

 Entity Framework Core in Action

 Jon P Smith

 [image: ManningBlackSized.png]

 MANNING

 Shelter Island

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Development editor: Marina Michaels

 Technical development editor: Mike Shepard

 Copy editor: Sharon Wilkey

 Proofreader: Elizabeth Martin

 Technical proofreader: Julien Pohie

 Typesetter: Happenstance Type-O-Rama

 Cover designer: Marija Tudor

 ISBN 9781617294563

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

 front matter

 preface

 Any software developer should be used to having to learn new libraries or languages, but for me, it’s been a bit extreme. I stopped coding in 1988 when I went into technical management, and I didn’t come back to coding until 2009—that’s a 21-year gap. To say that the landscape had changed is an understatement; I felt like a child on Christmas morning with so many lovely presents I couldn’t take it all in.

 I made all the rookie mistakes at the beginning, like thinking object-oriented programming was about using inheritance, which it isn’t. But I learned the new syntax, new tools (wow!), and reveled in the amount of information I could get online. I chose to focus on Microsoft’s stack, mainly because of the wealth of documentation available. That was a good choice at the time, but now with .NET Core and its open source, multiplatform approach, it turns out to be an excellent choice.

 The first applications I worked on in 2009 were ones that optimized and displayed healthcare needs geographically, especially around where to locate treatment centers. That required complex math (which my wife provided) and serious database work. I went through ADO.NET, LINQ to SQL, and then in 2013 I swapped to Entity Framework (EF), when EF 5 supported SQL’s spatial (geographical) types.

 Over the intervening years, I used EF a lot and have come to know EF6.x well. I’ve written extensively on EF in my own blog (www.thereformedprogrammer.net/) and on the Simple Talk site (www.simple-talk.com/author/jon-smith/). It turns out I like taking complex software ideas and trying to make them easy for other people to understand. So, when Manning Publications approached me to write a book on Entity Framework Core (EF Core), I said yes.

 Entity Framework Core in Action covers all the features of EF Core 2.0, with plenty of examples and lots of code you can run. I’ve also included numerous patterns and practices to help you build robust and refactorable code. The book ends with an entire section, “Using Entity Framework Core in real-world applications,” which shows my focus on building and shipping real applications. And I have not one, but two, chapters on performance tuning EF Core because your users/clients won’t accept a slow application.

 Some of the most pleasurable chapters to write were ones where I solved a technical problem, such as the best way to handle business logic (chapter 4), or performance tuning an application (chapters 13 and 14). These needed a combination of technical knowledge and insight into what business/development problem I was trying to solve. I also present the pros and cons of each approach I use, as I don’t believe there is “silver bullet” answer in software—just a range of compromises that we as developers need to consider when choosing how to implement something.

 acknowledgments

 While I did most of the work on the book, I had a lot of help along the way and I want to say thank you to all those who helped.

 My wife, Dr. Honora Smith, is not only my first line of proofreading but is the person who got me back into programming. I love her to bits. A special mention to my great friend JC for his help and support too.

 Manning Publications has been magnificent, with a robust and comprehensive process that is thorough (and hard work), but results in an excellent end product. The team is great, and I’m going to list the significant people in chronological order, starting with Nicole Butterfield, Brian Sawyer, Marjan Bace, Rebecca Rinehart, Bert Bates, Marina Michaels, Candace Gillhoolley, Ivan Martinovic´ , Christopher Kaufmann, Ana Romac, and many others who helped with production of the book.

 I want to single out Marina Michaels and Mike Shepard, who were my development editor and technical development editor, respectively. Both Marina and Mike reviewed each chapter as I wrote them; their quick feedback helped me to refine my approach early on and made the book much more readable. Thanks also to Andrew Lock, author of ASP.NET Core in Action ; it was great to compare notes with another author who was writing a book at the same time as I.

 I would also like to thank Julien Pohie, technical proofreader, and the reviewers of the book: Alberto Acerbis, Anne Epstein, Ernesto Cardenas, Evan Wallace, Foster Haines, Jeffrey Smith, Mauro Quercioli, Philip Taffet, Rahul Rai, Rami Abdelwahed, Raushan Jha, Ronald Tischliar, Sebastian Rogers, Stephen Byrne, Tanya Wilke, and Thomas Overby Hansen. Special thanks to the Microsoft people who reviewed the book: Rowan Miller, Diego Vega, Arthur Vickers, and Tom Dykstra; plus Paul Middleton and Erik Ejlskov Jensen, who are both open source providers to the EF Core project.

 Finally, to the whole EF Core team for their work on a great library, plus putting up with the issues I kept posting in the EF Core’s GitHub issues page. And a thank you to Rick Anderson at Microsoft for his input over the years and help on getting my articles out to a wider audience.

 about this book

 Entity Framework Core in Action is about how to write EF Core database code quickly, correctly, and ultimately, for fast performance. To help with the “quick, correct, fast” aspects, I include a lot of examples with plenty of tips and techniques. And along the way, I throw in quite a bit on how EF Core works on the inside, because that will help you when things don’t work the way you think they should.

 The Microsoft documentation is good but doesn’t have room for detailed examples. In this book, I try to give you at least one example of each feature I cover, and you’ll often find unit tests in the Git repo (see the “About the code” section for links) that test a feature in multiple ways. Sometimes reading a unit test can convey what’s happening much more quickly than reading the text in the book can, so consider the unit tests as a useful resource.

 Who should read this book

 Entity Framework Core in Action is aimed at both software developers who’ve never before used EF and seasoned EF6.x developers, plus anyone else who wants to know what EF Core is capable of. I assume you’re familiar with .NET development with C# and that you have at least some idea of what a relational database is. You don’t need to be a C# expert, but if you’re new to C#, you might find some of the code hard to read, as I don’t explain C#. But I do provide an appendix on LINQ (Language Integrated Query) in case you haven’t seen LINQ before.

 How this book is organized

 I’ve tried to build a path that starts with the basics (part 1), goes deep into the details (part 2), and ends with useful tools and techniques (part 3). I try not to assume you’ll read the book cover to cover, especially the reference section in part 2, but at least skim-reading the first five chapters will help you understand the basics that I use later in the book.

 Part 1: Getting started

 	Chapter 1 introduces EF Core with a super-simple console application so you can see all the parts of EF Core in action. I also provide an overview of how EF Core works and why you might like to use it.

 	Chapter 2 looks at querying (reading data from) the database. I cover the relationships between data stored in the database and how you can load that related data by using EF Core.

 	Chapter 3 moves on to changing the data in a database: adding new data, updating existing data, and deleting data from a database.

 	Chapter 4 looks at how to build robust business logic that uses EF Core to access the database. Business logic is the name given to code that implements business rules or workflow that’s specific to the business problem your application solves.

 	Chapter 5 is about building an ASP.NET Core application that uses EF Core. It pulls together the code developed in chapters 2 to 4 to make a web application. I also talk about deploying the web application and accessing the hosted database.

 Part 2: Entity Framework Core in Depth

 	Chapter 6 covers the configuration of nonrelational properties—properties that hold a value, such as int, string, DateTime, and so on.

 	Chapter 7 covers the configuration of relationships—the links between classes, such as a Book class linking to one or more Author classes. It also includes special mapping techniques, such as mapping multiple classes to one table.

 	Chapter 8 looks at advanced mapping features and the whole area of detecting and handling concurrency conflicts.

 	Chapter 9 digs deep into how EF Core’s DbContext works, with a blow-by-blow view of what the various methods and properties do inside your application’s DbContext.

 Part 3: Using Entity Framework Core in real-world applications

 	Chapter 10 is a compendium of tools, patterns and techniques that can make your EF Core quicker to develop and/or more robust. I also look at using EF Core in a domain-driven design approach.

 	Chapter 11 covers all the ways you can change the database structure when using EF Core. It also looks at the issues that arise when you need to change the structure of a database that’s being used by a live application.

 	Chapter 12 lists all the issues that could affect the performance of your database accesses, and what to do about them.

 	Chapter 13 is a worked example of performance tuning an EF Core application. I take the book app, developed in part 1, and apply three levels of performance tuning.

 	Chapter 14 starts with what happens if you change the database type. It then looks at another application architecture that can help performance of some business applications. It ends with accessing and modifying EF Core’s internal services.

