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Foreword


  For us, the members of the AlphaGo team, the AlphaGo story was the adventure of a lifetime. It began, as many great adventures do, with a small step—training a simple convolutional neural network on records of Go games played by strong human players. This led to pivotal breakthroughs in the recent development of machine learning, as well as a series of unforgettable events, including matches against the formidable Go professionals Fan Hui, Lee Sedol, and Ke Jie. We’re proud to see the lasting impact of these matches on the way Go is played around the world, as well as their role in making more people aware of, and interested in, the field of artificial intelligence.


  But why, you might ask, should we care about games? Just as children use games to learn about aspects of the real world, so researchers in machine learning use them to train artificial software agents. In this vein, the AlphaGo project is part of DeepMind’s strategy to use games as simulated microcosms of the real world. This helps us study artificial intelligence and train learning agents with the goal of one day building general purpose learning systems capable of solving the world’s most complex problems.


  AlphaGo works in a way that is similar to the two modes of thinking that Nobel laureate Daniel Kahnemann describes in his book on human cognition, Thinking Fast and Slow. In the case of AlphaGo, the slow mode of thinking is carried out by a planning algorithm called Monte Carlo Tree Search, which plans from a given position by expanding the game tree that represents possible future moves and counter moves. But with roughly 10^170 (1 followed by 170 0s) many possible Go positions, searching through every sequence of a game proves impossible. To get around this and to reduce the size of the search space, we paired the Monte Carlo Tree Search with a deep learning component—two neural networks trained to estimate how likely each side is to win, and what the most promising moves are.


  A later version, AlphaZero, uses principles of reinforcement learning to play entirely against itself, eliminating the need for any human training data. It learned from scratch the game of Go (as well as chess and shogi), often discovering (and later discarding) many strategies developed by human players over hundreds of years and creating many of its own unique strategies along the way.


  Over the course of this book, Max Pumperla and Kevin Ferguson take you on this fascinating journey from AlphaGo through to its later extensions. By the end, you will not only understand how to implement an AlphaGo-style Go engine, but you will also have great practical understanding of some of the most important building blocks of modern AI algorithms: Monte Carlo Tree Search, deep learning, and reinforcement learning. The authors have carefully tied these topics together, using the game of Go as an exciting and accessible running example. As an aside, you will have learned the basics of one of the most beautiful and challenging games ever invented.


  Furthermore, the book empowers you from the beginning to build a working Go bot, which develops over the course of the book, from making entirely random moves to becoming a sophisticated self-learning Go AI. The authors take you by the hand, providing both excellent explanations of the underlying concepts, as well as executable Python code. They do not hesitate to dive into the necessary details of topics like data formats, deployment, and cloud computing necessary for you to actually get your Go bot to work and play.


  In summary, Deep Learning and the Game of Go is a highly readable and engaging introduction to modern artificial intelligence and machine learning. It succeeds in taking what has been described as one of the most exciting milestones in artificial intelligence and transforming it into an enjoyable first course in the subject. Any reader who follows this path will be equipped to understand and build modern AI systems, with possible applications in all those situations that require a combination of “fast” pattern matching and “slow” planning. That is, the thinking fast and slow required for basic cognition.

  —THORE GRAEPEL, RESEARCH SCIENTIST, DEEPMIND, ON BEHALF OF THE ALPHAGO TEAM AT DEEPMIND


  
Preface


  When AlphaGo hit the news in early 2016, we were extremely excited about this groundbreaking advancement in computer Go. At the time, it was largely conjectured that human-level artificial intelligence for the game of Go was at least 10 years in the future. We followed the games meticulously and didn’t shy away from waking up early or staying up late to watch the broadcasted games live. Indeed, we had good company—millions of people around the globe were captivated by the games against Fan Hui, Lee Sedol, and later Ke Jie and others.


  Shortly after the emergence of AlphaGo, we picked up work on a little open source library we coined BetaGo (see http://github.com/maxpumperla/betago), to see if we could implement some of the core mechanisms running AlphaGo ourselves. The idea of BetaGo was to illustrate some of the techniques behind AlphaGo for interested developers. While we were realistic enough to accept that we didn’t have the resources (time, computing power, or intelligence) to compete with DeepMind’s incredible achievement, it has been a lot of fun to create our own Go bot.


  Since then, we’ve had the privilege to speak about computer Go on quite a few occasions. As we are both long-term Go enthusiasts and machine learning practitioners, it was at times easy to forget just how little the general public picked up from the events we followed so closely. In fact, it was a little ironic to see that while millions watched the games, at least from our perspective in the western world, there seem to be essentially two disjointed groups:


  
    	Those who understand and love the game of Go, but know little about machine learning.


    	Those who understand and appreciate machine learning, but barely know the rules of Go.

  


  To an outsider, both disciplines might seem equally opaque, complicated, and hard to master. While in the last years more and more software developers picked up machine learning and in particular deep learning, the game of Go remains largely unknown to many in the west. We think this is very unfortunate and it is our sincere hope that this book brings the above two groups closer together.


