

 [image: cover]

React Quickly: Painless web apps with React, JSX, Redux, and GraphQL

 Azat Mardan

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Dan Maharry
Technical development editor: Anto Aravinth
Review editor: Ivan Martinović
Project editor: Tiffany Taylor
Copyeditor: Tiffany Taylor
Proofreader: Katie Tennant
Technical proofreader: German Frigerio
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 ISBN 9781617293344

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Dedication

 To my grandfather, Khalit Khamitov. Thank you for being such a kind and just person. You will always stay in my memory, along
 with the crafts you taught me, the trips we took to the dacha, and the chess games we played.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for React Quickly

 Foreword

 Preface

 Acknowledgments

 About This Book

 About the Author

 About the Cover

 1. React foundation

 Chapter 1. Meeting React

 Chapter 2. Baby steps with React

 Chapter 3. Introduction to JSX

 Chapter 4. Making React interactive with states

 Chapter 5. React component lifecycle events

 Chapter 6. Handling events in React

 Chapter 7. Working with forms in React

 Chapter 8. Scaling React components

 Chapter 9. Project: Menu component

 Chapter 10. Project: Tooltip component

 Chapter 11. Project: Timer component

 2. React architecture

 Chapter 12. The Webpack build tool

 Chapter 13. React routing

 Chapter 14. Working with data using Redux

 Chapter 15. Working with data using GraphQL

 Chapter 16. Unit testing React with Jest

 Chapter 17. React on Node and Universal JavaScript

 Chapter 18. Project: Building a bookstore with React Router

 Chapter 19. Project: Checking passwords with Jest

 Chapter 20. Project: Implementing autocomplete with Jest, Express, and MongoDB

 Appendix A. Installing applications used in this book

 Appendix B. React cheatsheet

 Appendix C. Express.js cheatsheet

 Appendix D. MongoDB and Mongoose cheatsheet

 Appendix E. ES6 for success

 React Cheatsheet

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for React Quickly

 Foreword

 Preface

 Acknowledgments

 About This Book

 About the Author

 About the Cover

 1. React foundation

 Chapter 1. Meeting React

 1.1. What is React?

 1.2. The problem that React solves

 1.3. Benefits of using React

 1.3.1. Simplicity

 1.3.2. Speed and testability

 1.3.3. Ecosystem and community

 1.4. Disadvantages of React

 1.5. How React can fit into your web applications

 1.5.1. React libraries and rendering targets

 1.5.2. Single-page applications and React

 1.5.3. The React stack

 1.6. Your first React code: Hello World

 1.7. Quiz

 1.8. Summary

 1.9. Quiz answers

 Chapter 2. Baby steps with React

 2.1. Nesting elements

 2.2. Creating component classes

 2.3. Working with properties

 2.4. Quiz

 2.5. Summary

 2.6. Quiz answers

 Chapter 3. Introduction to JSX

 3.1. What is JSX, and what are its benefits?

 3.2. Understanding JSX

 3.2.1. Creating elements with JSX

 3.2.2. Working with JSX in components

 3.2.3. Outputting variables in JSX

 3.2.4. Working with properties in JSX

 3.2.5. Creating React component methods

 3.2.6. if/else in JSX

 3.2.7. Comments in JSX

 3.3. Setting up a JSX transpiler with Babel

 3.4. React and JSX gotchas

 3.4.1. Special characters

 3.4.2. data-attributes

 3.4.3. style attribute

 3.4.4. class and for

 3.4.5. Boolean attribute values

 3.5. Quiz

 3.6. Summary

 3.7. Quiz answers

 Chapter 4. Making React interactive with states

 4.1. What are React component states?

 4.2. Working with states

 4.2.1. Accessing states

 4.2.2. Setting the initial state

 4.2.3. Updating states

 4.3. States and properties

 4.4. Stateless components

 4.5. Stateful vs. stateless components

 4.6. Quiz

 4.7. Summary

 4.8. Quiz answers

 Chapter 5. React component lifecycle events

 5.1. A bird’s-eye view of React component lifecycle events

 5.2. Categories of events

 5.3. Implementing an event

 5.4. Executing all events together

 5.5. Mounting events

 5.5.1. componentWillMount()

 5.5.2. componentDidMount()

 5.6. Updating events

 5.6.1. componentWillReceiveProps(newProps)

 5.6.2. shouldComponentUpdate()

 5.6.3. componentWillUpdate()

 5.6.4. componentDidUpdate()

 5.7. Unmounting event

 5.7.1. componentWillUnmount()

