

 [image: cover]

AOP in .NET: Practical Aspect-Oriented Programming

 Matthew D. Groves

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editors: Frank Pohlmann, Cynthia Kane
Technical proofreader: Javier Lozano
Copyeditor: Nancy Kotary
Proofreader: Elizabeth Martin
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617291142

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Dedication

 To my children Matthew and Emma

 I will never grow tired of your yelling, “Daddy, Daddy!” and tackling me when you hear the creak of my office door.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Getting started with AOP

 Chapter 1. Introducing AOP

 Chapter 2. Acme Car Rental

 2. The Fundamentals of AOP

 Chapter 3. Call this instead: intercepting methods

 Chapter 4. Before and after: boundary aspects

 Chapter 5. Get this instead: intercepting locations

 Chapter 6. Unit testing aspects

 3. Advanced AOP concepts

 Chapter 7. AOP implementation types

 Chapter 8. Using AOP as an architectural tool

 Chapter 9. Aspect composition: example and execution

 Appendix A. Ecosystem of .NET AOP tools

 Appendix B. NuGet basics

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Getting started with AOP

 Chapter 1. Introducing AOP

 1.1. What is AOP?

 1.1.1. Features

 1.1.2. Benefits

 1.1.3. AOP in your daily life

 1.2. Hello, World

 1.3. Summary

 Chapter 2. Acme Car Rental

 2.1. Start a new project

 2.1.1. Business requirements

 2.1.2. Necessary nonfunctional requirements

 2.2. Life without AOP

 2.2.1. Write the business logic

 2.2.2. Testing the business logic

 2.2.3. Add logging

 2.2.4. Introducing defensive programming

 2.2.5. Working with transactions and retries

 2.2.6. Handling exceptions

 2.2.7. Refactor without AOP

 2.3. The cost of change

 2.3.1. Requirements will change

 2.3.2. Small versus large projects

 2.3.3. Signature changes

 2.3.4. Working on a team

 2.4. Refactor with AOP

 2.4.1. Start simple and isolate the logging

 2.4.2. Refactor defensive programming

 2.4.3. Creating an aspect for transactions and retries

 2.4.4. Put exception handling into its own class

 2.5. Summary

 2. The Fundamentals of AOP

 Chapter 3. Call this instead: intercepting methods

 3.1. Method interception

 3.1.1. PostSharp method interception

 3.1.2. Castle DynamicProxy method interception

 3.2. Real-world example: data transactions

 3.2.1. Ensuring data integrity with begin and commit

 3.2.2. When transactions go bad: rollback

 3.2.3. When all else fails, retry

 3.3. Real-world example: threading

 3.3.1. The basics of .NET threading

 3.3.2. UI threads and worker threads

 3.3.3. Declarative threading with AOP

 3.4. Summary

 Chapter 4. Before and after: boundary aspects

 4.1. Boundary aspects

 4.1.1. PostSharp method bounding

 4.1.2. Method boundaries versus method interception

 4.1.3. ASP.NET HttpModule bounding

 4.2. Real-world example: detecting mobile users

 4.2.1. Offer a link to an application

 4.2.2. Don’t be a pest

 4.3. Real-world example: caching

 4.3.1. ASP.NET Cache

 4.3.2. An application that could benefit from caching

 4.3.3. Caching a result

 4.3.4. Retrieving from the cache

 4.3.5. A more robust cache key

 4.4. Summary

 Chapter 5. Get this instead: intercepting locations

 5.1. Location interception

 5.1.1. Fields and properties in .NET

 5.1.2. PostSharp location interception

 5.2. Real-world example: lazy loading

 5.2.1. Lazy loading approaches in .NET

 5.2.2. Implementing lazy loading with AOP

 5.2.3. What about lazy-loading fields?

 5.3. Real-world example: INotifyPropertyChanged

 5.3.1. Using INotifyPropertyChanged in a desktop application

 5.3.2. Problems and constraints with INotifyPropertyChanged

 5.3.3. Reducing boilerplate with AOP

 5.4. Summary

 Chapter 6. Unit testing aspects

 6.1. Writing tests with NUnit

 6.1.1. Writing and running NUnit tests

 6.1.2. Testing strategies for aspects

 6.2. Castle DynamicProxy testing

 6.2.1. Testing an interceptor

 6.2.2. Injecting dependencies

 6.3. PostSharp testing