  We strongly believe that the principles underpinning AlphaGo can be taught to a general software engineering audience in a practical manner. Enjoyment and understanding of Go comes from playing it and experimenting with it. It can be argued that the same holds true for machine learning, or any other discipline, for that matter.


  If you share some of our enthusiasm for either Go or machine learning (hopefully both!) at the end of this book, we’ve done our job. If, on top of that, you know how to build and ship a Go bot and run your own experiments, many other interesting artificial intelligence applications will be accessible to you as well. Enjoy the ride!
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About this book


  Deep Learning and the Game of Go is intended to introduce modern machine learning by walking through a practical and fun example: building an AI that plays Go. By the end of chapter 3, you can make a working Go-playing program, although it will be laughably weak at that point. From there, each chapter introduces a new way to improve your bot’s AI; you can learn about the strengths and limitations of each technique by experimenting. It all culminates in the final chapters, where we show how AlphaGo and AlphaGo Zero integrate all the techniques into incredibly powerful AIs.


  
Who should read this book


  This book is for software developers who want to start experimenting with machine learning, and who prefer a practical approach over a mathematical approach. We assume you have a working knowledge of Python, although you could implement the same algorithms in any modern language. We don’t assume you know anything about Go; if you prefer chess or some similar game, you can adapt most of the techniques to your favorite game. If you are a Go player, you should have a blast watching your bot learn to play. We certainly did!


  
Roadmap


  The book has three parts that cover 14 chapters and 5 appendices. Part I: Foundations introduces the major concepts for the rest of the book.


  
    	
Chapter 1, Towards deep learning, gives a lightweight and high-level overview of the discipline’s artificial intelligence, machine learning, and deep learning. We explain how they interrelate and what you can and cannot do with techniques from these fields.


    	
Chapter 2, Go as a machine learning problem, introduces the rules of Go and explains what we can hope to teach a computer playing the game.


    	
Chapter 3, Implementing your first Go bot, is the chapter in which we implement the Go board, placing stones and playing full games in Python. At the end of this chapter you can program the weakest Go AI possible.

  


  Part II: Machine learning and game AI presents the technical and methodological foundations to create a strong go AI. In particular, we will introduce three pillars, or techniques, that AlphaGo uses very effectively: tree search, neural networks, and reinforcement learning.


  Tree search


  
    	
Chapter 4, Playing games with tree search, gives an overview of algorithms that search and evaluate sequences of game play. We start with the simple brute-force minimax search, then build up to advanced algorithms such as alpha-beta pruning and Monte Carlo search.

  


  Neural networks


  
    	
Chapter 5, Getting started with neural networks, gives a practical introduction into the topic of artificial neural networks. You will learn to predict handwritten digits by implementing a neural network from scratch in Python.


    	
Chapter 6, Designing a neural network for Go data, explains how Go data shares traits similar to image data and introduces convolutional neural networks for move prediction. In this chapter we start using the popular deep learning library Keras to build our models.


    	
Chapter 7, Learning from data: a deep learning bot, we apply the practical knowledge acquired in the preceding two chapters to build a Go bot powered by deep neural networks. We train this bot on actual game data from strong amateur games and indicate the limitations of this approach.


    	
Chapter 8, Deploying bots in the wild, will get you started with serving your bots so that human opponents can play against it through a user interface. You will also learn how to let your bots play against other bots, both locally and on a Go server.

  


  Reinforcement learning


  
    	
Chapter 9, Learning by practice: reinforcement learning, covers the very basics of reinforcement learning and how we can use it for self-play in Go.


    	
Chapter 10, Reinforcement learning with policy gradients, carefully introduces policy gradients, a vital method in improving move predictions from chapter 7.


    	
Chapter 11, Reinforcement learning with value methods, shows how to evaluate board positions with so-called value methods, a powerful tool when combined with tree search from chapter 4.


    	
Chapter 12, Reinforcement learning with actor-critic methods, introduces techniques to predict the long-term value of a given board position and a given next move, which will help us choose next moves efficiently.

  


  Part III: Greater than the sum of its parts is the final part, in which all building blocks developed earlier culminate in an application that is close to what AlphaGo does.


  
    	
Chapter 13, Alpha Go: Bringing it all together, is both technically and mathematically the pinnacle of this book. We discuss how first training a neural network on Go data (chapters 5–7) and then proceeding with self-play (chapters 8–11), combined with a clever tree search approach (chapter 4) can create a superhuman-level Go bot.


    	
Chapter 14, AlphaGo Zero: Integrating tree search with reinforcement learning, the last chapter of this book, describes the current state of the art in board game AI. We take a deep dive into the innovative combination of tree search and reinforcement learning that powers AlphaGo Zero.

  


  In the appendices, we cover the following topics:


  
    	
Appendix A, Mathematical foundations, recaps some basics of linear algebra and calculus, and shows how to represent some linear algebra structures in the Python library NumPy.


