

 inside front cover

 [image:]

 [image:]

 The Jamstack Book

 Beyond static sites with JavaScript, APIs, and markup

 Raymond Camden, Brian Rinaldi

 Foreword by Mathias Biilmann Christensen

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 [image:]

 	

 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	

 Development editor:

 	

 Katie Sposato Johnson

 	

 Technical development editor:

 	

 Louis Lazaris

 	

 Review editor:

 	

 Mihaela Batinić

 	

 Production editor:

 	

 Andy Marinkovich

 	

 Copy editor:

 	

 Michele Mitchell

 	

 Proofreader:

 	

 Keri Hales

 	

 Technical proofreader:

 	

 David Cabrero

 	

 Typesetter:

 	

 Gordan Salinović

 	

 Cover designer:

 	

 Marija Tudor

 ISBN: 9781617298882

 dedication

 To Lindy: You like to tell me to choose happy—and I absolutely did when I chose you. I love you. Also, Laser says Utini!

 —Raymond

 To my wife, Claudia, and my sons, Luke and Sam, who love me, challenge me, and give my life meaning. I love you!

 —Brian

contents

 front matter

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 1 Why Jamstack?

 1.1 What is the Jamstack?

 1.2 A brief history of Jamstack

 The rise of static site generators

 From static sites to JAMstack

 From JAMstack to Jamstack

 1.3 The benefits of Jamstack architecture

 Performance

 Security

 Cost

 1.4 When Jamstack may not be the right choice

 1.5 Popular sites built with the Jamstack

 Smashing Magazine

 Nike

 Impossible Foods

 Restaurant Brands International (RBI)

 Digital.gov

 1.6 What you’ll learn in this book

 2 Building a basic Jamstack site

 2.1 Working with Eleventy

 Creating your first Eleventy site

 Working with template languages

 Adding layouts and includes

 Using collections in your Eleventy site

 Working with data

 2.2 Let’s build Camden Grounds

 2.3 Going further with Eleventy

 3 Building a blog

 3.1 Blogging with Jekyll

 3.2 Your first Jekyll site

 3.3 Writing a Jekyll post

 A liquid refresher

 3.4 Working with layouts and includes

 Layout inheritance

 Using includes

 3.5 Creating additional files

 3.6 Working with data

 3.7 Configuring your Jekyll blog

 3.8 Generating your site

 3.9 Building a Jekyll blog

 3.10 Going further with Jekyll

 4 Building a documentation site

 4.1 Requirements of a documentation site

 The example site requirements

 4.2 Choosing the right tools

 What is a headless CMS?

 Headless CMS options

 Why Netlify CMS?

 Static site generator (SSG) options

 Why Hugo?

 4.3 Building the example site

 Installing Hugo

 Creating a new Hugo site

 Setting up the Hugo Book theme

 Installing Netlify CMS

 Modeling content in Netlify CMS

 Deploying to Netlify

 Configuring GitHub for authentication

 Configuring Netlify for authentication

 Editing content as an admin

 The open authoring workflow

 Simplifying the open authoring workflow

 4.4 What’s next?

 5 Building an e-commerce site

 5.1 Requirements of an e-commerce site

 The example site requirements

 5.2 Choosing the right tools

 What is headless e-commerce?

 Headless e-commerce options

 Why Commerce.js?

 Static site generator options

 Why Next.js?

 5.3 Getting set up to build the example e-commerce site

 Setting up Next.js

 Setting up Commerce.js

 Setting Next.js environment variables

 Loading the Commerce.js SDK

 5.4 Building the Jam Store e-commerce site

 Creating the product listing component

 Building the product listing

 Building the Product Detail page

 Enabling add-to-cart functionality

 Building the shopping cart

 Adding Markdown content

 5.5 What’s next?

 6 Deployment

 6.1 Web servers—The tried-and-true way

 6.2 Cloud file storage providers

 Amazon S

 Other cloud file storage hosting options

 6.3 Azure Static Web Apps

 6.4 Deploying with Vercel

 6.5 Deploying with Netlify

 7 Adding dynamic elements

 7.1 Forms, forms, and more forms

 Using Google Forms

 Integrating FormCake

 Other options

 7.2 Adding search

 Searching with Lunr

 Other options

 7.3 Other dynamic options

 8 Working with serverless computing

 8.1 What is serverless computing?

 8.2 Building serverless functions with Netlify

 Adding serverless computing to Camden Grounds

 More on Netlify functions

 8.3 Building serverless functions with Vercel

 Your first Vercel serverless function

 Vercel functions with dynamic path support

 Adding serverless functions to Camden Grounds (again)

