pairing of our domain model class mappings with a database connection, plus some other configuration settings. Every application has at least one persistence unit; some applications have several if they’re talking to several (logical or physical) databases. Hence, our first step is setting up a persistence unit in our application’s configuration.

2.3.1 Configuring a persistence unit

 The standard configuration file for persistence units is located on the classpath in META-INF/persistence.xml. Create the following configuration file for the “Hello World” application.

 Listing 2.2 The persistence.xml configuration file

 Path: Ch02/helloworld/src/main/resources/META-INF/persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 ➥ http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">

 <persistence-unit name="ch02"> Ⓐ
 <provider>org.hibernate.jpa.HibernatePersistenceProvider</provider> Ⓐ
 <properties>
 <property name="javax.persistence.jdbc.driver" Ⓑ
 value="com.mysql.cj.jdbc.Driver"/> Ⓒ
 <property name="javax.persistence.jdbc.url" Ⓓ
 value="jdbc:mysql://localhost:3306/CH02?serverTimezone=UTC "/> Ⓓ
 <property name="javax.persistence.jdbc.user" value="root"/> Ⓔ
 <property name="javax.persistence.jdbc.password" value=""/> Ⓕ

 <property name="hibernate.dialect" Ⓖ
 value="org.hibernate.dialect.MySQL8Dialect"/> Ⓖ

 <property name="hibernate.show_sql" value="true"/> Ⓗ
 <property name="hibernate.format_sql" value="true"/> Ⓘ

 <property name="hibernate.hbm2ddl.auto" value="create"/> Ⓙ
 </properties>
 </persistence-unit>

</persistence>

 Ⓐ The persistence.xml file configures at least one persistence unit; each unit must have a unique name.

 Ⓑ As JPA is only a specification, we need to indicate the vendor-specific PersistenceProvider implementation of the API. The persistence we define will be backed by a Hibernate provider.

 Ⓒ Indicate the JDBC properties—the driver.

 Ⓓ The URL of the database.

 Ⓔ The username.

 Ⓕ There is no password for access. The machine we are running the programs on has MySQL 8 installed, and the access credentials are the ones from persistence.xml. You should modify the credentials to correspond to the ones on your machine.

 Ⓖ The Hibernate dialect is MySQL8, as the database to interact with is MySQL Release 8.0.

 Ⓗ While executing, show the SQL code.

 Ⓘ Hibernate will format the SQL nicely and generate comments in the SQL string so we know why Hibernate executed the SQL statement.

 Ⓙ Every time the program is executed, the database will be created from scratch. This is ideal for automated testing, when we want to work with a clean database for every test run.

 Let’s see what a simple persistent class looks like, how the mapping is created, and some of the things we can do with instances of the persistent class in JPA.

2.3.2 Writing a persistent class

 The objective of this example is to store messages in a database and retrieve them for display. The application has a simple persistent class, Message.

 Listing 2.3 The Message class

 Path: Ch02/helloworld/src/main/java/com/manning/javapersistence/ch02
➥ /Message.java

@Entity Ⓐ
public class Message {

 @Id Ⓑ
 @GeneratedValue(strategy = GenerationType.IDENTITY) Ⓒ
 private Long id;

 private String text; Ⓓ

 public String getText() { Ⓓ
 return text; Ⓓ
 } Ⓓ

 public void setText(String text) { Ⓓ
 this.text = text; Ⓓ
 } Ⓓ
}

 Ⓐ Every persistent entity class must have at least the @Entity annotation. Hibernate maps this class to a table called MESSAGE.

 Ⓑ Every persistent entity class must have an identifier attribute annotated with @Id. Hibernate maps this attribute to a column named id.

 Ⓒ Someone must generate identifier values; this annotation enables automatic generation of ids.

 Ⓓ We usually implement regular attributes of a persistent class with private fields and public getter/setter method pairs. Hibernate maps this attribute to a column called text.