 	Chapter 15 is all about unit-testing applications that use EF Core. I’ve also created a NuGet package that you can use to help in your own unit testing.

 Appendixes

 	Appendix A introduces the LINQ language that EF Core uses. This is useful for those who are unfamiliar with LINQ, or anybody who wants a quick refresh on LINQ.

 	Appendix B provides preliminary information on the EF Core 2.1 release, with links to Microsoft’s documentation.

 Note I have added notes about EF Core 2.1 features to chapters throughout the book. These point out areas where the 2.1 release offers new options over what EF Core 2.0 has.

 About the code

 I feel I really know something only if I’ve written code to use that function or feature, which is why every chapter has its own Git branch, or sometimes a branch per chapter section, in the repo found at https://github.com/JonPSmith/EfCoreInAction. See the “Where’s the code” section of the Readme file in the Git repo for more information at https://github.com/JonPSmith/EfCoreInAction/blob/master/README.md#wheres-the-code.

 Chapters 1 and 2 include sidebars on how to download and run the sample code locally. As you look at each chapter, you can select a different Git branch to access the code specifically for that chapter. Also, look out for the associated unit tests, grouped by chapter and feature.

 Note Chapter 15, which is about unit testing, has its own Git repo at https://github.com/JonPSmith/EfCore.TestSupport. I made this separate because it contains tools and features that will help you with unit testing. You can also install the NuGet package called EfCore.TestSupport into your test project to use the features I describe in chapter 15.

 To write your own code, or run the code from the Git repo, you will need the following:

 	A development environment

 	Visual Studio 2017 (VS 2017) is the recommended version of Visual Studio for .NET Core development. A community version of Visual Studio 2017 is available that’s free for individuals or small companies; see www.visualstudio.com/vs/compare/. You should ensure that you have VS 2017 version 15.7.1 or above to pick up the latest version of NuGet. Older versions of NuGet have a problem; see https://stackoverflow.com/a/45946273/1434764.

 	Visual Studio Code, which is a newer, lighter, open source development environment that runs on Windows, Mac, and Linux, and is free is another possibility. See http://code.visualstudio.com/. I’ve set up the .vscode directory in each branch to correctly build, test, and run the code.

 	The .NET Core SDK

 NOTE The Git repo assumes .NET Core 2.0, but I have updated a few branches to .NET Core 2.1—see https://github.com/JonPSmith/EfCoreInAction#net-core-21-examples.

 	If you install VS 2017 and include the .NET Core Cross-Platform Development feature, found under the Other Toolsets section, during the install workloads stage, then that will install the .NET Core.

 	Alternatively, if you’re using Visual Studio Code, you need to download and install the .NET Core SDK for your development environment. See www.microsoft.com/net/download/core.

 If you’re in a hurry to see the example book-selling site (referred to in the book as the book app), a live version is at http://efcoreinaction.com/ (chapter 13 version) and http://cqrsravendb.efcoreinaction.com/ (chapter 14 CQRS version). These sites don’t allow changes to the data other than you “buying a book” (no money changes hands, but then again, I don’t send you a book!). But if you download the code and run the book app locally, various add, update, or delete commands will become available to you.

 Code conventions

 The code samples in this book, and their output, appear in a fixed-width font and are often accompanied by annotations. The code samples are deliberately kept as simple as possible, because they aren’t intended to be reusable parts that can be plugged into your code. Instead, the code samples are stripped down so that you can focus on the principle being illustrated.

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 Source code for the examples in this book is available for download from the Git repo at https://github.com/JonPSmith/EfCoreInAction.

Book forum

 The purchase of Entity Framework Core in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to https://www.manning.com/books/entity-framework-core-in-action. This page provides information about how to get on the forum when you’re registered and what kind of help is available. You can learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest that you try asking him some challenging questions, lest his interest strays! The book forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 Online resources

 Here are useful links to the Microsoft documentation and code:

 	Microsoft’s EF Core documentation: https://docs.microsoft.com/en-us/ef/core/index

 	The EF Core roadmap: https://github.com/aspnet/EntityFrameworkCore/wiki/roadmap

 	The EF Core code: https://github.com/aspnet/EntityFrameworkCore

 	ASP.NET Core, working with EF Core: https://docs.microsoft.com/en-us/aspnet/core/data/

 	Stack Overflow EF Core tag: [entity-framework-core] https://stackoverflow.com

 about the author

 	
 [image: Smith_author.tif]

 	
 Jon P Smith is a full-stack developer focused on the .NET stack covering the full range of features from database access, web/mobile applications, and front-end JavaScript libraries. Jon has designed and built several web applications, all with him as the lead developer. Jon writes articles on a range of topics, mainly about EF, ASP.NET, and React.js. He works as an independent principal developer/consultant.

 about the cover illustration

 The figure on the cover of Entity Framework Core in Action is captioned “The Wife of a Franc Merchant.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official entities and produced a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection. Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century, and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically, we’ ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’ pictures.

Part 1. Getting started

 Data is everywhere, growing by petabytes per year, and a lot of it is stored in databases. Millions of applications are also out there—half a million new mobile applications in 2016 alone—and most of them need to access data in databases. And I haven’t started on the Internet of Things yet. So it shouldn’t be a surprise that Gartner says, “Global IT Spending to Reach $3.5 Trillion in 2017” (www.gartner.com/newsroom/id/3482917).

 The good news for you is that your skills will be in demand. But the bad news is that the pressure to develop applications quickly is unrelenting. This book is about one tool that you can use to write database access code quickly: Microsoft’s Entity Framework Core (EF Core). EF Core provides an object-oriented way to access relational databases, and in EF Core 2 nonrelational (NoSQL) databases, in the .NET environment. The cool thing about EF Core, and the other .NET Core libraries, is that they can run on Windows, Linux, and Apple platforms.

 In part 1, I get you into the code straightaway. In chapter 1, you’ll build a super-simple console application, and by the end of chapter 5, we’ll have covered enough for you to build a web application that accesses a database. Chapters 2 and 3 explain the reading and writing of data to a relational database, respectively, and chapter 4 covers writing business logic, the business rules specific to each application. In chapter 5, you’ll pull it all together by using Microsoft’s ASP.NET Core web framework to build an example book-selling site, which you can try on a live site at http://efcoreinaction.com/.

 You’ll have a lot of learning in part 1, even though I skip over a few topics, mainly by relying on a lot of EF Core’s default settings. Nevertheless, part 1 should give you a good understanding of what EF Core can do, with later parts growing your knowledge with extra EF Core features, more detail on how you can configure EF Core, and chapters devoted to specific areas such as performance tuning.

1 Introduction to Entity FrameworkCore

 This chapter covers

 	Understanding the anatomy of an EF Core application

 	Accessing and updating a database with EF Core

 	Exploring a real-world EF Core application

 	Deciding whether to use EF Core in your application

 Entity Framework Core, or EF Core, is a library that allows software developers to access databases. There are many ways to build such a library, but EF Core is designed as an object-relational mapper (O/RM). O/RMs work by mapping between the two worlds: the relational database with its own API, and the object-oriented software world of classes and software code. EF Core’s main strength is allowing software developers to write database access code quickly.

 EF Core, which Microsoft released in 2016, is multiplatform-capable: it can run on Windows, Linux, and Apple. It does this as part of the .NET Core initiative, hence the Core part of the EF Core name. (But EF Core can be used with the existing .NET Framework too—see the note in section 1.10.5.) EF Core, ASP.NET Core (a web server-side application), and .NET Core are also all open source, each with an active issues page for interacting with development teams.

 EF Core isn’t the first version of Entity Framework; an existing, non-Core, Entity Framework library is known as EF6.x. EF Core starts with years of experience built into it via feedback from these previous versions, 4 to 6.x. It has kept the same type of interface as EF6.x but has major changes underneath, such as the ability to handle nonrelational databases, which EF6.x wasn’t designed to do. As a previous user of EF5 and EF6.x, I can see where EF Core has been improved, as well as where it’s still missing features of the old EF6.x library that I liked (although those features are on the roadmap).

