

 [image: manning]

 Server-Side WebAssembly

 Building portable and secure multi-language apps

 Danilo Chiarlone
Foreword by Brendan Burns
Afterword by Luke Wagner

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 Server-Side WebAssembly

 Building portable and secure multi-language apps

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964

   Email: orders@manning.com

 ©2026 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The authors and publisher have made every effort to ensure that the information in this book was correct at press time. The authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Connor O’Brien
 Technical editor: Adam S. Chalmers
 Review editor: Angelina Lazukić
 Production editor: Keri Hales
 Copy editor: Kari Lucke
 Proofreader: Katie Tennant
 Technical proofreader: C. Gerard Gallant
 Typesetter: Tamara Švelić Sabljić
 Cover designer: Marija Tudor

 ISBN: 9781633436206

 Printed in the United States of America

 dedication

 To my parents, Beatriz, my dear Nonna (1946–2021), Grumpy,
and all my friends who supported this journey

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 WebAssembly for architects

 1 Introducing Wasm on the server

 1.1 What is the server side and where does Wasm fit in?

 1.2 The advantages of Wasm for server-side development

 1.2.1 Language agnosticism

 1.2.2 Performance

 1.2.3 Hardware agnosticism

 1.2.4 Security

 1.2.5 Standards-based and vendor neutrality

 1.3 When and where to use Wasm (and when not to)

 1.4 How to navigate this book

 2 Building server-side applications with Wasm modules

 2.1 Understanding Wasm’s building blocks

 2.2 Understanding the guest-host architecture of server-side Wasm

 2.3 Creating a Wasm app using Rust

 2.3.1 Creating a Rust library project

 2.3.2 Specifying compilation to a Wasm module

 2.3.3 Writing the code for our application

 2.3.4 Compiling the Rust code into a Wasm module

 2.3.5 Executing the Wasm module with the custom host

 2.3.6 Reflecting on the “Hello, World” application

 2.4 Building on Wasm’s simple types with WebAssembly Interface Types

 2.5 Building the foundation of a smart content management system

 3 Enhancing portability and security with Wasm components

 3.1 Benefits of Wasm components

 3.1.1 Cross-language portability

 3.1.2 Shared-nothing security

 3.1.3 Only-what-you-need security and improved vulnerability mitigation response

 3.2 Building a componentized “Hello, World” guest application with JavaScript

 3.2.1 Setting up the project and installing the toolchain

 3.2.2 Implementing the component logic

 3.2.3 Compiling the Wasm component

 3.3 Building a Python host for a JavaScript-bundled Wasm component

 3.3.1 Setting up the project and installing the toolchain

 3.3.2 Implementing the host logic

 3.3.3 Running the Python host

 3.4 Expanding the example project with Wasm components

 3.4.1 Improving the WIT file for the key-value store

 3.4.2 Creating the SmartCMS host

 3.4.3 Implementing and running a guest Wasm component inside our SmartCMS host

 4 Interfacing Wasm with the underlying system

 4.1 The WebAssembly System Interface

 4.2 What can you build with WASI?

 4.2.1 Creating a CLI application

 4.2.2 Creating libraries

 4.2.3 Creating HTTP proxies

 4.3 Converting a Wasm module to a Wasm component

 4.4 Managing component capabilities

 4.5 Composing components together

 4.6 Expanding our example project with WASI and composability

 5 From machine learning to databases: Applications of Wasm

 5.1 WebAssembly Standard Interfaces

 5.2 Machine learning with Wasm

 5.2.1 Understanding ML inference

 5.2.2 Using wasi-nn

 5.3 Running Wasm inside databases

 5.3.1 Making Wasm UDFs

 5.3.2 Getting Wasm into SQL

 5.3.3 Running Wasm UDFs in libSQL

 5.4 Improving our example project with wasi-nn

 5.4.1 Setting up our project

 5.4.2 Writing the ML Wasm component

 5.4.3 Updating our host to use ONNX for wasi:nn

 Part 2 WebAssembly for developers

 6 Creating production-grade Wasm applications

 6.1 Creating a wasmCloud “Hello, World” application

 6.2 Adding persistent storage to our Wasm app

 6.2.1 Modifying our WIT and wadm manifest

 6.2.2 Modifying our application and redeploying it

 6.3 Scaling our wasmCloud application

 6.4 Distributing our wasmCloud application

 6.5 Another off-the-shelf host: Spin

 6.5.1 Creating a Spin “Hello, World” application

 6.5.2 Comparing wasmCloud and Spin

 6.6 Implementing the example project as a wasmCloud app

 6.6.1 Adding persistent storage to the SmartCMS

 6.6.2 Adding machine learning to the SmartCMS

 7 Introducing Wasm containers

 7.1 Containers vs. Wasm

 7.2 Wasm containers

 7.3 Running a Wasm container

 7.3.1 Setting up containerd and Wasm support

 7.3.2 Building and running the Wasm container

 7.4 Wasm and the OCI

 7.4.1 Packaging and publishing Wasm components as OCI images

 7.4.2 Inspecting Wasm component OCI images

 7.4.3 Pulling and running Wasm OCI images

 7.5 wasmCloud and Wasm containers

 7.6 Converting Linux containers to Wasm

 7.6.1 Introducing container2wasm

 7.6.2 Installing container2wasm

 7.6.3 Using container2wasm

 8 Scalability for Wasm with Kubernetes

 8.1 Kubernetes and Wasm

 8.2 Running Wasm in Kubernetes with SpinKube

 8.2.1 Preparing the cluster for SpinKube

 8.2.2 Running a Wasm app in Kubernetes with SpinKube

 8.2.3 Scaling Wasm in Kubernetes with SpinKube

 8.3 Running Wasm in Kubernetes with wasmCloud

 8.3.1 Preparing the cluster for wasmCloud

 8.3.2 Running a Wasm app in Kubernetes with wasmCloud

 8.4 Running the SmartCMS example on Kubernetes

 8.4.1 Preparing the SmartCMS image and manifest

 8.4.2 Preparing the Ollama dependency

 8.4.3 Running the app

 9 The future of Wasm

 9.1 SmartCMS closing remarks

 9.2 What’s next for Wasm?

 9.2.1 Confidential computing

 9.2.2 AI and machine learning

 9.2.3 Compute at the edge

 9.3 What’s next for WASI?