 The identifier attribute of a persistent class allows the application to access the database identity—the primary key value—of a persistent instance. If two instances of Message have the same identifier value, they represent the same row in the database. This example uses Long for the type of identifier attribute, but this isn’t a requirement. Hibernate allows you to use virtually anything for the identifier type, as you’ll see later in the book.

 You may have noticed that the text attribute of the Message class has JavaBeans-style property accessor methods. The class also has a (default) constructor with no parameters. The persistent classes we’ll show in the examples will usually look something like this. Note that we don’t need to implement any particular interface or extend any special superclass.

 Instances of the Message class can be managed (made persistent) by Hibernate, but they don’t have to be. Because the Message object doesn’t implement any persistence-specific classes or interfaces, we can use it just like any other Java class:

 Message msg = new Message();
msg.setText("Hello!");
System.out.println(msg.getText());

 It may look like we’re trying to be cute here; in fact, we’re demonstrating an important feature that distinguishes Hibernate from some other persistence solutions. We can use the persistent class in any execution context—no special container is needed.

 We don’t have to use annotations to map a persistent class. Later we’ll show other mapping options, such as the JPA orm.xml mapping file and the native hbm.xml mapping files, and we’ll look at when they’re a better solution than source annotations, which are the most frequently used approach nowadays.

 The Message class is now ready. We can store instances in our database and write queries to load them again into application memory.

2.3.3 Storing and loading messages

 What you really came here to see is JPA with Hibernate, so let’s save a new Message to the database.

 Listing 2.4 The HelloWorldJPATest class

 Path: Ch02/helloworld/src/test/java/com/manning/javapersistence/ch02
➥ /HelloWorldJPATest.java

public class HelloWorldJPATest {

 @Test
 public void storeLoadMessage() {

 EntityManagerFactory emf = Ⓐ
 Persistence.createEntityManagerFactory("ch02"); Ⓐ

 try {
 EntityManager em = emf.createEntityManager(); Ⓑ
 em.getTransaction().begin(); Ⓒ

 Message message = new Message(); Ⓓ
 message.setText("Hello World!"); Ⓓ

 em.persist(message); Ⓔ

 em.getTransaction().commit(); Ⓕ
 //INSERT into MESSAGE (ID, TEXT) values (1, 'Hello World!')

 em.getTransaction().begin(); Ⓖ

 List<Message> messages = Ⓗ
 em.createQuery("select m from Message m", Message.class) Ⓗ
 .getResultList(); Ⓗ
 //SELECT * from MESSAGE Ⓗ

 messages.get(messages.size() - 1). Ⓘ
 setText("Hello World from JPA!"); Ⓘ

 em.getTransaction().commit(); Ⓙ
 //UPDATE MESSAGE set TEXT = 'Hello World from JPA!'
 ➥ where ID = 1

 assertAll(Ⓚ
 () -> assertEquals(1, messages.size()), Ⓚ
 () -> assertEquals("Hello World from JPA!", Ⓛ
 messages.get(0).getText()) Ⓛ
);

 em.close(); Ⓜ

 } finally {
 emf.close(); Ⓝ
 }
 }

}

 Ⓐ First we need an EntityManagerFactory to talk to the database. This API represents the persistence unit, and most applications have one EntityManager-Factory for one configured persistence unit. Once it starts, the application should create the EntityManagerFactory; the factory is thread-safe, and all code in the application that accesses the database should share it.

 Ⓑ Begin a new session with the database by creating an EntityManager. This is the context for all persistence operations.

 Ⓒ Get access to the standard transaction API, and begin a transaction on this thread of execution.

 Ⓓ Create a new instance of the mapped domain model class Message, and set its text property.

 Ⓔ Enlist the transient instance with the persistence context; we make it persistent. Hibernate now knows that we wish to store that data, but it doesn't necessarily call the database immediately.