 9 Adding a content management system

 9.1 Types of headless CMSs

 Pros and cons of Git-based headless CMSs

 Pros and cons of API-based headless CMSs

 9.2 Exploring popular headless CMSs

 Contentful

 Sanity

 Defining a content model using Sanity

 9.3 Using WordPress

 Installing WordPress locally with Local

 Installing the Gatsby plug-ins for WordPress

 Setting up Gatsby

 Exploring Gatsby’s data layer

 Consuming WordPress content in Gatsby

 Next steps in using WordPress as a headless CMS

 9.4 Connecting a CMS using a site builder

 WeWeb

 Strattic

 Stackbit

 9.5 What’s next?

 10 Migrating to the Jamstack

 10.1 What kind of site are you migrating?

 Content-heavy sites

 Web applications

 Large sites

 10.2 What functionality do you need to migrate?

 Popular third-party Jamstack services

 10.3 Making the move

 Don’t move everything at once

 Pick a headless CMS up front

 Consider building templates from scratch rather than porting

 Keep as much as possible

 10.4 What’s next?

 index

front matter

foreword

 It’s a great pleasure for me to write this foreword to Brian and Raymond’s new book on the Jamstack. Both Brian and Raymond have been part of this dynamic movement that’s changed the face of the modern web over the last 5 to 10 years.

 I first met Brian at the start of 2015 when he was speaking about static site engines at the HTML 5 meetup in San Francisco. This was in the earliest days of Netlify, while the product was still in private beta, and before I had even coined the term Jamstack, at a time when just a few early adopters across the industry had started to believe that the web could be simpler, faster, safer, and better to develop with if we embraced the idea of decoupling the web UI from backend infrastructure and business logic.

 It was meeting with and talking to these early adopters in different areas of our industry, like Brian, Raymond, and many others working on SaaS applications, headless CMSs, real-time web databases, interactive experiences on the web, and so on, that helped my cofounder and I build conviction that there was a broad, industry-wide change about to happen and that we needed a name for it and a nomenclature around it.

 One night, in conversation with a friend, I came up with the term Jamstack and the rest—as they say—is history. We started circulating this term among the people we had connected with as well as the community that was already starting to form around Netlify at the time—Brian and Raymond among them—and the term started spreading.

 Today the Jamstack ecosystem is at an interesting point of potential and tension. On the one hand, there’s no doubt that the Jamstack architecture has changed the modern web for the better: we’ve seen a groundswell of platforms, frameworks, APIs, web databases, content, and commerce platforms emerge and grow up around the category, and the web is a second-to-none platform to develop for today. On the other hand, some of the initial principles around simplicity and of prebaking a ready-to-serve frontend are being challenged by different approaches to on-demand edge-based rendering layers and hybrid build tools, where developers sometimes have to navigate different rendering models on a page-by-page basis.

 I’ve always known Brian and Raymond as curious minds always searching for simple and approachable tool chains that stay close to the fundamentals of the web. And this book is very much a practitioner’s guide to the Jamstack, where you can take a tour with these two experienced Jamstack developers through a selection of the different build tools and site generators you’ll encounter in today’s Jamstack landscape, learn how to get productive, and make your own choices among different approaches for different projects.

 The landscape of tools and frameworks will always be shifting and changing on the web, and no tool will ever be the right one for every problem you will encounter. Building a solid understanding of the strengths and tradeoffs that each tool brings, and developing a good instinct for how each tool feels, will help you better evaluate and navigate the rapidly evolving Jamstack ecosystem as existing frameworks change and innovate, and as new tool chains emerge.

 —Mathias Biilmann Christensen

 CEO and cofounder, Netlify

preface

 Both Brian and I have been fortunate to have been in the web development business for many years. We’ve seen the good (evergreen browsers!), the bad (you’ll get those new features in a year or two!), and the even worse (tables for layout totally make sense). As developers with a bit of experience (and gray hair), we both were excited about the introduction of the Jamstack (or static sites, as it was originally called). In many ways, it was a modern take on building the web that we fell in love with at the start of our careers—one based on simple files that we carefully handcrafted in text editors. But the Jamstack was also much more practical and sensible by making use of the best aspects of modern development frameworks and adopting modern best practices.

