

 [image: cover]

HTML5 for .NET Developers:
Single page web apps, JavaScript, and semantic markup

 Jim Jackson II and Ian Gilman

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Renae Gregoire
Technical proofreader: Roland Civet
Copyeditor: Andy Carroll
Proofreader: Melody Dolab
Typesetter: Dennis Dalinnik
Illustrator: Gerry Arrington
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Dedication

 To my lovely bride, Michelle, and my beautiful daughters, Norah and Mary. Thank you for your help, support, patience, and
 understanding.

 J.J.

 To Christina and Caitlyn, my amazing wife-and-daughter team.

 I.G.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. HTML5 and .NET

 Chapter 2. A markup primer: classic HTML, semantic HTML, and CSS

 Chapter 3. Audio and video controls

 Chapter 4. Canvas

 Chapter 5. The History API: changing the game for MVC sites

 Chapter 6. Geolocation and web mapping

 Chapter 7. Web workers and drag and drop

 Chapter 8. Websockets

 Chapter 9. Local storage and state management

 Chapter 10. Offline web applications

 Appendix A. A JavaScript overview

 Appendix B. Using ASP.NET MVC

 Appendix C. Installing IIS Express 7.5

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. HTML5 and .NET

 1.1. New toys for developers thanks to HTML5

 1.1.1. New HTML5 tags and microdata

 1.1.2. HTML5 applications for devices

 1.1.3. Better, faster JavaScript

 1.1.4. Libraries, extensions, and frameworks

 1.1.5. New HTML5 JavaScript APIs

 1.1.6. Cascading Style Sheets 3

 1.1.7. MVC and Razor

 1.2. HTML5 applications end-to-end

 1.2.1. Page structure and page presentation

 1.2.2. Page content

 1.2.3. Application navigation

 1.2.4. Business logic

 1.2.5. Server communications

 1.2.6. The data layer

 1.3. Hello World in HTML5

 1.3.1. Creating the template

 1.3.2. Customizing the application

 1.3.3. Building the JavaScript library

 1.3.4. Building the server side

 1.4. Summary

 Chapter 2. A markup primer: classic HTML, semantic HTML, and CSS

 2.1. Classic and semantic HTML markup: what’s the difference?

 2.2. Basic structural elements of all HTML tags

 2.2.1. Working with the basic HTML tags

 2.2.2. Making content flow where you want with block and inline elements

 2.2.3. Dividing data into grids with table elements

 2.2.4. Using HTML form elements

 2.3. Semantic HTML: The semantic blueprint

 2.3.1. Grouping and dividing page content with content tags

 2.3.2. Going beyond semantics with application tags

 2.3.3. Using media tags for audio and video content

 2.4. Styling HTML5: CSS basics

 2.4.1. Understanding CSS syntax

 2.4.2. Building selectors, the most critical CSS element

 2.4.3. Assigning fonts

 2.4.4. Assigning and manipulating colors

 2.4.5. Changing the size of an element with the box model

 2.4.6. Using columns and blocks for layout

 2.4.7. Changing screen layout based on changing conditions with media queries

 2.4.8. Adjusting an element’s presentation and location with transitions and transformations

 2.4.9. Changing styles as needed with pseudo-elements and pseudo-classes

 2.5. Summary

 Chapter 3. Audio and video controls

 3.1. Building a site to play audio and video

 3.2. Audio and video tags

 Assigning HTML attributes to tags

 3.2.1. Using audio and video tags without JavaScript

 3.2.2. Using the audio tag as an HTML element

 3.2.3. Using the video tag as an HTML element

 3.3. Controlling audio and video playback with JavaScript

 3.3.1. Building custom controls for audio and video

 3.3.2. Building the main.js library structure

 3.3.3. Creating a JavaScript media player object

 3.3.4. Completing the media experience by adding volume controls

 3.4. Updating media types for open source content

 Using IIS Express

 Assigning content types

 3.5. Summary

 3.6. Complete code listings

 Chapter 4. Canvas

 4.1. Canvas quick-start

 4.1.1. Creating the basic Canvas site structure

 4.1.2. Assigning size to the canvas

 4.1.3. Creating the stylesheet for the sample application

 4.1.4. Drawing with the 2d context object

 4.1.5. Building the foundation object of the Canvas application

 4.2. Creating and manipulating shapes, lines, images, and text

 4.2.1. Understanding the basic drawing process

 4.2.2. Adding shapes

 4.2.3. Adding lines

 4.2.4. Adding images

 4.2.5. Manipulating pixels

 4.2.6. Adding text

 4.3. Animating and adding special effects to canvas images

 4.3.1. Adding animation

 4.3.2. Adding special effects with curves and clipping

 4.3.3. Managing canvas properties during screen resizing

 4.4. Summary

 4.5. Complete code listing

 Chapter 5. The History API: changing the game for MVC sites

 5.1. Building a History-ready MVC site

 5.1.1. Launching the sample project in Visual Studio

 5.1.2. Adding controllers and views

 5.1.3. History and MVC routing

 5.1.4. Creating the application data model

 5.1.5. Loading content from the server on demand using partial views

 5.2. Using HTML5 History

 5.2.1. Adding JavaScript to handle History API navigation events

 5.2.2. Working with the page URL in JavaScript

 5.2.3. Using History to update the page

 5.3. Two more small steps ...

 Changing the application title

 Changing CSS styles

 5.4. Summary

 5.5. The complete JavaScript library

 Chapter 6. Geolocation and web mapping

 6.1. “Where am I?”: A (brief) geographic location primer

 Latitude and longitude

 Making geospatial data meaningful with GIS

 6.2. Building a geolocation application

 6.2.1. Basic application setup

 6.2.2. Using the Bing Maps JavaScript API

 6.3. Using the Geolocation API

 6.3.1. API functions for interacting with device location services

 6.3.2. Plotting a point on a map

 6.3.3. Integrating geolocation and a map

 6.3.4. Navigating the map using geolocation data

 6.4. Building a service to find address information

 6.4.1. Modeling a point on the Earth in .NET

 6.4.2. Displaying routes between coordinates

 6.5. Summary

 6.6. Complete code listings

 Chapter 7. Web workers and drag and drop

 7.1. Getting started: building an app that integrates Drag and Drop and Web Workers

 Laying the foundation for a drag-and-drop/web-workers application

 Creating the page

 Adding the images

 Creating the stylesheet

 Building the view

 7.2. Implementing drag and drop in JavaScript

 7.2.1. The HTML5 Drag-and-Drop API

 7.2.2. Using the dataTransfer object to pass data with drag-and-drop events

 7.2.3. Building the object to transfer data during drag and drop

 7.3. HTML5 Web Workers

 7.3.1. The basics: sending work to another thread

 7.3.2. Integrating web workers into a JavaScript library

 7.4. Summary

 7.5. The complete code listings

 Chapter 8. Websockets

 8.1. HTTP and TCP—a quick primer

 8.1.1. An HTTP overview

 8.1.2. TCP communications in a nutshell

 8.2. Building a Websockets chat application

 Setting up the client page’s basic structure

 Wiring up the menu system

 Adding styles

 8.2.1. Separating interface logic from Websockets communications

 8.2.2. Implementing Websockets in JavaScript

 8.2.3. Opening a Websockets server connection

 8.2.4. Sending messages

 8.2.5. Receiving messages

 8.3. Using Node.js as a TCP server

 Installing Node.js

 Preparing to build the chat server

 Building the chat server

 Try it out!