 Ⓕ Commit the transaction. Hibernate automatically checks the persistence context and executes the necessary SQL INSERT statement. To help you understand how Hibernate works, we show the automatically generated and executed SQL statements in source code comments when they occur. Hibernate inserts a row in the MESSAGE table, with an automatically generated value for the ID primary key column, and the TEXT value.

 Ⓖ Every interaction with the database should occur within transaction boundaries, even if we’re only reading data, so we start a new transaction. Any potential failure appearing from now on will not affect the previously committed transaction.

 Ⓗ Execute a query to retrieve all instances of Message from the database.

 Ⓘ We can change the value of a property. Hibernate detects this automatically because the loaded Message is still attached to the persistence context it was loaded in.

 Ⓙ On commit, Hibernate checks the persistence context for dirty state, and it executes the SQL UPDATE automatically to synchronize in-memory objects with the database state.

 Ⓚ Check the size of the list of messages retrieved from the database.

 Ⓛ Check that the message we persisted is in the database. We use the JUnit 5 assertAll method, which always checks all the assertions that are passed to it, even if some of them fail. The two assertions that we verify are conceptually related.

 Ⓜ We created an EntityManager, so we must close it.

 Ⓝ We created an EntityManagerFactory, so we must close it.

 The query language you’ve seen in this example isn’t SQL, it’s the Jakarta Persistence Query Language (JPQL). Although there is syntactically no difference in this trivial example, the Message in the query string doesn’t refer to the database table name but to the persistent class name. For this reason, the Message class name in the query is case-sensitive. If we map the class to a different table, the query will still work.

 Also, notice how Hibernate detects the modification to the text property of the message and automatically updates the database. This is the automatic dirty-checking feature of JPA in action. It saves us the effort of explicitly asking the persistence manager to update the database when we modify the state of an instance inside a transaction.

 Figure 2.2 shows the result of checking for the existence of the record we inserted and updated on the database side. As you’ll recall, we created a database named CH02 by running the Ch02.sql script from the chapter’s source code.

 [image:]

 Figure 2.2 The result of checking for the existence of the inserted and updated record on the database side

 You’ve just completed your first JPA and Hibernate application. Let’s now take a quick look at the native Hibernate bootstrap and configuration API.

2.4 Native Hibernate configuration

 Although basic (and extensive) configuration is standardized in JPA, we can’t access all the configuration features of Hibernate with properties in persistence.xml. Note that most applications, even quite sophisticated ones, don’t need such special configuration options and hence don’t have to access the bootstrap API we’ll show in this section. If you aren’t sure, you can skip this section and come back to it later when you need to extend Hibernate type adapters, add custom SQL functions, and so on.

 When using native Hibernate we’ll use the Hibernate dependencies and API directly, rather than the JPA dependencies and classes. JPA is a specification, and it can use different implementations (Hibernate is one example, but EclipseLink is another alternative) through the same API. Hibernate, as an implementation, provides its own dependencies and classes. While using JPA provides more flexibility, you’ll see throughout the book that accessing the Hibernate implementation directly allows you to use features that are not covered by the JPA standard (we’ll point this out where it’s relevant).

 The native equivalent of the standard JPA EntityManagerFactory is the org.hibernate.SessionFactory. We have usually one per application, and it involves the same pairing of class mappings with database connection configuration.

 To configure the native Hibernate, we can use a hibernate.properties Java properties file or a hibernate.cfg.xml XML file. We’ll choose the second option, and the configuration will contain database and session-related options. This XML file is generally placed in the src/main/resource or src/test/resource folder. As we need the information for the Hibernate configuration in our tests, we’ll choose the second location.