    	
Appendix B, The backpropagation algorithm, explains the more math-heavy details of the learning procedure of most neural networks, which we use from chapter 5 onwards.


    	
Appendix C, Go programs and servers, provides some resources for readers who want to learn more about Go.


    	
Appendix D, Training and deploying bots using Amazon Web Services, is a quick guide to running your bot on an Amazon cloud server.


    	
Appendix E, Submitting a bot to the Online Go Server (OGS), shows how to connect your bot to a popular Go server, where you can test it against players around the world.

  


  The figure on the following page summarizes the chapter dependencies.


  [image: ]


  
About the code


  This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers ([image: ]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  All code samples, along with some additional glue code, are available on GitHub at: https://github.com/maxpumperla/deep_learning_and_the_game_of_go.


  
Book forum


  Purchase of Deep Learning and the Game of Go includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/deep-learning-and-the-game-of-go. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


  
About the authors


  MAX PUMPERLA is a Data Scientist and Engineer specializing in Deep Learning at the artificial intelligence company skymind.ai. He is the co-founder of the Deep Learning platform aetros.com.


  KEVIN FERGUSON has 18 years of experience in distributed systems and data science. He is a data scientist at Honor, and has experience at companies such as Google and Meebo. Together, Max and Kevin are co-authors of betago, one of very few open source Go bots, developed in Python.


  
About the cover illustration


  The figure on the cover of Deep Learning and the Game of Go is Emporer Montoku, who ruled Japan from 850 to 858. The portrait was done in watercolor on silk by an unknown artist. It was reproduced as part of “Emperors and Empresses of the Past” in the Japanese history journal Bessatsu Rekishi Dokuhon in 2006.


  Figures like this one remind us vividly of the uniqueness and individuality of the world’s towns and regions long ago. It was a time when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other.


  Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It’s now often hard to tell the inhabitant of one continent from another. Perhaps we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life. We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on the rich diversity of regional life centuries ago.


  


  Part 1. Foundations


  What is machine learning? What is the game of Go, and why was it such an important milestone for game AI? How is teaching a computer to play Go different from teaching it to play chess or checkers?


  In this part, we answer all those questions, and you’ll build a flexible Go game logic library that will provide a foundation for the rest of the book.


  


  1 Toward deep learning: a machine-learning introduction


  This chapter covers:


  
    	Machine learning and its differences from traditional programming


    	Problems that can and can’t be solved with machine learning


    	Machine learning’s relationship to artificial intelligence


    	The structure of a machine-learning system


    	Disciplines of machine learning

  


  As long as computers have existed, programmers have been interested in artificial intelligence (AI): implementing human-like behavior on a computer. Games have long been a popular subject for AI researchers. During the personal computer era, AIs have overtaken humans at checkers, backgammon, chess, and almost all classic board games. But the ancient strategy game Go remained stubbornly out of reach for computers for decades. Then in 2016, Google DeepMind’s AlphaGo AI challenged 14-time world champion Lee Sedol and won four out of five games. The next revision of AlphaGo was completely out of reach for human players: it won 60 straight games, taking down just about every notable Go player in the process.


  AlphaGo’s breakthrough was enhancing classical AI algorithms with machine learning. More specifically, AlphaGo used modern techniques known as deep learning—algorithms that can organize raw data into useful layers of abstraction. These techniques aren’t limited to games at all. You’ll also find deep learning in applications for identifying images, understanding speech, translating natural languages, and guiding robots. Mastering the foundations of deep learning will equip you to understand how all these applications work.


  Why write a whole book about computer Go? You might suspect that the authors are die-hard Go nuts—OK, guilty as charged. But the real reason to study Go, as opposed to chess or backgammon, is that a strong Go AI requires deep learning. A top-tier chess engine such as Stockfish is full of chess-specific logic; you need a certain amount of knowledge about the game to write something like that. With deep learning, you can teach a computer to imitate strong Go players, even if you don’t understand what they’re doing. And that’s a powerful technique that opens up all kinds of applications, both in games and in the real world.


  Chess and checkers AIs are designed around reading out the game further and more accurately than human players can. There are two problems with applying this technique to Go. First, you can’t read far ahead, because the game has too many moves to consider. Second, even if you could read ahead, you don’t know how to evaluate whether the result is good. It turns out that deep learning is the key to unlocking both problems.


  This book provides a practical introduction to deep learning by covering the techniques that powered AlphaGo. You don’t need to study the game of Go in much detail to do this; instead, you’ll look at the general principles of the way a machine can learn. This chapter introduces machine learning and the kinds of problems it can (and can’t) solve. You’ll work through examples that illustrate the major branches of machine learning, and see how deep learning has brought machine learning into new domains.


  
1.1. What is machine learning?


  Consider the task of identifying a photo of a friend. This is effortless for most people, even if the photo is badly lit, or your friend got a haircut or is wearing a new shirt. But suppose you want to program a computer to do the same thing. Where would you even begin? This is the kind of problem that machine learning can solve.