 9.4 Staying in the loop

 appendix A  Required tools

 A.1 Rust

 A.1.1 Target installation

 A.1.2 Cargo installs

 A.2 Git LFS

 A.3 Docker

 A.4 JS toolchain

 A.5 Python toolchain

 A.6 Spin

 A.7 Ollama setup

 A.8 regctl

 A.9 container2wasm

 A.10 Kubernetes setup

 appendix B  Deploying the SmartCMS to Azure Kubernetes Service

 B.1 Prerequisites

 B.2 Preparing the cluster

 B.3 Deploying the SmartCMS

 B.3.1 Deploying the backend components

 B.3.2 Deploying the frontend

 B.3.3 Configuring Ingress

 afterword

 index

 foreword

 Welcome! I’m excited to have the opportunity to introduce you to Server-Side Web­Assembly. It goes without saying that the development of web and browser technologies has had a foundational role in shaping the modern internet. Even today, as advancements like mobile and AI have reshaped how we think about interacting with internet services, the core technologies of the web, like HTTP and REST, are at the heart of these advancements. In this book, you will learn how WebAssembly, which started as a component on the client side for the browser, has turned into server-side technology for service development.

 I’m old enough to remember a time before browsers came with programming languages built in. Early in the development of the web, it became clear that adding dynamic elements to web pages was a critical part of the browser’s evolution from a static content renderer to an application platform. The development of JavaScript and HTML5 changed the browser from a static content renderer to a dynamic application platform. Over time, however, the limitations of JavaScript as a programming language became apparent. A variety of concerns, ranging from the need for other programming languages to the desire to share code between client and server, led to the development of WebAssembly (Wasm) as a foundation for multilanguage code execution in the browser. Much like the Java virtual machine bytecode or the common language runtime, Wasm is a virtual assembly language that can be used as a target for compilers. With Wasm added to browsers, developers could build dynamic web applications in languages from C to Python.

 At the same time as the seeds of Wasm were being sown in the browser, a separate development was occurring on the server. The V8 JavaScript runtime that powered the Chromium open source browser was taken and transformed into the Node.js platform for server development in JavaScript. The motivations behind the development of Node.js mirror the things that drove the development of Wasm—particularly, the desire for portability of code between client and server. Instead of developing a new assembly language for the browser, Node.js took the core JavaScript engine out of the browser and made it available on the server. JavaScript (and, more recently, TypeScript) developers could use the same languages and libraries in both places.

 With this history in mind, the development of Wasm on the server is a similar migration from client-side browsers to server-side execution. But if you examine the multilanguage value of Wasm to the browser, you might be confused about why there was interest in Wasm on the server. After all, even without Wasm, you still can program servers in a language like C++ and then execute that same code on the browser via Wasm. The motivations for WebAssembly on the server actually come from two additional requirements for browser-based Wasm, particularly security sandboxes and lightweight components.

 It should be obvious that code running in the browser must be considered untrusted and therefore must also be isolated (or sandboxed) to protect your computer against code on the internet. Core principles in the design of Wasm, namely, linear memory and a capability-based security model, significantly improve the security profile of code running in the browser. The same value is present on the server in the context of hosting multitenant code. Consider an application like a game that enables user-generated content to add items or other characters. This third-party code for extending the game is inherently untrusted, and thus we need to isolate it from the rest of the code in the game server. Just like in the browser, the Wasm security model is a fantastic way to implement plugins for untrusted code on the server.

 The other value of Wasm is small, lightweight components. Because web pages and Wasm are downloaded across the network, the smaller the size of the component, the more responsive the web page and the better the user experience. This same value of small modules applies on the server side as well, especially in the context of things like function-as-a-service, where code is dynamically spun up and down in response to user requests. Wasm can provide an order of magnitude (or more) of a speed-up in terms of starting dynamic code in response to user requests when compared with traditional process execution. This also has significant benefits for server developers.

 I hope that this brief history of how web technologies have shaped the internet gives you context and motivation to learn how you can harness the power of Wasm in your server-side applications to power the next generation of the internet!

 Brendan Burns
Co-creator of Kubernetes and Corporate Vice President
of Azure Cloud Native Open Source at Microsoft

 preface

 My experience with WebAssembly (Wasm) started with server-side applications rather than browser-based ones. While Wasm was initially created for web performance, I focused on its applications in cloud computing. I worked on SpiderLightning—a collection of WebAssembly Interface Types definitions that simplified application development by abstracting away environmental complexities. This work evolved into wasi-cloud-core, a set of cloud interaction interfaces that’s now part of the WASI standards, where I contribute as a champion.