 6.3.1. Unit testing a PostSharp aspect

 6.3.2. Injecting dependencies

 6.3.3. Problems with PostSharp and testing

 6.4. Summary

 3. Advanced AOP concepts

 Chapter 7. AOP implementation types

 7.1. How does AOP work?

 7.2. Runtime weaving

 7.2.1. Proxy pattern revisited

 7.2.2. Dynamic proxies

 7.3. Compile-time weaving

 7.3.1. Postcompiling

 7.3.2. Before and after

 7.4. Runtime versus compile-time weaving

 7.4.1. Pros of runtime weaving

 7.4.2. Pros of compile-time weaving

 7.5. Summary

 Chapter 8. Using AOP as an architectural tool

 8.1. Compile-time initialization and validation

 8.1.1. Initializing at compile time

 8.1.2. Validating the correct use of an aspect

 8.1.3. Real-world example: Threading revisited

 8.2. Architectural constraints

 8.2.1. Enforcing architecture

 8.2.2. Real-world example: NHibernate and virtual

 8.3. Multicasting

 8.3.1. At the class level

 8.3.2. At the assembly level

 8.4. Summary

 Chapter 9. Aspect composition: example and execution

 9.1. Using multiple aspects

 9.2. Aspect roles with PostSharp

 9.2.1. PostSharp aspect roles

 9.2.2. Role dependencies

 9.3. Composing aspects with DynamicProxy

 9.3.1. Ordering aspects

 9.3.2. Reducing repetition with custom conventions

 9.4. Real-world example: caching and authorization

 9.4.1. Application architecture

 9.4.2. PostSharp

 9.4.3. Castle DynamicProxy

 9.5. Summary

 Appendix A. Ecosystem of .NET AOP tools

 A.1. Compile-time AOP tools

 A.1.1. PostSharp

 A.1.2. LinFu

 A.1.3. SheepAspect

 A.1.4. Fody

 A.1.5. CIL manipulation tools

 A.2. Runtime AOP tools

 A.2.1. Castle Windsor/DynamicProxy

 A.2.2. StructureMap

 A.2.3. Unity

 A.2.4. Spring.NET

 Appendix B. NuGet basics

 B.1. Introduction to NuGet

 B.1.1. Installing NuGet

 B.1.2. Installing packages with NuGet UI

 B.1.3. Install packages with Package Manager Console

 B.2. NuGet package restore

 B.2.1. Solution Explorer

 B.2.2. Enabling package restore

 B.2.3. What package restore does

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Like many great advances in our industry, the explicit concept of aspect-oriented programming (AOP) was developed at what
 is now known as PARC, a Xerox Company. Soon after, in 2001, the AspectJ extensions brought AOP to Java. Aspects have enjoyed
 a long history in the Java community, but for many .NET developers, aspects are still considered new and exotic. Even so,
 many .NET developers have been using them without knowing it.

 Aspects provide a means of separating cross-cutting concerns from your core implementation code into separate modules. Rather
 than having every method contain logging code, for example, a logging aspect can be applied to methods external to the method
 implementation. It’s a powerful technique to help employ the principle of separation of concerns within code.

 In AOP in .NET, Matthew D. Groves deftly shines a light on the many ways developers can take advantage of aspects in .NET. He begins with
 an approachable introduction to AOP and builds on that with an example of an application written without aspects, which is
 then cleaned up with aspects. Subsequent chapters dig deeper into the various types of aspects and how to apply them using
 PostSharp and Castle DynamicProxy.

 Each chapter builds on the previous one in a distinct, understandable style, each with sample code that clarifies the concepts
 covered in the chapter. Great care was obviously put into the code samples.

 One example in particular shows how aspects are not limited to intermediate language (IL) rewriting and method interception.
 He challenges this implicit assumption by showing an aspect that wraps an HTTP request boundary in ASP.NET through a custom
 HttpModule implementation. It’s an example that might not, at first glance, be thought of as an aspect. But on reflection, it obviously
 meets the definition. Aspects are not limited to compile-time interception. This drives home the point that many developers
 have been using aspects of one form or another for a long time without realizing it.