 As proponents of the Jamstack, we both feel that there’s no better time for developers to get involved. While the Jamstack has been around for a few years now, as a whole, it’s still very new, and the tools and technologies around it are just now becoming mature and gaining mainstream adoption. We both think that the Jamstack is a compelling framework for building websites that’s likely to be useful for most developers. That being said, there’s also a strong need for a book that introduces readers to the Jamstack while also giving them multiple examples of what can be built with it.

 As we’re different people with different opinions, you’ll see different tools discussed here, which will hopefully give you an appreciation for the breadth of options available to the aspiring Jamstack developer. We both agree that there’s almost always a way to solve a problem using the Jamstack; the crucial bit is finding the solution that works best for you and your team. While going through the examples in this book, try to focus on the problems being solved, and if you aren’t necessarily happy about the “how,” be happy with the knowledge that there are always alternative solutions that can work much better for you.

 —Raymond Camden

acknowledgments

 This book, like any good (and hard-won) project, was the work of many people. First, we would both like to thank our esteemed (and very patient) editor, Katie Johnson. Thank you for taking the time to explain the processes as well as putting up with our (totally valid!) excuses. We also appreciate the hard work of all the people at Manning who helped produce this book.

 Raymond would like to thank Brian for agreeing to work with him, even though his instincts told him otherwise. The next book will be even more fun, right?

 Brian would like to thank Raymond for pushing him into writing this book, and remains grateful even if he complained a lot during the process.

 We’d both like to thank all the folks in the Jamstack community who work on the tools or write the articles that this book was built on. No technology can succeed without a great community behind it, and Jamstack definitely has that.

 To all the reviewers: Alex Lucas, Amit Lamba, Anshuman Purohit, Baskar Rao Dandlamudi, C. Daniel Chase, Casey Burnett, Conor Redmond, David Cabrero, Fabrice Gouédard, Frans Oilinki, George Thomas, Jason Gretz, John McNew, Jonathan Cook, Mario Ruiz, Matej Strašek, NaveenKumar Namachivayam, Rodney Weis, Sachin Singhi, Satej Sahu, Scott Stroz, Sergio Arbeo, Sheik Uduman Ali M, Steve Albers, Theo Despoudis, Tristan V. Gomez, and Zoheb Ainapore, your suggestions helped make this a better book.

about this book

 The Jamstack Book was written to help readers get an understanding of what working with the Jamstack really entails while also providing multiple real-world examples that apply that understanding. It begins by giving several different examples of building common website archetypes using popular static site generators. We then explore other parts of the Jamstack ecosystem that will be useful once developers start creating real-world projects using Jamstack tools.

Who should read this book

 The Jamstack Book is for web developers who are looking to embrace, or at least consider, working with the Jamstack methodology. The reader should have a basic understanding of web fundamentals (HTML, JavaScript, and CSS) but need not be an expert in any particular aspect. This book will help cement the many benefits of using the Jamstack by providing multiple examples, such as blogs and documentation sites.

How this book is organized: A road map

 The book has 10 individual chapters:

 	

 Chapter 1 explains what exactly is meant by Jamstack and why developers should consider it.

 	

 Chapter 2 introduces Eleventy and demonstrates a very simple brochure-ware site.

 	

 Chapter 3 introduces Jekyll and walks you through building a blog.

 	

 Chapter 4 makes use of the Hugo static site generator and explains how to build a documentation site.

 	

 Chapter 5 demonstrates e-commerce with the Jamstack and uses Next.js.

 	

 Chapter 6 explains how Jamstack sites can be moved into production.

 	

 Chapter 7 demonstrates adding dynamic elements back into static web pages.

 	

 Chapter 8 introduces serverless computing, with a focus on how it complements the Jamstack.

 	

 Chapter 9 talks about how CMSs (content management systems) can be integrated with the Jamstack.

 	

 Chapter 10 wraps things up with a look at how you can migrate to the Jamstack.

 Developers can choose to read the book directly from beginning to end; however, chapters 2 through 5 serve as examples of different types of sites that can be built with the Jamstack and can be read in any order.