 5.8. A simple example

 5.9. Quiz

 5.10. Summary

 5.11. Quiz answers

 Chapter 6. Handling events in React

 6.1. Working with DOM events in React

 6.1.1. Capture and bubbling phases

 6.1.2. React events under the hood

 6.1.3. Working with the React SyntheticEvent event object

 6.1.4. Using events and state

 6.1.5. Passing event handlers as properties

 6.1.6. Exchanging data between components

 6.2. Responding to DOM events not supported by React

 6.3. Integrating React with other libraries: jQuery UI events

 6.3.1. Integrating buttons

 6.3.2. Integrating labels

 6.4. Quiz

 6.5. Summary

 6.6. Quiz answers

 Chapter 7. Working with forms in React

 7.1. The recommended way to work with forms in React

 7.1.1. Defining a form and its events in React

 7.1.2. Defining form elements

 7.1.3. Capturing form changes

 7.1.4. Account field example

 7.2. Alternative ways to work with forms

 7.2.1. Uncontrolled elements with change capturing

 7.2.2. Uncontrolled elements without capturing changes

 7.2.3. Using references to access values

 7.2.4. Default values

 7.3. Quiz

 7.4. Summary

 7.5. Quiz answers

 Chapter 8. Scaling React components

 8.1. Default properties in components

 8.2. React property types and validation

 8.3. Rendering children

 8.4. Creating React higher-order components for code reuse

 8.4.1. Using displayName: distinguishing child components from their parent

 8.4.2. Using the spread operator: passing all of your attributes

 8.4.3. Using higher-order components

 8.5. Best practices: presentational vs. container components

 8.6. Quiz

 8.7. Summary

 8.8. Quiz answers

 Chapter 9. Project: Menu component

 9.1. Project structure and scaffolding

 9.2. Building the menu without JSX

 9.2.1. The Menu component

 9.2.2. The Link component

 9.2.3. Getting it running

 9.3. Building the menu in JSX

 9.3.1. Refactoring the Menu component

 9.3.2. Refactoring the Link component

 9.3.3. Running the JSX project

 9.4. Homework

 9.5. Summary

 Chapter 10. Project: Tooltip component

 10.1. Project structure and scaffolding

 10.2. The Tooltip component

 10.2.1. The toggle() function

 10.2.2. The render() function

 10.3. Getting it running

 10.4. Homework

 10.5. Summary

 Chapter 11. Project: Timer component

 11.1. Project structure and scaffolding

 11.2. App architecture

 11.3. The TimerWrapper component

 11.4. The Timer component

 11.5. The Button component

 11.6. Getting it running

 11.7. Homework

 11.8. Summary

 2. React architecture

 Chapter 12. The Webpack build tool

 12.1. What does Webpack do?

 12.2. Adding Webpack to a project

 12.2.1. Installing Webpack and its dependencies

 12.2.2. Configuring Webpack

 12.3. Modularizing your code

 12.4. Running Webpack and testing the build

 12.5. Hot module replacement

 12.5.1. Configuring HMR

 12.5.2. Hot module replacement in action

 12.6. Quiz

 12.7. Summary

 12.8. Quiz answers

 Chapter 13. React routing

 13.1. Implementing a router from scratch

 13.1.1. Setting up the project

 13.1.2. Creating the route mapping in app.jsx

 13.1.3. Creating the Router component in router.jsx

 13.2. React Router

 13.2.1. React Router’s JSX style

 13.2.2. Hash history

 13.2.3. Browser history

 13.2.4. React Router development setup with Webpack

 13.2.5. Creating a layout component

 13.3. React Router features

 13.3.1. Accessing router with the withRouter higher-order component

 13.3.2. Navigating programmatically

 13.3.3. URL parameters and other route data

 13.3.4. Passing properties in React Router

 13.4. Routing with Backbone

 13.5. Quiz

 13.6. Summary

 13.7. Quiz answers

 Chapter 14. Working with data using Redux

 14.1. React support for unidirectional data flow

 14.2. Understanding the Flux data architecture

 14.3. Using the Redux data library

 14.3.1. Redux Netflix clone

 14.3.2. Dependencies and configs

 14.3.3. Enabling Redux

 14.3.4. Routes

 14.3.5. Combining reducers

 14.3.6. Reducer for movies

 14.3.7. Actions

 14.3.8. Action creators

 14.3.9. Connecting components to the store

 14.3.10. Dispatching an action

 14.3.11. Passing action creators into component properties

 14.3.12. Running the Netflix clone

 14.3.13. Redux wrap-up

 14.4. Quiz

 14.5. Summary

 14.6. Quiz answers

 Chapter 15. Working with data using GraphQL

 15.1. GraphQL

 15.2. Adding a server to the Netflix clone

 15.2.1. Installing GraphQL on a server

 15.2.2. Data structure

 15.2.3. GraphQL schema

 15.2.4. Querying the API and saving the response into the store

 15.2.5. Showing the list of movies

 15.2.6. GraphQL wrap-up

 15.3. Quiz

 15.4. Summary

 15.5. Quiz answers

 Chapter 16. Unit testing React with Jest

 16.1. Types of testing

 16.2. Why Jest (vs. Mocha or others)?

 16.3. Unit testing with Jest

 16.3.1. Writing unit tests in Jest

 16.3.2. Jest assertions

 16.4. UI testing React with Jest and TestUtils

 16.4.1. Finding elements with TestUtils

 16.4.2. UI-testing the password widget

 16.4.3. Shallow rendering

 16.5. TestUtils wrap-up

 16.6. Quiz

 16.7. Summary

 16.8. Quiz answers

 Chapter 17. React on Node and Universal JavaScript

 17.1. Why React on the server? And what is Universal JavaScript?

 17.1.1. Proper page indexing

 17.1.2. Better performance with faster loading times

 17.1.3. Better code maintainability

 17.1.4. Universal JavaScript with React and Node

 17.2. React on Node

 17.3. React and Express: rendering on the server side from components

 17.3.1. Rendering simple text on the server side

 17.3.2. Rendering an HTML page

 17.4. Universal JavaScript with Express and React

 17.4.1. Project structure and configuration

 17.4.2. Setting up the server

 17.4.3. Server-side layout templates with Handlebars

 17.4.4. Composing React components on the server

 17.4.5. Client-side React code

 17.4.6. Setting up Webpack

 17.4.7. Running the app

 17.5. Quiz

 17.6. Summary

 17.7. Quiz answers

 Chapter 18. Project: Building a bookstore with React Router

 18.1. Project structure and Webpack configuration

 18.2. The host HTML file

 18.3. Creating components

 18.3.1. Main file: app.jsx

 18.3.2. The Cart component

 18.3.3. The Checkout component

 18.3.4. The Modal component

 18.3.5. The Product component

 18.4. Launching the project

 18.5. Homework

 18.6. Summary

 Chapter 19. Project: Checking passwords with Jest

 19.1. Project structure and Webpack configuration

 19.2. The host HTML file

 19.3. Implementing a strong password module

 19.3.1. The tests

 19.3.2. The code

 19.4. Implementing the Password component

 19.4.1. The tests

 19.4.2. The code

 19.5. Putting it into action

 19.6. Homework

 19.7. Summary

 Chapter 20. Project: Implementing autocomplete with Jest, Express, and MongoDB

 20.1. Project structure and Webpack configuration

 20.2. Implementing the web server

 20.2.1. Defining the RESTful APIs

 20.2.2. Rendering React on the server

 20.3. Adding the browser script

 20.4. Creating the server template

 20.5. Implementing the Autocomplete component

 20.5.1. The tests for Autocomplete

 20.5.2. The code for the Autocomplete component

 20.6. Putting it all together

 20.7. Homework

 20.8. Summary

 Appendix A. Installing applications used in this book

 Installing React

 Installing Node.js

 Installing Express

 Installing Bootstrap

 Installing Browserify

 Installing MongoDB

 Using Babel to compile JSX and ES6

 Node.js and ES6

 Standalone browser Babel

 Appendix B. React cheatsheet

 Installation

 React

 React DOM

 Rendering

 ES5

 ES5+JSX

 Server-side rendering

 Components

 ES5

 ES5 + JSX

 ES6 + JSX

 Advanced components

 Options (ES5)

 ES5

 ES5 + JSX

 ES6 + JSX

 Lifecycle events

 Sequence of lifecycle events (inspired by http://react.tips)

 Special properties

 propTypes

 Custom validation

 Component properties and methods

 Properties

 Methods

 React add-ons

 React components

 Appendix C. Express.js cheatsheet

 Installing Express.js

 Generator

 Usage

 Options

 Basics

 HTTP verbs and routes

 Requests

 Request-header shortcuts

 Response

 Handler signatures

 Stylus and Jade

 Body

 Static

 Connect middleware

 Other popular middleware

 Resources

 Appendix D. MongoDB and Mongoose cheatsheet

 MongoDB

 MongoDB console

 Installing Mongoose

 Mongoose basic usage

 Mongoose schema

 Create, read, update, delete (CRUD) Mongoose example

 Mongoose model methods

 Mongoose document methods

 Appendix E. ES6 for success

 Default parameters

 Template literals

 Multiline strings

 Destructuring assignment

 Enhanced object literals

 Arrow functions

 Promises

 Block-scoped constructs: let and const

 Classes

 Modules

 Using ES6 today with Babel

 Other ES6 features

 React Cheatsheet

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for React Quickly

 “React Quickly is a one-stop shop for anyone who wants a guided introduction to React and the ecosystem of tools, concepts, and libraries
 around it. Follow Azat’s walkthroughs, work on the projects given, and you’ll soon understand React, Redux, GraphQL, Webpack,
 and Jest, as well as how to put them to work.”

 Peter Cooper, editor of JavaScript Weekly

 “React Quickly teaches the reader the most valuable and buzz-worthy concepts in building modern web applications with React including GraphQL,
 Webpack, and server-side rendering. After reading React Quickly, you should feel confident in your ability to create a production-grade web application with React.”

 Stan Bershadskiy, author of React Native Cookbook

 “Azat is one of the most authoritative voices in the programming space. This book goes far beyond the basics by deep diving
 into React’s foundation and architecture. It’s a must read for any developer!”

 Erik Hanchett, author of Ember.js Cookbook

 “This book is simple to follow. It uses very basic language that makes you understand each concept step by step.”