 One subject near and dear to me is unit testing and this book contains an entire chapter covering the implications of unit
 testing and how to unit test aspects. It’s clear this book is not just meant to educate the reader on a subject, but to help
 the reader integrate the techniques and technologies with real-world practices.

 AOP in .NET is a great resource for those interested in learning how aspects can help maintain separation of concerns in a code base.
 I encourage you to take a look.

 PHIL HAACK

 DEVELOPER, GITHUB

Preface

 A few years ago I was working on a team of consultants embedded in an organization (that shall remain unnamed). Our job was
 to create a system that would help increase a key source of revenue. This organization’s IT department had many problems:
 political, technical, organizational, and financial. As consultants, we, naturally, wanted to overhaul everything immediately
 to solve these problems, but the reality of consulting is that we had to take very slow, very small steps toward the goal.
 In the meantime, we had to work around the technical and organizational problems in order to help solve the financial ones,
 and that’s how I first learned about aspect-oriented programming (AOP).

 We were creating a website for the public to submit registration information and pay fees. One of the constraints we faced
 when writing this system was the enterprise database. We had to access the enterprise data via an unreliable and error-prone
 service that was meant to act as this organization’s SOA (service-oriented architecture). There were some good ideas in this
 service, but the implementation was poor: sometimes as many as half the requests to this system would result in an exception,
 seemingly at random. After considerable testing and tinkering, we discovered that simply retrying the identical request once
 or twice would result in a successful request. Because of this, we didn’t want to use this buggy, unproven SOA service, but
 at that point we didn’t have a choice.

 We needed to create a reliable website that would be able to function with an unreliable layer of data persistence and enterprise
 services. What we built was a piece of code that would begin a transaction, try a request, catch exceptions of a certain type,
 and retry the request until it succeeded, or roll it back if it didn’t. If it didn’t succeed, it would log the exception type,
 the exception message, and some related information about the request. With this log, we hoped to first, build evidence that
 we could use to prove how unreliable this SOA service was, and second, be able to match exceptions with any customer-reported
 technical issues. What we built was a critical transaction helper class that was used over and over every time we needed to
 use the SOA service.

 This leads me to one of the organizational problems: the QA department was responsible for testing our application, but QA
 was notorious for being overworked and/or unreliable. This meant that they might not get around to reporting a bug that they
 found in our project until possibly two weeks later, or more. If one of us on the team accidentally forgot to use our transaction
 helper class when accessing the SOA service (or when someone new to the team was unaware of this helper class), then we might
 not find out for weeks, even if QA was (un)lucky enough to get one of the random exceptions.

 I was pulling my hair out: surely there was a way to refactor this nonfunctional requirement so we didn’t have to worry about
 forgetting it. Plus, it was getting tangled up with the rest of our code, making it harder to read and maintain.

 By chance, I was attending a .NET conference in Ohio, and Michael Kramer, an acquaintance of mine, was giving an introductory
 talk on AOP using PostSharp. He showed basic 101-level examples, similar to the ones you’ll see early in this book. The idea
 of being able to write a piece of code that would be in class A yet run somewhere else (say, before and after the methods
 in class B) was astounding to me, and I mentally checked out of the rest of the conference and immediately started thinking
 of ways to apply AOP to the transaction helper class problem.

 Fast-forward to now, and I’m still using AOP to solve similar problems (although I left that organization and the consulting
 business altogether). I started speaking at software conferences about AOP, started blogging about AOP, and became something
 of a community advocate for AOP. I was often asked if I could recommend a book on the topic for .NET developers, and I really
 couldn’t. I eventually decided that this book had to be written. So that’s what you have here, a book on a topic about which
 I am very passionate—not only because it’s a powerful and useful tool when used properly, but because it helped me out in
 a very tough situation.

Acknowledgments

 There are so many people who have influenced my career and experience, and thus this book. Everyone on Twitter whom I follow,
 everyone I’ve worked with, all the attendees and speakers that I meet at user groups and conferences. Even if it’s a small
 thing like teaching me a keyboard shortcut, I owe you a debt of gratitude.

 I’d like to specifically acknowledge:

 Nick Chase, Frank Pohlmann, Cynthia Kane, Michael Stephens, Bert Bates, Elizabeth Martin, Mary Piergies, and everyone else
 at Manning. Thank you for your guidance and help, and for getting this ship into the water.