  Traditionally, computer programming is about applying clear rules to structured data. A human developer programs a computer to execute a set of instructions on data, and out comes the desired result, as shown in figure 1.1. Think of a tax form: every box has a well-defined meaning, and detailed rules indicate how to make various calculations from them. Depending on where you live, these rules may be extremely complicated. It’s easy for people to make a mistake here, but this is exactly the kind of task that computer programs excel at.


  Figure 1.1. The standard programming paradigm that most software developers are familiar with. The developer identifies the algorithm and implements the code; the users supply the data.
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  In contrast to the traditional programming paradigm, machine learning is a family of techniques for inferring a program or algorithm from example data, rather than implementing it directly. So, with machine learning, you still feed your computer data, but instead of imposing instructions and expecting output, you provide the expected output and let the machine find an algorithm by itself.


  To build a computer program that can identify who’s in a photo, you can apply an algorithm that analyzes a large collection of images of your friend and generates a function that matches them. If you do this correctly, the generated function will also match new photos that you’ve never seen before. Of course, the program will have no knowledge of its purpose; all it can do is identify things that are similar to the original images you fed it.


  In this situation, you call the images you provide the machine training data, and the names of the person on the picture labels. After you’ve trained an algorithm for your purpose, you can use it to predict labels on new data to test it. Figure 1.2 displays this example alongside a schema of the machine-learning paradigm.


  Figure 1.2. The machine-learning paradigm: during development, you generate an algorithm from a data set, and then incorporate that into your final application.
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  Machine learning comes in when rules aren’t clear; it can solve problems of the “I’ll know it when I see it” variety. Instead of programming the function directly, you provide data that indicates what the function should do, and then methodically generate a function that matches your data.


  In practice, you usually combine machine learning with traditional programming to build a useful application. For our face-detection app, you have to instruct the computer on how to find, load, and transform the example images before you can apply a machine-learning algorithm. Beyond that, you might use hand-rolled heuristics to separate headshots from photos of sunsets and latte art; then you can apply machine learning to put names to faces. Often a mixture of traditional programming techniques and advanced machine-learning algorithms will be superior to either one alone.


  1.1.1. How does machine learning relate to AI?


  Artificial intelligence, in the broadest sense, refers to any technique for making computers imitate human behavior. AI includes a huge range of techniques, including the following:


  
    	Logic production systems, which apply formal logic to evaluate statements


    	Expert systems, in which programmers try to directly encode human knowledge into software


    	Fuzzy logic, which defines algorithms to help computers process imprecise statements

  


  These sorts of rules-based techniques are sometimes called classical AI or GOFAI (good old-fashioned AI).


  Machine learning is just one of many fields in AI, but today it’s arguably the most successful one. In particular, the subfield of deep learning is behind some of the most exciting breakthroughs in AI, including tasks that eluded researchers for decades. In classical AI, researchers would study human behavior and try to encode rules that match it. Machine learning and deep learning flip the problem on its head: now you collect examples of human behavior and apply mathematical and statistical techniques to extract the rules.


  Deep learning is so ubiquitous that some people in the community use AI and deep learning interchangeably. For clarity, we’ll use AI to refer to the general problem of imitating human behavior with computers, and machine learning or deep learning to refer to mathematical techniques for extracting algorithms from examples.


  1.1.2. What you can and can’t do with machine learning


  Machine learning is a specialized technique. You wouldn’t use machine learning to update database records or render a user interface. Traditional programming should be preferred in the following situations:


  
    	
Traditional algorithms solve the problem directly. If you can directly write code to solve a problem, it’ll be easier to understand, maintain, test, and debug.


    	
You expect perfect accuracy. All complex software contains bugs. But in traditional software engineering, you expect to methodically identify and fix bugs. That’s not always possible with machine learning. You can improve machine-learning systems, but focusing too much on a specific error often makes the overall system worse.


    	
Simple heuristics work well. If you can implement a rule that’s good enough with just a few lines of code, do so and be happy. A simple heuristic, implemented clearly, will be easy to understand and maintain. Functions that are implemented with machine learning are opaque and require a separate training process to update. (On the other hand, if you’re maintaining a complicated sequence of heuristics, that’s a good candidate to replace with machine learning.)

  


  Often there’s a fine line between problems that are feasible to solve with traditional programming and problems that are virtually impossible to solve, even with machine learning. Detecting faces in images versus tagging faces with names is just one example we’ve seen. Determining what language a text is written in versus translating that text into a given language is another such example.


  We often resort to traditional programming in situations where machine learning might help—for instance, when the complexity of the problem is extremely high. When confronted with highly complex, information-dense scenarios, humans tend to settle for rules of thumb and narratives: think macroeconomics, stock-market predictions, or politics. Process managers and so-called experts can often vastly benefit from enhancing their intuition with insights gained from machine learning. Often, real-world data has more structure than anticipated, and we’re just beginning to harvest the benefits of automation and augmentation in many of these areas.