 This book is intended for both software developers who’ve never used Entity Framework and seasoned EF6.x developers, plus anyone who wants to know what EF Core is capable of. I do assume that you’re familiar with .NET development with C# and that you have at least some idea of what relational databases are. I don’t assume you know how to write Structured Query Language (SQL), the language used by a majority of relational databases, because EF Core can do most of that for you. But I do show the SQL that EF Core produces, because it helps you understand what’s going on; using some of the EF Core advanced features requires you to have SQL knowledge, but the book provides plenty of diagrams to help you along the way.

 tip If you don’t know a lot about SQL and want to learn more, I suggest the W3Schools online resource: www.w3schools.com/sql/sql_intro.asp. The SQL set of commands is vast, and EF Core queries use only a small subset (for example, SELECT, WHERE, and INNER JOIN), so that’s a good place to start.

 This chapter introduces you to EF Core through the use of a small application that calls into the EF Core library. You’ll look under the hood to see how EF Core interprets software commands and accesses the database. Having an overview of what’s happening inside EF Core will help you as you read through the rest of the book.

 1.1 What you’ll learn from this book

 The book is split into three parts. In addition to this chapter, part 1 has four other chapters that cover:

 	Querying the database with EF Core

 	Updating the database with EF Core (creating, updating, and deleting data)

 	Using EF Core in business logic

 	Building an ASP.NET Core web application that uses EF Core

 By the end of part 1, you should be able to build a .NET application that uses a relational database. But the way the database is organized is left to EF Core; for instance, EF Core’s default configuration sets the type and size of the database columns, which can be a bit wasteful on space.

 Part 2 covers how and why you can change the defaults, and looks deeper into some of the EF Core commands. After part 2, you’ll be able to use EF Core to create a database in exactly the way you want it, or link to an existing database that has a specific schema, or design. In addition, by using some of EF Core’s advanced features, you can change the way the database data is exposed inside your .NET application—for instance, controlling software access to data more carefully or building code to automatically track database changes.

 Part 3 is all about improving your skills and making you a better developer, and debugger, of EF Core applications. I present real-world applications of EF Core, starting with a range of known patterns and practices that you can use. You’ll read chapters on unit testing EF Core applications, extending EF Core, and most important, finding and fixing EF Core performance issues.

 1.2 My “lightbulb moment” with Entity Framework

 Before we get into the nitty-gritty, let me tell you one defining moment I had when using Entity Framework that put me on the road to embracing EF. It was my wife who got me back into programming after a 21-year gap (that’s a story in itself!).

 My wife, Dr. Honora Smith, is a lecturer in mathematics at the University of Southampton who specializes in the modeling of healthcare systems, especially focusing on where to locate health facilities. I had worked with her to build several applications to do geographic modeling and visualization for the UK National Health Service and work for South Africa on optimizing HIV/AIDS testing.

 At the start of 2013, I decided to build a web application specifically for healthcare modeling. I used ASP.NET MVC4 and EF5, which had just come out and supported SQL spatial types that handle geographic data. The project went okay, but it was hard work. I knew the frontend was going to be hard; it was a single-page application using Backbone.js, but I was surprised at how long it took me to do the server-side work.

 I had applied good software practices and made sure the database and business logic were matched to the problem space—that of modeling and optimizing the location of health facilities. That was fine, but I spent an inordinate amount of time writing code to convert the database entries and business logic into a form suitable to show to the user. Also, I was using a Repository/Unit of Work pattern to hide EF5 code, and I was continually having to tweak areas to make the repository work properly.

 At the end of a project, I always look back and ask, “Could I have done that better?” As a software architect, I’m always looking for parts that (a) worked well, (b) were repetitious and should be automated, or (c) had ongoing problems. This time, the list was as follows:

 	
Worked well—The ServiceLayer, a layer in my application that isolated/adapted the lower layers of the application from the ASP.NET MVC4 frontend, worked well. (I introduce this layered architecture in chapter 2.)

 	
Was repetitious—I used ViewModel classes, also known as data transfer objects (DTOs), to represent the data I needed to show to the user. Using a ViewModel/DTO worked well, but writing the code to copy the database tables to the ViewModel/DTO was repetitious and boring. (I also talk about ViewModels/DTOs in chapter 2.)

 	
Had ongoing problems—The Repository/Unit of Work pattern didn’t work for me. Ongoing problems occurred throughout the project. (I cover the Repository pattern and alternatives in chapter 10.)

 As a result of my review, I built a library called GenericServices (https://github.com/JonPSmith/GenericServices) to use with EF6.x. This automated the copying of data between database classes and ViewModels/DTOs and removed the need for a Repository/Unit of Work pattern. It seemed to be working well, but to stress-test GenericServices, I decided to build a frontend over one of Microsoft’s example databases, the . I built the whole application with the help of a frontend UI library in 10 days!

 [image: c01-1.eps]

 The site isn’t that pretty, but that wasn’t the point. My GenericServices library allowed me to quickly implement a whole range of database Create, Read, Update, and Delete (CRUD) commands. Definitely a “lightbulb moment,” and I was hooked on EF. You can find the site at http://complex.samplemvcwebapp.net/.

 Since then, I’ve built other libraries, some open source and some private, and used them on several projects. These libraries significantly speed up the development of 90% of database accesses, leaving me to concentrate on the harder topics, such as building great frontend interfaces, writing custom business logic to meet the client’s specific requirements, and performance tuning where necessary.

 1.3 Some words for existing EF6.x developers

 Time-Saver If you’re new to Entity Framework, you can skip this section.

 If you’re a reader who knows EF6.x, much of EF Core will be familiar to you. To help you navigate quickly through this book, I’ve added EF6 notes.

 EF6 Watch for notes like this throughout the book. They point out the places where EF Core is different from EF6.x. Also, be sure to look at the summaries at the end of each chapter. They point out the biggest changes between EF6 and EF Core in the chapter.

 I’ll also give you one tip from my journey of learning EF Core. I know EF6.x well, but that became a bit of a problem at the start of using EF Core. I was using an EF6.x approach to problems and didn’t notice that EF Core had new ways to solve them. In most cases, the approach is similar, but in some areas, it isn’t.

 My advice to you as an existing EF6.x developer is to approach EF Core as a new library that someone has written to mimic EF6.x, but understand that it works in a different way. That way, you’ll keep your eyes open for the new and different ways of doing things in EF Core.

 1.4 An overview of EF Core

 EF Core can be used as an O/RM that maps between the relational database and the .NET world of classes and software code. Table 1.1 shows how EF Core maps the two worlds of the relational database and .NET software.

 Table 1.1 EF Core mapping between a database and .NET software

 	Relational database

 	.NET software

 	Table

 	.NET class

 	Table columns

 	Class properties/fields

 	Rows

 	Elements in .NET collections—for instance, List

 	Primary keys: unique row

 	A unique class instance

 	Foreign keys: define a relationship

 	Reference to another class

 	SQL—for instance, WHERE

 	.NET LINQ—for instance, Where(p => …

 1.4.1 The downsides of O/RMs

 Making a good O/RM is complex. Although EF6.x or EF Core can seem easy to use, at times the EF Core “magic” can catch you by surprise. Let me mention two issues to be aware of before we dive into how EF Core works.

 The first issue is object-relational impedance mismatch. Database servers and object-oriented software use different principles: databases use primary keys to define that a row is unique, whereas .NET class instances are, by default, considered unique by their reference. EF Core handles most of this for you, but your nice .NET classes get “polluted” by these keys, and their values matter. In most cases, EF Core is going to work fine, but sometimes you need to do things a little differently to a software-only solution to suit the database. One example you’ll see in chapter 2 is a many-to-many relationship: easy in C#, but a bit more work in a database.

 The second issue is that an O/RM—and especially an O/RM as comprehensive as EF Core—hides the database so well that you can sometimes forget about what’s going on underneath. This problem can cause you to write code that works great in your test application, but performs terribly in the real world when the database is complex and has many simultaneous users.

 That’s why I spend time in this chapter showing how EF Core works on the inside, and the SQL it produces. The more you understand about what EF Core is doing, the better equipped you’ll be to write good EF Core code, and more important, know what to do when it doesn’t work.

 Note Throughout this book, I use a “get it working, but be ready to make it faster if I need to” approach to using EF Core. EF Core allows me to develop quickly, but I’m aware that because of EF Core, or my poor use of it, the performance of my database access code might not be good enough for a particular business need. Chapter 5 covers how to isolate your EF Core so you can tune it with minimal side effects, and chapter 13 shows how to find and improve database code that isn’t fast enough.