 Seth Petry-Johnson, Jonathan Hammond, Jesse Riley, David Giard, Charles Husemann, Brady Gaster, Chris Farrell, Jim Christopher,
 Steve Horn, H. Alan Stevens, Jason Follas, Brian Watson, Richard Dudley, Jay Harris, James Bender, Steve Fischer, John Dages,
 Brian Prince. I could fill a book with all the great people I’ve met on my career’s journey. If I forgot to include you, I’m
 sorry; I owe you lunch.

 Dan Allen, for giving me my first programming job.

 Michael Kramer, for that fateful day when he unwittingly unleashed AOP into my life.

 Everyone I’ve worked with at OSU, Quick Solutions, and Telligent.

 Xiaoran Wang, for the tremendous diagrams (explaining tangling, scattering, and weaving) that he was kind enough to let me
 use in this book.

 Vince Fabro, for being an inspiring, patient leader in tough times, and Jonathan Mitchem for making our time in the foxholes
 more educational and entertaining than I ever expected.

 Jason Gilmore, for your guidance and all you do for the developer community.

 Ben Maddox, whose honesty and integrity are like gold.

 Mark Greenway, for being an amazingly smart and helpful guy, and naming the guy on the book cover the “Archduke of Programmerland.”

 Gael Fraiteur and Britt King, for working so hard on your product and for encouraging and supporting me. Donald Belcham, Dustin
 Davis, Joe Kuemerle, Chad England, the rest of the PostSharp MVPs, and all community advocates for aspect-oriented programming.

 Craig McKeachie, for giving me really good advice.

 Bill Sempf, for being an inspiration and a mentor.

 Phil Haack, for being gracious enough to write the foreword, not to mention his long list of incredible contributions to the
 .NET community.

 Jim Holmes, a selfless (albeit poorly dressed) legend who spreads joy and awesomeness wherever he treads.

 Jon Plante, for playing video games with me during a terribly difficult time in my life. I have been, and always shall be,
 your friend.

 Javier Lozano, for his careful technical review of the final manuscript and source code shortly before the start of production.

 My reviewers, who read the manuscript several times during its development and provided invaluable feedback: Aaron Colcord,
 Heather Campbell, Jeremy Baker, Jonathan Clark, Koen Handekyn, Maarten Balliauw, Margriet Bruggeman, Mark Bell-house, Mark
 Greenway, Mick Wilson, Nikander Bruggeman, Paul Stack, Phil Haack, Pim Van Oerle, Stuart Grassie, and Toby Moore.

 My entire family, specifically, my parents Kevin and Mary, for always encouraging me, even when my greatest aspiration as
 a seven-year-old was to be a garbage collector (ironic, considering that I now write managed code). If you don’t make it through
 the first chapter without being bored to tears, I completely understand, and I love you anyway. And Dad, thanks for teaching
 me BASIC on a TRS-80 all those years ago.

 And of course, my wife Ali, who encourages me, puts my needs above her own, and has given me the gifts that keep on giving:
 our children. I love you.

About this Book

 Aspect-oriented programming (AOP) is a concept that is too often surrounded by dense language and academic terminology, which
 can make it difficult for a working developer—who is already short on time and struggling to meet deadlines—to understand,
 apply, and get value from AOP quickly. It’s unfortunate, because at its core, AOP is much less difficult than it sounds and
 can provide immediate benefits to real-world projects.

 My goal has been to write the book that I wish I had read years ago and to show that AOP is much easier done than said. To
 that end, this book is somewhat informal in tone and short on theory, and it contains lots of code samples, with which I hope
 you follow along.

 As much as I want this book to take a generalized approach to AOP, in order to show you real aspects I have to use real tools.
 I have chosen PostSharp (specifically, the free version, PostSharp Express edition) as the primary framework that I will be
 using most often. Castle DynamicProxy examples are also used frequently. I also discuss some of the advanced features of the
 paid version of PostSharp, and other tools and frameworks will be used and discussed in the course of the book, as well as
 in appendix A.

Roadmap

 Chapter 1 introduces AOP. It covers some of the features and terms that are used in AOP. You will also write a “Hello, World” aspect.

 Chapter 2 is a complete project tutorial. You will start a new project, implement features, add cross-cutting concerns, and then refactor
 it using AOP.