 Israel Morales, front-end developer and web designer at SavvyCard

 “Simple language with simple logical examples to get you up and running quickly is why this book truly justifies its title, React Quickly. This book covers all the major topics that any developer new to React needs in order to start writing apps using React. And
 the author’s sense of humor will keep you engaged until the end. I am thankful Azat took time to share his React journey with
 us.”

 Suhas Deshpande, software engineer at Capital One

 “React Quickly is a great resource for coming up to speed with React. Very thorough and relevant. I’ll be using it as a reference for my
 next app.”

 Nathan Bailey, full stack developer at SpringboardAuto.com

 “Azat is great at what he does—teaching people how to code. React Quickly contains fundamental knowledge as well as practical examples to get you started using React quickly.”

 Shu Liu, IT consultant

 “Since being open sourced by Facebook in 2013, React.js has rapidly become a widely adopted JS library and one of the most
 starred projects on GitHub. In his new book, React Quickly, Azat Mardan has, in his typical lucid style, laid out everything you need to learn about the React ecosystem in order to build
 performant SPA applications quickly. Just the chapters on React state and Universal JavaScript are worth the price of the
 book.”

 Prakash Sarma, New Star Online

 “React Quickly will ease your adoption of React by giving you a clear foundation, and it will have you building applications that thoroughly
 embrace the benefits of using React.

 Allan Von Schenkel, VP of Technology & Strategy at FoundHuman

 “React Quickly covers all the important aspects of React in an easy-to-consume fashion. This book is like all of Azat’s work: clear and concise,
 and it covers what’s needed to become productive quickly. If you are interested in adding React to your skill set, I say start
 here.”

 Bruno Watt, consulting architect at hypermedia.tech

 “React Quickly is an incredibly comprehensive book on full-stack web development with React.js, covering not just React itself but the ecosystem
 surrounding it. I’ve always been mystified by server-side React and found that Azat’s book really helped me finally understand
 it. If you’re new to React and would like to truly master it, I would look no further than this book.”

 Richard Kho, software engineer at Capital One

Foreword

 I keep hoping that JavaScript will die. Seriously. Die brutally and painfully.

 It’s not that I completely dislike JavaScript—it has improved quite a bit over the years. It’s that I have a severe distaste
 for complexity—so much so that I named my blog and my business Simple Programmer. My tagline has always been, “Making the complex simple.”

 Making the complex simple isn’t easy. It takes a special set of skills. You have to be able to understand the complex, and
 understand it so well that you can distill it down to the core—because everything is simple at the core. This is exactly what
 Azat has done with this book, React Quickly.

 Now, I’ll admit Azat had a little help. You see, one of the reasons I personally like ReactJS so much is that it’s simple.
 It was designed to be simple. It was designed to deal with the increasing complexity of JavaScript frameworks and reduce that
 complexity by going back to the basics: plain old JavaScript. (At least, for the most part. ReactJS does have a JSX language
 that’s compiled into JavaScript, but I’ll let Azat tell you about that.)

 The point is, although I like Angular, Backbone, and some other JavaScript frameworks because they’ve helped make it much
 easier for web developers to create asynchronous web applications and single-page applications, they’ve also added a great
 deal of complexity. Using templates and understanding the syntax and subtleties of these frameworks increased productivity,
 but they moved the complexity from the backend to the frontend. ReactJS starts over, gets rid of templates, and gives you
 a way to apply component-based architecture to your UI using JavaScript. I like this. It’s simple. But even the simplest thing
 can be difficult to explain—or worse yet, made complex by a teacher who lacks this skill.

 This is where Azat comes in. He knows how to teach. He knows how to simplify. He begins this book by explaining React through
 contrasting it with something you probably already know: Angular. Even if you don’t know Angular, his explanation of ReactJS
 will quickly help you understand the basics and its purpose. Then Azat quickly demonstrates how to create a basic ReactJS
 application, so you can see and do it for yourself. After that, he takes you through the 20% you need to know in order to
 accomplish 80% of what you’ll do in React, using real-world examples that anyone can grasp easily. Finally—and this is my
 favorite part—he includes examples and projects galore. The absolute best way to learn is by doing, and Azat walks you through
 creating six—yes, six—nontrivial projects using ReactJS.

 In keeping with my theme of simplicity, I’ll leave off here by saying that React Quickly is simply the best way I know of to learn ReactJS.

 JOHN SONMEZ

 AUTHOR OF Soft Skills (http://amzn.to/2hFHXAu)

 AND FOUNDER OF Simple Programmer (https://simpleprogrammer.com)

Preface

 It was 2008, and banks were closing left and right. I was working at the Federal Deposit Insurance Corporation (FDIC), whose
 primary task is to pay back depositors of closed, failed, and insolvent banks. I admit that, in terms of job security, my
 job was on par with working at Lehman Brothers or being a ticket salesman for the Titanic. But when my department’s eventual budget cuts were still far in the future, I had the chance to work on an app called Electronic
 Deposit Insurance Estimator (EDIE). The app became hugely popular for a simple reason: people were anxious to find out how
 much of their savings was insured by the United States federal government, and EDIE estimated that amount.

 But there was a catch: people don’t like to tell the government about their private accounts. To protect their privacy, the
 app was made entirely in front-end JavaScript, HTML, and CSS, without any back-end technologies. This way, the FDIC wasn’t
 collecting any financial information.

 The app was a hot mess of spaghetti code left by dozens of iterations of consultants. Developers came and went, leaving no
 documentation and nothing resembling any logical, simple algorithms. It was like trying to use the New York City subway without
 a map. There were myriads of functions to call other functions, strange data structures, and more functions. In modern terminology,
 the app was pure user interface (UI), because it had no backend.

 I wish I’d had React.js back then. React brings joy. It’s a new way of thinking—a new way of developing. The simplicity of
 having your core functionality in one place, as opposed to splitting it into HTML and JS, is liberating. It reignited my passion
 for front-end development.

 React is a fresh way of looking at developing UI components. It’s a new generation of presentation layer libraries. Together
 with a model and routing library, React can replace Angular, Backbone, or Ember in the web and mobile tech stack. This is
 the reason I wrote this book. I never liked Angular: it’s too complex and opinionated. The template engine is very domain
 specific, to the point that it’s not JavaScript anymore; it’s another language. I have used Backbone.js and like it for its
 simplicity and DIY approach. Backbone.js is mature and more like a foundation for your own framework than a full-blown, opinionated
 framework in itself. The problem with Backbone is the increased complexity of interactions between models and views: multiple
 views update various models, which update other views, which trigger events on models.

 My personal experience from doing a Kickstarter campaign for my React.js online course (http://mng.bz/XgkO) and from going to various conferences and events has shown me that developers are hungry for a better way to develop UIs.
 Most business value now lies in UIs. The backend is a commodity. In the Bay Area, where I live and work, most job openings
 in software engineering are for front-end or (a trendy new title) generalist/fullstack developers. Only a few big companies
 like Google, Amazon, and Capital One still have relatively strong demand for data scientists and back-end engineers.

 The best way to ensure job security or get a great job in the first place is to become a generalist. The fastest way to do
 so is to use an isomorphic, scalable, developer-friendly library like React on the front end, paired with Node.js on the backend
 in case you ever need to mess with server-side code.

 For mobile developers, HTML5 was a dirty word two or three years ago. Facebook dropped its HTML5 app in favor of a more performant
 native implementation. But this unfavorable view is quickly changing. With React Native, you can render for mobile apps: you
 can keep your UI components but tailor them to different environments, another point in favor of learning React.