 8.4. Summary

 8.5. The complete code listings

 Chapter 9. Local storage and state management

 9.1. A LocalStorage example application

 Building the structure of your page

 GITing an open source JavaScript library

 9.2. Structuring a JavaScript library to maintain state

 9.2.1. Creating an application outline that supports local storage of objects

 9.2.2. Building UI elements that can be stored locally

 9.3. Using the LocalStorage API

 9.3.1. Adding and removing items to and from LocalStorage the not-so-easy way

 9.3.2. Adding and removing items the easy way

 9.3.3. Moving data from LocalStorage to the page

 9.3.4. Deleting items from LocalStorage

 9.3.5. Clearing all items from LocalStorage

 9.3.6. Using the LocalStorage storage event to detect changes

 9.4. Adding UI elements to complete the application

 Creating a jQuery UI slider

 Using setHue

 Displaying a slider in a jQuery UI dialog box

 9.5. Other uses for LocalStorage

 9.5.1. Using LocalStorage as a proxy for server data

 9.5.2. Using LocalStorage to save images

 9.6. Summary

 9.7. The complete code listings

 Chapter 10. Offline web applications

 10.1. Building an offline HTML5 application

 10.1.1. Creating the basic site structure

 10.1.2. Creating the offline JavaScript library

 10.2. The manifest file

 10.2.1. Adding the application manifest to the sample project

 10.2.2. Exploring manifest sections

 10.3. Offline feature detection and event binding

 10.4. The ApplicationCache object

 ApplicationCache events

 10.5. Adding state management and displaying connected status

 Adding online or offline status text

 Accepting new items from users

 Loading the current object from saved values

 Connecting to the server

 10.6. Building the server side of an offline application

 The singleton server

 The MVC controller

 10.7. Summary

 10.8. The complete code listings

 Appendix A. A JavaScript overview

 A.1. The JavaScript core language

 A.1.1. Variables

 A.1.2. Operators

 A.1.3. Flow control

 A.1.4. Strings

 A.1.5. Dates

 A.1.6. Basic function declarations

 A.1.7. Functions as parameters

 A.1.8. Timers

 A.1.9. Array

 A.1.10. null, undefined, and NaN

 A.1.11. Commenting JavaScript

 A.2. The DOM

 A.2.1. Elements

 A.2.2. DOM events

 A.3. JavaScript environment

 A.3.1. Browser JavaScript engines

 A.3.2. Global scope

 A.3.3. Built-in objects

 A.3.4. Debugging tools

 A.4. Object orientation

 A.4.1. Object declarations and namespaces

 A.4.2. Dynamic properties and iteration

 A.4.3. Functions

 A.4.4. Prototype

 A.4.5. ‘this’ and scope

 A.4.6. A simple object pattern

 A.4.7. Closures

 A.4.8. Exception handling

 A.5. Communications

 A.5.1. XmlHttpRequest

 A.5.2. Sending data

 A.5.3. JSON and JSONP

 A.5.4. JSON syntax

 A.5.5. Complex JSON objects

 A.6. Structured libraries

 A.6.1. Libraries

 A.6.2. Script locations

 A.6.3. Non-blocking scripts

 A.6.4. Immediate functions and immediate object initialization

 A.6.5. JavaScript files

 A.7. jQuery

 A.7.1. Selectors

 A.7.2. Wrapped sets

 A.7.3. Chaining

 A.7.4. Event handling

 A.7.5. Animations and effects

 A.7.6. Ajax

 A.7.7. jQuery helper utilities

 A.7.8. Extending jQuery with plugins

 A.7.9. Including jQuery

 A.8. jQuery UI

 A.8.1. Widgets

 A.8.2. Effects

 A.8.3. Themes

 A.8.4. Component inclusion

 Appendix B. Using ASP.NET MVC

 B.1. Using MVC

 B.2. Starting a new MVC application

 B.2.1. Getting (or updating) ASP.NET MVC

 B.2.2. Steps to building a new application

 B.3. Walking through an MVC application

 B.3.1. Models

 B.3.2. Controllers

 B.3.3. Routing basics

 B.3.4. Views and Razor

 B.3.5. Controlling views

 B.3.6. Combining views to build up the presentation

 B.4. An MVC application in action

 B.4.1. Building a data entry form

 B.4.2. Validating posted data on the server

 B.4.3. Adding a repository to store data

 B.5. Getting data asynchronously from the server

 B.5.1. Wiring up events using the jQuery click function

 B.5.2. Appending new data to the document using jQuery

 B.5.3. Building a data-only controller method

 B.6. Complete code listings

 Appendix C. Installing IIS Express 7.5

 C.1. Installing Web Platform Installer

 C.2. Finding IIS Express 7.5

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 HTML5 is taking over the world. Oh no!

 .NET is dead! Java is dead!

 Everything is dead and HTML5 is the only technology left standing!

 Wait, none of the above is true at all. It turns out that HTML5 is a wonderful tool in our toolbox, one that makes our other
 tools even better. In fact, learning HTML5 is one of the best things a .NET developer can do today. .NET on the server and
 HTML5 in a new browser on the client are a killer combination.

 Jim and Ian have written about HTML5 in a voice that speaks directly to the interests and concerns of the .NET developer.
 The samples are clear and useful but also coded from the perspective of an ASP.NET programmer who wants to get things done.
 This is hugely helpful for existing ASP.NET and .NET coders who want to get up to speed on HTML5.

 HTML5 is a collection of new tags and bits of markup, but the term “HTML5” is overloaded. It also encapsulates CSS3 and new
 JavaScript APIs, like GeoLocation and LocalStorage. But HTML5 is more than these new tools—it is more than a specification;
 it’s a new way to think about writing web applications; it’s an assumption that your client’s browser has capabilities and
 processing power that we couldn’t dream up three years ago.

 A few years ago, if you wanted a chart in a browser you’d either use Flash or dynamically generate an image on the server
 side. Today, you can send the browser all the data a chart needs via JSON and then let the user not only see a chart generated
 with HTML5 Canvas, but also interact with or even change the data on the client. A few years ago, your server was the only
 computer with the wherewithal to sort, query, and manipulate interesting cubes of data. Today, you’ve got a tiny database
 and a powerful JIT’ed virtual machine inside your client’s web browser.