 Chapters 3, 4, and 5 cover different types of aspects in more detail, with real-world examples for each.

 Chapter 6 discusses the impact that AOP has on unit testing. You’ll learn how to write unit tests for aspects and write unit tests
 for code on which aspects are used.

 Chapter 7 discusses the implementation details of how AOP tools work. You have a choice of weaving style that will dictate both the
 capabilities and the trade-offs involved in the two major categories of AOP tools.

 Chapter 8 covers some of the architectural concerns involved in using AOP, as well as the architectural abilties that it can give you.

 Chapter 9 explores what happens when you need to use multiple aspects on the same piece of code. This chapter’s real-world example
 also provides a capstone example that shows many of the concepts from chapters 1 through 8 working in concert.

 Appendix A describes the ecosystem of .NET AOP tools, including both compile-time and runtime tools. Appendix B covers NuGet basics.

Who should read this book?

 This book is primarily for developers and architects looking to reduce repetition and boilerplate in their projects. Generally
 speaking, the type of developer who will get the most out of this book is a developer faced with large projects that can have
 a lot of repetition and boilerplate. Small or tiny projects can still benefit from AOP—just not as much.

 This book assumes that you have a working knowledge of C# and .NET. I also assume some familiarity with design patterns, architecture,
 and inversion of control. The nature of cross-cutting concerns means that AOP is involved with multiple areas of focus, including
 UI, databases, caching tools, threading frameworks, and so on. When possible, I try to give as much context as I reasonably
 can without going too far into a rabbit-hole of subject matter that has been covered more completely by other books.

Code conventions and downloads

 This book includes many examples involving AOP. Most often, these examples are in C#, but sometimes they use other languages
 such as HTML, XAML, or plain XML. Source code in listings, or in text, is in a fixed-width font like this to separate it from ordinary text. Whenever C# class names, method names, variables, and other elements are mentioned in
 text, they will also be displayed in a fixed-width font. Code annotations accompany many of the code listings, highlighting
 important concepts.

 Some of the examples are long. Often they have been reformatted with indentation and line breaks to fit in the space allotted
 in this book. The full source code is available for you on GitHub (https://github.com/mgroves/AOPinNET) and from the publisher’s website at www.manning.com/AOPin.NET. The instructions to use the samples in this book are mentioned briefly in the chapters, and more details about NuGet are
 available in appendix B.

Author Online

 The purchase of AOP in .NET includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. To access the forum and subscribe to it, visit http://manning.com/AOPin.NET. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). Let your voice be heard, and keep the author on his toes!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the author

 MATTHEW D. GROVES is a guy who loves to code. It doesn’t matter if it’s “enterprisey” C# apps, cool jQuery stuff, contributing to OSS, or rolling
 up his sleeves to dig into some PHP. He has been coding professionally ever since he wrote a QuickBASIC point-of-sale app
 for his parents’ pizza shop back in the 1990s. He currently works from home in Columbus, Ohio, on the Telligent product team.
 He loves spending time with his wife and two children, watching the Cincinnati Reds, and getting involved in the developer
 community. He also teaches at Capital University in Columbus, Ohio.

 You can find Matthew’s blog at http://crosscuttingconcerns.com. Trade insults, horse jokes, and funny cat pictures with him on Twitter at http://twitter.com/mgroves.

About the cover illustration

 The figure on the cover of AOP in .NET is captioned a “Farmer from Kastela, Dalmatia, Croatia.” The illustration is taken from the reproduction published in 2006
 of a 19th-century collection of costumes and ethnographic descriptions entitled Dalmatia by Professor Frane Carrara (1812-1854), an archaeologist and historian, and the first director of the Museum of Antiquity
 in Split, Croatia. The illustrations were obtained from a helpful librarian at the Ethnographic Museum (formerly the Museum
 of Antiquity), itself situated in the Roman core of the medieval center of Split: the ruins of Emperor Diocletian’s retirement
 palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied
 by descriptions of the costumes and of everyday life.