 Programming can be creative. Don’t get bogged down by mundane tasks, complexity, and fake separation of concerns. Cut out
 all the unnecessary junk, and unleash your creative power with the simplistic beauty of modular, component-based UIs powered by React. Throw in some Node for isomorphic/universal JavaScript, and you’ll achieve Zen.

 Happy reading, and let me know how you like the book by leaving a review on Amazon.com (http://amzn.to/2gPxv9Q).

Acknowledgments

 I’d like to acknowledge the internet, the universe, and the human ingenuity that brought us to the point that telepathy is
 possible. Without opening my mouth, I can share my thoughts with millions of people around the globe via social media such
 as Twitter, Facebook, and Instagram. Hurray!

 I feel humongous gratitude to my teachers, both intentional at schools and universities, and accidental and occasional, whose
 wisdom I grasped from books and from learning by osmosis.

 As Stephen King once wrote, “To write is human, to edit is divine.” Thus, my endless gratitude to the editors of this book
 and even more so to the readers who will have to deal with the inevitable typos and bugs they’ll encounter in this volume.
 This is my 14th book, and I know there will be typos, no mater what [sic].

 I thank the people at Manning who made this book possible: publisher Marjan Bace and everyone on the editorial and production
 teams, including Janet Vail, Kevin Sullivan, Tiffany Taylor, Katie Tennant, Gordan Salinovic, Dan Maharry, and many others
 who worked behind the scenes.

 I can’t thank enough the amazing group of technical peer reviewers led by Ivan Martinovic: James Anaipakos, Dane Balia, Art
 Bergquist, Joel Goldfinger, Peter Hampton, Luis Matthew Heck, Ruben J. Leon, Gerald Mack, Kamal Raj, and Lucas Tettamanti.
 Their contributions included catching technical mistakes, errors in terminology, and typos, and making topic suggestions.
 Each pass through the review process and each piece of feedback implemented through the forum topics shaped and molded the
 manuscript.

 On the technical side, special thanks go to Anto Aravinth, who served as the book’s technical editor; and German Frigerio,
 who served as the book’s technical proofreader. They are the best technical editors I could have hoped for.

 Many thanks go to John Sonmez of Pluralsight, Manning, and SimpleProgrammer.com fame, for writing the foreword to this book. Thank you, Peter Cooper, Erik Hanchett, and Stan Bershadskiy for your reviews
 and for giving the book extra credibility. Readers who haven’t heard of John, Peter, Erik, or Stan should subscribe and follow
 their work around software engineering.

 Finally, a thank you to all the MEAP readers for your feedback. Revising the book based on your reviews delayed publication
 by a year, but the result is the best book currently available about React.

About This Book

 This book is intended to cure the troubles of front-end developers, make their lives more meaningful and happier, and help
 them earn more money by introducing them to React.js—and doing so in a fast manner (hence the word Quickly in the title). It’s the work of one and a half years and about a dozen people. At the very least, the book is meant to open your mind to some unusual concepts like JSX, unidirectional data flow, and declarative
 programming.

Roadmap

 The book is split into two parts: “Core React” (chapters 1–11) and “React and friends” (chapters 12–20). Each chapter includes descriptive text supplemented with code examples and diagrams where they’re applicable. Each chapter
 also has an optional introductory video that will help you decide whether you need to read the chapter or can skip it. Chapters
 are written in a standalone manner, meaning you should have no trouble if you don’t read the book in order—although I do recommend
 reading it sequentially. At the end of each chapter is a quiz, to reinforce your retention of the material, and a summary.

 Each part ends with a series of larger projects that will give you more experience with React and solidify your new understanding
 by building on the concepts and knowledge introduced in the previous chapters. The projects are supplemented by optional screencast
 videos to reinforce your learning and show you dynamic things like creating files and installing dependencies (there are a
 lot of moving parts in web development!). These projects are an integral part of the book’s flow—avoid skipping them. I encourage
 you to type each line of code yourself and abstain from copying and pasting. Studies have shown that typing and writing increase
 learning effectiveness.

 The book ends with five appendixes that provide supplemental material. Check them out, along with the table of contents, before
 you begin reading.

 The websites for this book are www.manning.com/books/react-quickly and http://reactquickly.co. If you need up-to-date information, most likely you’ll find it there.

 The source code is available on the Manning website (www.manning.com/books/react-quickly) and on GitHub (https://github.com/azat-co/react-quickly). See the “Source code” section for more details. I show full listings of the code in the book—this is more convenient than
 jumping to GitHub or a code editor to look at the files.

Who this book is for (read this!)

 This book is for web and mobile developers and software engineers with two to three years of experience, who want to start
 learning and using React.js for web or mobile development. Basically, it’s for people who know the shortcut for the Developer
 Tools by heart (Cmd-Opt-J or Cmd-Opt-I on Macs). The book targets readers who know and are on a first-name basis with these
 concepts:

 	Single-page applications (SPAs)

 	RESTful services and API architecture

 	JavaScript, especially closures, scopes, and string and array methods

 	HTML, HTML5, and their elements and attributes

 	CSS and its styles and JavaScript selectors

 Having experience with jQuery, Angular, Ember.js, Backbone.js, or other MVC-like frameworks is a plus, because you’ll be able
 to contrast them with the React way. But it’s not necessary and to some degree may be detrimental, because you’ll need to
 unlearn certain patterns. React is not exactly MVC.

 You’ll be using command-line tools, so if you’re afraid of them, this is the best time to fight your phobia of the command
 line/Terminal/command prompt. Typically, CLIs are more powerful and versatile than their visual (GUI) versions (for example,
 the Git command line versus the GitHub desktop—the latter confuses the heck out of me).

 Having some familiarity with Node.js will allow you to learn React much more quickly than someone who’s never heard of Node.js,
 npm, Browserify, CommonJS, Gulp, or Express.js. I’ve authored several books on Node.js for those who want to brush up on it,
 the most popular being Practical Node.js (http://practicalnodebook.com). Or, you can go online for a free NodeSchool adventure (http://nodeschool.io) (free does not always mean worse).

What this book is not (read this too!)

 This book is not a comprehensive guide to web or mobile development. I assume that you already know about those. If you want help with basic
 programming concepts or JavaScript fundamentals, there are plenty of good books on those topics. You Don’t Know JS by Kyle Simpson (free to read at https://github.com/getify/You-Dont-Know-JS), Secrets of the JavaScript Ninja, Second Edition (www.manning.com/books/secrets-of-the-javascript-ninja-second-edition), and Eloquent JavaScript by Marijn Haverbeke (free to read at http://eloquentjavascript.net) come to mind. So, there’s no need for me to duplicate existing content with this book.

How to use this book

 First of all, you should read this book. That is not a joke. Most people buy books but never read them. It’s even easier to do so with digital copies, because they hide on drives
 and in the cloud. Read the book, and work through the projects, chapter by chapter.

 Each chapter covers either a topic or a series of topics that build on each other. For this reason, I recommend that you read this book from beginning to end and then go back to individual chapters for reference. But as I said earlier, you can also read individual chapters out of
 order, because the projects in the chapters stand alone.

 There are many links to external resources. Most of them are optional and provide additional details about topics. Therefore,
 I suggest that you read the book at your computer, so you can open links as I refer to them.

 Some text appears in a monospace font, like this: getAccounts(). That means it’s code, inline or in blocks. Sometimes you’ll see code with weird indentation:

 document.getElementById('end-of-time').play()
 }

 This means I’m annotating a large chunk of code and broke it into pieces. This piece belongs to a bigger listing that started
 from position 0; this small chunk won’t run by itself.