 Fortunately for us all, you can write HTML5 today with ASP.NET; and with the release of ASP.NET 4.5, we see additional support
 for HTML5. The latest Visual Studio also adds improvements in JavaScript and CSS3 editing. All of HTML5 and its wondrous bits
 and pieces are ready for you in Web Forms, Web Pages, and MVC. Your ASP.NET applications can generate HTML5 that still works
 in older browsers thanks to the Modernizr feature detection library. You can use HTML5 and JavaScript on the client to call
 ASP.NET Web APIs on the server. HTML5 is a technology that makes the .NET developer’s life more interesting!

 There are many books that talk about HTML5 as if it were an island, disconnected from any server technology. This is not the
 case with HTML5 for .NET Developers by Jim and Ian. If you’re a longtime ASP.NET developer looking to bone up on new techniques in web development, or if you’re
 just getting started with ASP.NET and you want to make sure you’re attacking new problems in the most modern and progressive
 way, this is the book for you.

 SCOTT HANSELMAN
WEB COMMUNITY ARCHITECT
MICROSOFT

Preface

 In early 2010, I had just finished up a workflow proof-of-concept project and was poking around other projects at Applied
 Information Sciences, looking for what was next in my software career. Since I had some Silverlight experience and wanted
 to expand it further, I requested a role on a project to enhance a magazine viewer originally produced by Vertigo (vertigo.com)
 for Bondi Digital (BondiDigital.com). I ended up rebuilding the processing software that imported the source images and data
 into the viewer format. This was fortuitous because it was a project role that would continue while many others rotated in
 and out over the next two years.

 When the processing solution was complete, I got involved in the Silverlight area of the application, and it was about this
 time that Apple’s new toy, the iPad, took off. It seemed to the project stakeholders that an HTML-only version of our viewer
 would be appropriate, so we got to work. For a traditional ASP.NET and Silverlight developer like me, this was new ground,
 and it took a number of months and hundreds of dollars in books for me to get my footing with JavaScript and to unlearn all
 the bits and pieces of ASP.NET that hide the true nature of HTML, CSS, and JavaScript.

 With a little knowledge and the help of other AIS employees who were working with Manning Publications on various book ideas,
 I got Mike Stephens’ name and called over to discuss a book proposal on Silverlight and GIS, my hobby and one of my technology
 passions. We were pretty close to writing up a book contract when a Microsoft employee happened to mention in an interview
 that they (MS) were “refocusing” Silverlight. This came as a shock to all of the Silverlight developers and client companies
 who had been investing heavily in the technology for rich client-side web solutions.

 Despite some backtracking and spinning the news, this appears to have been a correct move on Microsoft’s part. While Silverlight
 is certainly not dead, it has been eclipsed by HTML5 in terms of industry hype and project work moving forward. For web consultancies,
 this is not such a huge problem, because ASP.NET MVC is a top-tier platform on which to build rich client-side HTML applications.
 Windows 8 allows HTML/CSS and JavaScript as first-class development languages for native software! It’s not a panacea, but
 it is a great tool to have in the belt.

 While all of this was happening in the industry, I became more involved in the new HTML version of the magazine viewer application.
 And because the Silverlight/GIS book was clearly not going to fly in the marketplace, Mike at Manning asked what other applications
 I was working on. I responded that we were building a rich HTML5 client, integrating ASP.NET MVC and deploying it to SQL Azure
 and Azure Web Roles. “We could do a book about any of those things!” was Mike’s response. Of course, I didn’t think I was
 nearly qualified enough to write such an authoritative tome, but Mike convinced me that I was, in fact, in the perfect position
 to do so. As a seasoned developer who had moved from strict ASP.NET and rich-client C# applications into JavaScript and HTML,
 I was in a good position to describe the technologies from a common perspective.

 During the writing of this book we took a few detours to come to the current format. The initial idea, when I was the sole
 author, was to build a single application that integrated HTML5 APIs into a reference framework. This turned out to be a dead
 end. The Microsoft Silk project was working on the same thing, only they had actual members of the jQuery team looking over
 their shoulders and helping them out. This was not a competitive position for our book, and Manning was not excited about
 the idea of a single-project book; such books can lead to content that is more focused on the project than on learning the
 technology. The next iteration led to the current focus of one project per chapter and also to the realization that I was
 not experienced enough to write what could be termed “reference-level” JavaScript code. The manager on the magazine viewer
 project was lucky enough to find and contract with Ian Gilman, and his expertise provided immediate improvements to that platform
 and to our collective expertise in JavaScript. Ian is an expert technician and an excellent communicator, so he was a natural
 choice for the project and for this book. He also brought in the Git source control expertise. You can see our source repository
 at www.github.com/axshon/HTML-5-Ellipse-Tours, where Ellipse Tours is the original name of the single project.

 The next version of the book was nearly complete in early 2012 when Manning decided that a new development editor would be
 added to the project. With the help of Renae Gregiore, Ian and I reworked the book to focus more on the use of each HTML5
 API, rather than providing deep reference material and then trying to spend the last few pages of each chapter building a
 project with it. This final format reduced the size of the book by moving the MVC-focused chapter and the JavaScript chapter
 into appendices.

 The format you find within these pages is our collective attempt to find the friendliest, fastest route from .NET developer
 to HTML5/JavaScript expert. Most of the text, server-side code, and JavaScript code comments you will find here are my words,
 and most of the JavaScript, HTML, and CSS is Ian’s work.

 We hope that you find the contents informative and interesting. More importantly, we hope that our book gives you great ideas
 for fantastic and fun new software products. If you have an interesting project that you’d like to make some noise about,
 feel free to contact me at jim@axshon.net.

 JIM JACKSON

Acknowledgments

 We would like to thank the many people who helped make our book possible, starting with everyone at Manning, from associate
 publisher Mike Stephens and our development editor Renae Gregoire, to the production team of Mary Piergies, Troy Mott, Andy
 Carroll, Melody Dolab, Janet Vail, and Dennis Dalinnik.

 Special thanks to Scott Hansleman for happily volunteering to write the foreword. We are deeply grateful for his endorsement
 of our work. We also acknowledge Roland Civet, our technical proofreader, who reviewed the text and tested the code during
 development and again shortly before the book went to press.

 The following reviewers read our manuscript at various stages of its development and we thank them for their feedback and
 insights: Adam London, Arsalan Ahmed, Arun Noronha, Asif Jan, Francis Setash, Ian Stirk, Jeffrey Jenkins, Joseph M. Morgan,
 Leo Waisblatt, Mark Nischalke, Osama Morad, PhD, Paul Stack, Peter O’Hanlon, Philippe Vialatte, Rohit Asthana, Stan Bice,
 and Wyatt Barnett.

 Thanks also to Mark LaPointe, John Blumenauer, Glenn Block, Julie Lerman, Tad VanFleet, Steve Michelotti, Oskar Austegard,
 Ernesto Delgado, and Pete Brown. Thanks for the pointers, direction, and help from the following Microsoft teams: Web APIs,
 Project Silk, Internet Explorer, and Interoperability Bridges.