 1.5 What about NoSQL?

 We can’t talk about relational databases without mentioning nonrelational databases, also known colloquially as NoSQL (see http://mng.bz/DW63). Both relational and nonrelational databases have a role in modern applications. I’ve used both SQL Server (relational database) and Azure Tables (nonrelational database) in the same application to handle two business needs.

 EF Core is designed to handle both relational and nonrelational databases—a departure from EF6.x, which was designed around relational databases only. Many of the principles covered in this book apply to both types of databases, but because relational databases are inherently much more complex than nonrelational databases, more commands are needed to use relational databases. You’ll see whole chapters dedicated to commands that are used only in a relational database. Chapter 7, for instance, is all about modeling database relationships.

 EF Core 2.0 will contain a preview database provider for the Azure NoSQL database, Cosmos DB. The aim is to use this as a learning exercise for handling NoSQL databases, with a robust solution coming out in EF Core 2.2. More NoSQL database providers are likely to be written for EF Core over time, either by Microsoft or the writers of NoSQL databases.

 Note In section 14.2, you’ll build an application using both an SQL/relational database and a NoSQL database in a Command Query Responsibility Segregation (CQRS) architectural pattern to get a higher-performing application.

 1.6 Your first EF Core application

 In this chapter, you’ll start with a simple example so that we can focus on what EF Core is doing, rather than what the code is doing. For this, you’re going to use a small console application called MyFirstEfCoreApp, which accesses a simple database. The MyFirstEfCoreApp application’s job is to list and update books in a supplied database. Figure 1.1 shows the console output.

 [image: c01-2.png]

 Figure 1.1 The output from the console application you’ll use to look at how EF Core works

 This application isn’t going to win any prizes for its interface or complexity, but it’s a good place to start, especially because I want to show you how EF Core works internally in order to help you understand what’s going on later in this book.

 You can download this example application from the Chapter01 branch of the Git repo at http://mng.bz/KTjz. You can look at the code and run the application. To do this, you need software development tools.

 1.6.1 What you need to install

 You can use two main development tools to develop a .NET Core application: Visual Studio 2017 (VS 2017) or Visual Studio Code (VS Code). I describe using VS 2017 for your first application, because it’s slightly easier to use for newcomers to .NET development.

 You need to install Visual Studio 2017 (VS 2017) from www.visualstudio.com. Numerous versions exist, including a free community version, but you need to read the license to make sure you qualify; see www.visualstudio.com/vs/community/.

 When you install VS 2017, make sure you include the .NET Core Cross-Platform Development feature, which is under the Other Toolsets section during the Install Workloads stage. This installs .NET Core on your system. Then you’re ready to build a .NET Core application. See http://mng.bz/2x0T for more information.

 1.6.2 Creating your own .NET Core console app with EF Core

 I know many developers like to create their own applications, because building the code yourself means that you know exactly what’s involved. This section details how to create the .NET Core console application MyFirstEfCoreApp by using Visual Studio 2017.

 Creating a .NET Core console application

 The first thing you need to do is create a .NET Core console application. Using VS 2017, here are the steps:

 	In the top menu of VS 2017, click File > New > Project to open the New Project form.

 	From the installed templates, select Visual C# > .NET Core > Console App (.NET Core).

 	Type in the name of your program (in this case, MyFirstEfCoreApp) and make sure the location is sensible. By default, VS 2017 will put your application in a directory ending with \Source\Repos.

 	Make sure the Create Directory for Solution box is ticked so that your application has its own folder.

 	If you want to create a Git repo for this project, make sure the Create New Git Repository box is selected too. Then click OK.

 At this point, you’ve created a console application, and the editor should be in the file called Program.cs.

 tip You can find out which level of .NET Core your application is using by choosing Project > MyFirstEfCoreApp Properties from the main menu; the Application tab shows the Target Framework.

 Adding the EF Core library to your application

 You need to install the correct EF Core NuGet library for the database you’re going to use. For local development, Microsoft.EntityFrameworkCore.SqlServer is the best choice, because it’ll use the development SQL Server that was installed when you installed VS 2017.

 You can install the NuGet library in various ways. The more visual way is to use the NuGet Package Manager. The steps are as follows:

 	In the Solution Explorer, typically on the right-hand side of VS 2017, right-click the Dependencies line in your console application and select the Manage NuGet Packages option.

 	At the top right of the NuGet Package Manager page that appears, click the Browse link.

 	In the Search box below the Browse link, type Microsoft.EntityFrameworkCore.SqlServer and then select the NuGet package with that name.

 	A box appears to the right of the list of NuGet packages with the name Microsoft.EntityFrameworkCore.SqlServer at the top and an Install button below it, showing which version will install.

 	Click the Install button and then accept the license agreements. The package installs. Installation could take a little while, depending on your internet connection speed.

 Downloading and running the example application from the Git repo

 You have two options for downloading and running the MyFirstEfCoreApp console application found in the Git repo: either VS 2017 or VS Code. I describe both.

 Using Visual Studio 2017, version 15.3.3 or above (VS 2017), follow these steps:

 	
Clone the Git repo. First you need to select the Team Explorer view and select the Manage Connections tab. In the Local Git Repositories section, click the Clone button. This opens a form containing an input line saying “Enter the URL of a Git repo to clone” in which you should input the URL https://github.com/JonPSmith/EfCoreInAction. The local directory path shown below the URL should update to end with EfCoreInAction. Now click the Clone button at the bottom of the form.

 	
Select the right branch. After the clone has finished, the list of local Git repositories should have a new entry called EfCoreInAction. Double-click this, and the Home tab appears. Currently, the Git repo will be on the master branch, which doesn’t have any code. You need to select the remotes/origin > Chapter01 branch: click the Branches button, click the Remotes/Origin drop-down, and select Chapter01. Next, click the Home button. You’ll see a Solution called EfCoreInAction.sln, which you need to click. That loads the local solution, and you’re ready to run the application.

 	
Run the application. Go to the Solutions Explorer window, which shows you the code. Click any of the classes to see the code. If you press F5 (Start Debugging), the console application will start in a new command-line window. The first line shows you the commands you can type. Have fun!

 Using Visual Studio Code (VS Code), follow these steps:

 Note: I assume that you’ve set up VS Code to support C# development.

 	
Clone the Git repo. In the command palette (Ctrl-Shift-P), type Git: Clone. This presents you with a Repository Url input line, in which you should place the https://github.com/JonPSmith/EfCoreInAction URL and then press the Return key. You’ll then see a Parent Directory input line; indicate the directory that will contain the Git repo and then press the Return key. This clones the Git repo to your local storage, in a directory called EfCoreInAction.

 	
Select the right branch. After the clone, you’ll see a message asking, “Would you like to open the cloned repository?” Click the Open Repository button to do that. You should see just a few files in the master branch, but no code. Select the Chapter01 branch by typing Git: Checkout to in the command palette (Ctrl-Shift-P) and selecting the origin/Chapter01 branch. The files change, and you’ll now have the code for the MyFirstEfCoreApp console application.

 	
Run the application. I’ve already set up the tasks.json and launch.json files for this project, so you can press F5 to start debugging. The console application starts in a new command-line window. The first line shows the commands you can type. Have fun!

 1.7 The database that MyFirstEfCoreApp will access

 EF Core is about accessing databases, but where does that database come from? EF Core gives you two options: EF Core can create it for you, known as code-first, or you can provide an existing database you built outside EF Core, known as database-first.

 EF6 In EF6, you could use an EDMX/database designer to visually design your database, an option known as design-first. EF Core doesn’t support the design-first approach, and there are no plans to add it.

 In this chapter, we’re going to skip over how I created the database for the MyFirstEfCoreApp application and simply assume it exists.

 Note In my code, I use a basic EF Core command meant for unit testing to create the database, because it’s simple and quick. Chapter 2 covers how to get EF Core to create a database properly, and chapter 11 presents the whole issue of creating and changing databases.

 For this MyFirstEfCoreApp application example, I created a simple database, shown in figure 1.2, with only two tables:

 	A Books table holding the book information

 	An Author table holding the author of each book

 Note The Books table name comes from the DbSet<Book> property name of Books in the application’s DbContext, which I show in figure 1.5. The Author table name doesn’t have a DbSet<T> property in the application’s DbContext, so the table defaults to the class name, Author. Section 6.10.1 covers these configuration rules in more detail.