 Other times, code blocks aren’t indented. In such cases, it’s generally safe to assume that the snippet is the whole thing:

 ReactDOM.render(
<Content />,
 document.getElementById('content')
)

 If you see a dollar sign ($), it’s a Terminal/command prompt command. For example:

 $ npm install -g babel@5.8.34

 The most important thing to know and remember while using this book is that you must have fun. If it’s not fun, it’s not JavaScript!

Source code

 All of the book’s code is available at www.manning.com/books/react-quickly and https://github.com/azat-co/react-quickly. Follow the folder-naming convention chNN, where NN is the chapter number with a leading 0 if needed (for example, ch02 for chapter 2’s code). The source code in the GitHub repository will evolve by including patches, bug fixes, and maybe even new versions
 and styles (ES2020?).

Errata

 I’m sure there are typos in this book. Yes, I had editors—a bunch of them, all professionals provided by Manning. But thanks
 for finding that typo. No need to leave nasty Amazon reviews or send me hate mail about it, or about grammar.

 Please don’t email me bugs and typos. Instead, you can report them on the book’s forum at https://forums.manning.com/forums/react-quickly or create a GitHub issue at https://github.com/azat-co/react-quickly/issues. This way, other people can benefit from your findings.

 Also, please don’t email me technical questions or errata. Post them on the book’s forum, the book’s GitHub page (https://github.com/azat-co/react-quickly), or Stack Overflow. Other people may help you more quickly (and better) than I can.

Book forum

 Purchase of React Quickly includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/react-quickly. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers, and between
 readers and the author, can take place. It is not a commitment to any specific amount of participation on the part of the
 author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s
 website as long as the book is in print.

About the Author

 [image:]

 I’ve published more than 14 books and 17 online courses (https://node.university), most of them on the cloud, React, JavaScript, and Node.js. (One book is about how to write books, and another is about
 what to do after you’ve written a few books.) Before focusing on Node, I programmed in other languages (Java, C, Perl, PHP,
 Ruby), pretty much ever since high school (more than a dozen years ago) and definitely more than the 10,000 hours prescribed.[1]

 1

See https://en.wikipedia.org/wiki/Outliers_(book).

 Right now, I’m a Technology Fellow at one of the top 10 U.S. banks, which is also a Fortune 500 company: Capital One Financial
 Corporation, in beautiful San Francisco. Before that, I worked for small startups, giant corporations, and even the U.S. federal
 government, writing desktop, web, and mobile apps; teaching; and doing developer evangelism and project management.

 I don’t want to take too much of your time telling you about myself; you can read more on my blog (http://webapplog.com/about) and social media (www.linkedin.com/in/azatm). Instead, I want to write about my experience that’s relevant to this book.

 When I moved to the sunny state of California in 2011 to join a startup and go through a business accelerator (if you’re curious,
 it was 500 Startups), I started to use modern JavaScript. I learned Backbone.js to build a few apps for the startup, and I
 was impressed. The framework was a huge improvement in code organization over other SPAs I’d built in prior years. It had
 routes and models. Yay!

 I had another chance to see the astounding power of Backbone and isomorphic JavaScript during my work as software engineering
 team lead at DocuSign, the Google of e-signatures (it has a 70% market share). We reengineered a seven-year-old monolithic
 ASP.NET web app that took four weeks for each minor release into a snappy Backbone-Node-CoffeeScript-Express app that had
 great user experience and took only one or two weeks for its release. The design team did great work with usability. Needless
 to say, there were boatloads of UI views with various degrees of interactivity.

 The end app was isomorphic before such a term even existed. We used Backbone models on the server to prefetch the data from
 APIs and cache it. We used the same Jade templates on the browser and the server.

 It was a fun project that made me even more convinced of the power of having one language across the entire stack. Developers
 versed in C# and front-end JavaScript (mostly jQuery) from the old app would spend a sprint (one release cycle, typically
 a week or two) and fall in love with the clear structure of CoffeeScript, the organization of Backbone, and the speed of Node
 (both the development and the running speed).

 My decade in web development exposed me to the good, the bad, and the ugly (mostly ugly) of front-end development. This turned
 out to be a blessing in disguise, because I came to appreciate React even more, once I switched to it.

 If you’d like to receive updates, news, and tips, then connect with me online by following, subscribing, friending, stalking,
 whatever:

 	Twitter—https://twitter.com/azat_co

 	Website—http://azat.co

 	LinkedIn—http://linkedin.com/in/azatm

 	Professional blog—http://webapplog.com

 	Publications—http://webapplog.com/books

 For in-person workshops and courses, visit http://NodeProgram.com or https://Node.University, or send me a message via https://webapplog.com/azat.

About the Cover

 An email from an early reader asked about the dervish on the cover. Yes, the character could easily be a Persian or any one
 of many Turko-nomadic people inhabiting the Middle East and central Asia. This is due to the fact that trade and travel were
 highly developed and frequent among those regions for many centuries. But, according to the illustrator who drew this picture,
 he was depicting a Siberian Bashkir. Most of the modern-day Bashkirs live in the Republic of Bashkortostan (a.k.a. Bashkiria).
 Bashkirs are close ethnic and geographical neighbors of the Volga Bulgars (improperly named Tatars); Bashkirs and Tatars are
 the second-most-populous ethnic group in the Russian Federation. (The first is Russians, if you’re curious.)

 The figure comes from an eighteenth-century illustration, “Gravure Homme Baschkir,” by Jacques Grasset de Saint-Sauveur. Fascination
 with faraway lands and travel for pleasure were relatively new phenomena at the time, and collections of drawings such as
 this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The rich variety of drawings reminds us vividly of how culturally apart the world’s regions, towns, villages, and neighborhoods
 were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the
 countryside, it was easy to identify where they lived and what their trade or station in life was, just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by pictures such as this one.

Part 1. React foundation

 Hello! My name is Azat Mardan, and I’m going to take you on a journey into the wonderful world of React. It will make your
 front-end development more enjoyable and your code easier to write and maintain, and your users will be delighted at the speed
 of your web apps. React is a game changer in web development: the React community has pioneered many approaches, terms, and
 design patterns, and other libraries have followed the path forged by React.

 I’ve taught this material more than 20 times in my live-online and in-person workshops to hundreds of software engineers from
 very different backgrounds and varied levels of seniority. Thus, this material has been battle tested on my students: you’re
 getting the distilled, most effective version of my React foundation course in a written format. These chapters are critical
 to get you on familiar terms with React.

 Chapters 1–11 are the result of almost two years of work by several people, but they read as a fast sequence of topics that build on each
 other. The best way to consume these chapters is to start with chapter 1 and proceed in order. Each chapter includes a video message from me; chapters 1–8 have a quiz at the end; and chapters 9–11, which are projects, contain homework for self-guided development.

 All in all, this part of the book builds a solid foundation of React concepts, patterns, and features. Can you go to a foreign
 country and understand the language without studying? No—and that’s why you must learn the React “language” before you attempt
 to build complex apps. Thus, it’s paramount that you study these basic React concepts—that you learn the React language—which
 is exactly what you’ll do in the next 11 chapters.

 Let’s get started with React—and learn to speak fluent React-ese.