Jim Jackson

 Many thanks to Ian Gilman who helped to make this book what it is. His knowledge, work, and tireless attention to detail have
 resulted in a book that I believe will be truly helpful in bringing more and more .NET developers into the age of HTML5.

 Heartfelt thanks to my wife for being so patient, supportive, and encouraging during all the late nights, early mornings,
 and times when it would have been easier for me to stop than continue. The fact that we got through it together is a testament
 to your faith in me. You are truly appreciated.

Ian Gilman

 For their insights and support, thank you to Kevin Hanes, Ben Vanik, Daniel Gasienica, Aseem Kishore, Oskar Austegard, Gennaro
 Cannelora, and of course Christina Gilman. Thank you most of all to Jim, for bringing me into this endeavor with his great
 passion for knowledge; it’s been a wild ride!

About this Book

 This book was written for professional .NET developers primarily focused on C# and ASP.NET. While it’s useful for other professionals,
 the focus has been on developing server-side code in C# and ASP.NET MVC, with as little overhead as possible.

 Our target reader is a professional who has been placed in the role of developer on a project that is already on an HTML5
 and ASP.NET MVC platform or is being transitioned to this platform. Emphasis is placed on as many stable parts of the HTML5
 specification as possible, so that while the developer learns effective use of JavaScript, he or she is also able to learn
 to use these very powerful APIs.

 Please note that while the JavaScript and HTML5 techniques you learn in these pages are useful for Windows 8 development,
 this book does not claim to be a Windows 8 development reference.

How the book is organized

 This book is divided into two parts. The first part, consisting of chapters 1 and 2, will give you a general understanding of what HTML5 is and how it can interact with server components using JavaScript and
 ASP.NET MVC. Chapter 2 focuses on markup and how semantics play a role in HTML5 web application development.

 The second part of the book (chapters 3 to 10) covers the various HTML5 JavaScript APIs that are stable and generally supported across browser platforms. Each implementation
 is tested against browser versions that were available at the time of writing and against previous versions as much as possible.
 The APIs covered in each chapter are as follows:

	
Chapter 3 Audio and video controls

 	
Chapter 4 Canvas

 	
Chapter 5 The History API: Changing the game for MVC sites

 	
Chapter 6 Geolocation and web mapping

 	
Chapter 7 Web workers and drag and drop

 	
Chapter 8 Websockets

 	
Chapter 9 Local storage and state management

 	
Chapter 10 Offline web applications

There are three appendixes; they give an overview of JavaScript, explain how to use ASP.NET MVC, and guide you on how to install
 IIS Express.

How to use this book

 Each chapter in the second part of the book (chapters 3 to 10) is organized into three parts. The first is a brief introduction, designed to get you thinking about real-world applications
 for that chapter’s focus. This part may also include background information to help you understand the topic more clearly,
 as is the case with geolocation. The introduction also includes a browser support table that shows which browser versions
 are compatible with each HTML5 API.

 The second part of the chapter is the actual build. As we build the project, we’ll show the code and describe where it should
 be placed in the application source. As each part of an API is used, it’s introduced and defined. A Core API icon placed in
 the margin shows the section where each API is discussed.

 [image:]

 The third and final part of each chapter is the source code listing. Each JavaScript library, HTML page, stylesheet, or C#
 class file that is used will be fully listed, unless that code was previously listed in an earlier part of the chapter. For
 example, if the complete markup for an HTML page is listed early in the chapter, it won’t be listed later. However, if a JavaScript
 file is created bit-by-bit as the project progresses, the entire listing will be included in this section.

 Working versions of each sample application can be found at www.ellipsetours.com/demos/index.html. The code can also be downloaded from the publisher’s website at www.manning.com/HTML5for.NETDevelopers.

Software requirements

 The JavaScript portions of this book are completely compatible with any modern desktop or mobile browser. The builds for each
 chapter require Visual Studio 2010 Service Pack 1 or later. All applications have been tested using Visual Studio 2012 Release
 Candidate.

 Local administrator privileges are required to install Git Bash and node.js, as well as to run these applications.

 Each chapter starts off with a browser support table that shows which browser versions are compatible with each HTML5 API.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts.

 Source code for all working examples in this book is available for download at the publisher’s website at www.manning.com/HTML5for.NETDevelopers. Working versions of each sample application can be found at www.ellipsetours.com/demos/index.html.

Author Online

 The purchase of HTML5 for .NET Developers includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/HTML5for.NETDevelopers. This page provides information about how to get on the forum once you’re registered, what kind of help is available, and
 the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of HTML5 for .NET Developers is captioned “An Infantry Officer.” The illustration is taken from a 19th-century edition of Sylvain Maréchal’s four-volume
 compendium of regional dress customs and military uniforms published in France. Each illustration is finely drawn and colored
 by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions
 were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the
 countryside, it was easy to identify where they lived and what their trade, profession, military rank, or station in life
 was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Chapter 1. HTML5 and .NET

 This chapter covers

	Understanding the scope of HTML5

 	Touring the new features in HTML5

 	Assessing where HTML5 fits in software projects

 	Learning what an HTML application is

 	Getting started with HTML applications in Visual Studio

You’re really going to love HTML5. It’s like having a box of brand new toys in front of you when you have nothing else to
 do but play. Forget pushing the envelope; using HTML5 on the client and .NET on the server gives you the ability to create
 entirely new envelopes for executing applications inside browsers that just a few years ago would have been difficult to build
 even as desktop applications. The ability to use the skills you already have to build robust and fault-tolerant .NET solutions
 for any browser anywhere gives you an advantage in the market that we hope to prove throughout this book.

 For instance, with HTML5, you can

	Tap the new Geolocation API to locate your users anywhere on the planet

 	Build photo editing or animation products with the Canvas API

 	Build high-performance user interfaces for using the History and Drag-and-Drop APIs

 	Accomplish a tremendous amount of work with just a few lines of JavaScript

What, exactly, is HTML5? In a nutshell, it’s one part semantic organization that can add additional meaning to content on
 the web and one part JavaScript programming interfaces that allow you to do things in a simple web page that weren’t possible
 just a short time ago. The opportunities are limited only by your imagination, and the tools and environments you’re currently
 using to develop software will probably be the same ones that help you build this new class of application. You can see some
 examples in figure 1.1.

 Figure 1.1. From games like Canvas Rider to semantic page layout to audio/video to form presentation, HTML5 has something for everyone
 in the web design and application space. Rich HTML applications are the new normal for web development.

 [image:]

 Fellow developers, now is the time to sit up and take note. The semantic web, which HTML5 taps and which we’ll talk more about
 in the next chapter, is here. Even better, you already have many of the skills you need to build robust applications for this
 market. The same tools and technologies you use now, like Visual Studio, ASP.NET, and web services, can be effectively integrated
 into HTML5 applications. You’ll need to build on your existing knowledge and expand it into some new areas, but the rewards—such
 as seamless integration with tablets and phones, ease of deployments and upgrades, and rich client feature sets—are worthwhile.