 The idea for this book emerged from one of my talks at WasmCon, where Manning editor Jonathan Gennick approached me about writing a comprehensive guide to server-­side Wasm. The timing felt right—Wasm was gaining significant traction beyond the browser, but documentation and learning resources remained scarce. While AI topics dominate technical conferences, Wasm actually rated higher than AI in engagement at KubeCon EU 2024 in Paris, highlighting the community’s hunger for knowledge in this space.

 Currently, I work on Hyperlight, which, through its sister project Hyperlight-Wasm, enables Wasm adoption in public clouds like Azure by providing hardware-based isolation for multi-tenant workloads. This work has exposed me to different perspectives on where Wasm might fit in the server-side landscape, particularly in isolation-critical environments.

 What excites me most about Wasm is its promise of true portability and security without sacrificing performance. The ability to compile code from multiple languages into a secure, sandboxed format that runs consistently across different environments represents a fundamental shift in how we think about server-side development. Wasm enables us to break free from vendor lock-in, reduce cold start times in serverless environments, and deploy the same code from cloud to edge with confidence.

 This book reflects my belief that Wasm’s server-side capabilities deserve to be more accessible to developers. Throughout these pages, you’ll not only learn the technical details of working with Wasm modules and components but also gain practical experience building real applications. By switching between languages like Rust, JavaScript, and Python in our examples, I hope to demonstrate Wasm’s true language-agnostic nature and help you see how it can fit into your existing development workflow.

 I hope this book helps make Wasm technology more approachable and encourages more developers to experiment with its capabilities. The future of server-side computing is being written now, and Wasm is playing a crucial role in that story.

 acknowledgments

 Writing this book has been an incredible journey that wouldn’t have been possible without the support, guidance, and patience of many people.

 First and foremost, I want to thank my girlfriend, Beatriz. You’ve been my rock throughout this intensive writing process, taking over household responsibilities without complaint, showing endless understanding when I had to work through weekends and vacations, and always believing in me even when deadlines felt impossible. Your support means everything to me.

 I owe immense gratitude to my editorial team at Manning. Connor O’Brien, development editor: thank you for your exceptional guidance throughout this project, your patience with my questions, and for fighting battles with publishing on delivery schedules. Your advocacy made this book possible. Adam Chalmers, technical editor: your insights and thorough reviews elevated the technical accuracy and clarity of every chapter. Your attention to detail is remarkable. Gerard Gallant: your meticulous work as technical proofreader polished every detail and ensured the code examples work flawlessly. Angelina Lazukić, review editor: you orchestrated the extensive review process that brought diverse perspectives to strengthen this book.

 To Courtney Kimball and Manning’s marketing team—especially Aira Dučić, Ana Romac, Robin Campbell, Divya Mudaliar, and Sam Wood—thank you for your invaluable support in helping me share this book with the community through conferences and other promotional opportunities.

 This book benefitted enormously from the numerous reviewers who provided feedback throughout its development: Advait Patel, Beatriz Gascón Lourenco, Sergio Britos, David Justice, David Paccoud, Denis Saripov, Fahrudin Paljus, Heng Zhang, German Gonzalez-Morris, Ikko Ashimine, James Haring, Jeremy Lange, Joe Zhou, Joel Dice, John Guthrie, Jonathan Womack, Jorge Prendes, Juan Camilo Cifuentes, Clyde Kallahan, Liam Randall, Lîm Tsú-thuàn, Luke Wagner, Mario-Leander Reimer, Mark Fisher, Max Sadrieh, Michael Bright, Miley Fu, Mohammad Shahnawaz Akhter, Olivier Ducatteeuw, Peter Hampton, Piotr Jastrzebski, Piotr Sarna, Pradeep Saraswati, William Ko, Ronald Borman, Sander Zegveld, Shantanu Kumar, Simeon Leyzerzon, Thomas Lockney, Thorsten Hans, Tom Oeste, Vojta Tuma, Wayne Mather, William E. Wheeler, Zachary Manning, and Zbigniew Curylo. Each of you helped shape this book, catching errors, suggesting improvements, and ensuring the content serves its intended audience. Your collective wisdom made this a much better resource for the WebAssembly community.

 I’d also like to thank the broader WebAssembly community, particularly the Bytecode Alliance team and the WebAssembly Community Group. Your work on Wasmtime, WASI specifications, and tooling provides the foundation that makes server-side WebAssembly possible. Special thanks go to those who answered my questions on forums and GitHub issues as I worked through challenging technical details.

 To Jonathan Gennick, who first approached me after my WasmCon talk—thank you for seeing the potential for this book and for believing that the developer community needed a comprehensive guide to server-side WebAssembly.