Chapter 1. Meeting React

 This chapter covers

 	Understanding what React is

 	Solving problems with React

 	Fitting React into your web applications

 	Writing your first React app: Hello World

 When I began working on web development in early 2000, all I needed was some HTML and a server-side language like Perl or
 PHP. Ah, the good old days of putting in alert() boxes just to debug your front-end code. It’s a fact that as the internet has evolved, the complexity of building websites
 has increased dramatically. Websites have become web applications with complex user interfaces, business logic, and data layers
 that require changes and updates over time—and often in real time.

 Many JavaScript template libraries have been written to try to solve the problems of dealing with complex user interfaces
 (UIs). But they still require developers to adhere to the old separation of concerns—which splits style (CSS), data and structure
 (HTML), and dynamic interactions (JavaScript)—and they don’t meet modern-day needs. (Remember the term DHTML?)

 In contrast, React offers a new approach that streamlines front-end development. React is a powerful UI library that offers
 an alternative that many big firms such as Facebook, Netflix, and Airbnb have adopted and see as the way forward. Instead
 of defining a one-off template for your UIs, React allows you to create reusable UI components in JavaScript that you can
 use again and again in your sites.

 Do you need a captcha control or date picker? Then use React to define a <Captcha /> or <DatePicker /> component that you can add to your form: a simple drop-in component with all the functionality and logic to communicate with
 the back end. Do you need an autocomplete box that asynchronously queries a database once the user has typed four or more
 letters? Define an <Autocomplete charNum="4"/> component to make that asynchronous query. You can choose whether it has a text box UI or has no UI and instead uses another
 custom form element—perhaps <Autocomplete textbox="..." />.

 This approach isn’t new. Creating composable UIs has been around for a long time, but React is the first to use pure JavaScript without templates to make this possible. And
 this approach has proven easier to maintain, reuse, and extend.

 React is a great library for UIs, and it should be part of your front-end web toolkit; but it isn’t a complete solution for
 all front-end web development. In this chapter, we’ll look at the pros and cons of using React in your applications and how
 you might fit it into your existing web-development stack.

 Part 1 of the book focuses on React’s primary concepts and features, and part 2 looks at working with libraries related to React to build more-complex front-end apps (a.k.a. React stack or React and friends). Each part demonstrates both greenfield and brownfield development[1] with React and the most popular libraries, so you can get an idea of how to approach working with it in real-world scenarios.

 1

Brownfield is a project with legacy code and existing systems, while greenfield is a project without any legacy code or systems;
 see https://en.wikipedia.org/wiki/Brownfield_(software_development).

 	

 Chapter videos and source code

 We all learn differently. Some people prefer text and others video, and others learn best via in-person instruction. Each
 chapter of this book includes a short video that explains the chapter’s gist in less than 5 minutes. Watching them is totally
 optional. They’ll give you a summary if you prefer a video format or need a refresher. After watching each video, you can
 decide whether you need to read the chapter or can skip to the next one.

 The source code for the examples in this chapter is at www.manning.com/books/reactquickly and at https://github.com/azat-co/react-quickly/tree/master/ch01 (in the ch01 folder of the GitHub repository https://github.com/azat-co/react-quickly). You can also find some demos at http://reactquickly.co/demos.

 	

1.1. What is React?

 To introduce React.js properly, I first need to define it. So, what is React? It’s a UI component library. The UI components
 are created with React using JavaScript, not a special template language. This approach is called creating composable UIs, and it’s fundamental to React’s philosophy.

 React UI components are highly self-contained, concern-specific blocks of functionality. For example, there could be components
 for date-picker, captcha, address, and ZIP code elements. Such components have both a visual representation and dynamic logic.
 Some components can even talk to the server on their own: for example, an autocomplete component might fetch the autocompletion
 list from the server.

 	

 User interfaces

 In a broad sense, a user interface[2] is everything that facilitates communication between computers and humans. Think of a punch card or a mouse: they’re both
 UIs. When it comes to software, engineers talk about graphical user interfaces (GUIs), which were pioneered for early personal
 computers such as Macs and PCs. A GUI consists of menus, text, icons, pictures, borders, and other elements. Web elements
 are a narrow subset of the GUI: they reside in browsers, but there are also elements for desktop applications in Windows,
 OS X, and other operating systems.

 2

https://en.wikipedia.org/wiki/User_interface.

 Every time I mention a UI in this book, I mean a web GUI.

 	

 Component-based architecture (CBA)—not to be confused with web components, which are just one of the most recent implementations
 of CBA—existed before React. Such architectures generally tend to be easier to reuse, maintain, and extend than monolithic
 UIs. What React brings to the table is the use of pure JavaScript (without templates) and a new way to look at composing components.

1.2. The problem that React solves

 What problem does React solve? Looking at the last few years of web development, note the problems in building and managing
 complex web UIs for front-end applications: React was born primarily to address those. Think of large web apps like Facebook:
 one of the most painful tasks when developing such applications is managing how the views change in response to data changes.

 Let’s refer to the official React website for more hints about the problem React addresses: “We built React to solve one problem:
 building large applications with data that changes over time.”[3] Interesting! We can also look at the history of React for more information. A discussion on the React Podcast[4] mentions that the creator of React—Jordan Walke—was solving a problem at Facebook: having multiple data sources update an
 autocomplete field. The data came asynchronously from a back end. It was becoming more and more complicated to determine where
 to insert new rows in order to reuse DOM elements. Walke decided to generate the field representation (DOM elements) anew
 each time. This solution was elegant in its simplicity: UIs as functions. Call them with data, and you get rendered views
 predictably.

 3

React official website, “Why React?” March 24, 2016, http://bit.ly/2mdCJKM.

 4

React Podcast, “8. React, GraphQL, Immutable & Bow-Ties with Special Guest Lee Byron,” December 31, 2015, http://mng.bz/W1X6.

 Later, it turned out that generating elements in memory is extremely fast and that the actual bottleneck is rendering in the
 DOM. But the React team came up with an algorithm that avoids unnecessary DOM pain. This made React very fast (and cheap in
 terms of performance). React’s splendid performance and developer-friendly, component-based architecture are a winning combination.
 These and other benefits of React are described in the next section.

 React solved Facebook’s original problem, and many large firms agreed with this approach. React adoption is solid, and its
 popularity is growing every month. React emerged from Facebook[5] and is now used not only by Facebook but also by Instagram, PayPal, Uber, Sberbank, Asana,[6] Khan Academy,[7] HipChat,[8] Flipboard,[9] and Atom,[10] to name just a few.[11] Most of these applications originally used something else (typically, template engines with Angular or Backbone) but switched
 to React and are extremely happy about it.

 5

“Introduction to React.js,” July 8, 2013, http://mng.bz/86XF.

 6

Malcolm Handley and Phips Peter, “Why Asana Is Switching to TypeScript,” Asana Blog, November 14, 2014, http://mng.bz/zXKo.

 7

Joel Burget, “Backbone to React,” http://mng.bz/WGEQ.

 8

Rich Manalang, “Rebuilding HipChat with React.js,” Atlassian Developers, February 10, 2015, http://mng.bz/r0w6.

 9

Michael Johnston, “60 FPS on the Mobile Web,” Flipboard, February 10, 2015, http://mng.bz/N5F0.

 10

Nathan Sobo, “Moving Atom to React,” Atom, July 2, 2014, http://mng.bz/K94N.

 11

See also the JavaScript usage stats at http://libscore.com/#React.