About the code

 Installation instructions for the tools used in this book can be found as follows:

 	

 Chapter 2 covers the installation of Eleventy. The latest installation instructions can be found at https://www.11ty.dev/docs/getting-started/.

 	

 Chapter 3 covers the installation of Jekyll. The latest installation instructions can be found at https://jekyllrb.com/docs/installation/.

 	

 Chapter 4 covers the installation of Hugo. The latest installation instructions can be found at https://gohugo.io/getting-started/installing/.

 	

 Chapter 5 covers the installation of Next.js. The latest installation instructions can be found at https://nextjs.org/docs/getting-started.

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/the-jamstack-book. The complete code for this book can be downloaded from the GitHub repository at https://github.com/cfjedimaster/the-jamstack-book.

liveBook discussion forum

 Purchase of The Jamstack Book includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/the-jamstack-book/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 There are multiple places where folks can learn more about the Jamstack and keep up on the latest changes. Here’s a list of resources to consider:

 	

 Jamstack.org is a great high-level website about Jamstack, with many links to other resources. You can join its Discord channel as well.

 	

 The New Dynamic (https://www.tnd.dev/) is another great “meta” resource with its own Slack.

 	

 JAMstacked (https://jamstack.email/) is a weekly newsletter Brian curates with the latest news on Jamstack blogs, events, and more.

about the authors

 [image: CH01_F02_Camden2]

 Raymond Camden is a senior developer evangelist for Adobe. He works on the Document Services APIs to build powerful (and typically cat-related) PDF demos. He is the author of multiple books on web development and has been actively blogging and presenting for almost 20 years. Raymond can be reached at his blog (www.raymondcamden.com), @raymondcamden on Twitter, or via email at raymondcamden@gmail.com. He’s married with eight kids (yes, you read that right) and multiple furry creatures.

 [image: CH01_F02_Camden2]

 Brian Rinaldi is a developer experience engineer at LaunchDarkly with over 20 years of experience as a developer for the web. Brian is actively involved in the community running developer meetups via CFE.dev and Orlando Devs. He’s also the editor of the JAMstacked newsletter, a biweekly Jamstack focused newsletter.

about the cover illustration

 The figure on the cover of The Jamstack Book is “Femme des Environs de Rome,” or “Woman from the Surroundings of Rome,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in France in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of today’s computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Why Jamstack?

 This chapter covers

 	
Defining Jamstack as an architecture for web applications rather than a prescriptive stack of technologies

 	
How Jamstack formed in response to dynamic web page development that had become cumbersome, slow, and insecure

 	
Benefits of Jamstack, including page speed, security, and cost

 	
Exploring well-known websites that are built with the Jamstack

 As Jamstack has gained popularity in recent years, a common criticism lobbed at it is that it is just a marketing term. The truth is that they are right. As we’ll explore, Jamstack was a term invented to “rebrand” an architecture many developers were already using to build sites because the existing terminology had become misleading. While calling it marketing may be a fair critique, Jamstack is still a way of building sites that has been gaining rapid adoption by web developers.

1.1 What is the Jamstack?

 The Jamstack is not a simple thing to define. There is no Jamstack installer. There’s no predefined set of tools you should install that comprise the Jamstack. There’s not even a specific language associated with developing Jamstack apps. (Yes, JavaScript plays a central role, but any number of languages may also be involved, including Ruby, Go, Python, or others.) Ultimately, there are countless combinations of tools and languages that can be combined to create a site that could legitimately be called Jamstack.

 What Jamstack is instead is more of an architectural pattern or methodology for creating sites. While there is a lot of ongoing debate about this, these are the key elements as we define them:

 	

 A Jamstack site is primarily built on static assets. Jamstack sites are always deployed as static files. This means that they are not dynamically generated by an application server when the user requests a page; instead, the site files are generated at build time. For a Jamstack site, every user who requests a specific page in their browser will get the same static asset returned. However, this does not mean the content is static. In fact, modern Jamstack sites offer an array of rendering options for the content of pages, including fully static and server-side rendering.

 	

 A Jamstack site is built using a static site generator. The static assets in a Jamstack site are generated using a static site generator (SSG). At a very basic level, a SSG is a tool that takes templates and combines them with content. Content can be stored in files as Markdown, YAML, or JSON files or be pulled from APIs. The content and template combine to dynamically generate the site’s HTML, CSS, and JavaScript assets. This is similar to the process a dynamic web server like PHP might go through on each user request, but, instead, the majority of this process happens at build time before the site is even deployed.