  
1.2. Machine learning by example


  The goal of machine learning is to construct a function that would be hard to implement directly. You do this by selecting a model, a large family of generic functions. Then you need a procedure for selecting a function from that family that matches your goal; this process is called training or fitting the model. You’ll work through a simple example.


  Let’s say you collect the height and weight of some people and plot those values on a graph. Figure 1.3 shows some data points that were pulled from the roster of a professional soccer team.


  Figure 1.3. A simple example data set. Each point on the graph represents a soccer player’s height and weight. Your goal is to fit a model to these points.
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  Suppose you want to describe these points with a mathematical function. First, notice that the points, more or less, make a straight line going up and to the right. If you think back to high school algebra, you may recall that functions of the form f(x) = ax + b describe straight lines. You might suspect that you could find values of a and b so that ax + b matches your data points fairly closely. The values of a and b are the parameters, or weights, that you need to figure out. This is your model. You can write Python code that can generate any function in this family:

  class GenericLinearFunction:
    def __init__(self, a, b):
        self.a = a
        self.b = b

    def evaluate(self, x):
        return self.a * x + self.b


  How would you find out the right values of a and b? You can use rigorous algorithms to do this, but for a quick and dirty solution, you could just draw a line through your graph with a ruler and try to work out its formula. Figure 1.4 shows such a line that follows the general trend of the data set.


  


  Figure 1.4. First you note that your data set roughly follows a linear trend, then you find the formula for a specific line that fits the data.
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  If you eyeball a couple of points that the line passes through, you can calculate a formula for the line; you’ll get something like f(x) = 4.2x – 137. Now you have a specific function that matches your data. If you measure the height of a new person, you could then use your formula to estimate that person’s weight. It won’t be exactly right, but it may be close enough to be useful. You can turn your GenericLinearFunction into a specific function:

  height_to_weight = GenericLinearFunction(a=4.2, b=-137)
height_of_new_person = 73
estimated_weight = height_to_weight.evaluate(height_of_new_person)


  This should be a pretty good estimate, so long as your new person is also a professional soccer player. All the people in your data set are adult men, in a fairly narrow age range, who train for the same sport every day. If you try to apply your function to female soccer players, or Olympic weightlifters, or babies, you’ll get wildly inaccurate results. Your function is only as good as your training data.


  This is the basic process of machine learning. Here, your model is the family of all functions that look like f(x) = ax + b. And in fact, even something that simple is a useful model that statisticians use all the time. As you tackle more-complex problems, you’ll use more-sophisticated models and more-advanced training techniques. But the core idea is the same: first describe a large family of possible functions and then identify the best function from that family.


  

  


  
    Python and machine learning

    All the code samples in this book are written in Python. Why Python? First, Python is an expressive high-level language for general application development. In addition, Python is among the most popular languages for machine learning and mathematical programming. This combination makes Python a natural choice for an application that integrates machine learning.


    Python is popular for machine learning because of its amazing collection of numerical computing packages. Packages we use in this book include the following:


    
      	
NumPy— This library provides efficient data structures to represent numerical vectors and arrays, and an extensive library of fast mathematical operations. NumPy is the bedrock of Python’s numerical computing ecosystem: every notable library for machine learning or statistics integrates with NumPy.


      	
TensorFlow and Theano— These are two graph computation libraries (graph in the sense of a network of connected steps, not graph as in diagram). They allow you to specify complex sequences of mathematical operations, and then generate highly optimized implementations.


      	
Keras— This is a high-level library for deep learning. It provides a convenient way for you to specify neural networks, and relies on TensorFlow or Theano to handle the raw computation.

    


    We wrote the code examples in this book with Keras 2.2 and TensorFlow 1.8 in mind. You should be able to use any Keras version in the 2.x series with minimal modifications.

  

  


  1.2.1. Using machine learning in software applications


  In the previous section, you looked at a purely mathematical model. How can you apply machine learning to a real software application?


  Suppose you’re working on a photo-sharing app, in which users have uploaded millions of pictures with tags. You’d like to add a feature that suggests tags for a new photo. This feature is a perfect candidate for machine learning.


  First, you have to be specific about the function you’re trying to learn. Say you had a function like this:

  def suggest_tags(image_data):
    """Recommend tags for an image.

    Input: image_data is a photo in bitmap format

    Returns: a ranked list of suggested tags
    """


  Then the rest of the work is relatively straightforward. But it’s not at all obvious how to start implementing a function like suggest_tags. That’s where machine learning comes in.


  If this were an ordinary Python function, you’d expect it to take some kind of Image object as input and perhaps return a list of strings as output. Machine-learning algorithms aren’t so flexible about their inputs and outputs; they generally work on vectors and matrices. So as a first step, you need to represent your input and output mathematically.


  If you resize the input photo to a fixed size—say, 128 × 128 pixels—then you can encode it as a matrix with 128 rows and 128 columns: one float value per pixel. What about the output? One option is to restrict the set of tags you’ll identify; you could select perhaps the 1,000 most popular tags on the app. The output could then be a vector of size 1,000, where each element of the vector corresponds to a particular tag. If you allow the output values to vary anywhere between 0 and 1, you can generate ranked lists of suggested tags. Figure 1.5 illustrates this sort of mapping between concepts in your application and mathematical structures.