 Listing 2.5 The hibernate.cfg.xml configuration file

 Path: Ch02/helloworld/src/test/resources/hibernate.cfg.xml

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
➥ "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration> Ⓐ
 <session-factory> Ⓑ
 <property name="hibernate.connection.driver_class"> Ⓒ
 com.mysql.cj.jdbc.Driver Ⓒ
 </property> Ⓒ
 <property name="hibernate.connection.url"> Ⓓ
 jdbc:mysql://localhost:3306/CH02?serverTimezone=UTC Ⓓ
 </property> Ⓓ
 <property name="hibernate.connection.username">root</property> Ⓔ
 <property name="hibernate.connection.password"></property> Ⓕ
 <property name="hibernate.connection.pool_size">50</property> Ⓖ
 <property name="show_sql">true</property> Ⓗ
 <property name="hibernate.hbm2ddl.auto">create</property> Ⓘ
 </session-factory>
</hibernate-configuration>

 Ⓐ We use the tags to indicate that we are configuring Hibernate.

 Ⓑ More exactly, we are configuring the SessionFactory object. SessionFactory is an interface, and we need one SessionFactory to interact with one database.

 Ⓒ Indicate the JDBC properties—the driver.

 Ⓓ The URL of the database.

 Ⓔ The username.

 Ⓕ No password is required to access it. The machine we are running the programs on has MySQL 8 installed and the access credentials are the ones from hibernate .cfg.xml. You should modify the credentials to correspond to the ones on your machine.

 Ⓖ Limit the number of connections waiting in the Hibernate database connection pool to 50.

 Ⓗ While executing, the SQL code is shown.

 Ⓘ Every time the program is executed, the database will be created from scratch. This is ideal for automated testing, when we want to work with a clean database for every test run.

 Let’s save a Message to the database using native Hibernate.

 Listing 2.6 The HelloWorldHibernateTest class

 Path: Ch02/helloworld/src/test/java/com/manning/javapersistence/ch02
➥ /HelloWorldHibernateTest.java

public class HelloWorldHibernateTest {

 private static SessionFactory createSessionFactory() {
 Configuration configuration = new Configuration(); Ⓐ
 configuration.configure().addAnnotatedClass(Message.class); Ⓑ
 ServiceRegistry serviceRegistry = new Ⓒ
 StandardServiceRegistryBuilder(). Ⓒ
 applySettings(configuration.getProperties()).build(); Ⓒ
 return configuration.buildSessionFactory(serviceRegistry); Ⓓ
 }

 @Test
 public void storeLoadMessage() {

 try (SessionFactory sessionFactory = createSessionFactory(); Ⓔ
 Session session = sessionFactory.openSession()) { Ⓕ

 session.beginTransaction(); Ⓖ

 Message message = new Message(); Ⓗ
 message.setText("Hello World from Hibernate!"); Ⓗ

 session.persist(message); Ⓘ

 session.getTransaction().commit(); Ⓙ
 // INSERT into MESSAGE (ID, TEXT)
 // values (1, 'Hello World from Hibernate!')
 session.beginTransaction(); Ⓚ

 CriteriaQuery<Message> criteriaQuery = Ⓛ
 session.getCriteriaBuilder().createQuery(Message.class); Ⓛ
 criteriaQuery.from(Message.class); Ⓜ

 List<Message> messages = Ⓝ
 session.createQuery(criteriaQuery).getResultList(); Ⓝ
 // SELECT * from MESSAGE

 session.getTransaction().commit(); Ⓞ

 assertAll(Ⓟ
 () -> assertEquals(1, messages.size()), Ⓟ
 () -> assertEquals("Hello World from Hibernate!", Ⓠ
 messages.get(0).getText()) Ⓠ
);

 }
 }
}

 Ⓐ To create a SessionFactory, we first need to create a configuration.

 Ⓑ We need to call the configure method on it and to add Message to it as an annotated class. The execution of the configure method will load the content of the default hibernate.cfg.xml file.

 Ⓒ The builder pattern helps us create the immutable service registry and configure it by applying settings with chained method calls. A ServiceRegistry hosts and manages services that need access to the SessionFactory. Services are classes that provide pluggable implementations of different types of functionality to Hibernate.