 Once an ancient Greek port, a stopover point for Roman soldiers and a summer place for Croatian kings, Kastela is today a
 popular tourist resort on the Adriatic coast. Along its long sandy beaches there are terraces and lookouts, tennis courts
 and other sports grounds, and hotels and villas, surrounded by the lush greenery of pine and tamaris trees. The man on the
 cover, clearly a prosperous farmer from the region, is wearing black woolen trousers and a red vest over a white linen shirt.
 On his shoulders is a fur cape, and a red belt, red cap, and red socks complete the outfit; in his hand he holds a satchel.
 The rich and colorful embroidery on his costume is typical for this region of Croatia.

 Dress codes have changed since the 19th century and the diversity by region, so rich at the time, has faded away. It is now
 hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural
 diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by illustrations from collections such as this one.

Part 1. Getting started with AOP

 Aspect-oriented programming sounds complicated, but it really isn’t. It helps you spend less time copying and pasting the
 same boilerplate code, reducing repetition, and gives you more time to add value to your project.

 Chapter 1 introduces you to AOP, its history and what problems it was created to solve. You’ll write a “Hello, World” aspect using PostSharp as your first project.

 Chapter 2 is a crash course in using AOP. You’ll code the business logic for Acme Car Rental Company, add cross-cutting concerns without
 AOP, and then explore refactoring it to use AOP.

Chapter 1. Introducing AOP

 This chapter covers

 	A brief history of AOP

 	What problems AOP was created to solve

 	Writing a very simple aspect using PostSharp

 In this first chapter, I’ll start in an obvious place—introducing you to aspect-oriented programming (AOP), where it came
 from, and what problems it’ll help you solve.

 We’ll look at several tools as you progress through this book, but I will focus on PostSharp and Castle DynamicProxy. These
 aren’t the only tools available to .NET developers, but they’re popular ones that have stood the test of time. The concepts
 and code you use in this book should still be applicable if you use a different tool (see appendix A for notes on the ecosystem of AOP tools in .NET).

 We’ll use PostSharp in this chapter, but before you start typing out real code, we’ll look at features central to the software
 concept of AOP itself. I’ll talk about cross-cutting concerns, what a nonfunctional requirement is (and contrast it with a
 functional requirement), and what nonfunctional requirements have to do with AOP.

 Finally, I’ll walk you through a basic “Hello, World!” example using AOP in .NET. I’ll break apart that example, identifying
 the individual puzzle pieces and explaining how they fit together into something called an aspect.

1.1. What is AOP?

 AOP is a relatively young concept in computer science. Like many advancements in modern computing—including the mouse, IPV6,
 the graphical user interface (GUI), and Ethernet—AOP was created at Xerox PARC (now known as PARC, a Xerox company).

 Gregor Kiczales lead a team of researchers who first described AOP in 1997. He and his team were concerned about the use of
 repetition and boilerplate that were often necessary and costly in large object-oriented code bases. Common examples of such
 boilerplate can be seen with logging, caching, and transacting.

 In the resulting research paper, “Aspect-Oriented Programming,” Kiczales and his team describe problems that object-oriented
 programming (OOP) techniques were unable to capture and solve in a clear way. What they observed was that these cross-cutting
 concerns ended up scattered throughout the code. This tangled code becomes increasingly difficult to develop and modify. They
 analyzed all of the technical reasons why this tangling pattern occurs and why it’s difficult to avoid, even with the proper
 use of design patterns.

 The paper describes a solution that is complementary to OOP—that is, “aspects” that encapsulate the cross-cutting concerns
 and allow them to be reused. It suggests several implementations of this solution, which ultimately led to the creation of
 AspectJ, the leading AOP tool still in use today (for Java).

 One of my goals with this book is to avoid some of the complex language and academic terminology associated with AOP. If you’re
 interested in diving deeper into the complex research, the “Aspect-Oriented Programming” white paper (http://mng.bz/xWIb) is definitely worth a read.

 I don’t want to give you the idea that using AOP is more complicated than it really is. Instead, I want to focus on solving
 problems in your .NET projects with AOP. Next, we’ll go through the main features of AOP that were outlined in the original
 paper, but I’ll try to avoid a dense academic approach.

 1.1.1. Features

 Like many developer tools and software concepts, AOP has unique terms and wording to describe its features, the individual
 pieces that are put together to make the complete picture.

 This is usually the part of AOP that makes people’s eyes glaze over and suddenly remember that hilarious YouTube cat video
 they’ve been meaning to watch (again). But hang in there, and I’ll do my best to make these terms approachable. I’m not going
 to cover every detail of the exact terminology; I want to keep things simple and practical for now.