 [image: c01-3.png]

 Figure 1.2 Our example relational database with two tables: Books and Author

 Figure 1.3 shows the content of the database. It holds only four books, the first two of which have the same author, Martin Fowler.

 [image: c01-4.png]

 Figure 1.3 The content of the database, showing four books, two of which have the same author

 1.8 Setting up the MyFirstEfCoreApp application

 Having created and set up a .NET Core console application, you can now start writing EF Core code. You need to write two fundamental parts before creating any database access code:

 	The classes that you want EF Core to map to the tables in your database

 	The application’s DbContext, which is the primary class that you’ll use to configure and access the database

 The classes that map to the database—Book and Author

 EF Core maps classes to database tables. Therefore, you need to create a class that will define the database table, or match a database table if you already have a database. Lots of rules and configurations exist (covered later in the book), but figure 1.4 gives the typical format of a class that’s mapped to a database table.

 [image: c01-5.png]

 Figure 1.4 The.NET class Book, on the left, maps to a database table called Books, on the right. This is a typical way to build your application, with multiple classes that map to database tables.

 Listing 1.1 shows the other class you’ll be using: Author. This has the same structure as the Book class in figure 1.4, with a primary key that follows the EF Core naming conventions of <ClassName>Id (see section 6.3.15). The Book class has a property called AuthorId, which EF Core knows is a foreign key because it has the same name as the Author primary key.

 Listing 1.1 The Author class from MyFirstEfCoreApp

 public class Author
{
 public int AuthorId { get; set; } ①
 public string Name { get; set; }
 public string WebUrl { get; set; }
}

 ① Holds the primary key of the Author row in the DB. Note that the foreign key in the Book class has the same name.

 1.8.2 The application’s DbContext

 The other important part of the application is its DbContext. This is a class that you create that inherits from EF Core’s DbContext class. This holds the information EF Core needs to configure that database mapping, and is also the class you use in your code to access the database (see section 1.9.2). Figure 1.5 shows the application’s DbContext, called AppDbContext, that the MyFirstEfCoreApp console application uses.

 [image: c01-6.png]

 Figure 1.5 Two main parts of the application’s DbContext created for the MyFirstEfCoreApp console application. First, the setting of the database options to define what type of database to use and where it can be found. Second, the DbSet<T> property(s) that tell EF Core what classes should be mapped to the database.

 In our small example application, all the decisions on the modeling are done by EF Core, which works things out by using a set of conventions. You have loads of extra ways to tell EF Core what the database model is, and these commands can get complex. It takes both chapter 6 and chapter 7 to cover all the options available to you as a developer.

 Also, you’re using a standard approach to define the database access in a console application: overriding the OnConfiguring method inside the application’s DbContext and providing all the information EF Core needs to define the type and location of the database. The disadvantage of this approach is that it has a fixed connection string, which makes development and unit testing difficult.

 For ASP.NET Core web applications, this is a bigger problem, because you want to access a local database for testing, and a different hosted database when running in production. In chapter 2, as you start building an ASP.NET Core web application, you’ll use a different approach that allows you to change the database string (see section 2.2.2).

 1.9 Looking under the hood of EF Core

 Having built your MyFirstEfCoreApp application, you can now use it to see how an EF Core library works. The focus isn’t on the application code but on what happens inside the EF Core library when you read and write data to the database. My aim is to provide you with a mental model of what happens when a database access code uses EF Core. This should help as you dig into myriad commands described throughout the rest of this book.

 Do you really need to know how EF Core works inside to use it?

 You can use the EF Core library without bothering to learn how it works. But knowing what’s happening inside EF Core will help you understand why the various commands work the way they do. You’ll also be better armed when you need to debug your database access code.

 The following pages include lots of explanations and diagrams to show you what happens inside EF Core. EF Core “hides” the database so that you as a developer can write database access code easily—which does work well in practice. But, as I stated earlier, knowing how EF Core works can help you if you want to do something more complex, or things don’t work the way you expect.

 1.9.1 Modeling the database

 Before you can do anything with the database, EF Core must go through a process that I refer to as modeling the database. This modeling is EF Core’s way of working out what the database looks like by looking at the classes and other EF Core configuration data. The resulting model is then used by EF Core in all database accesses.

 The modeling process is kicked off the first time you create the application’s DbContext, in this case called AppDbContext (shown in figure 1.5). This has one property, DbSet<Book>, which is the way that the code accesses the database.

 Figure 1.6 provides an overview of the modeling process, which will help you understand the process EF Core uses to model the database. Later chapters introduce you to a range of commands that allow you to more precisely configure your database, but for now you’ll use the default configurations.

 [image: c01-7.png]

 Figure 1.6 How EF Core models the database

 Figure 1.6 shows the modeling steps that EF Core uses on our AppDbContext. The following text gives a more detailed description of the process:

 	EF Core looks at the application’s DbContext and finds all the public DbSet<T> properties. From this, it defines the initial name for the one table it finds, Books.

 	EF Core looks through all the classes referred to in DbSet<T> and looks at its properties to work out the column names, types, and so forth. It also looks for special attributes on the class and/or properties that provide extra modeling information.

 	EF Core looks for any classes that the DbSet<T> classes refer to. In our case, the Book class has a reference to the Author class, so EF Core scans that too. It carries out the same search on the properties of the Author class as it did on the Book class in step 2. It also takes the class name, Author, as the table name.

 	For the last input to the modeling process, EF Core runs the virtual method OnModelCreating inside the application’s DbContext. In this simple application, you don’t override the OnModelCreating method, but if you did, you could provide extra information via a fluent API to do more configuration of the modeling.

 	EF Core creates an internal model of the database based on all the information it gathered. This database model is cached so that later accesses will be quicker. This model is then used when performing all database accesses.

 You might have noticed that figure 1.6 shows no database. This is because when EF Core is building its internal model, it doesn’t look at the database. I emphasize that to show how important it is to build a good model of the database you want; otherwise, problems could occur if a mismatch exists between what EF Core thinks the database looks like and what the actual database is like.

 In your application, you may use EF Core to create the database, in which case there’s no chance of a mismatch. Even so, if you want a good and efficient database, it’s worth taking care to build a good representation of the database you want in your code so that the created database performs well. The options for creating, updating, and managing the database structure are a big topic, which are detailed in chapter 11.

 1.9.2 Reading data from the database

 You’re now at the point where you can access the database. Let’s use the list (l) command, which reads the database and prints the information on the terminal. Figure 1.7 shows the result.

 [image: c01-8.png]

 Figure 1.7 Output of the console application when listing the content of the database

 The following listing shows the code that’s called to list all the books, with each author, out to the console.

 Listing 1.2 The code to read all the books and output them to the console

 public static void ListAll()
{
 using (var db = new AppDbContext()) ①
 {
 foreach (var book in
 db.Books.AsNoTracking() ②
 .Include(a => a.Author)) ③
 {
 var webUrl = book.Author.WebUrl == null
 ? "- no web URL given -"
 : book.Author.WebUrl;
 Console.WriteLine(
 $"{book.Title} by {book.Author.Name}");
 Console.WriteLine(" " +
 "Published on " +
 $"{book.PublishedOn:dd-MMM-yyyy}" +
 $". {webUrl}");
 }
 }
}

 ① You create the application’s DbContext through which all database accesses are done.

 ② Reads all the books. AsNoTracking indicates this is a read-only access.

 ③ The “include” causes the author information to be eagerly loaded with each book. See chapter 2 for more on this.

 EF Core uses Microsoft’s .NET’s Language Integrated Query (LINQ) to carry the commands it wants done, and normal .NET classes to hold the data. Listing 1.2 includes minimal use of LINQ, but later in the book you’ll see much more complex examples.

 Note If you’re not familiar with LINQ, you’ll be at a disadvantage in reading this book. Appendix A provides a brief introduction to LINQ. Plenty of online resources are also available; see https://msdn.microsoft.com/en-us/library/bb308959.aspx.

 Two lines of code in bold in listing 1.2 cause the database access. Now let’s see how EF Core uses that LINQ code to access the database and return the required books with their authors. Figure 1.8 follows those lines of code down into the EF Core library, through the database, and back.