 Ⓓ Build a SessionFactory using the configuration and the service registry we have previously created.

 Ⓔ The SessionFactory created with the createSessionFactory method we previously defined is passed as an argument to a try with resources, as SessionFactory implements the AutoCloseable interface.

 Ⓕ Similarly, we begin a new session with the database by creating a Session, which also implements the AutoCloseable interface. This is our context for all persistence operations.

 Ⓕ Get access to the standard transaction API and begin a transaction on this thread of execution.

 Ⓗ Create a new instance of the mapped domain model class Message, and set its text property.

 Ⓘ Enlist the transient instance with the persistence context; we make it persistent. Hibernate now knows that we wish to store that data, but it doesn't necessarily call the database immediately. The native Hibernate API is pretty similar to the standard JPA, and most methods have the same name.

 Ⓙ Synchronize the session with the database, and close the current session on commit of the transaction automatically.

 Ⓚ Begin another transaction. Every interaction with the database should occur within transaction boundaries, even if we’re only reading data.

 Ⓛ Create an instance of CriteriaQuery by calling the CriteriaBuilder createQuery() method. A CriteriaBuilder is used to construct criteria queries, compound selections, expressions, predicates, and orderings. A CriteriaQuery defines functionality that is specific to top-level queries. CriteriaBuilder and CriteriaQuery belong to the Criteria API, which allows us to build a query programmatically.

 Ⓜ Create and add a query root corresponding to the given Message entity.

 Ⓝ Call the getResultList() method of the query object to get the results. The query that is created and executed will be SELECT * FROM MESSAGE.

 Ⓞ Commit the transaction.

 Ⓟ Check the size of the list of messages retrieved from the database.

 Ⓠ Check that the message we persisted is in the database. We use the JUnit 5 assertAll method, which always checks all the assertions that are passed to it, even if some of them fail. The two assertions that we verify are conceptually related.

 Figure 2.3 shows the result of checking for the existence of the record we inserted on the database side by using native Hibernate.

 [image:]

 Figure 2.3 The result of checking for the existence of the inserted record on the database side

 Most of the examples in this book won’t use the SessionFactory or Session API. From time to time, when a particular feature is only available in Hibernate, we’ll show you how to unwrap() the native interface.

2.5 Switching between JPA and Hibernate

 Suppose you’re working with JPA and need to access the Hibernate API. Or, vice versa, you’re working with native Hibernate and you need to create an EntityManagerFactory from the Hibernate configuration. To obtain a SessionFactory from an EntityManagerFactory, you’ll have to unwrap the first one from the second one.

 Listing 2.7 Obtaining a SessionFactory from an EntityManagerFactory

 Path: Ch02/helloworld/src/test/java/com/manning/javapersistence/ch02
➥ /HelloWorldJPAToHibernateTest.java

private static SessionFactory getSessionFactory
 (EntityManagerFactory entityManagerFactory) {
 return entityManagerFactory.unwrap(SessionFactory.class);
}

 Starting with JPA version 2.0, you can get access to the APIs of the underlying implementations. The EntityManagerFactory (and also the EntityManager) declares an unwrap method that will return objects belonging to the classes of the JPA implementation. When using the Hibernate implementation, you can get the corresponding SessionFactory or Session objects and start using them as demonstrated in listing 2.6. When a particular feature is only available in Hibernate, you can switch to it using the unwrap method.

 You may be interested in the reverse operation: creating an EntityManagerFactory from an initial Hibernate configuration.