 Finally, thank you to the entire production team at Manning who worked behind the scenes to transform my manuscript into the polished book you’re reading today. Aleksandar Dragosavljevic facilitated my connection with this exceptional team. Keri Hales, production editor, expertly guided the book through the production process. Kari Lucke, copy editor, refined my prose and ensured consistency throughout. Katie Tennant, proof manager, coordinated the final quality checks that caught countless details. Tamara Švelić Sabljić, typesetter, brought the technical content to life with clean, readable layouts. Your professionalism and dedication to quality are evident on every page.

 about this book

 Server-Side WebAssembly: Building portable and secure multi-language apps teaches you how to make use of WebAssembly (Wasm) beyond the browser to build efficient, secure, and portable server-­side applications. Rather than presenting abstract concepts in isolation, this book takes a hands-on approach: you’ll build a complete smart content management system (SmartCMS) from the ground up, with each chapter introducing new Wasm concepts through practical implementation. This approach ensures you not only understand the theory but also gain real-world experience applying Wasm’s unique capabilities for cloud computing, edge deployment, and cross-language interoperability.

 Who should read this book

 This book is for backend developers, systems architects, and DevOps engineers who want to use Wasm for server-side development. While the book primarily uses Rust for examples, readers comfortable with any modern programming language can follow along—the concepts translate across languages that compile to Wasm. You should have basic familiarity with server-side development concepts, containerization basics, and command-line tools. No prior Wasm experience is required.

 How this book is organized: A road map

 The book contains nine chapters divided into two parts. Part 1: WebAssembly for Architects (chapters 1–5) introduces Wasm from a systems perspective, covering the fundamental concepts and architecture:

 	Chapter 1 introduces Wasm’s evolution from browser technology to server-side platform, exploring its performance characteristics, security model, and ideal use cases for serverless and edge computing.

 	Chapter 2 demonstrates building server-side applications with Wasm modules, diving deep into Wasm’s memory model and the guest-host architecture that enables system interaction.

 	Chapter 3 introduces Wasm components, showing how they enhance portability and security through higher-level abstractions and cross-language interoperability.

 	Chapter 4 explores interfacing Wasm with underlying systems through WASI, demonstrating capabilities management and component composition.

 	Chapter 5 showcases advanced applications, including machine learning inference with wasi-nn and database integration, highlighting Wasm’s versatility.

 Part 2: WebAssembly for Developers (chapters 6–9) focuses on practical development and deployment:

 	Chapter 6 covers creating production-grade applications using standardized interfaces and prebuilt hosts, emphasizing best practices for real-world deployments.

 	Chapter 7 introduces Wasm containers, demonstrating how to package and deploy Wasm workloads using familiar containerization tools.

 	Chapter 8 explores Kubernetes integration for Wasm applications, covering orchestration, scaling, and management in cloud environments.

 	Chapter 9 examines the future of Wasm, including emerging proposals, ecosystem developments, and the potential effects on cloud computing.

 While the book is designed to be read sequentially, with each chapter building on previous concepts, experienced developers can jump to specific topics. The SmartCMS project that runs throughout the book provides hands-on experience with each concept as it’s introduced.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/server-side-webassembly. Source code for the examples in this book is available for download from the Manning website at https://www.manning.com/books/server-side-webassembly and from the GitHub repository at https://github.com/danbugs/serverside-wasm-book-code. The repository includes all code examples, the complete SmartCMS project, and additional resources.

 The book primarily uses Rust for Wasm examples, with JavaScript and Python for demonstrating cross-language capabilities. You’ll need the following software to run the examples:

 	Rust (versions 1.84.0 and 1.85.0 or later)

 	Node.js (version 22 or later) with npm

 	Python (version 3.12 or later)

 	Docker (version 28.0.0 or later)

 	Various Wasm tools (installation instructions provided in each chapter)

 Detailed setup instructions are provided in appendix A, and each chapter includes specific toolchain requirements as needed.

 liveBook discussion forum

 Purchase of Server-Side WebAssembly includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/server-side-webassembly/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 Other online resources

 For additional learning and support:

 	WebAssembly Community Group: https://www.w3.org/community/webassembly/

 	WASI proposals and status: https://github.com/WebAssembly/WASI/blob/main/Proposals.md

 	Bytecode Alliance (maintaining Wasmtime and other tools): https://bytecodealliance.org/

 	Wasm language support: https://developer.fermyon.com/wasm-languages/webassembly-language-support

 about the author

 [image:]

 Danilo (Dan) Chiarlone is a champion of multiple WebAssembly System Interface (WASI) proposals and works at Microsoft on cloud and virtualization technologies. He is a passionate educator who offers free lessons on Rust and WebAssembly through his YouTube channel and is a frequent conference speaker at events such as WasmCon and RustConf.

 about the cover illustration

 The figure on the cover of Server-Side WebAssembly, “Marchand d’Outres à Pulque,” or “Merchant carrying pulque-filled wineskins,” is taken from a book by Claudio Linati published in 1828. Linati’s book includes hand-colored lithographs depicting a variety of civil, military, and religious costumes of Mexican society at the time.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 WebAssembly for architects

 WebAssembly began its life in the browser, promising near-native performance for web applications. But today, its most transformative potential lies beyond the browser—in the cloud, at the edge, and everywhere that server-side applications run. As WebAssembly matures from a browser technology to a universal runtime, it’s reshaping how we think about portable, secure, and efficient computing.

 This first part of the book introduces you to WebAssembly from an architect’s perspective, building your understanding from the ground up. You’ll discover why WebAssembly’s unique combination of performance, security, and language agnosticism makes it ideal for modern server-side development, particularly in serverless and edge-computing environments, where cold starts and resource efficiency matter most.