 [image: c01-9.png]

 Figure 1.8 A look inside EF Core as it executes a database query

 The process to read data from the database is as follows:

 	The LINQ query db.Books.AsNoTracking().Include(a => a.Author) accesses the DbSet<Book> property in the application’s DbContext and adds a .Include(a => a.Author) at the end to ask that the Author parts of the relationship are loaded too. This is converted by the database provider into an SQL command to access the database. The resulting SQL is cached to avoid the cost of retranslation if the same database access is used again.

 EF Core tries to be as efficient as possible on database accesses. In this case, it combines the two tables it needs to read, Books and Author, into one big table so that it can do the job in one database access. The following listing shows the SQL created by EF Core and the database provider.

 Listing 1.3 SQL command produced to read Books and Author

 SELECT [b].[BookId],
[b].[AuthorId],
[b].[Description],
[b].[PublishedOn],
[b].[Title],
[a].[AuthorId],
[a].[Name],
[a].[WebUrl]
FROM [Books] AS [b]
INNER JOIN [Author] AS [a] ON
[b].[AuthorId] = [a].[AuthorId]

 	After the database provider has read the data, EF Core puts the data through a process that (a) creates instances of the .NET classes and (b) uses the database relational links, called foreign keys, to correctly link the .NET classes together by reference—called a relationship fixup. The result is a set of .NET class instances linked in the correct way. In this example, two books have the same author, Martin Fowler, so the Author property of those two books points to one Author class.

 	Because the code includes the command AsNoTracking, EF Core knows to suppress the creation of a tracking snapshot. Tracking snapshots are used for spotting changes to data; you’ll see this in the example of editing the WebUrl. Because this is a read-only query, suppressing the tracking snapshot makes the command faster.

 1.9.3 Updating the database

 Now you want to use the second command, update (u), in MyFirstEfCoreApp to update the WebUrl column in the Author table of the book Quantum Networking. As shown in figure 1.9, you first list all the books to show that the last book has no author URL set. You then run the command u, which asks for a new author URL for the last book, Quantum Networking. You input a new URL of httqs://entangled.moon (it’s a fictitious future book, so why not a fictitious URL), and after the update, the command lists all the books again, showing that the author’s URL has changed (the two ovals show you the before and after URLs).

 [image: c01-10.png]

 Figure 1.9 The book information before and after the WebUrl of the last book’s author is updated

 The code for updating the WebUrl of the last book, Quantum Networking, is shown here.

 Listing 1.4 The code to update the author’s WebUrl of the book Quantum Networking

 public static void ChangeWebUrl()
{
 Console.Write("New Quantum Networking WebUrl > ");
 var newWebUrl = Console.ReadLine(); ①

 using (var db = new AppDbContext())
 {
 var book = db.Books
 .Include(a => a.Author) ②
 .Single(b => b.Title == "Quantum Networking"); ③
 book.Author.WebUrl = newWebUrl; ④
 db.SaveChanges(); ⑤
 Console.WriteLine("... SavedChanges called.");
 }
 ListAll(); ⑥
}

 ① Reads in from the console the new URL

 ② Makes sure the author information is eager loaded with the book

 ③ Selects only the book with the title Quantum Networking

 ④ To update the database, you change the data that was read in.

 ⑤ SaveChanges tells EF Core to check for any changes to the data that has been read in and write out those changes to the database.

 ⑥ Lists all the book information

 Figure 1.10 shows what is happening inside the EF Core library and follows its progress. This is a lot more complicated than the previous read example, so let me give you some pointers on what to look for.

 First, the read stage, at the top of the diagram, is similar to the read example and so should be familiar. In this case, the query loads a specific book, using the book’s title as the filter. The important change is point 2: that a tracking snapshot is taken of the data.

 This change occurs in the update stage, in the bottom half of the diagram. Here you can see how EF Core compares the loaded data with the tracking snapshot to find the changes. From this, it sees that only the WebUrl has been updated, and from that it can create an SQL command to update only that column in the right row.

 [image: c01-11.png]

 Figure 1.10 A look inside EF Core as it executes and reads, followed by a database update

 I’ve described most of the steps, but here is a blow-by-blow account of how the author’s WebUrl column is updated:

 	The application uses a LINQ query to find a single book with its author information. EF Core turns the LINQ query into an SQL command to read the rows where the Title is Quantum Networking, returning an instance of both the Book and the Author classes, and checks that only one row was found.

 	The LINQ query doesn’t include the .AsNoTracking method you had in the previous read versions, so the query is considered to be a tracked query. Therefore, EF Core creates a tracking snapshot of the data loaded.

 	The code then changes the WebUrl property in the Author class of the book. When SaveChanges is called, the Detect Changes stage compares all the classes that were returned from a tracked query with the tracking snapshot. From this, it can detect what has changed—in this case, just the WebUrl property of the Author class that has a primary key of 3.

 	As a change is detected, EF Core starts a transaction. Every database update is done as an atomic unit: if multiple changes to the database occur, they either all succeed, or they all fail. This is important, because a relational database could get into a bad state if only part of an update was applied.

 	The update request is converted by the database provider into an SQL command that does the update. If the SQL command is successful, the transaction is committed and the SaveChanges method returns; otherwise, an exception is raised.

 1.10 Should you use EF Core in your next project?

 Having given you a quick overview of what EF Core is and how it works, the next question is whether you should start using EF Core in your project. For anyone planning to switch to EF Core, the key question is, “Is EF Core sufficiently superior to the data access library I currently use to make it worth using for our next project?” A cost is associated with learning and adopting any new library, especially complex libraries such as EF Core, so it’s a valid question.

 I’ll give you a detailed answer, but as you can see, I think visually. Figure 1.11 captures my view of EF Core’s strengths and weaknesses: good things to the right, and not-so-good to the left. The width of each block shows the time period over which I think that topic will improve—the wider the block, the longer this will take. It’s only my view, so don’t take it as the truth, especially if you’re reading this book some time after I wrote this section. I hope that it at least helps you to think through the issues that affect your using EF Core in your project.

 [image: c01-12.png]

 Figure 1.11 My view of the strengths and weaknesses of EF Core

 Let me give you more details about each of the blocks in figure 1.11, starting with the good stuff on the right.

 1.10.1 Latest generation

 I swapped from Microsoft’s LINQ to SQL O/RM, which I liked, to EF4 because EF was the future, and no further effort was being put into LINQ to SQL. It’s the same now for EF Core. It’s where Microsoft is putting its effort, and it’s going to be extended and well supported for many years. EF Core is much more lightweight and generally faster than EF6.x, and I think the improvements in its API are good.

 If you’re starting a new project, and .NET Core and EF Core have the necessary features your project needs, then moving to EF Core means you won’t be left behind.

 1.10.2 Multiplatform and open source

 As I said at the start of the chapter, EF Core is multiplatform-capable: you can develop and run EF Core applications on Windows, Linux, and Apple. EF Core is also open source, so you have access to the source code and an open list of issues and defects—see https://github.com/aspnet/EntityFramework/issues.

 1.10.3 Rapid development

 In a typical data-driven application, I write a lot of database access code, some of it complex. I’ve found that EF6.x, and now EF Core, allow me to write data access code quickly, and in a way that’s easy to understand and refactor. This is one of the main reasons I use EF.

 EF Core also is developer-friendly, and tends to create working queries even if I didn’t write the most efficient code. Most properly formed LINQ queries work, though maybe they won’t produce the best-performing SQL—and having a query that works is a great start. Chapter 12 covers the whole area of performance tuning.

 1.10.4 Well supported

 EF Core has good documentation (https://docs.microsoft.com/en-us/ef/core/index) and, of course, you now have this book, which brings together the documentation with deeper explanations and examples, plus patterns and practices to make you a great developer. Because a large group of EF6.x developers will migrate to EF Core, the internet will be full of blogs on EF Core, and Stack Overflow is likely to have the answers to your problems already.

 The other part of support is the development tools. Microsoft seems to have changed focus by providing support for multiple platforms, but also has created a cross-platform development environment that’s free—called Visual Studio Code (https://code.visualstudio.com/). Microsoft has also made its main development tool, Visual Studio, free for individual developers and small businesses; the Usage section near the bottom of its web page at www.visualstudio.com/vs/community/ details the terms. That’s a compelling offer.