 In this chapter, we’ll look at the new toys that HTML5 brings to .NET developers, such as the following:

	New HTML5 elements and microdata, which bring meaning to the markup beyond just the contents of the tags on the page

 	New web app form factors that let you add features to your page with little or no additional code

 	New JavaScript APIs that not only lead to better performance but also give you the ability to build rich interactive graphics
 and speed performance in your web apps

We’ll also look at JavaScript and why it needs to be a first-class language in your skill set if you intend to take advantage
 of HTML5, and we’ll look at the server-side processes and options for HTML5 available from the .NET framework.

 Finally, we’ll look at HTML5 applications from end to end, and we’ll implement a Hello World example that will give you the
 minimum JavaScript you need to work through the example applications in this book and will give you a taste of the HTML5 smorgasbord
 to come.

 Without further ado, let’s begin with a tour of the new toys that HTML5 adds to your toy box.

1.1. New toys for developers thanks to HTML5

 HTML5 is a big topic, and figure 1.2 should give you a better understanding of the various moving parts in a web application that uses HTML5. If it feels like
 you’re looking at the underside of a race car with only a vague idea of how things work, don’t worry. We’ll provide all the
 details as we progress through the book. What’s important here is the big picture and the basic interactions among the parts.

 Figure 1.2. The basic organization of a web application built using HTML5. The application is consumed by a web browser that reads an
 HTML text file and interprets the content, loading other resources like JavaScript files, images, or stylesheets as necessary.
 The markup is rendered on the page using stylesheets that are linked or placed directly into the markup, and JavaScript code
 executes at the proper time to change the interface, communicate with the server, or interact with the HTML5 APIs available
 from the current browser. These APIs can interact directly with the client system, but JavaScript, as a rule, can’t.

 [image:]

 In this section, we’ll give you a high-level but grounded tour of some of the most exciting new features of HTML5, many of
 which you’ll learn how to use in this book. If we won’t be covering a particular feature in this book, we’ll point you to
 other good resources on the topic so you can take side trips whenever you need or like. Specifically, we’re going to cover
 the following topics in this section:

	New HTML5 tags and microdata, which help you build search-optimized, semantic pages

 	How HTML5 lets you develop across devices and browsers, without having to write multiple programs

 	
Improvements to JavaScript and the plethora of libraries, extensions, and frameworks that make your development work so much
 faster and easier

 	Identifying and implementing the HTML5 APIs that everyone is talking about by creating user-friendly, graphics-rich, interactive
 web applications

 	Reviewing where Cascading Style Sheets 3 (CSS3) and ASP.NET MVC fit into the picture

For our first stop, we’ll turn to HTML5 tags and microdata.

 1.1.1. New HTML5 tags and microdata

 Imagine that you’re a member of a band called Four Parts Water. You’re creating a very basic web page just to test out your
 newly acquired HTML5 knowledge.

 You know about HTML tags, which are the little pieces of text inside brackets that you write to render elements on a web page.
 Each tag starts with an opening < symbol and ends with a closing > symbol. Content is placed next, and then the tag is closed with the </tag> marker. Opening tags may also include attributes to give them further meaning:

 <div>
 <p>My name is Neil.</p>
 <p>My band is called Four Parts Water.</p>
 <p>I am British.</p>
</div>

 That’s good, but now you want to try adding some microdata. Microdata is additional information you can add to your page using special attribute keywords. It can be set, read, and changed via
 JavaScript, and the values your microdata contains can be nearly anything you like. You can extend tags using microdata to
 add semantic or other meaningful information that search engines and JavaScript libraries can use to make even more sense
 of the data on the page. A holistic interpretation of your page data and content will help optimize it for search as well
 as for accessibility applications like page readers. Microdata extensions can also reduce the amount of code and increase
 the expressiveness of the markup in nearly any page.

 Armed with this knowledge, you write up the code in the following listing (from html5rocks.com), which displays the same basic
 page with your name and the name of your band, but with extra information meant for web crawlers and search engines.

 Listing 1.1. Microdata tags describing content

 [image:]

 As you can see, the various microdata tags help the engines and crawlers to interpret which pieces of the text are important
 and what each one means.

 1.1.2. HTML5 applications for devices

 HTML5 has not only given us .NET developers new ways to make our code make sense on the web; it has also brought us the ability
 to develop for exciting new devices that used to exist only in the imaginations of sci-fi writers: think iPad, Kindle, and
 smart phones. Mobile phones have fully featured browsers with display technologies better than most computers available five
 years ago, and even laptops now have powerful graphics processors. Gaming PCs have graphics support that allows them to seamlessly
 render complex 3D graphics and animations. HTML5 lets .NET developers enter this new world, where the challenge is to take
 advantage of the diversity of browser platforms while maintaining functional continuity.

	

Note

 Currently the web community uses the terms HTML application and HTML5 application interchangeably. This is because the new functionality that’s available as the HTML5 specification comes to market is what
 is stimulating the new ideas and methods of developing rich internet applications. Here, we’ll refer only to “HTML applications,”
 but our examples will be focused on the parts of HTML5 and JavaScript that make the applications deeper and more useful to users.

	

How do you develop a single application to work across all the screens listed in figure 1.3? It’s certainly possible, but it takes a good understanding of the compromises and features available across the entire range
 of target browsers. We’ll provide you with that knowledge in chapters to come as we teach you how to use HTML5’s features
 in multiple browsers.

 Figure 1.3. The form factor, size, and resolution of browsers available to you is growing all the time.

 [image:]

 1.1.3. Better, faster JavaScript

 Another feature that makes HTML applications compelling is the incredible improvement in JavaScript engine performance over
 the last few years, across all browsers. Gone are the days when JavaScript was only suitable for handling click events or
 posting forms. Just take a look at figure 1.4 to see how dramatically execution time has improved through various versions.

 Figure 1.4. JavaScript engine performance improvements in the past few years (courtesy of webkit.org) have led to impressive speeds all
 around. In this graph, the time required in milliseconds to perform a large number of very specific JavaScript benchmark tasks
 is measured.

 [image:]

 Add HTML5’s native support for JSON data transmission and the array of performance-enhancing coding techniques available,
 and it gets difficult to say that compiled binary libraries are always faster. While perhaps this is true in many instances,
 there are plenty of normal operating situations where a JavaScript routine can be just as fast as the same routine compiled
 in the .NET runtime. This means that plugins like Silverlight and Flash have much less of an advantage in the application
 market. In some instances, they have no advantage at all.

 1.1.4. Libraries, extensions, and frameworks

 JavaScript development also benefits from a wide range of open source projects and free tools. While not new toys themselves,
 these pieces of the application puzzle allow you as the developer to make better, more efficient use of the HTML5-specific
 toys.

	

 Windows 8
 The Windows 8 announcement and subsequent release is big news to all .NET developers. It brings a new set of features, better
 security, and an app store, and it takes the beautiful Windows Store[1] styling from Windows Phone. While this book isn’t specifically about building native Windows 8 applications with HTML5, CSS,
 and JavaScript, the good news is that what you learn here will be applicable on this new platform.