 Listing 2.8 Obtaining an EntityManagerFactory from a Hibernate configuration

 Path: Ch02/helloworld/src/test/java/com/manning/javapersistence/ch02
➥ /HelloWorldHibernateToJPATest.java

private static EntityManagerFactory createEntityManagerFactory() {
 Configuration configuration = new Configuration(); Ⓐ
 configuration.configure().addAnnotatedClass(Message.class); Ⓑ

 Map<String, String> properties = new HashMap<>(); Ⓒ
 Enumeration<?> propertyNames = Ⓓ
 configuration.getProperties().propertyNames(); Ⓓ
 while (propertyNames.hasMoreElements()) { Ⓔ
 String element = (String) propertyNames.nextElement(); Ⓔ
 properties.put(element, Ⓔ
 configuration.getProperties().getProperty(element)); Ⓔ
 }

 return Persistence.createEntityManagerFactory("ch02", properties); Ⓕ
}

 Ⓐ Create a new Hibernate configuration.

 Ⓑ Call the configure method, which adds the content of the default hibernate .cfg.xml file to the configuration, and then explicitly add Message as an annotated class.

 Ⓒ Create a new hash map to be filled in with the existing properties.

 Ⓓ Get all the property names from the Hibernate configuration.

 Ⓔ Add the property names one by one to the previously created map.

 Ⓕ Return a new EntityManagerFactory, providing to it the ch02.ex01 persistence unit name and the previously created map of properties.

2.6 “Hello World” with Spring Data JPA

 Let’s now write our first Spring Data JPA application, which will store a message in the database and then retrieve it.

 We’ll first add the Spring dependencies to the Apache Maven configuration.

 Listing 2.9 The Maven dependencies on Spring

 Path: Ch02/helloworld/pom.xml

<dependency> Ⓐ
 <groupId>org.springframework.data</groupId> Ⓐ
 <artifactId>spring-data-jpa</artifactId> Ⓐ
 <version>2.7.0</version> Ⓐ
</dependency> Ⓐ
<dependency> Ⓑ
 <groupId>org.springframework</groupId> Ⓑ
 <artifactId>spring-test</artifactId> Ⓑ
 <version>5.3.20</version> Ⓑ
</dependency> Ⓑ

 Ⓐ The spring-data-jpa module provides repository support for JPA and includes transitive dependencies on other modules we’ll need, such as spring-core and spring-context.

 Ⓑ We also need the spring-test dependency to run the tests.

 The standard configuration file for Spring Data JPA is a Java class that creates and sets up the beans needed by Spring Data. The configuration can be done using either an XML file or Java code, and we’ve chosen the second alternative. Create the following configuration file for the “Hello World” application.

 Listing 2.10 The SpringDataConfiguration class

 Path: Ch02/helloworld/src/test/java/com/manning/javapersistence/ch02
➥ /configuration/SpringDataConfiguration.java

@EnableJpaRepositories("com.manning.javapersistence.ch02.repositories") Ⓐ
public class SpringDataConfiguration {
 @Bean
 public DataSource dataSource() { Ⓑ
 DriverManagerDataSource dataSource = new DriverManagerDataSource(); Ⓑ
 dataSource.setDriverClassName("com.mysql.cj.jdbc.Driver"); Ⓒ
 dataSource.setUrl(Ⓓ
 "jdbc:mysql://localhost:3306/CH02?serverTimezone=UTC"); Ⓓ
 dataSource.setUsername("root"); Ⓔ
 dataSource.setPassword(""); Ⓕ
 return dataSource; Ⓑ
 }

 @Bean
 public JpaTransactionManager Ⓖ
 transactionManager(EntityManagerFactory emf) { Ⓖ
 return new JpaTransactionManager(emf); Ⓖ
 }

 @Bean
 public JpaVendorAdapter jpaVendorAdapter() { Ⓗ
 HibernateJpaVendorAdapter jpaVendorAdapter = new Ⓗ
 HibernateJpaVendorAdapter(); Ⓗ
 jpaVendorAdapter.setDatabase(Database.MYSQL); Ⓘ
 jpaVendorAdapter.setShowSql(true); Ⓙ
 return jpaVendorAdapter; Ⓗ
 }