 1.10.5 Access to NuGet libraries

 Although some early difficulties arose with .NET Core 1, the introduction of .NET Standard 2.0 in August 2017, with its .NET Framework compatibility mode, overcame much of this, which is what EF Core 2.0 is built on. .NET Standard 2.0 allows (most) existing NuGet libraries that use earlier .NET versions to be used. The only problem occurs if the NuGet package uses an incompatible .NET feature, such as System.Reflection. .NET Standard 2.0 also supports a much bigger range of system methods, which makes it easier to convert a package to .NET Standard 2.0.

 Note If you want to stay on .NET 4.x, you can still use EF Core if you upgrade to .NET 4.6.1 or higher. For more information, see http://mng.bz/sB0y.

 1.10.6 Fully featured O/RM

 Entity Framework in general is a feature-rich implementation of an O/RM, and EF Core continues this trend. It allows you to write complex data access code covering most of the database features you’ll want to use. As I have moved through ADO.NET, LINQ to SQL, EF 4 to 6, and now EF Core, I believe this is already a great O/RM.

 But, at the time of writing this book, EF Core (version 2.0) still has some features yet to be added. That’s why the block is so wide in figure 1.11. If you’re a user of EF6.x, you’ll notice that some features available in EF6.x aren’t yet available in EF Core, but as time goes on, these will appear. I suggest you look at the Feature Comparison page on the EF Core docs site, http://mng.bz/ek4D, for the latest on what has been implemented.

 1.10.7 Stable library

 When I started writing this book, EF Core wasn’t stable. It had bugs and missing features. I found an error on using the year part of a DateTime in the version 1.0.0 release, along with a whole load of other LINQ translation issues that were fixed in 1.1.0.

 By the time you read this, EF Core will be much better, but still changing, albeit at a much slower rate. If you want something stable, EF6.x is a good O/RM, or there are other database access technologies. The choice is yours.

 1.10.8 Always high-performance

 Ah, the database performance issue. Look, I’m not going to say that EF Core is going to, out of the box, produce blistering database access performance with beautiful SQL and fast data ingest. That’s the cost you pay for quick development of your data access code: all that “magic” inside EF Core can’t be as good as hand-coded SQL, but you might be surprised how good it can be--see chapter 13

 But you can do something about it. In my applications, I find only about 5% to 10% of my queries are the key ones that need hand-tuning. Chapters 12 and 13 are dedicated to performance tuning, plus part of chapter 14. These show that there’s a lot you can do to improve the performance of EF Core database accesses.

 If you’re worried about EF Core’s performance, I recommend you skim through chapter 13, where you’ll progressively improve the performance of an application. You’ll see that you can make an EF Core application perform well with little extra effort. I also have two live demo sites, http://efcoreinaction.com/ and http://cqrsravendb.efcoreinaction.com/; click the About menu to see how big the databases are.

 1.11 When should you not use EF Core?

 I’m obviously pro EF Core, but I won’t use it on a client project unless it makes sense. So, let’s look at a few blockers that might suggest you don’t use EF Core.

 The first one is obvious: Does it support the database you want to use? You can find a list of supported databases at https://docs.microsoft.com/en-us/ef/core/providers/.

 The second factor is the level of performance you need. If you’re writing, say, a small, RESTful service that needs to be quick and has a small number of database accesses, then EF Core isn’t a good fit; you could use a fast, but development-time-hungry library because there isn’t much to write. But if you have a large application, with lots of boring admin accesses and a few important customer-facing accesses, then a hybrid approach could work for you (see chapter 13 for an example of a mixed EF Core/Dapper application).

 Summary

 	EF Core is an object-relational mapper (O/RM) that uses Microsoft’s Language Integrated Query (LINQ) to define database queries and return data into linked instances of .NET classes.

 	EF Core is designed to make writing code for accessing a database quick and intuitive. This O/RM has plenty of features to match many requirements.

 	You’ve seen various examples of what’s happening inside EF Core. This will help you understand what the EF Core commands described in later chapters can do.

 	There are many good reasons to consider using EF Core: it’s built on a lot of experience, is well supported, and runs on multiple platforms.

 	At the time this book was written, EF Core was at version 2.0 with added notes about the next release, EF Core 2.1. Some features that you might want may not be out yet, so check the online documentation for the latest state (https://docs.microsoft.com/en-us/ef/core/index).

 For readers who are familiar with EF6.x:

 	Look for EF6 notes throughout the book. They mark differences between the EF Core approach and EF6.x’s approach. Also check the summaries at the end of each chapter, which will point you to the major EF Core changes in that chapter.

 	Think of EF Core as a new library that someone has written to mimic EF6.x, but that works in a different way. That will help you spot the EF Core improvements that change the way you access a database.

 	EF Core no longer supports the EDMX/database designer approach that earlier forms of EF used.

2 Querying the database

 This chapter covers

 	Modeling three main types of database relationships

 	Creating and changing a database via migration

 	Defining and creating an application DbContext

 	Loading related data

 	Splitting complex queries into subqueries

 This chapter is all about using EF Core for reading, called querying, the database. You’ll create a database that contains the three main types of database relationships found in EF Core. Along the way, you’ll learn to create and change a database’s structure via EF Core.

 Next you’ll learn how to access a database via EF Core, reading data from the database tables. You’ll explore the basic format of EF Core queries before looking at various approaches to loading related data with the main data; for instance, loading the author with the book from chapter 1.

 After learning the ways to load related data, you’ll start to build the more complex queries needed to make a book-selling site work. This covers sorting, filtering, and paging, plus approaches to combine each of these separate query commands to create one composite database query.

 2.1 Setting the scene—our book-selling site

 In this chapter, you’ll start building the example book-selling site, referred to as the book app from now on. This example application provides a good vehicle for looking at relationships in queries. This section introduces the database, the various classes, and EF Core parts that the book app needs to access the database.

 Note You can see a live site of the book app at http://efcoreinaction.com/.

 2.1.1 The book app’s relational database

 Although we could have created a database with all the data about a book, its author(s), and its reviews in one table, that wouldn’t have worked well in a relational database, especially because the reviews are variable in length. The norm for relational databases is to split out any repeated data (for instance, the authors).

 We could have arranged the various parts of the book data in the database in several ways, but for this example the database has one of each of the main types of relationships you can have in EF Core. These three types are:

 	One-to-one relationship: PriceOffer to a Book

 	One-to-many relationship: Reviews to a Book

 	Many-to-many relationship: Books to Authors

 One-to-one relationship: PriceOffer to a Book

 A book can have a promotional price applied to it. This is done with an optional row in the PriceOffer, which is an example of a one-to-one (technically, it’s a one-to-zero-or-one relationship, but EF Core handles this the same way); see figure 2.1.

 [image: c02-1.png]

 Figure 2.1 The one-to-one relationship between a Book and an optional PriceOffer

 To calculate the final price of the book, you need to check for a row in the PriceOffer table that’s linked via a foreign key to the book. If such a row is found, the NewPrice would supersede the price for the original book, and the PromotionalText will be shown onscreen; for instance:

 $40 $30 Our summertime price special, for this week only!

 One-to-many relationship: reviews to a Book

 You want to allow customers to review a book; they can give a book a star rating and optionally leave a comment. Because a book may have no reviews or many (unlimited) reviews, you need to create a table to hold that data. In this example, you’ll call the table Review. The Books table has a one-to-many relationship to the Review table, as shown in figure 2.2.

 [image: c02-2.png]

 Figure 2.2 The one-to-many relationship between a book and its zero-to-many reviews

 In the Summary display, you need to count the number of reviews and work out the average star rating, to show a summary. For instance, here’s a typical onscreen display you might produce from this one-to-many relationship:

 Votes 4.5 by 2 customers

 Many-to-many relationship: books to authors

 Books can be written by one or more authors, and an author may write one or more books. You therefore need a table called Books holding the books data, and another table called Authors holding the authors. The link between the Books and Authors tables is called a many-to-many relationship, which needs a linking table (see figure 2.3).

 [image: c02-3.png]

 Figure 2.3 The three tables involved in creating the many-to-many relationship between the Books table and the Authors table

 The typical onscreen display from this relationship would look like this:

 by Dino Esposito, Andrea Saltarello

 EF6 In EF6.x you can define a many-to-many relationship without needing to define a linking class (for instance, the BookAuthor class in figure 2.3). EF6.x then creates a hidden linking table for you. In EF Core, you have to create that linking table yourself.