 1 See the “Roadmap for Windows Store apps using JavaScript” page in the Windows Dev Center at http://msdn.microsoft.com/en-us/library/windows/apps/hh465037.aspx.

 The Windows-specific version of JavaScript is called WinJS, and it’s JavaScript at heart with the added ability to call native
 functions and libraries on the host system. The markup and styling from your HTML5 applications should be relatively easy
 to port into the new Windows 8 environment, making your skills all the more valuable.

 In addition, Internet Explorer 10, shipped with Windows 8, is the most compliant, compatible browser ever from Microsoft,
 and it’s incredibly fast. This gives you the option of building your application as an HTML5 web app to use on multiple devices
 and browsers or as a native Windows 8 application, suitable for deployment to the app store.

 In short, this book, while not targeted toward any specific platform, will allow you to use everything you learn to get a
 major head start on native and browser-based Windows 8 development.

	

For instance, there are dozens of unit-testing frameworks for JavaScript including QUnit, a free framework for JavaScript
 and jQuery (github.com/jquery/qunit). You can build complete applications using pattern-based approaches with libraries like
 Backbone.js (documentcloud.github.com/backbone) or Knockout.js (knockoutjs.com). These frameworks give you a client-side MVC
 (Model-View-Controller) or MVVM (Model-View-ViewModel) paradigm to build large HTML applications while keeping them maintainable.
 There are thousands more; just think of any feature you might want for a rich website and search for it. You’re almost guaranteed
 to find something to get you started.

 It’s hard to say exactly where to start when considering third-party commercial and open source JavaScript libraries. There
 are components for performing specific tasks, libraries that act as development frameworks, libraries for unit testing, graphics
 helpers, communications tools, documentation enhancers, and plenty of others. Just take a look at GitHub (http://www.github.com/) and see for yourself. A search for “JavaScript” turns up over 9,000 projects. Now jump over to the jQuery site (www.jquery.com) and take a look at the plugins page. There are almost 500 pages of plugin projects.

	

 Wondering where to start when it comes to libraries? Consider jQuery.
 jQuery is the obvious place to start when looking at JavaScript libraries to improve the quality of your applications and
 speed of your development. It’s one of the most popular frameworks for developing HTML applications, used in nearly half of
 all active websites today.[2] The library, a creation of John Resig, is under constant development and is both fast and easy to use. It also sports a plugin
 model that allows others to add new features to it.

 2 See W3Techs “Usage statistics and market share of JQuery for websites” article at http://w3techs.com/technologies/details/js-jquery/all/all.

 Microsoft clearly understands that jQuery is an ideal tool for building the next wave of applications, and it has invested
 a lot of energy into data binding, templating plugins, and pattern-based frameworks like Knockout.js. Using HTML5, a Microsoft
 developer can now build once and deploy practically anywhere. (Where have we heard that before?) But more important than Microsoft’s
 contribution is the fact that it’s an equal partner in the jQuery ecosystem.

	

Nearly every JavaScript library available today is open for your review and for subsequent inclusion in your website based
 on the license that accompanies it. In addition to using these libraries outright, you can use them to learn how to do specific
 tasks or for architectural guidance.

 As you work through the examples in this book and become more versed in the JavaScript language, you’ll learn to look at these
 libraries with a critical eye toward instancing models, resource allocation, binding to existing elements, and how each library can fit into the overall goals
 of your application.

 1.1.5. New HTML5 JavaScript APIs

 There are also various JavaScript objects and APIs that can help your pages interact with the outside world and with the rest
 of the browser’s operating system. There are quite a few such features, but we’ll focus our discussion on some of the most
 stable and useful for building rich web applications.

Canvas

 Canvas is a raster-based drawing mechanism in HTML5. The Canvas JavaScript API has a lot of functionality, and we’ll cover
 it in detail in chapter 4. If you want an early peek though, try using the following code to draw a simple rectangle on a canvas element:

 var myCanvas = document.getElementById("rectCanvas");
var canvContext = myCanvas.getContext("2d");
canvContext.fillRect(50, 25, 150, 100);

 The key is to get a reference to the canvas and then grab its context object. The context object is what you use to do all
 work inside the rendered element.

 How can you use it? As a drawing surface, for graphs and charts and for animations ranging from very simple to extremely complex.

History

 The History API in HTML5 is used to add or replace data in the current browser’s session history. You can use it to overwrite
 the current page with something more generic or with a more helpful landing page. You can also use it to add a new item to
 session history so that on-page navigation events can be accessed using the browser’s forward and backward buttons:

 history.pushState();
history.replaceState();

 We’ll discuss the History API in chapter 5.

 How can you use it? To enhance application navigation between views or pages and to remove unwanted steps from the browser
 history for the current site.

Geolocation

 Our favorite API is Geolocation. Using the geolocation.getCurrentPosition() function, you can return a latitude and longitude from a device’s onboard GPS device. Note that the geolocation object is only available to the navigator object in JavaScript. Navigator isn’t, as you might expect, a wrapper just for geolocation. It’s a global object that contains a number of functional pieces. Check out chapter 6 on geolocation for more on this.

 How can you use it? As a tool to let users locate themselves in the world and as the basis for providing meaningful data about
 points of interest around a user.

Web Workers

 A web worker allows your HTML application to use multiple threads. For heavy processing applications or long-running JavaScript
 tasks, the web worker object can be invaluable. The web worker is declared as a Worker object and is passed a JavaScript file:

 var wrk = new Worker("BackgroundProcess.js");

 Once instantiated, the background process script and the hosting worker object can listen for messages sent back and forth.
 The worker object could do this:

 wrk.postMessage("Hello to the web worker");

 And inside BackgroundProcess.js, you could do this to send a message back to the host:

 self.postMessage("Hi from the background process");

 This is a minimal example without any of the required plumbing code. What’s important here is that the values passed back
 and forth are strings. This leaves open the possibility of sending JSON data objects as well as other more complex arrays
 of values. We’ll cover Web Workers in chapter 7.

 How can you use it? To speed application performance by performing processor-intensive calculations in the background, freeing
 up cycles for graphics rendering and user interaction.

Drag and Drop

 Drag and drop is a new feature in HTML5 that allows you to programmatically pick up and drop elements on your page relative
 to the page, to each other, or to the user’s desktop. This is done by wiring up events on elements for drag, drop, dragover, and dragenter. While a drag operation is occurring, other features of the API can be activated to provide feedback to the user about what
 is happening. We’ll look at drag and drop in chapter 7.

 How can you use it? As a means of bringing natural user interactions to web applications reliably and quickly.

Websockets

 Websockets are a means of breaking away from the request/response paradigm of web page interaction to a bi-directional communication
 channel. This means that communications can be happening in both directions simultaneously during a session. This is best
 described with examples, but we need to cover more JavaScript basics first. Look for coverage of Websockets in chapter 8.