  Figure 1.5. Machine-learning algorithms operate on mathematical structures, such as vectors and matrices. Your photo tags are stored in a standard computer data structure: a list of strings. This is one possible scheme for encoding that list as a mathematical vector.
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  This data preprocessing step you just carried out is an integral part of every machine-learning system. Usually, you load the data in raw format and carry out preprocessing steps to create features—input data that can be fed into a machine-learning algorithm.


  1.2.2. Supervised learning


  Next, you need an algorithm for training your model. In this case, you have millions of correct examples already—all the photos that users have already uploaded and manually tagged in your app. You can learn a function that attempts to match these examples as closely as possible, and you hope that it’ll generalize to new photos in a sensible way. This technique is known as supervised learning, so-called because the labels of human-curated examples provide guidance for the training process.


  When training is complete, you can deliver the final learned function with your application. Every time a user uploads a new photo, you pass it into the trained model function and get a vector back. You can match each value in the vector back to the tag it represents; then you can select the tags with the largest values and show them to the user. Schematically, the procedure you just outlined can be represented as shown in figure 1.6.


  Figure 1.6. A machine-learning pipeline for supervised learning
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  How do you test your trained model? The standard practice is to set aside some of your original labeled data for that purpose. Before starting training, you can set aside a chunk of your data, say 10%, as a validation set. The validation set isn’t included as part of the training data in any way. Then you can apply your trained model to the images in the validation set and compare the suggested tags to the known good tags. This lets you compute the accuracy of your model. If you want to experiment with different models, you have a consistent metric for measuring which is better.


  In game AI, you can extract labeled training data from records of human games. And online gaming is a huge boon for machine learning: when people play a game online, the game server may save a computer-readable record. Examples of how to apply supervised learning to games are as follows:


  
    	
Given a collection of complete records of chess games, represent the game state in vector or matrix form and learn to predict the next move from data.


    	Given a board position, learn to predict the likelihood of winning for that state.

  


  1.2.3. Unsupervised learning


  In contrast to supervised learning, the subfield of machine learning called unsupervised learning doesn’t come with any labels to guide the learning process. In unsupervised learning, the algorithm has to learn to find patterns in the input data on its own. The only difference from figure 1.6 is that you’re missing the labels, so you can’t evaluate your predictions the way you did before. All other components stay the same.


  An example of this is outlier detection—identifying data points that don’t fit with the general trend of the data set. In the soccer player data set, outliers would indicate players who don’t match the typical physique of their teammates. For instance, you could come up with an algorithm that measures the distance of a height-width pair to the line you eyeballed. If a data point exceeds a certain distance to the average line, you declare it an outlier.


  In board-game AI, a natural question to ask is which pieces on the board belong together or form a group. In the next chapter, you’ll see what this means for the game of Go in more detail. Finding groups of pieces that have a relationship is sometimes called clustering or chunking. Figure 1.7 shows an example of what this could look like for chess.


  Figure 1.7. An unsupervised machine-learning pipeline for finding clusters or chunks of chess pieces
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  1.2.4. Reinforcement learning


  Supervised learning is powerful, but finding quality training data can be a major obstacle. Suppose you’re building a house-cleaning robot. The robot has various sensors that can detect when it’s near obstacles, and motors that let it scoot around the floor and steer left or right. You need a control system: a function that can analyze the sensor input and decide how it should move. But supervised learning is impossible here. You have no examples to use as training data—your robot doesn’t even exist yet.


  Instead, you can apply reinforcement learning, a sort of trial-and-error approach. You start with an inefficient or inaccurate control system, and then you let the robot attempt its task. During the task, you record all the inputs your control system sees and the decisions it makes. When it’s done, you need a way to evaluate how well it did, perhaps by calculating the fraction of the floor it vacuumed and how far it drained its battery. That whole experience gives you a small chunk of training data, and you can use it to improve the control system. By repeating the whole process over and over, you can gradually home in on an efficient control function. Figure 1.8 shows this process as a flowchart.


  Figure 1.8. In reinforcement learning, agents learn to interact with their environment by trial and error. You repeatedly have your agent attempt its task to get a supervised signal to learn from. With every cycle, you can make an incremental improvement.
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1.3. Deep learning


  This book is made up of sentences. The sentences are made of words; the words are made of letters; the letters are made of lines and curves; and, ultimately, those lines and curves are made of tiny dots of ink. When teaching a child to read, you start with the smallest parts and work your way up: first letters, then words, then sentences, and finally complete books. (Normally, children learn to recognize lines and curves on their own.) This kind of hierarchy is the natural way for people to learn complex concepts. At each level, you ignore some detail, and the concepts become more abstract.