 Chapter 1 explores WebAssembly’s evolution and its advantages for server-side development, from its sandboxed security model to its remarkable startup times. Chapter 2 takes you inside WebAssembly modules, revealing the low-level building blocks of linear memory and basic types that form the foundation of all WebAssembly applications. Chapter 3 introduces WebAssembly components, showing how they elevate the developer experience through higher-level abstractions and enable seamless cross-language interoperability. Chapter 4 demonstrates how WebAssembly interfaces with underlying systems through WASI, teaching you to manage capabilities and compose components. Finally, chapter 5 showcases real-world applications, from machine learning inference to database integration, illustrating WebAssembly’s versatility across diverse workloads.

 By the end of this part, you’ll understand not just what WebAssembly is but why it represents a fundamental shift in how we build and deploy server-side applications. You’ll have the architectural knowledge needed to design systems that use WebAssembly’s unique strengths.

1 Introducing Wasm on the server

This chapter covers

 	The evolution of Wasm from a browser-based tool to a versatile technology for server-side development

 	The key attributes of Wasm: Performance, security, and flexibility

 	Practical scenarios where Wasm excels

 	The limitations and challenges of adopting Wasm in server-side development

 WebAssembly, commonly abbreviated as Wasm, is a construct that is akin to an instruction set architecture (ISA) like x86_64, aarch64 (also known as arm64), and others. In the same way you can compile your code to such architectures, you can compile your code to Wasm. But, unlike x86_64 or aarch64, you can’t go to the store and buy a computer that contains a Wasm chip. Wasm is not a real or physical platform. As illustrated in figure 1.1, it can be thought of as an entirely agnostic hardware abstraction layer over the hardware itself. Wasm can then be transformed into native code for the specific hardware it is running on. In fact, one of Wasm’s goals is to serve as a common denominator across different ISAs.

 [image: A screenshot of a phone AI-generated content may be incorrect.]

 Figure 1.1 Wasm as an abstraction layer virtualizing over various kinds of hardware

 Wasm was released as a minimum viable product in 2017, and it was created to meet the performance demand for increasingly hard computational tasks that people wanted to run in the browser, like 3D applications, audio and video software, and games, which JavaScript (i.e., the web’s only universally supported native programming language) could not handle due to its inconsistent performance and various other pitfalls. Unlike earlier attempts, such as Java applets—which also aimed to bring high-performance code to the browser but struggled with security vulnerabilities, plugin dependencies, and, still, inconsistent performance—Wasm offers a modern solution. As a W3C standard, Wasm is an official language of the web, alongside JS, HTML, and CSS. To address the web’s performance challenges (as illustrated in figure 1.2), Wasm was designed to let developers compile code written in high-performance languages like C, C++, Rust, and others to run safely in the browser at near-native speeds.

 [image: A screenshot of a video game AI-generated content may be incorrect.]

 Figure 1.2 Compiling to Wasm from various languages

 With this idea in mind, some of Wasm’s design goals were established for it to be

 	Fast, with predictable, near-native execution

 	Safe, designed for efficient, secure verification and isolation of untrusted code

 	Hardware independent

 	Language independent

 People quickly realized that these characteristics could also benefit the server side. In 2019, the WebAssembly System Interface (WASI) was released. It defined an interface that Wasm runtimes can implement to enable Wasm to communicate with an operating system (OS) and run outside the web. In a browser, Wasm relies on the browser itself as its environment; outside the browser, a Wasm runtime—often referred to as a host—serves the same role, providing the necessary system interactions.

1.1 What is the server side and where does Wasm fit in?

 It’s easy to get overwhelmed when developing server-side applications today. Unlike before, where you most probably just crafted a monolithic (i.e., nonmodularized) application that ran on a single server, today, you have to think about microservices, serverless, containers, and edge computing. And, with all these options, it’s hard to know which one best fits the needs of your project.

 Aside from managing your own hardware, there are three primary levels of abstraction for server-side development:

 	
Infrastructure as a service (IaaS) is when you rent, say, a virtual machine (VM), and you are responsible for managing everything on it, from the OS to your application, while the cloud provider manages the physical hardware.

 	
Platform as a service (PaaS) is when the cloud provider is responsible for managing the OS and the hardware, and you are only responsible for your application, which is often deployed in a container.

 	
Serverless or function as a service (FaaS) is when you don’t have to worry about the OS, the hardware, or particular details of your application—like scaling. Instead, you write a function, and the cloud provider manages its execution in response to events. With that, FaaS has the unique advantage of being able to scale to zero, meaning if no one is using your application, you don’t have to pay for it, which is achieved by the cloud provider deprovisioning the containers running your code after a specific period of inactivity and relaunching them when a request comes in.

 Containers are essentially lightweight, portable packages that bundle your application code with all its dependencies—libraries, runtime, system tools, and configuration files—into a single unit that can run consistently across different environments. Think of them like shipping containers for software: just as a shipping container can be moved from truck to ship to train without unpacking its contents, a software container can move from your laptop to a staging server to production without worrying about compatibility problems. This consistency and portability make containers the backbone of modern PaaS and FaaS platforms.

 Solomon Hykes, the founder of Docker, once famously said: “If WASM+WASI existed in 2008, we wouldn’t have needed to create Docker. That’s how important it is. WebAssembly on the server is the future of computing.” As implied by this quote and its context in relation to containers, you might deduce that Wasm is particularly impactful for both abstraction levels that have containers at their core—PaaS and FaaS. And if you did, you would be right!