1.3. Benefits of using React

 Every new library or framework claims to be better than its predecessors in some respect. In the beginning, we had jQuery,
 and it was leaps and bounds better for writing cross-browser code in native JavaScript. If you remember, a single AJAX call
 taking many lines of code had to account for Internet Explorer and WebKit-like browsers. With jQuery, this takes only a single
 call: $.ajax(), for example. Back in the day, jQuery was called a framework—but not anymore! Now a framework is something bigger and more powerful.

 Similarly with Backbone and then Angular, each new generation of JavaScript frameworks has brought something new to the table.
 React isn’t unique in this. What is new is that React challenges some of the core concepts used by most popular front-end frameworks: for example, the idea that
 you need to have templates.

 The following list highlights some of the benefits of React versus other libraries and frameworks:

 	
Simpler apps—React has a CBA with pure JavaScript; a declarative style; and powerful, developer-friendly DOM abstractions (and not just
 DOM, but also iOS, Android, and so on).

 	
Fast UIs—React provides outstanding performance thanks to its virtual DOM and smart-reconciliation algorithm, which, as a side benefit,
 lets you perform testing without spinning up (starting) a headless browser.

 	
Less code to write—React’s great community and vast ecosystem of components provide developers with a variety of libraries and components. This
 is important when you’re considering what framework to use for development.

 Many features make React simpler to work with than most other front-end frameworks. Let’s unpack these items one by one, starting
 with its simplicity.

 1.3.1. Simplicity

 The concept of simplicity in computer science is highly valued by developers and users. It doesn’t equate to ease of use.
 Something simple can be hard to implement, but in the end it will be more elegant and efficient. And often, an easy thing
 will end up being complex. Simplicity is closely related to the KISS principle (keep it simple, stupid).[12] The gist is that simpler systems work better.

 12

https://en.wikipedia.org/wiki/KISS_principle.

 React’s approach allows for simpler solutions via a dramatically better web-development experience for software engineers.
 When I began working with React, it was a considerable shift in a positive direction that reminded me of switching from using
 plain, no-framework JavaScript to jQuery.

 In React, this simplicity is achieved with the following features:

 	
Declarative over imperative style—React embraces declarative style over imperative by updating views automatically.

 	
Component-based architecture using pure JavaScript—React doesn’t use domain-specific languages (DSLs) for its components, just pure JavaScript. And there’s no separation when
 working on the same functionality.

 	
Powerful abstractions—React has a simplified way of interacting with the DOM, allowing you to normalize event handling and other interfaces that
 work similarly across browsers.

 Let’s cover these one by one.

Declarative over imperative style

 First, React embraces declarative style over imperative. Declarative style means developers write how it should be, not what to do, step-by-step (imperative). But why is declarative style a better choice? The benefit is that declarative
 style reduces complexity and makes your code easier to read and understand.

 Consider this short JavaScript example, which illustrates the difference between declarative and imperative programming. Let’s
 say you need to create an array (arr2) whose elements are the result of doubling the elements of another array (arr). You can use a for loop to iterate over an array and tell the system to multiply by 2 and create a new element (arr2[i]=):

 var arr = [1, 2, 3, 4, 5],
 arr2 = []
for (var i=0; i<arr.length; i++) {
 arr2[i] = arr[i]*2
}
console.log('a', arr2)

 The result of this snippet, where each element is multiplied by 2, is printed on the console as follows:

 a [2, 4, 6, 8, 10]

 This illustrates imperative programming, and it works—until it doesn’t work, due to the complexity of the code. It becomes
 too difficult to understand what the end result is supposed to be when you have too many imperative statements. Fortunately,
 you can rewrite the same logic in declarative style with map():

 var arr = [1, 2, 3, 4, 5],
 arr2 = arr.map(function(v, i){ return v*2 })
console.log('b', arr2)

 The output is b [2, 4, 6, 8, 10]; the variable arr2 is the same as in the previous example. Which code snippet is easier to read and understand? In my humble opinion, the declarative
 example.

 Look at the following imperative code for getting a nested value of an object. The expression needs to return a value based
 on a string such as account or account.number in such a manner that these statements print true:

 var profile = {account: '47574416'}
var profileDeep = {account: { number: 47574416 }}
console.log(getNestedValueImperatively(profile, 'account') === '47574416')
console.log(getNestedValueImperatively(profileDeep, 'account.number')
[image:] === 47574416)

 This imperative style literally tells the system what to do to get the results you need:

 var getNestedValueImperatively = function getNestedValueImperatively
[image:] (object, propertyName) {
 var currentObject = object
 var propertyNamesList = propertyName.split('.')
 var maxNestedLevel = propertyNamesList.length
 var currentNestedLevel

 for (currentNestedLevel = 0; currentNestedLevel < maxNestedLevel;
 [image:] currentNestedLevel++) {
 if (!currentObject || typeof currentObject === 'undefined')
 [image:] return undefined
 currentObject = currentObject[propertyNamesList[currentNestedLevel]]
 }

 return currentObject
}

 Contrast this with declarative style (focused on the result), which reduces the number of local variables and thus simplifies
 the logic:

 var getValue = function getValue(object, propertyName) {
 return typeof object === 'undefined' ? undefined : object[propertyName]
}

var getNestedValueDeclaratively = function getNestedValueDeclaratively(object,
[image:] propertyName) {
 return propertyName.split('.').reduce(getValue, object)
}
console.log(getNestedValueDeclaratively({bar: 'baz'}, 'bar') === 'baz')
console.log(getNestedValueDeclaratively({bar: { baz: 1 }}, 'bar.baz')=== 1)

 Most programmers have been trained to code imperatively, but usually the declarative code is simpler. In this example, having
 fewer variables and statements makes the declarative code easier to grasp at first glance.

 That was just some JavaScript code. What about React? It takes the same declarative approach when you compose UIs. First,
 React developers describe UI elements in a declarative style. Then, when there are changes to views generated by those UI
 elements, React takes care of the updates. Yay!

 The convenience of React’s declarative style fully shines when you need to make changes to the view. Those are called changes
 of the internal state. When the state changes, React updates the view accordingly.

 	

 Note

 I cover how states work in chapter 4.

 	

 Under the hood, React uses a virtual DOM to find differences (the delta) between what’s already in the browser and the new view. This process is called DOM diffing or reconciliation of state and view (bringing them back to similarity). This means developers don’t need to worry about explicitly changing the view; all they
 need to do is update the state, and the view will be updated automatically as needed.

 Conversely, with jQuery, you’d need to implement updates imperatively. By manipulating the DOM, developers can programmatically
 modify the web page or parts of the web page (a more likely scenario) without rerendering the entire page. DOM manipulation
 is what you do when you invoke jQuery methods.

 Some frameworks, such as Angular, can perform automatic view updates. In Angular, it’s called two-way data binding, which basically means views and models have two-way communication/syncing of data between them.

 The jQuery and Angular approaches aren’t great, for two reasons. Think about them as two extremes. At one extreme, the library
 (jQuery) isn’t doing anything, and a developer (you!) needs to implement all the updates manually. At the other extreme, the
 framework (Angular) is doing everything.

 The jQuery approach is prone to mistakes and takes more work to implement. Also, this approach of directly manipulating the
 regular DOM works fine with simple UIs, but it’s limiting when you’re dealing with a lot of elements in the DOM tree. This
 is the case because it’s harder to see the results of imperative functions than declarative statements.

 The Angular approach is difficult to reason about because with its two-way binding, things can spiral out of control quickly.
 You insert more and more logic, and all of a sudden, different views are updating models, and those models update other views.