 	

 A Jamstack site leverages APIs. What differentiates a Jamstack site from a simple static site is that, although it is comprised of static assets, it can be very dynamic. The first key ingredient to creating this dynamic functionality is the use of APIs. These APIs can be called by the browser client at run time or even called by the static site generator at build time.

 	

 A Jamstack site uses JavaScript for dynamic functionality. The second key ingredient to making a Jamstack site dynamic is its ability to call APIs and other services asynchronously on the client via JavaScript. JavaScript is what allows the static assets to change dynamically via document object model (DOM) manipulation. Client-side JavaScript powers things like user logins or shopping carts.

 Clearly there’s a lot of flexibility in this definition, which, in my opinion, is part of Jamstack’s appeal. There is almost certainly a combination of Jamstack tools and services that meet the needs of your project and your language, tooling, and deployment preferences.

 That flexibility has a cost, though. There isn’t a single way to teach someone Jamstack, and the multitude of options can make the learning curve for newcomers a bit steep. Also, there is arguably additional complexity in creating a site that leverages a variety of APIs and services while also dynamically updating content on the client using JavaScript.

 So why choose Jamstack? The Jamstack evolved in part to address the problems of a dynamic web that many felt had become slow, costly, and insecure. To better understand the need for the Jamstack, we need to understand how and why it evolved.

1.2 A brief history of Jamstack

 By learning why the term Jamstack was created in the first place, we can gain a better understanding about what it is and why it has been rapidly gaining popularity. This is especially true because while Jamstack is a modern architecture that leverages many of the latest trends in technology, in other ways it harkens back to the way we built pages when the web was just invented.

 The earliest web pages were just simple HTML deployed to a web server. For example, the first website, as shown in figure 1.1, was just a basic static site. Every person who visited the site received the same assets.

 [image: CH01_F01_Camden2]

 Figure 1.1 The first web site was a static site. It is still available at http://info.cern.ch/hypertext/WWW/TheProject.html.

 As the needs of the web evolved, so did the technologies that underpinned it. Web application servers and server-side scripting languages such as PHP and Ruby allowed sites to dynamically generate content. This allowed every user to be served custom assets that were dynamically rendered on the server before they were sent to the individual’s browser. Today this is commonly referred to as server-side rendering (SSR).

 Let’s look at how a typical server-side rendered web application worked circa 2008 (why 2008? I’ll explain in a moment):

 	

 The user would request a page from the browser.

 	

 The browser would hit the web application server, which would load the requested page built using some form of scripting language.

 	

 The scripting language would make calls to the database for things like user information, product information, and/or content.

 	

 The data and script would be combined to generate the HTML that was then sent to the user.

 This process would be repeated on every page request. It allowed for highly personalized and dynamic content to be served from a single script file, but it came with costs:

 	

 Performance—Each piece of this process entailed small performance costs, from the application server processing the request to the database processing queries, to generating the final HTML. Since this process repeated on each page request for every user, the costs could add up quickly and could be compounded when a web application server or database was under heavy load.

 	

 Security—By nature these applications left a wide surface area open to potential attack. These could include things like vulnerabilities in the web application server to the scripting language or framework. The database could also be left open to direct attack through methods like SQL injection.

 	

 Scaling—Since every request for every user required a unique response, these applications could become expensive and complex to scale as usage grew. Typically, servers were maintained in-house, so scaling meant new hardware, which meant that the application couldn’t quickly or easily scale with need.

 All these problems were solvable with the right resources, of course, but, at the time, so much of the web had become dependent on SSR that just viewing text content on a simple blog relied on an entire server-rendered architecture using tools like WordPress, which was growing rapidly in adoption.

1.2.1 The rise of static site generators

 The year 2008 was pivotal for what would eventually become known as the Jamstack because it was the year that Tom Preston-Werner released Jekyll. Sure, there were static site generators before Jekyll, but Jekyll was based on the principles that have helped drive most modern static site generators since:

 First, all my writing would be stored in a Git repository. This would ensure that I could try out different ideas and explore a variety of posts all from the comfort of my preferred editor and the command line. I’d be able to publish a post via a simple deploy script or post-commit hook. Complexity would be kept to an absolute minimum, so a static site would be preferable to a dynamic site that required ongoing maintenance.