 In 2022, Docker announced its Docker+Wasm Technical Preview (https://mng.bz/vZQa), which allows you to run Wasm workloads within their platform using the same containerization technologies. While these “Wasm containers” still adhere to the Open Container Initiative (OCI) image format and runtime specifications, they use Wasm’s unique capabilities for running lightweight, secure, and portable applications.

 NOTE The OCI image format is a standardized way to package and distribute containerized applications, ensuring compatibility across different runtimes and platforms. Originally designed for traditional containers, this format defines how filesystem layers, metadata, and configurations are structured within an image. By adhering to this format, Wasm workloads can integrate with existing container tools while still benefiting from Wasm’s advantages.

 In the upcoming section, we will explore the advantages of using Wasm and try to answer why you might want to use a Wasm container over a traditional Docker container.

1.2 The advantages of Wasm for server-side development

 “Write once, run anywhere” (WORA), while being a very fitting slogan for Wasm, was first said in 1995 while describing the cross-platform benefits of the Java programming language. This shows that Wasm’s benefits (for this example, its portability) are not new ideas. So, what is Wasm’s differentiator, and why should you care about it?

1.2.1 Language agnosticism

 Java allows you to WORA by the fact that, when you compile your Java application, it gets translated to Java bytecode, which, just like Wasm, is entirely platform independent. Then, the Java bytecode can be run by the Java Virtual Machine (JVM), which serves the same role as a Wasm runtime in converting agnostic instructions to platform-­specific ones. The parallels between Java and Wasm are shown in figure 1.3.

 [image: A screenshot of a computer AI-generated content may be incorrect.]

 Figure 1.3 Java and Wasm’s similarities

 The main difference between the two, as you can see in figure 1.3, is that Java bytecode, while it does aid portability, is primarily designed for Java and a few other languages with similar execution models (e.g., Kotlin). Wasm, on the other hand, is built as a truly language-agnostic binary format. While over 40 languages can be compiled to Wasm (see https://mng.bz/YZNj for more details on whether your language is supported), the key advantage is not just the breadth of language support but the lightweight nature of the runtime. Unlike the JVM, which requires a heavyweight VM, Wasm’s design avoids the need for a complex execution environment, making it well suited for languages like C, C++, Rust, and Zig.

 This architectural difference also means Wasm can more easily support languages like Python, which rely on C-based components, whereas running Python on the JVM requires reimplementation from scratch. Additionally, Wasm’s simple instruction set and stack-based execution model were intentionally designed for broad compatibility across languages, unlike JVM, which was originally optimized for Java.

 Another important distinction is that Wasm is an open standard developed through the W3C with multivendor collaboration; it is not controlled by any single company. This contrasts with Java, where Oracle maintains considerable influence over the language’s direction. Interestingly, Oracle also owns the JavaScript trademark, but this is purely nominal.

 Wasm’s broad language support, in theory, sounds fantastic, but in practice, it can sometimes mean that the support for a particular language is not as mature as it is for others. One reason for a possible difference in support is that, for a long time, Wasm did not have garbage collection, which is a feature of many languages that allows a program to have automatic memory management by the fact that any allocated memory that is no longer referenced is recognized and reclaimed. This meant that languages that rely on garbage collection, like Kotlin, PHP, and Java, needed to first compile their entire runtime to Wasm so that the runtime can be shipped together with a Wasm application written in that same language. Let’s take PHP as an example. As illustrated in figure 1.4, using PHP Wasm without garbage collection meant that a large chunk of your Wasm-compiled app is really just the PHP runtime, which, say, in the context of the browser, will run side by side with JavaScript’s runtime garbage collector.

 [image: A screenshot of a computer AI-generated content may be incorrect.]

Figure 1.4 Running a PHP Wasm without garbage collection application in the browser

 Running PHP’s own garbage collector alongside JavaScript’s is inefficient and redundant. A better approach is to enable Wasm to work with the host environment’s garbage collection infrastructure. This is exactly what WasmGC—a proposal by the Web­Assembly Community Group—aims to address.1 It introduces garbage-collected reference types that can be managed by the host, reducing the need to bundle a complete garbage collection system within each language’s runtime.

 However, this doesn’t mean the entire PHP runtime can be removed when compiling to Wasm. Components like the interpreter, support for dynamic evaluation, and other necessary features still need to be included in the Wasm binary to ensure proper execution. Language support for Wasm is a constantly evolving landscape. Throughout this book, while we primarily use Rust in the examples, we will also explore writing applications in higher-level languages like JavaScript and Python.

1.2.2 Performance

 When it was released for the web, Wasm promised near-native performance. This means if you compile a C application to a native binary and run it on your desktop environment and then compare that benchmark to running the same application compiled to Wasm but running on the browser, you should see that it performs just about the same. Does that still hold true for the server side? To answer that question, there are a couple of scenarios we can compare.

 Wasm app vs. x86_64 app

 In this scenario, we are comparing single-threaded benchmark applications compiled to both the x86_64 architecture and Wasm. The x86_64 binary runs directly atop the native OS, while the Wasm app runs in a Wasm runtime that implements WASI atop the native OS. Spies and Mock2 showed that the Wasm app, on average, performed only 14% slower than the x86_64 app, which, all in all, is close to near-native performance.