 2.1.2 Other relationship types not covered in this chapter

 In EF Core, you can include a class in the application’s DbContext that inherits from another class in the application’s DbContext. For instance, you could’ve defined the PriceOffer class as inheriting the Book class. That would have achieved a similar result to the one-to-one relationship shown previously. EF Core can provide this via the table-per-hierarchy (TPH) configuration, covered in chapter 7.

 Another relationship type is hierarchical: a set of data items that are related to each other by hierarchical relationships. A typical example is an Employee class that has a relationship pointing to the employee’s manager, who in turn is an employee. EF Core uses the same approaches as one-to-one and one-to-many to provide hierarchical relationships, and I talk more about this type of relationship in chapter 7, where I explain how to configure them.

 2.1.3 The final database showing all the tables

 Figure 2.4 shows the book app’s database that you’ll be using for the examples in this chapter and in chapter 3. It contains all the tables already described, including the full definition of all the columns in the Books table.

 Note The database diagram uses the same layout and terms as in the first chapter, where PK means primary key, and FK means foreign key.

 [image: c02-4.png]

 Figure 2.4 The complete relational database schema for the book app, showing all the tables and their columns

 To help you make sense of this database, figure 2.5 shows the onscreen output of the list of books, but focusing on just one book. As you can see, the book app needs to access every table in the database to build the book list. Later, I show you this same book display, but with the query that supplies each element.

 [image: c02-5.png]

 Figure 2.5 A listing of a single book showing which database table provides each part of the information

 Tip You can see a live site running the book app code at http://efcoreinaction.com/. This might help you understand the rest of this chapter.

 Downloading and running the example application from the Git repo

 If you want to download the book app code and run it locally, follow the steps defined in the sidebar with the same name as this in section 1.6.2. The only change you need to make is to use the Chapter02 branch instead of Chapter01. The book app is ready to compile and run either from Visual Studio 2017 or in Visual Studio Code.

 Each chapter has its own branch, so you as you go through the book, you can switch branches to get the appropriate code of the book app at each stage of the development.

 2.1.4 The classes that EF Core maps to the database

 I’ve created five .NET classes to map onto the five tables in the database. They’re called Book, PriceOffer, Review, Author, and BookAuthor for the many-to-many-linking table.

 These classes are referred to as entity classes to show that they’re mapped by EF Core to the database. From the software point of view, there’s nothing special about entity classes. They’re normal .NET classes, sometimes referred to as plain old CLR objects (POCOs). The term entity class identifies the class as one that EF Core has mapped to the database.

 The primary entity class is the Book class, shown in the following listing. You can see it refers to a single PriceOffer class, a collection of Review classes, and finally a collection of BookAuthor classes, which link the book data to one or more Author classes that contain the author’s name.

 Listing 2.1 The Book class, which is mapped to the Books table in the database

 public class Book ①
{
 public int BookId { get; set; } ②
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime PublishedOn { get; set; }
 public string Publisher { get; set; }
 public decimal Price { get; set; }
 /// <summary>
 /// Holds the url to get the image of the book
 /// </summary>
 public string ImageUrl { get; set; }

 //---
 //relationships
 public PriceOffer Promotion { get; set; } ①
 public ICollection<Review> Reviews { get; set; } ④
 public ICollection<BookAuthor>
 AuthorsLink { get; set; } ⑤
}

 ① The Book class contains the main book information.

 ② We use EF Core’s “By Convention” configuration to define the primary key of this entity class. This means we use <ClassName>Id, and because the property is of type int, EF Core assumes that the database will use the SQL IDENTITY command to create a unique key when a new row is added.

 ③ Link to the optional one-to-one PriceOffer relationship

 ④ There can be zero to many reviews of the book.

 ⑤ Provides a link to the many-to-many linking table that links the Book to its Author classes

 For simplicity, we use EF Core’s By Convention configuration approach to model the database. We use EF Core By Convention naming for the properties that hold the primary key and foreign keys in each for the entity classes. In addition, the .NET type of the navigational properties, such as ICollection<Review> Reviews, defines what sort of relationship I want. For instance, because the Reviews property is of the .NET type ICollection<Review>, the relationship is a one-to-many relationship. Chapters 6 and 7 describe the other approaches for configuring the EF Core database model.

 What happens if you have an existing database that you want to access?

 The examples in this book show how to define and create a database via EF Core. I do that because that’s the most complex situation—where you need to understand all the configuration options.

 But if you have an existing database that you want to access, that’s much easier, because EF Core can build your application’s DbContext class and all your entity classes for you. EF Core does this using a feature called reverse-engineeringa database, which is covered in section 11.3.

 The other possibility is you don’t want EF Core changing the database structure, but you want to look after that yourself, via an SQL change script or a database deployment tool, for instance. I cover that approach in section 11.4.

 2.2 Creating the application’s DbContext

 To access the database, you need to do the following:

 	Define your application’s DbContext, which you do by creating a class and inheriting from EF Core’s DbContext class.

 	Create an instance of that class every time you want to access the database.

 All the database queries you’ll see later in this chapter use these steps, which I now describe in more detail.

 2.2.1 Defining the application’s DbContext: EfCoreContext

 The key class you need in order to use EF Core is the application’s DbContext. This is a class you define by inheriting EF Core’s DbContext and adding various properties to allow your software to access the database tables. It also contains methods you can override to access other features in EF Core, such as configuring the database modeling, and so on. Figure 2.6 gives you an overview of an application DbContext, pointing out all the important parts.

 [image: c02-6.png]

 Figure 2.6 The main parts of an application’s DbContext

 One point to note about figure 2.6 is that your application’s DbContext doesn’t include DbSet<T> properties for your Review entity class and the BookAuthor linking entity class. This is because both entity classes are accessed only via the Book class, as you’ll see later.

 Note I skip over configuring the database modeling, done in the OnModelCreating method in the application’s DbContext. Chapters 6 and 7 cover how to model the database in detail.

 2.2.2 Creating an instance of the application’s DbContext

 Chapter 1 showed you how to set up the application’s DbContext by overriding its OnConfiguring method. The downside of that approach is that the connection string is fixed. In this chapter, you’ll use another approach, because we want to use a different database for development and unit testing. You’ll use a method that provides that via the application’s DbContext constructor.

 Note Chapter 15 covers unit testing of an application that uses EF Core.

 Listing 2.2 provides the options for the database at the time you create the application DbContext, called EfCoreContext. To be honest, this listing is based on what I use in my unit testing, because it has the benefit of showing you the component parts. Chapter 5, which is about using EF Core in an ASP.NET Core application, presents a more powerful way to create the application’s DbContext, by using a feature called dependency injection.

 Listing 2.2 Creating an instance of the application’s DbContext to access the database

 const string connection =
 "Data Source=(localdb)\\mssqllocaldb;"+ ①
 "Database=EfCoreInActionDb.Chapter02;"+ ①
 "Integrated Security=True;"; ①
var optionsBuilder = ②
 new DbContextOptionsBuilder ②
 <EfCoreContext>(); ②
optionsBuilder.UseSqlServer(connection); ③
var options = optionsBuilder.Options;
using (var context = new EfCoreContext(options))④
{
 var bookCount = context.Books.Count(); ⑤
 //... etc.

 ① The connection string, with its format dictated by the sort of database provider and hosting you’re using

 ② You need an EF Core DbContextOptionsBuilder<> instance to be able to set the options you need.

 ③ You’re accessing an SQL Server database and using the UseSqlServer method from the Microsoft.EntityFrameworkCore.SqlServer library, and this method needs the database connection string.

 ④ This creates the all-important EfCoreContext using the options you’ve set up. You use a using statement because the DbContext is disposable.

 ⑤ Uses the DbContext to find out the number of books in the database

 At the end of this listing, you create an instance of EfCoreContext inside a using statement. That’s because DbContext has an IDisposable interface and therefore should be disposed after you’ve used it. So, from now on, if you see a variable called context, it was created using the code in listing 2.2 or a similar approach.

 2.2.3 Creating a database for your own application

 There are a few ways to create a database using EF Core, but the normal way is to use EF Core’s migrations feature. This uses your application’s DbContext and the entity classes, like the ones I’ve just described, as the model for the database structure. The Add-Migration command first models your database and then, using that model, builds commands to create a database that fits that model.