 —Tom Preston-Werner (“Blogging Like a Hacker,” http://mng.bz/ExJO)

 Jekyll gained widespread adoption, particularly as an alternative to WordPress for blogging. This adoption was driven in part by GitHub, of which Preston-Werner was a cofounder and CEO, when GitHub Pages added Jekyll support in 2008.

 GitHub Pages support also introduced a new continuous development workflow that has since become ubiquitous in the modern Jamstack. Instead of running a local build and pushing the generated HTML, CSS, and JavaScript via FTP, developers could simply check in their changes to the GitHub repo, and the Jekyll build would be run and deployed for them.

 Jekyll was followed by a long—and I do mean long—list of static site generators that followed similar principles. The most comprehensive list of static site generators (https://staticsitegenerators.net/) lists 460 as of this writing, with one built using almost every programming language available (even Swift, a language intended for developing iOS native apps, has a static site generator). These included some popular options still in widespread use today such as Middleman in 2009 (written in Ruby like Jekyll), Pelican in 2010 (written in Python), and Hugo in 2013 (written in Go).

1.2.2 From static sites to JAMstack

 Back in 2016, Netlify was already a fast-growing startup focused on providing continuous deployment for developers using tools like static site generators, but the term static sites had become problematic. An ever-growing list of tools and services were enabling dynamic capabilities on sites built with static site generators. Static sites, it turned out, could be far from static in reality.

 To solve this problem, Netlify’s Matt Biilmann came up with a new term: JAMstack. This came with a new site, jamstack.org, that included his manifesto defining the new term. The original version he posted is shown in figure 1.2.

 [image: CH01_F02_Camden2]

 Figure 1.2 The original jamstack.org site launched in 2016.

 The JAM in JAMstack stood for the following:

 	

 JavaScript—This is the key to much of the dynamic capabilities of these sites. JavaScript enabled things like the asynchronous loading of content from APIs and the dynamic updating of the HTML on the client.

 	

 APIs—These could be anything from a preexisting API provided by a third party to a cloud function to perform custom business logic. APIs provided these sites with the data and business logic that they needed.

 	

 Markup—This comprised everything from the Markdown and YAML/TOML that contained the site content to the templating language (Liquid, Handlebars, etc.) that is used by the static site generator to generate the HTML pages. The static site generator is critical to this aspect, even if its presence is somewhat obfuscated in the JAM acronym—perhaps by design.

 With Netlify’s influence in the ecosystem, along with the cooperation of other companies in the space, the hope was that the term would help redefine how these tools were viewed in the web developer community. This was given a big assist with the launch of the JAMstack Conference in May of 2017 (another initiative led by Netlify), which has since spawned numerous follow-ups around the world.

 JAMstack was—and still is—criticized for being simply a marketing term. As we have seen, this has some truth to it, but the years since the term was introduced have seen enormous growth in adoption and a whole ecosystem of companies that began to target JAMstack developers.

1.2.3 From JAMstack to Jamstack

 There’s one final, seemingly small but ultimately important, change to the terminology to discuss. In early 2020, the team at Netlify who manage the jamstack.org site opened a discussion to change the way the term was written, from JAMstack to Jamstack. Many community members chimed in, and the decision was made to make the change. As of this writing, most companies and organizations have followed suit, but the usage isn’t yet uniformly adopted.

 It’s worth understanding the reasoning behind this change. The JAM acronym was showing signs of becoming the source of some confusion. First, JavaScript, APIs, and Markup seem like things that could describe almost any site being built for the web; the acronym wasn’t making the differentiation clear. Second, leading with JavaScript seemed to create the impression that Jamstack was synonymous with JavaScript frameworks and exclusively JavaScript framework-based static site generator tools. Finally, JAMstack is not really a “stack” in that there is no preset group of tools as in LAMP. In reality, it’s more of an architecture or even a methodology.

 The hope was that changing the capitalization of the term would de-emphasize both the acronym and the “stack” and extend the life of the term in much the same way people still use Ajax instead of AJAX, long after XML largely dropped out of the equation. From here on out in this book, we’ll stick with the Jamstack capitalization of the word.

1.3 The benefits of Jamstack architecture

 Now that we understand how the Jamstack evolved from the early days of simple static sites to a modern architecture for building complex sites, let’s answer the question, “Why should you choose Jamstack?” Here are some of the key benefits.