 How can you use it? For building real-time communication web applications like chat, white boards, or collaborative drawing.

Local Storage

 The Local Storage HTML5 API provides a solution for storing local data through the use of a key/value style storage specification
 that’s available for reading and writing within a single domain. You can read, insert, update, and delete data very easily
 and store much more information than would normally be possible in a web application. We’ll cover this API in chapter 9.

 How can you use it? As the basis for building applications that store user data locally while sending only the data necessary
 for server functions.

 Local Storage doesn’t provide any specification for synchronizing with a server database, nor does it provide transactional
 support. If you need transactional support, you would be better off looking to the IndexedDB HTML5 specification. This API
 uses a document-database (or NoSQL) style approach, but the specification is incomplete and unstable at this time, so we won’t
 cover it in this book.

Offline access

 The ability of a site to remain available offline is new in HTML5. It’s done by specifying a manifest file that describes
 which files must be downloaded for use offline, which files should only be accessed while online, and which files, when requested,
 should get a substitute file instead. The manifest file is specified in the top-level <html> element on a page:

 <html manifest="/cache.manifest">

 How can you use it? As a means of creating rich games or business applications that function even when an internet connection
 isn’t available.

Audio/Video

 The Audio and Video tags allow you to play music and video without Flash or Silverlight plugins. Browser vendors have built
 in their own default players, but you can easily extend or replace them as we’ll show in chapter 3. Because support formats vary between browsers, you can create your content in multiple formats and allow the browsers to
 automatically choose which version to use. This allows for forward and backward compatibility, keeping you current with the
 ever-changing multimedia format landscape.

 A simple audio tag might look something like this:

 <audio src="/content/music.mp3"></audio>

 1.1.6. Cascading Style Sheets 3

 Cascading Style Sheets (CSS) version 3 technically isn’t a part of the HTML5 specification, but the graphics capabilities
 of media queries and transformations make it a crucial part of any browser-based rich application. Putting your presentation
 rules into styles allows you to build more manageable and pluggable user interfaces for your clients. Well-engineered cascading
 styles can also significantly reduce your development time.

 We’ll cover the core CSS3 concepts necessary for implementing HTML5 applications and understand where CSS3 fits into application
 design in chapter 2. We’ll touch on it again throughout the rest of the book as a means of adding smooth animations and rich styling. While we
 aren’t providing a definitive CSS3 reference in this book, you’ll certainly come to realize the benefits of learning CSS more
 deeply. The book Smashing CSS: Professional Techniques for Modern Layout by Eric Meyer (Smashing Magazine, 2010) is a great addition to any technical library.

 1.1.7. MVC and Razor

 While not directly part of HTML5, MVC (Model-View-Controller) is a software development pattern that allows for the clear
 separation of concerns between business logic components and user interface display. The Visual Studio templates for Microsoft’s
 latest version of ASP.NET MVC are being constantly updated as free, out-of-band releases directly to the development community.
 ASP.NET MVC presents a couple of ways to operate in the context of an HTML application.

 The first and easiest way is to ensure that all your views are HTML5 compliant. This can be done online at sites like validator.w3.org
 that allow you to enter a URL and return a listing of valid and invalid markup. This includes the semantic organization of
 your markup and the use of unobtrusive JavaScript (discussed shortly). You can also build a single HTML page to contain an
 entire piece of your application and include it in your MVC site. We’ll do this in chapter 4, when we cover HTML5 Canvas.

 The next method is to use Razor, the view-processing engine that was introduced as part of ASP.NET MVC. Razor facilitates
 readable inline code within your views, allowing you to write properly formatted HTML with bits of server code interspersed
 to perform work based on data models that you can build. Using Razor, your markup becomes more terse, easier to read, and
 faster to code. Using Razor and ASP.NET MVC, you can incorporate all the features of .NET development that you’re accustomed
 to and transition seamlessly into the world of HTML5 application development. Razor is used in our MVC views throughout this
 book and it’s covered in more detail in appendix B on ASP.NET MVC.

1.2. HTML5 applications end-to-end

 Now that you have a basic understanding of the toys you’ll get to learn about and play with in this book, the next thing you
 need to know is how each piece interacts with the next and where they touch each other in a normal system.

	

Note

 At the beginning of each chapter, we’ll clearly define which browsers and versions are supported. You should be able to download,
 install, and test with Google Chrome, Internet Explorer, Firefox, Opera, and Apple Safari. In addition, you can use any mobile
 browser at your disposal to test site rendering and function.

	

Figure 1.5 shows a very simplified view of where each part can fit into the overall scheme of an HTML5 application. This is the same
 diagram you saw in figure 1.2 but with the addition of Microsoft’s server-side components. This is by no means the only way these parts can fit together,
 but it will get you started.

 Figure 1.5. Basic client and server interactions between HTML5 features and JavaScript APIs within an application

 [image:]

 On the server side of an HTML application, MVC controllers will present a view (HTML text sent to the browser), take data
 from a form POST operation, or send or receive data using Ajax calls. In later chapters, we’ll cover all of these communications
 and how to integrate them in an HTML application.

 You might find all these pieces a little overwhelming, so we’ll dig a little deeper into each area to help firm up your understanding.
 We’ll start with the page structure.

 1.2.1. Page structure and page presentation

 Figure 1.6 identifies the page structure and where it fits into the scheme of an HTML application.

 Figure 1.6. Page structure is the physical organization of an HTML page. Which tags exist inside other tags can determine how elements
 can be moved or accessed using JavaScript.

 [image:]

 The structure of a single application page consists of the semantic elements, such as <header>, <footer>, <nav>, <article>, and <section>, as well as any traditional HTML tags, like <div>, , and <a>. Semantic tags, which will be covered in more detail in the next chapter, provide organizational cues and a means of denoting
 where various parts of the content will exist. Structural elements receive styling using CSS and can have JavaScript behaviors
 attached at runtime. Elements in the page structure can be delivered from the server at runtime, built from templates on the
 client, or downloaded on demand.

 Note that the styles that a page uses can also determine its structure. A common instance of this is when an element is floated. Floated elements (denoted by the CSS style float:left or float:right) don’t participate in page flow but will dock themselves to the appropriate side of the window. We’ll discuss positioning
 elements on the page when we look at the Canvas API in chapter 4 and the Geolocation API in chapter 6.

 Page presentation is the visual styling that a page structure receives, based on the location of elements in the structure and the stylesheets
 included on the page. Styles in a stylesheet are the starting point for operations that can occur at runtime. While the page
 is displayed, changes to the browser layout can trigger media query changes, and interactions by the user can trigger JavaScript
 functions. We’ll cover what media queries are and how they work in chapter 2. For now, the important concept is that by using CSS and JavaScript, you can dramatically change the presentation of the
 page based on changing conditions in the browser.