AOP’s purpose: Cross-cutting concerns

 One of the main drivers leading to the invention of AOP was the presence of cross-cutting concerns in OOP. Cross-cutting concerns
 are pieces of functionality that are used across multiple parts of a system. They cut across, as opposed to standing alone.

 This term is perhaps the softest in AOP terminology because it’s more of an architectural concept than a technical one. Cross-cutting
 concerns and nonfunctional requirements have a lot of overlap: a nonfunctional requirement will often cut across many parts
 of your application.

 Logging is a common example. Logging could be used in the user interface (UI) layer, the business logic, the persistence layer,
 and so on. Even within an individual layer, logging could be used across many classes and services, crossing all the normal
 boundaries.

 	

 Functional and nonfunctional requirements
 Functional requirements are the value-adding requirements of your project—the business logic, the UI, the persistence (database).

 Nonfunctional requirements are secondary, yet essential elements of a project. Examples include logging, security, performance,
 and data transactions.

 	

 Cross-cutting concerns exist regardless of whether you use AOP. Consider a method that does X. If you want to perform logging
 (C), then the method has to perform X and C. If you need logging for methods Y and Z, you’d have to put C into each of those
 methods, too. C is the cross-cutting concern.

 Although cross-cutting concern is a conceptual term that’s defined by a sentence or two, the advice is the concrete code that does the work.

An aspect’s job: The advice

 The advice is the code that performs the cross-cutting concern. For a cross-cutting concern such as logging, the code could
 be a call to the log4net library or NLog. It could be a simple one-line statement—such as Log.Write ("information")—or a bunch of logic to examine and log arguments, timestamps, performance metrics, and so on.

 Advice is the “what” of AOP. Now you need the “where.”

An aspect’s map: A pointcut

 Pointcuts are the where. Before defining a pointcut, I need to define a join point. A join point is a place that can be defined between logical steps of the execution of your program. Imagine your program
 as a low-level flowchart, as shown in figure 1.1.

 Figure 1.1. A low-level flowchart of a program that uses a single service

 [image:]

 Any gap in that flowchart could be described as a join point, as in figure 1.2.

 Figure 1.2. The same low-level flowchart with possible join points identified

 [image:]

 Now that you know what a join point is, I can define a pointcut. A pointcut is a set of join points (or an expression that describes a set of join points). An example of a join point is
 “before I call svc.SaveName()”; an example of a pointcut is “before I call any method.” Pointcuts can be simple, such as “before every method in a class,”
 or complex, such as “before every method in a class in the namespace MyServices except for private methods and method DeleteName.”

 Consider the snippet of pseudocode in this listing.

 Listing 1.1. A simple program that calls service methods in sequence

 [image:]

 Let’s create a simple flowchart (figure 1.3) of the previous code, identifying only the exit join points in that short snippet.

 Figure 1.3. Flowchart representation—imagine exit join points after each step

 [image:]

 Suppose I want to insert advice (some piece of code) only on the exit join points of NameService objects. My pointcut could be expressed in English as “exiting a method of NameService.”

 How to express that pointcut in code (if it can be expressed at all) is dependent on the AOP tool you’re using. In reality,
 just because I can define a join point in English doesn’t mean I can reach it with a tool. Some join points are far too low
 level and not generally practical.

 Once you’ve identified the what (advice) and the where (join points/pointcuts), you can define an aspect. The aspect works
 through a process known as weaving.

How AOP works: Weaving

 When cross-cutting concerns are coded without AOP, the code often goes inside a method, intermixed with the core logic of
 the method. This approach is known as tangling, because the core logic code and the cross-cutting concern code are tangled together (like spaghetti).

 When the cross-cutting concern code is used in multiple methods and multiple classes (using copy and paste, for instance),
 this approach is called scattering, because the code gets scattered throughout your application.

 In figure 1.4, the core business logic code is shown in green, and the logging code is shown in red. (In the printed book, the lighter
 gray in the figures represents green; the darker color represents red.) This figure represents a code base that is not using
 any aspects: the cross-cutting concern code is in the same classes as the core business logic.

 Figure 1.4. Tangling and scattering. In the printed volume, X represents red code and Y, the green code.