1.3.1 Performance

 There are three important aspects to the performance of Jamstack applications to understand:

 	

 Static assets load faster than dynamic ones. There is no processing that needs to occur to turn dynamic templates into HTML, CSS, and JavaScript, and no database calls being made at run time. All of these assets are pre-rendered, to use a term common in the Jamstack community that means the majority of the page rendering occurs at build time rather than run time.

 	

 Jamstack sites are served “from the edge.” Since the assets are static, they can be served from CDNs, meaning that each end user is served the site assets from the server closest to them. This is combined with instant cache invalidation when a new version is released so that users always get the most up-to-date version of the site from the CDN.

 	

 Jamstack sites scale by default. There’s no need to create additional servers to accommodate a heavy traffic load when your site is being served from a CDN. Plus, Jamstack sites rely on services like cloud functions, which are built to scale, for dynamic processing and functionality.

1.3.2 Security

 Security is a tough topic to make broad assertions about, as there is no such thing as a completely secure option. A properly patched and maintained WordPress site can be secure, but the reality is that recent data shows that “73.2% of the most popular WordPress installations are vulnerable” (http://mng.bz/7WRg). As figure 1.3 shows, thousands of the top websites are susceptible to known vulnerabilities.

 [image: CH01_F03_Camden2]

 Figure 1.3 WordPress sites can be secure, but data from WP WhiteSecurity, which shows the version WordPress installs in the Alexa top sites, shows many remain vulnerable due to not being updated. However, Jamstack sites do not require these sorts of updates as the assets are static (http://mng.bz/7WRg).

 These issues are not WordPress-specific. Traditional sites have a lot of moving parts that need maintenance and patching regardless of the content management and application framework. For example, for a WordPress or Drupal site these parts would include things like the PHP web server and the MySQL database. For a Django site, it might be Python and PostgreSQL.

 In contrast, Jamstack sites benefit from a greatly reduced surface area for attacks. There is

 	

 No web server to compromise

 	

 No web application server or web application framework with potentially unpatched security flaws to exploit

 	

 No database to gain access to

 	

 No central source of truth to hack because the site is served from multiple CDNs

 Yes, Jamstack sites can depend on third-party services, which can be open to attack. However, this also gives Jamstack sites the ability to take advantage of the domain expertise of these services. For instance, rather than implementing a custom authentication, they can take advantage of services like Auth0 or Netlify Identity that specialize in authentication and implement industry best practices. Plus, as software as a service (SaaS), there is no need for the developer to worry about patching.

1.3.3 Cost

 Okay, let’s get to my personal favorite benefit of Jamstack: it can greatly reduce costs to the point of even being frequently free. Since there is no need for web application servers and database servers, the costs of hosting the Jamstack are generally negligible to nonexistent. Continuous deployment services like Netlify, Vercel, and Render all have generous free plans that can accommodate the needs of many sites and pricing and generally scale based on usage or additional features. Some services, like GitHub Pages, offer continuous deployment and hosting for free (with limitations, of course).

 The same is true of many of the third-party services that are popular in Jamstack sites: commercial offerings have generous free tiers, and entirely free or open source options exist, though typically with some limitations. For example, services like Algolia for search or Sanity for content management offer free tiers that can make them workable as cost-free or low-cost options for many sites. Meanwhile, tools like Lunr for search and Netlify CMS for content management provide free and open source alternatives.

 Services and hosting are just two of the places where Jamstack can offer potential savings. Many Jamstack case studies cite reduced development and maintenance costs. For example, a recent Netlify white paper cited Loblaw Digital lead time reductions for a single campaign being reduced to “a month instead of the typical year, representing a 10× reduction in time to market, [and] $38,000 monthly cost savings” (https://www.netlify.com/whitepaper/).

1.4 When Jamstack may not be the right choice

 Recently, it has become far more difficult to make a clear-cut recommendation about when to use and when not to use Jamstack. The improved capabilities of Jamstack tools and services make almost any type of site possible using a Jamstack approach. In fact, tools such as Next.js, Nuxt, and Gatsby now make it possible to create a hybrid solution that gives developers the option to make some routes static and others server-side rendered. But there are times when a Jamstack approach may not make sense:

 	

 An application that relies heavily on user-generated content—It is entirely possible to build user-generated content as static assets or pull it via an API. There are examples of Jamstack sites adding things like user-generated comments or posts that are written to files that trigger a rebuild or are pulled dynamically from an API. This can make sense in cases where the user-generated content is periodic and supplemental, but for sites primarily focused on user-generated content, a Jamstack solution may prove to be overly complex and difficult to implement.