 But in practice, apps are often containerized. Next, let’s compare a Wasm app’s performance to the same app running in a container.

 Wasm app vs. short-running workload in a container

 In this scenario, we are looking at a Wasm application running on a Wasm runtime versus a containerized application running with Docker. Long et al.3 showed that Wasm runtimes running a simple application that reads a file and exits perform at least 10× faster than Docker running the same application from cold start (i.e., meaning the time it takes for the container to start for the first time or from a fully deprovisioned state). And when running other benchmarking applications, Wasm was found to usually perform 10% to 50% faster than the same app containerized even on warm start (i.e., the time it takes for the container to start after it has been previously initialized but is currently inactive).

 This, while impressive, does not necessarily paint an accurate picture of how Wasm will perform in the real world with more complex applications like, say, running an HTTP server. So let’s explore further in the next scenario.

 Wasm container vs. Docker container

 In this scenario, we will compare two container types: a traditional Docker container and the newly introduced Wasm container. This time, both applications were written to run a simple HTTP server that will listen for requests and provide a response after querying a SQL database. Sondell4 showed that, when stressing such a system with 50 concurrent clients making requests, the Wasm application showed a worst-case latency of about 15.2 seconds, while the Docker container showed a worst-case latency of 0.881 seconds. This means that the Docker container was about 17× faster than the Wasm one. So what’s going on? Is the containerization of Wasm creating that much overhead? The answer is no. In fact, when running the same application outside the container and just atop the respective Wasm runtime (i.e., simply eliminating containerization), the Docker container was still almost 13× faster. The answer here lies in Wasm’s lack of support for multithreading. That is, the Docker container, when stressed, increased its CPU utilization to 11 cores, while Wasm, due to its current single-­threaded nature, only utilized one core.

 Wasm’s threading proposal is still in the works. But, while still being a significant limitation, this is not the end of the road for Wasm. In fact, with a modern setup, it’s very common for multithreading to be handled by the Wasm runtime through having each request handled by starting a new Wasm instance entirely. Regardless, Sondell (2024) showed that, while latency was left to be desired with this setup, the cold start time of a Wasm container was about 160% faster than that of a Docker container. This is particularly true because Wasm containers are much smaller (upwards of 80% smaller!) than Docker containers, as they are never packaged together with an OS (e.g., Linux), which consequently reduces the data volume required to be pulled and accelerates download speeds. This is illustrated in figure 1.5, which depicts two Dockerfiles: one for a Docker container and one for a Wasm container.

 [image: A black screen with a black background AI-generated content may be incorrect.]

Figure 1.5 Dockerfiles for a Docker container and a Wasm container

 As you can see, the Wasm container starts from scratch (i.e., a special empty image), while the Linux container begins with a base Ubuntu v23.10 image. This means the Wasm container includes only the application itself, whereas a typical Docker container includes both the application and the OS. While traditional containers can sometimes reach several gigabytes in size, Wasm containers are typically just a few megabytes. We will explore Wasm containers in more detail in chapter 7.

 Is FROM scratch possible outside Wasm?

 Yes. Docker containers don’t necessarily have to be packaged together with an OS. You can avoid specific OS bits by using a static native binary along with FROM scratch, which is not entirely uncommon for some Rust- or Go-based containers. This section just illustrates with FROM ubuntu:23.10 to display a commonly used setup.

 The improved cold start times are a big deal, particularly for serverless applications that must constantly deprovision and reprovision containers to accommodate scaling to zero. This process often results in frequent cold starts.

 As described by Hall and Ramachandran,5 serverless applications suffer from the cold start problem, where startup times typically begin at around 300 milliseconds and can be significantly longer depending on factors like networking configurations (e.g., service meshes) and initialization processes. In the same paper, they compared the performance of non-Wasm versus Wasm serverless applications under varying access patterns and found that, for applications experiencing periods of inactivity, Wasm’s improved cold start times led to 70% faster response times for moderate tasks and 90% faster response times for basic tasks.

 Plus, Shillaker and Pietzuch,6 when combining serverless and Wasm, managed to speed up training a machine learning model by 2× and utilized 10× less memory. So, as it stands, it’s clear that Wasm’s sweet spot in server-side development really is powering this new wave of applications.

 Later in this book, we will explore for ourselves how to write Wasm applications that use HTTP servers and machine learning.

 Wasm density in Kubernetes

 Until now, we have mostly focused on the runtime and cold start aspects of performance. However, another equally important facet is density—specifically, how many workloads (in our case, Wasm instances) can be packed onto a given set of hardware. Greater density is crucial because it directly translates to cost savings. For example, the company ZEISS was able to reduce its Node.js Express app deployment size from 423 MB to 2.4 MB by leveraging Wasm, resulting in over 50× greater workload density per Kubernetes node. This higher density allows for more efficient use of resources, reducing the need for additional hardware and lowering overall infrastructure costs.

1.2.3 Hardware agnosticism

 Another great benefit of Wasm is the fact that it is completely independent of platform or hardware. The bytecode makes no assumptions about the underlying system, and it is entirely up to WASI to fill in the gaps. This has various benefits. For one, it means you can compile your application on an x86_64 machine and run it on an arm64 one without any changes. This has the potential to save countless DevOps hours that would be spent creating pipelines with runners to build your application for the various platforms you want to support. Instead, with Wasm, you build once and run anywhere.