 @Bean
 public LocalContainerEntityManagerFactoryBean entityManagerFactory(){ Ⓚ
 LocalContainerEntityManagerFactoryBean Ⓚ
 localContainerEntityManagerFactoryBean =
 new LocalContainerEntityManagerFactoryBean(); Ⓛ
 localContainerEntityManagerFactoryBean.setDataSource(dataSource());
 Properties properties = new Properties(); Ⓜ
 properties.put("hibernate.hbm2ddl.auto", "create"); Ⓜ
 localContainerEntityManagerFactoryBean. Ⓜ
 setJpaProperties(properties); Ⓜ
 localContainerEntityManagerFactoryBean. Ⓝ
 setJpaVendorAdapter(jpaVendorAdapter()); Ⓝ
 localContainerEntityManagerFactoryBean. Ⓞ
 setPackagesToScan("com.manning.javapersistence.ch02"); Ⓞ
 return localContainerEntityManagerFactoryBean; Ⓚ
 }
}

 Ⓐ The @EnableJpaRepositories annotation enables scanning of the package received as an argument for Spring Data repositories.

 Ⓑ Create a data source bean.

 Ⓒ Specify the JDBC properties—the driver.

 Ⓓ The URL of the database.

 Ⓔ The username.

 Ⓕ No password is required for access. The machine we are running the programs on has MySQL 8 installed, and the access credentials are the ones from this configuration. You should modify the credentials to correspond to the ones on your machine.

 Ⓖ Create a transaction manager bean based on an entity manager factory. Every interaction with the database should occur within transaction boundaries, and Spring Data needs a transaction manager bean.

 Ⓗ Create the JPA vendor adapter bean needed by JPA to interact with Hibernate.

 Ⓘ Configure this vendor adapter to access a MySQL database.

 Ⓙ Show the SQL code while it is executed.

 Ⓚ Create a LocalContainerEntityManagerFactoryBean. This is a factory bean that produces an EntityManagerFactory following the JPA standard container bootstrap contract.

 Ⓛ Set the data source.

 Ⓜ Set the database to be created from scratch every time the program is executed.

 Ⓝ Set the vendor adapter.

 Ⓞ Set the packages to scan for entity classes. As the Message entity is located in com.manning.javapersistence.ch02, we set this package to be scanned.

 Spring Data JPA provides support for JPA-based data access layers by reducing the boilerplate code and creating implementations for the repository interfaces. We only need to define our own repository interface to extend one of the Spring Data interfaces.

 Listing 2.11 The MessageRepository interface

 Path: Ch02/helloworld/src/main/java/com/manning/javapersistence/ch02
➥ /repositories/MessageRepository.java

public interface MessageRepository extends CrudRepository<Message, Long> {

}

 The MessageRepository interface extends CrudRepository <Message, Long>. This means that it is a repository of Message entities with a Long identifier. Remember, the Message class has an id field annotated as @Id of type Long. We can directly call methods such as save, findAll, or findById, which are inherited from CrudRepository, and we can use them without any other additional information to execute the usual operations against a database. Spring Data JPA will create a proxy class implementing the MessageRepository interface and implement its methods (figure 2.4).

 [image:]

 Figure 2.4 The Spring Data JPA Proxy class implements the MessageRepository interface.

 Let’s save a Message to the database using Spring Data JPA.

 Listing 2.12 The HelloWorldSpringDataJPATest

OEBPS/OEBPS/Images/CH02_F03_Tudose2.png

OEBPS/OEBPS/Images/CH02_F01_Tudose2.png

OEBPS/OEBPS/Images/CH02_F04_Tudose2.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/CH01_F03_Tudose2.png

OEBPS/OEBPS/Images/CH01_F04_Tudose2.png

OEBPS/OEBPS/Images/CH01_F05_Tudose2.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F02_Tudose2.png

OEBPS/OEBPS/Images/CH01_F01_Tudose2.png

OEBPS/OEBPS/Images/Tudose.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH02_F02_Tudose2.png