 	

 An application where content is continually updated—Similar to a site with user-generated content, a site with constantly updated content (e.g., a real-time news site) may not be ideal for a Jamstack approach. Yes, this content could be updated live via client-side API calls or via SSR, but this can be difficult to properly implement and may negate some of the overall performance benefits of the Jamstack.

 	

 A dashboard that relies heavily on server-side processing—Some dashboard applications make perfect sense as Jamstack. In many cases, these dashboards call APIs to populate charts and data tables that make sense to process on the client side. However, in other cases this may unnecessarily put too heavy a load on the client and not be an optimal solution.

 As you can see, the line for what can be a Jamstack application is blurry. Every one of these examples can be built as a Jamstack application. I’d think about it in terms of how complex the Jamstack solution would be over a traditional server-side solution and how much am I offloading work to client-side API calls or SSR versus content that is generated as static assets. Don’t over-architect a site simply to make it fit into Jamstack paradigm, as you may find the solution brittle and difficult to maintain. Don’t offload the majority of your content display to client-side API calls, as this can negate some of the primary benefits of Jamstack’s static, CDN-based approach. These are guidelines, not hard-and-fast rules, but they can help you evaluate whether the benefits of Jamstack outweigh the drawbacks for your project. For most projects, I am certain they will, but in some cases they may not.

OEBPS/Images/IFC.png
Jamstack Engines Covered

Eleventy Chapter 2: Building a Basic Jamstack Site
Jekyll Chapter 3: Building a Blog
Hugo Chapter 4: Building a Documentation Site

Next.js Chapter 5: Building an E-commerce Site

OEBPS/Images/Manning_M_small.png

OEBPS/Images/CH01_F03_Camden2.png
WordPress Version
36

3.6.1 (latest)

34

Total (Excl 3.6.1)

No. of Installations
13,034
7814
6,859
4,031
2,204
1,655
820
820
732
295

30,823

No. of Known Vulnerabilities

5

OEBPS/Images/Camden2_AuthorPhoto_Rinaldi.png

OEBPS/Images/cover.jpeg
Beyond static sites

Raymond Camden
Brian Rinaldi

Foreword by Mathias Biilmann Christensen

/“ MANNING

OEBPS/Images/Manning_copyright.png

OEBPS/Images/CH01_F02_Camden2.png
AMSTACK

The JAM stack is a new way of building
websites and apps that are fast, secure
and simple to work with.

JAM stands for JavaScript, APIs and Markup. It's the fastest
growing new stack for building websites and apps: no more
servers, host all your front-end on a CDN and use APIs for any
moving parts.

When the LAMP stack started to gain prominence in the late 90s, it
grew out of a set of constraints that are no longer present.
Browsers were primitive document readers back then, and just
about anything dynamic, social or interactive had to happen on
the server. The only form of affordable hosting was shared hosting.
Deployments consisted of uploading files through FTP. Version
control was mostly absent from the day-to-day workflows of web
developers.

OEBPS/Images/CH01_F01_Camden2.png
World Wide Web

The WorldWideWeb (W3) is a wide-area hypermedia information retrieval initiative aiming to give universal access to a large universe of
documents.

Everything there is online about W3 s linked directly or indircctly to this document, including an exccutive summary, of the project, Mailing Jists
, Policy , November's W3 news , Frequently Asked Questions -

What's out there?
Pointers to the world's onlinc information subjects , W3 servers, etc.
Help
on the browser you arc using
Software Products
Alist of W3 project components and their current state. (¢.g. Line Mode ,X11 Viola , NeXTStep , Servers , Tools . Mail robot , Library.)
Technical
Details of protocols, formats, program internals etc
Bibliography.
Paper documentation on W3 and references.
People
Alist of some people involved in the project.

istory,

'A summary of the history of the project.
How can L help ?

If you would like to support the web..
Getting code

Getting the code by anonymous FTP , etc.

OEBPS/Images/Camden2_AuthorPhoto_Camden.png