 But, what’s more, Wasm’s hardware agnosticism combined with its low memory footprint makes it particularly well suited for edge computing—a field that aims to bring computing closer to the sources of data (like mobile devices, vehicles, sensors, and so on) in an attempt to reduce latency and bandwidth usage. Edge environments are very different from the cloud, where we essentially assume unlimited resources. Instead, for the edge, we need to support a large number of different devices with limited resources. Wasm perfectly fits this requirement and has the potential to power things like self-­driving cars and smart cities through edge computing.

1.2.4 Security

 Wasm is designed to run within a memory-safe sandboxed execution environment. By itself, it cannot interact with or access the native OS except through specific, tightly controlled capabilities provided by the Wasm runtime. For example, if the Wasm runtime grants the Wasm binary access to standard output to print “Hello, World,” that controlled interaction is the only way the Wasm binary can communicate with the native OS, all while remaining within its sandbox. As illustrated in figure 1.6, this is in stark contrast to native applications that have full access to the native OS system calls (i.e., the fundamental interfaces that allow applications to request services from the OS, such as file manipulation, process control, and network communication) and the native OS memory.

 [image: A screenshot of a computer AI-generated content may be incorrect.]

Figure 1.6 A native (traditional) application security model versus Wasm’s capability-based security model

 This isolation is especially crucial in the context of cloud computing, where supply-­chain attacks are becoming increasingly common. Supply-chain attacks occur when a vulnerability in one component can potentially compromise the entire system, as all parts of the application often share the same environment and resources. However, with Wasm’s sandboxed execution, each component operates independently, significantly reducing the risk that a compromised module could affect the rest of the application.

1.2.5 Standards-based and vendor neutrality

 One of the compelling advantages of Wasm and WASI for server-side development is their foundation on open standards. Unlike many current serverless offerings that are tied to proprietary platforms, Wasm and WASI provide a vendor-neutral environment, allowing organizations to build serverless applications without being locked into a specific vendor’s ecosystem.

 This standards-based approach gives enterprises the flexibility to move their applications across different environments, whether on premises, in the cloud, or at the edge, without needing to rearchitect or redeploy their entire application stack. For organizations looking to adopt serverless technologies while avoiding vendor lock-in, Wasm offers a path to lower operational burden and increased portability, ensuring that their applications remain future-proof and adaptable to changing infrastructure needs.

1.3 When and where to use Wasm (and when not to)

 As discussed, Wasm can be pivotal for serverless and edge computing. Particularly, it has great advantages for serverless as it is, on average, 80% faster than traditional serverless technologies. In addition, the same low memory footprint that gives Wasm the edge with serverless when paired with its hardware agnosticism makes it a great fit for edge computing, which relies on executing code at the edge of the network on a variety of devices with limited resources.

 In addition to these areas, Wasm has also found its footing in

 	
Mobile and desktop applications—Wasm’s cross-platform nature allows developers to share the same code across different platforms, such as an app’s mobile and desktop versions, similar to how JavaScript frameworks like Electron enable cross-platform development.

 	
Microcontrollers—Microcontrollers are tiny, single-chip computers embedded in everything from household appliances to industrial machinery and vehicles. The microcontroller field is heavily dominated by low-level languages like C, which can make debugging and porting code across different microcontrollers challenging. Wasm has gained popularity in this space for its ability to serve as a middle ground between high-level languages—often too slow for microcontrollers—­and low-level languages, enabling developers to write performant, debuggable, and portable code. Beyond immediate development benefits, Wasm also has the potential to improve the long-term maintainability of embedded software. Modern cars, for instance, contain dozens of microcontrollers managing everything from engine control to entertainment systems. The average lifespan of a European car, including its second life in Eastern Europe, is around 30 years. This means vehicles on the road today may still rely on software built during the Windows 95 era. With Wasm, manufacturers could more efficiently and securely update and maintain such software over decades, reducing technical debt and improving long-term sustainability.

OEBPS/Images/Chiarlone.jpg

OEBPS/Images/cover.jpg
Building portable and secure
multi-language apps

Danilo Chiarlone

Foreword by Brendan Burns
Aterword by Luke Wagner

/'I MANNING

OEBPS/Images/CH01_F04_Chiarlone.png
Browser

Php compiles executed

to by
vicode Wasm
My relatively C)
Large PHP
runtime with

garbage collector

OEBPS/Images/CH01_F03_Chiarlone.png
compiles to compiles to

b

01101010
01100001

0110110 | __ analogous ___
01100001 to ‘Wasm is also
" bytecode!
Java bytecode

compiles to eomplles to

b

Java Vitual Machine | Snalog0us

abstracts over

0"
=
Hardware

OEBPS/Images/manning_m.jpg

OEBPS/Images/Manning_M_small.png

OEBPS/Images/CH01_F06_Chiarlone.png
Traditional executable Wasm-based app

Native OS Native OS

‘Sandbox

Can make any
system call!

.

.

\~-granted.
:

“My app” cannot
use this capability!

OEBPS/Images/CH01_F02_Chiarlone.png
complles to

OEBPS/Images/CH01_F05_Chiarlone.png
Dockerfile for Wasm container

Dockerfile for Linux container T Pt

FROM ubuntu:23.10

cMD
["/wasm-httpserver.wasm"]

CMD "./rust-httpserver"]

OEBPS/Images/CH01_F01_Chiarlone.png
compiles to