  Deep learning applies the same idea to machine learning. Deep learning is a subfield of machine learning that uses a specific family of models: sequences of simple functions chained together. These chains of functions are known as neural networks because they were loosely inspired by the structure of natural brains. The core idea of deep learning is that these sequences of functions can analyze a complex concept as a hierarchy of simpler ones. The first layer of a deep model can learn to take raw data and organize it in basic ways—for example, grouping dots into lines. Each successive layer organizes the previous layer into more-advanced and more-abstract concepts. The process of learning these abstract concepts is called representation learning.


  The amazing thing about deep learning is that you don’t need to know what the intermediate concepts are in advance. If you select a model with enough layers and provide enough training data, the training process will gradually organize the raw data into increasingly high-level concepts. But how does the training algorithm know what concepts to use? It doesn’t; it just organizes the input in any way that helps it to better match the training examples. There’s no guarantee that this representation matches the way humans would think about the data. Figure 1.9 shows how representation learning fits into the supervised learning flow.


  Figure 1.9. Deep learning and representation learning
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  All this power comes with a cost. Deep models have huge numbers of weights to learn. Recall the simple ax + b model you used for your height and weight data set; that model had just two weights to learn. A deep model suitable for your image-tagging app could have a million weights. As a result, deep learning demands larger data sets, more computing power, and a more hands-on approach to training. Both techniques have their place. Deep learning is a good choice in the following circumstances:


  
    	
Your data is in an unstructured form. Images, audio, and written language are good candidates for deep learning. It’s possible to apply simple models to that kind of data, but it generally requires sophisticated preprocessing.


    	
You have large amounts of data available or have a plan for acquiring more. In general, the more complex your model is, the more data you need to train it.


    	
You have plenty of computing power or plenty of time. Deep models involve more calculation for both training and evaluation.

  


  You should prefer traditional models with fewer parameters in the following cases:


  
    	
You have structured data. If your inputs look more like database records, you can often apply simple models directly.


    	
You want a descriptive model. With simple models, you can look at the final learned function and examine how an individual input affects the output. This can give you insight about how the real-world system you’re studying works. In deep models, the connection between a specific piece of the input and the final output is long and winding; it’s difficult to interpret the model.

  


  Because deep learning refers to the type of model you use, you can apply deep learning to any of the major machine-learning branches. For example, you can do supervised learning with a deep model or a simple model, depending on the type of training data you have.


  
1.4. What you’ll learn in this book


  This book provides a practical introduction to deep learning and reinforcement learning. To get the most out of this book, you should be comfortable reading and writing Python code, and have some familiarity with linear algebra and calculus. In this book, we teach the following:


  
    	How to design, train, and test neural networks by using the Keras deep-learning library


    	How to set up supervised deep-learning problems


    	How to set up reinforcement-learning problems


    	How to integrate deep learning with a useful application

  


  Throughout the book, we use a concrete and fun example: building an AI that plays Go. Our Go bot combines deep learning with standard computer algorithms. We’ll use straightforward Python to enforce the rules of the game, track the game state, and look ahead through possible game sequences. Deep learning will help the bot identify which moves are worth examining and evaluate who’s ahead during a game. At each stage, you can play against your bot and watch it improve as you apply more-sophisticated techniques.


  If you’re interested in Go specifically, you can use the bot you’ll build in the book as a starting point for experimenting with your own ideas. You can adapt the same techniques to other games. You’ll also be able to add features powered by deep learning to other applications beyond games.


  
1.5. Summary


  
    	Machine learning is a family of techniques for generating functions from data instead of writing them directly. You can use machine learning to solve problems that are too ambiguous to solve directly.


    	Machine learning generally involves first choosing a model—a generic family of mathematical functions. Next you train the model—apply an algorithm to find the best function in that family. Much of the art of machine learning lies in selecting the right model and transforming your particular data set to work with it.


    	Three of the major areas of machine learning are supervised learning, unsupervised learning, and reinforcement learning.


    	Supervised learning involves learning a function from examples you already know to be correct. When you have examples of human behavior or knowledge available, you can apply supervised learning to imitate them on a computer.


    	Unsupervised learning involves extracting structure from data without knowing what the structure is in advance. A common application is splitting a data set into logical groups.


    	Reinforcement learning involves learning a function through trial and error. If you can write code to evaluate how well a program achieves a goal, you can apply reinforcement learning to incrementally improve a program over many trials.


    	Deep learning is machine learning with a particular type of model that performs well on unstructured inputs, such as images or written text. It’s one of the most exciting fields in computer science today; it’s constantly expanding our ideas about what computers can do.

  


  


  2 Go as a machine-learning problem


  This chapter covers:


  
    	Why are games a good subject for AI?


    	Why is Go a good problem for deep learning?


    	What are the rules of Go?


    	What aspects of game playing can you solve with machine learning?

  


  
2.1. Why games?


  Games are a favorite subject for AI research, and it’s not just because they’re fun. They also simplify some of the complexities of real life, so you can focus on the algorithms you’re studying.