 Yes, the Angular approach is somewhat more readable than imperative jQuery (and requires less manual coding!), but there’s
 another issue. Angular relies on templates and a DSL that uses ng directives (for example, ng-if). I discuss its drawbacks in the next section.

Component-based architecture using Pure JavaScript

 Component-based architecture[13] existed before React came on the scene. Separation of concerns, loose coupling, and code reuse are at the heart of this approach
 because it provides many benefits; software engineers, including web developers, love CBA. A building block of CBA in React
 is the component class. As with other CBAs, it has many benefits, with code reuse being the main one (you can write less code!).

 13

http://mng.bz/a65r.

 What was lacking before React was a pure JavaScript implementation of this architecture. When you’re working with Angular,
 Backbone, Ember, or most of the other MVC-like front-end frameworks, you have one file for JavaScript and another for the
 template. (Angular uses the term directives for components.) There are a few issues with having two languages (and two or more files) for a single component.

 The HTML and JavaScript separation worked well when you had to render HTML on the server, and JavaScript was only used to
 make your text blink. Now, single page applications (SPAs) handle complex user input and perform rendering on the browser.
 This means HTML and JavaScript are closely coupled functionally. For developers, it makes more sense if they don’t need to
 separate between HTML and JavaScript when working on a piece of a project (component).

 Consider this Angular code, which displays different links based on the value of userSession:

 <a ng-if="user.session" href="/logout">Logout
<a ng-if="!user.session" href="/login">Login

 You can read it, but you may have doubts about what ng-if takes: a Boolean or a string. And will it hide the element or not render it at all? In the Angular case, you can’t be sure
 whether the element will be hidden on true or false, unless you’re familiar with how this particular ng-if directive works.

 Compare the previous snippet with the following React code, which uses JavaScript if/else to implement conditional rendering. It’s absolutely clear what the value of user.session must be and what element (logout or login) is rendered if the value is true. Why? Because it’s just JavaScript:

 if (user.session) return React.createElement('a', {href: '/logout'}, 'Logout')
else return React.createElement('a', {href: '/login'}, 'Login')

 Templates are useful when you need to iterate over an array of data and print a property. We work with lists of data all the
 time! Let’s look at a for loop in Angular. As mentioned earlier, in Angular, you need to use a DSL with directives. The directive for a for loop is ng-repeat:

 <div ng-repeat="account in accounts">
 {{account.name}}
</div>

 One of the problems with templates is that developers often have to learn yet another language. In React, you use pure JavaScript,
 which means you don’t need to learn a new language! Here’s an example of composing a UI for a list of account names with pure
 JavaScript:[14]

 14

http://mng.bz/555J.

 [image:]

 Imagine a situation where you’re making some changes to the list of accounts. You need to display the account number and other
 fields. How do you know what fields the account has in addition to name?

 You need to open the corresponding JavaScript file that calls and uses this template, and then you have to find accounts to see its properties. So the second problem with templates is that the logic about the data and the description of how that
 data should be rendered are separated.

 It’s much better to have the JavaScript and the markup in one place so you don’t have to switch between file and languages.
 This is exactly how React works; and you’ll see how React renders elements shortly in a Hello World example.

 	

 Note

 Separation of concerns generally is a good pattern. In a nutshell, it means separation of different functions such as the
 data service, the view layer, and so on. When you’re working with template markup and corresponding JavaScript code, you’re
 working on one functionality. That’s why having two files (.js and .html) isn’t a separation of concerns.

 	

 Now, if you want to explicitly set the method by which to keep track of items (for example, to ensure there are no duplicates)
 in the rendered list, you can use Angular’s track by feature:

 <div ng-repeat="account in accounts track by account._id">
 {{account.name}}
</div>

 If you want to track by an index of the array, there’s $index:

 <div ng-repeat="account in accounts track by $index">
 {{account.name}}
</div>

 But what concerns me and many other developers is, what is this magic $index? In React, you use an argument from map() for the value of the key attribute:

 [image:]

 It’s worth noting that map() isn’t exclusive to React. You can use it with other frameworks because it’s part of the language. But the declarative nature
 of map() makes it and React a perfect pair.

 I’m not picking on Angular—it’s a great framework. But the bottom line is that if a framework uses a DSL, you need to learn
 its magic variables and methods. In React, you can use pure JavaScript.

 If you use React, you can carry your knowledge to the next project even if it’s not in React. On the other hand, if you use
 an X template engine (or a Y framework with a built-in DSL template engine), you’re locked into that system and have to describe
 yourself as an X/Y developer. Your knowledge isn’t transferable to projects that don’t use X/Y. To summarize, the pure JavaScript
 component-based architecture is about using discrete, well-encapsulated, reusable components that ensure better separation
 of concerns based on functionality without the need for DSLs, templates, or directives.

 Working with many developer teams, I’ve observed another factor related to simplicity. React has a better, shallower, more
 gradual learning curve compared to MVC frameworks (well, React isn’t an MVC, so I’ll stop comparing them) and template engines
 that have special syntax—for example, Angular directives or Jade/Pug. The reason is that instead of using the power of JavaScript,
 most template engines build abstractions with their own DSL, in a way reinventing things like an if condition or a for loop.

Powerful abstractions

 React has a powerful abstraction of the document model. In other words, it hides the underlying interfaces and provides normalized/synthesized
 methods and properties. For example, when you create an onClick event in React, the event handler will receive not a native browser-specific event object, but a synthetic event object that’s
 a wrapper around native event objects. You can expect the same behavior from synthetic events regardless of the browser in
 which you run the code. React also has a set of synthetic events for touch events, which are great for building web apps for
 mobile devices.

 Another example of React’s DOM abstraction is that you can render React elements on the server. This can be handy for better
 search engine optimization (SEO) and/or improving performance.

 There are more options when it comes to rendering React components than just DOM or HTML strings for the server back end.
 We’ll cover them in section 1.5.1. And, speaking of the DOM, one of the most sought-after benefits of React is its splendid performance.

 1.3.2. Speed and testability

 In addition to the necessary DOM updates, your framework may perform unnecessary updates, which makes the performance of complex
 UIs even worse. This becomes especially noticeable and painful for users when you have a lot of dynamic UI elements on your
 web page.

 On the other hand, React’s virtual DOM exists only in the JavaScript memory. Every time there’s a data change, React first
 compares the differences using its virtual DOM; only when the library knows there has been a change in the rendering will
 it update the actual DOM. Figure 1.1 shows a high-level overview of how React’s virtual DOM works when there are data changes.

 Figure 1.1. Once a component has been rendered, if its state changes, it’s compared to the in-memory virtual DOM and rerendered if necessary.

 [image:]

 Ultimately, React updates only those parts that are absolutely necessary so that the internal state (virtual DOM) and the
 view (real DOM) are the same. For example, if there’s a <p> element and you augment the text via the state of the component, only the text will be updated (that is, innerHTML), not the element itself. This results in increased performance compared to rerendering entire sets of elements or, even
 more so, entire pages (server-side rendering).

 	

 Note

 If you like to geek out on algorithms and Big Os, these two articles do a great job of explaining how the React team managed
 to turn an O(n3) problem into an O(n) one: “Reconciliation,” on the React website (http://mng.bz/PQ9X) and “React’s Diff Algorithm” by Christopher Chedeau (http://mng.bz/68L4).

 	

 The added benefit of the virtual DOM is that you can do unit testing without headless browsers like PhantomJS (http://phantomjs.org). There’s a Jasmine (http://jasmine.github.io) layer called Jest (https://facebook.github.io/jest) that lets you test React components right on the command line!