 1.2.2. Page content

 The content of your application can be anything from a map to an editable grid. It can be data from a content management system,
 pictures uploaded by a user, or news articles. Whatever the content, it’s the most important part of your application, and
 it should be placed in the structure in a way that makes it very obvious what it is and why it’s important. Figure 1.7 shows the role that content plays in the HTML application scheme.

 Figure 1.7. Static content is written directly inside the HTML elements in a page. Dynamic content can be delivered to the browser in
 an MVC application by means of views or via JavaScript and Ajax.

 [image:]

 Page content can be static, dynamic, or a mix of both depending upon the needs of the application. It can be added by the
 user while the application executes or be pulled on demand when the application detects updates from some other process.

 1.2.3. Application navigation

 In HTML5 applications, there are two parts related to navigation: manipulation of the browser URL and posting of values to
 a server to move to another page. Figure 1.8 highlights the POST operations at the bottom of the diagram and the use of the new HTML5 History API to manage the URL.

 Figure 1.8. Application navigation can happen when a user POSTs a message to the server, when a JavaScript event occurs, or when browser
 URL changes are intercepted with the HTML5 History API.

 [image:]

 Navigation can occur when a user clicks a link to another page or submits a form, or it can be initiated via JavaScript by
 some other event. In traditional web pages, these operations were abrupt and sometimes jarring, but in a rich HTML application,
 a user’s actions can be considered and handled gracefully. Natural or instinctive interactions are an area gaining a lot of traction in the mobile market today because what may seem like small parts of the usability story
 can have a large effect on user satisfaction. Keeping operations subtle and instinctive is an art form where the ability to
 draw the eye, the mouse, or the hand to a specific place to perform an operation is critical.

 1.2.4. Business logic

 The business logic in an HTML application will nearly always be JavaScript on the client; the corresponding server-side implementations
 can be .NET or any other server technology. As shown in figure 1.9, the custom libraries and frameworks you include in your application will be responsible for changing the user interface,
 communicating with the server, and integrating HTML5 APIs.

 Figure 1.9. The business logic in an HTML application resides almost exclusively in JavaScript on the client and on the server in .NET
 libraries.

 [image:]

 On the communication side, we’ll use ASP.NET MVC in this book but you aren’t limited to this technology. Any server solution
 capable of receiving HTTP calls and returning data will work. The decisions you’ll have to make will revolve around how, when,
 and where to validate your business data and which external libraries to use.

OEBPS/005fig01_alt.jpg
a Itemscope declaration defines boundaries of itemprops for object.
<div itemscopes

<p>My name is)
Itemprop here is name,

Neil.</p> 2
<psMy band is called standard microdata
Four Parts Watere/span>.</p> vocabulary term that's
useful for search engines.

<p>I am
Britishe/span>.</p>
ddive, % Closing tag for element declared with itemscope
Band itemprop sn't n s closes object referenced by microdata.
vocabulary but is allowed nonetheless.

OEBPS/01fig03.jpg
l=lo]lx

OEBPS/01fig01_alt.jpg
Page Tite

Semantic markup allows
your page structure

1o have meaning
without the need for
descriptive CSS styles.

The canvas element allows
you to create rich drawings
and animations inside
your page in real time.

Video and audio controls allow you to
display rich media and even integrate
with other APIs like canvas.

New forms elements allow you to
betier organize, validate, and display
data on the page.

OEBPS/01fig02_alt.jpg
Page
tructure

ass3

HTMLS
semantic
elements

Microdata
extensions.

Browser address bar
€ © 0 =

HTML
document

HIMLS
form
elements

Frameworks
open source
extensions

JavaScript
custom
libraries

HTMLS
Script APIs

History
Canvas
Geolocation
Web Workers
Drag and Drop
Websockets
Localstorage
Offine
AudionVideo

OEBPS/common.jpg

OEBPS/common2.jpg
e AUt

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/01fig04_alt.jpg
Browser JavaScript
Execution Speed

*E9

* Chrome 19.0.1084.56
* Firefox 9.0.1

* safari 5.1.7

* Firefox 13.0.1

* Firefox 12

* Opera 12
Chrome 6.0.447.0
Opera 1060
Chrome 5.0.375.86
Opera 1054

Safari 5.0

1E 9.0 Preview 3
Firefox 4.0

Firefox 3.6.4
Firefox 3.6.6

I8

€7

* Browsers tested with WebKit SunSpider Javascript Benchmark 0.9.1

OEBPS/01fig06_alt.jpg
et HTMLS
JavaScript iy

Browser address bar

History
ass3
Canvas
Geolocation
HTMLS Frameworks.
semantic ‘open source Web Workers
extensions
elements HTML ¥
doournent. 4 < Drag and Drop
Javascript .
Microdata plisity Websockets
S e LocalStorage
Offiine

HTMLS
form AudioNVideo
elements
~ Form post Ajox cals
Views = RESTHul calls
Generated Javascript Form post

MVC controllers

OEBPS/01fig05_alt.jpg
Browser address bar
ee8o0
css3

s
semanic
ctements HTML
document €
Microdata
extensions

HTMLS.
form
elements
Form post
Views
‘Generated Javascript

Frameworks

open source
extensions

Javascript
custom
libraries.

mvc mn!mﬂels

HTMLS.
JavaScript AP

Ajax calls
RESTul calls

Form post

History
Canvas
Geolocation
Web Workers
Drag and Drop
Websockets
Local Storage
Offine

AudioVideo

OEBPS/cover.jpg
Single page web apps,JavaS i, and semantic markup

for .NET Developerg

OEBPS/01fig08_alt.jpg
Page
e

‘Browser address bar X
History.
css3
Canvas
Geolocation
HTMLS Frameworks
semantic open source Web Workers
extensions
elements HTML
document < Drag and Drop
Javasecript §
Microdata pranty Websockets
ik fhes Localstorage
Offine
HIMLS
Gl AudioNVideo
elements
 Form post Ajox calls
Views RESTHul calls
Form post

Generated JavaScript

MVC controllers

OEBPS/01fig07_alt.jpg
Page
structur
Browser address bar
eeeo
css3

HIMLS
semantic
clements HTML
document [
Micodata
extensions
HTMLS
form
clements
Form post
Generated st

Frameworks
open source
extensions

Javascript
custom
libraries.

mvc mnuonus

HTMLS.
JavaScript AP

Ajax calls
RESTul calls

Form post

History
Canvas
Geolocation
Web Workers
Drag and Drop
Websockets
Localstorage
Offine

AudioVideo

OEBPS/01fig09_alt.jpg
structur

HTMLS
JavaScript AP

Browser address bar .,
iston
ceeeo N
css3
Canvas
Geolocation
HTMLS Frameworks
‘semantic ‘open source Web Workers
e
elements. HTML =
R Drag and Drop
Javascipt
Microdata custom Websockets
Sxtenslons libraries LocalStorage
Offine

HTMLS
om AudioNVideo
elements
Form post Aaxalls
Views RESTul cals
Generated Javasicript Form post

MVC controllers