  Imagine you see a comment on Twitter or Facebook: something like, “Ugh, I forgot my umbrella.” You’d quickly conclude that your friend got caught out in the rain. But that information isn’t included anywhere in the sentence. How did you reach that conclusion? First, you applied common knowledge about what umbrellas are for. Second, you applied social knowledge about the kinds of comments people bother to make: it’d be strange to say, “I forgot my umbrella” on a bright, sunny day.


  As humans, we effortlessly factor in all this context when reading a sentence. This isn’t so easy for computers. Modern deep-learning techniques are effective at processing the information you supply them. But you’re limited in your ability to find all the relevant information and feed it to computers. Games sidestep that problem. They take place in an artificial universe, where all the information you need in order to make a decision is spelled out in the rules.


  Games are especially well suited for reinforcement learning. Recall that reinforcement learning requires repeatedly running your program and evaluating how well it has accomplished a task. Imagine you’re using reinforcement learning to train a robot to move around a building. Before the control system is finely tuned, you risk the robot falling down a flight of stairs or knocking over your furniture. Another option is to build a computer simulation of the environment in which the robot will operate. This eliminates the risks of letting an untrained robot run around in the real world but creates new problems. First, you have to invest in developing a detailed computer simulation, which is a significant project in its own right. Second, there’s always a chance that your simulation isn’t completely accurate.


  With games, on the other hand, all you need to do is have your AI play. If it loses a few hundred thousand matches while it’s learning, so what? In reinforcement learning, games are essential to serious research. Many cutting-edge algorithms were first demonstrated on Atari video games such as Breakout.


  To be clear, you can successfully apply reinforcement learning to problems in the physical world. Many researchers and engineers have done so. But starting with games solves the problem of creating a realistic training environment and lets you focus on the mechanics and principles of reinforcement learning.


  In this chapter, we introduce the rules of the game of Go. Next, we describe the structure of board-game AI at a high level, and identify points where you can introduce deep learning. Finally, we cover how you can evaluate the progress of your game AI throughout development.


  
2.2. A lightning introduction to the game of Go


  You don’t need to be a strong Go player to read this book, but you do need to understand the rules well enough to enforce them in a computer program. Fortunately, the rules are famously simple. In short, two players alternate placing black and white stones on a board, starting with the black player. The goal is to control as much of the board as possible with your own stones.


  Although the rules are simple, Go strategy has endless depth, and we don’t even attempt to cover it in this book. If you’re interested in learning more, we provide some resources at the end of this section.


  2.2.1. Understanding the board


  A Go board is a square grid, shown in figure 2.1. Stones go on the intersections, not inside the squares. The standard board is 19 × 19, but sometimes players use a smaller board for a quick game. The most popular smaller options are 9 × 9 and 13 × 13 boards. (The size refers to the number of intersections on the board, not the number of squares.)


  Figure 2.1. A standard 19 × 19 Go board. The intersections marked with the dots are the star points, which are solely for players’ reference. Stones go on the intersections.
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  Notice that nine points are marked with a dot. These points are called the star points. Their main purpose is to help players judge distances on the board; they have no effect on game play.


  2.2.2. Placing and capturing stones


  One player plays with black stones, and the other plays with white stones. The two players alternate placing stones on the board, starting with the black player. Stones don’t move after they’re on the board, although they can be captured and removed entirely. To capture your opponent’s stones, you must completely surround them with your own. Here’s how that works.


  Stones of the same color that are touching are considered connected together, as shown in figure 2.2. For the purposes of connection, we consider only straight up, down, left, or right; diagonals don’t count. Any empty point touching a connected group is called a liberty of that group. Every group needs at least one liberty to stay on the board. You can capture your opponent’s stones by filling their liberties.


  Figure 2.2. The three black stones are connected. They have four liberties on the points marked with squares. White can capture the black stones by placing white stones on all the liberties.
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  When you place a stone in the last liberty of an opponent’s group, that group is captured and removed from the board. The newly empty points are then available for either player to play on (so long as the move is legal). On the flip side, you may not play a stone that would have zero liberties, unless you’re completing a capture.


  An interesting consequence arises from the capturing rules. If a group of stones has two completely separate internal liberties, it can never be captured. See figure 2.3: black can’t play at A, because that black stone would have no liberties and its placement wouldn’t complete a capture because of the remaining liberty at B. Nor can black play at B, for the same reason. So black has no way to fill the last two liberties of the white group. These internal liberties are called eyes. In contrast, black can play at C to capture five white stones, because even though that black stone would have no liberties, it completes the capture. That white group has only one eye and is doomed to get captured at some point.


  Figure 2.3. The white stones on the left can never be captured: black can play at neither A nor B. A black stone there would have no liberties, and is therefore an illegal play. On the other hand, black can play at C to capture five white stones.
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  Although it’s not explicitly part of the rules, the idea that a group with two eyes can’t be captured is the most basic part of Go strategy. In fact, this is the only strategy you’ll specifically code into your bot’s logic. All the more advanced Go strategies will be inferred through machine learning.





































