

 [image: cover]

Vue.js in Action

 Erik Hanchett
 with Benjamin Listwon

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Toni Arritola
Technical development editor: Doug Warren
Review editor: Ivan Martinović
Project manager: Lori Weidert
Copy editor: Katie Petito
Proofreader: Elizabeth Martin
Technical proofreader: Jay Kelkar
Typesetter and cover designer: Marija Tudor

 ISBN 9781617294624

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. Getting to know Vue.js

 Chapter 1. Introducing Vue.js

 Chapter 2. The Vue instance

 2. The View and ViewModel

 Chapter 3. Adding interactivity

 Chapter 4. Forms and inputs

 Chapter 5. Conditionals, looping, and lists

 Chapter 6. Working with components

 Chapter 7. Advanced components and routing

 Chapter 8. Transitions and animations

 Chapter 9. Extending Vue

 3. Modeling data, consuming APIs, and testing

 Chapter 10. Vuex

 Chapter 11. Communicating with a server

 Chapter 12. Testing

 A. Setting up your environment

 B. Solutions to chapter exercises

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover illustration

 1. Getting to know Vue.js

 Chapter 1. Introducing Vue.js

 1.1. On the shoulders of giants

 1.1.1. The Model–View–Controller pattern

 1.1.2. The Model–View–ViewModel pattern

 1.1.3. What’s a reactive application?

 1.1.4. A JavaScript calculator

 1.1.5. A Vue calculator

 1.1.6. Comparison of JavaScript and Vue

 1.1.7. How does Vue facilitate MVVM and reactivity?

 1.2. Why Vue.js?

 1.3. Future thoughts

 Summary

 Chapter 2. The Vue instance

 2.1. Our first application

 2.1.1. The root Vue instance

 2.1.2. Making sure our application is running

 2.1.3. Displaying something inside our view

 2.1.4. Inspecting properties in Vue

 2.2. The Vue lifecycle

 2.2.1. Adding lifecycle hooks

 2.2.2. Exploring the lifecycle code

 2.2.3. Keeping the lifecycle code, or not

 2.3. Displaying a product

 2.3.1. Defining product data

 2.3.2. Marking up the product view

 2.4. Applying output filters

 2.4.1. Write the filter function

 2.4.2. Adding the filter to our markup and testing different values

 Exercise

 Summary

 2. The View and ViewModel

 Chapter 3. Adding interactivity

 3.1. Shopping cart data starts with adding an array

 3.2. Binding to DOM events

 3.2.1. Event binding basics

 3.2.2. Bind an event to the Add to cart button

 3.3. Adding a cart item button and count

 3.3.1. When to use a computed property

 3.3.2. Examining update events with computed properties

 3.3.3. Displaying a cart item count and testing

 3.4. Adding user affordance to our button

 3.4.1. Keeping an eye on inventory

 3.4.2. Working with computed properties and inventory

 3.4.3. v-show directive basics

 3.4.4. Using v-if and v-else to display a disabled button

 3.4.5. Adding the cart item button as a toggle

 3.4.6. Using v-if to display a checkout page

 3.4.7. Comparing v-show with v-if/v-else

 Exercise

 Summary

 Chapter 4. Forms and inputs

 4.1. Using v-model binding

 4.2. A look at value binding

 4.2.1. Binding values to our check box

 4.2.2. Working with value bindings and radio buttons

 4.2.3. Learning the v-for directive

 4.2.4. The v-for directive without the optional key

 4.3. Learning modifiers with the application

 4.3.1. Using the .number modifier

 4.3.2. Trimming the input values

 4.3.3. The .lazy v-model modifier

 Exercise

 Summary

 Chapter 5. Conditionals, looping, and lists

 5.1. Show an available inventory message

 5.1.1. Adding how many are left with v-if

 5.1.2. Adding more messaging with v-else and v-else-if

 5.2. Looping our products

 5.2.1. Adding a star rating with v-for range

 5.2.2. Binding an HTML class to our star rating

 5.2.3. Setting up our products

 5.2.4. Importing products from product.json

 5.2.5. Refactoring our app with the v-for directive

 5.3. Sorting records

 Exercise

 Summary

 Chapter 6. Working with components

 6.1. What are components?

 6.1.1. Creating components

 6.1.2. Global registration

 6.1.3. Local registration

 6.2. Relationships in components

 6.3. Using props to pass data

 6.3.1. Literal props

 6.3.2. Dynamic props

 6.3.3. Prop validation

 6.4. Defining a template component

 6.4.1. Using inline template strings

 6.4.2. Text/x-template script elements

 6.4.3. Using single-file components

 6.5. Working with custom events

 6.5.1. Listening to events

 6.5.2. Modifying child props using .sync

 Exercise

 Summary

 Chapter 7. Advanced components and routing

 7.1. Working with slots

 7.2. A look at named slots

 7.3. Scoped slots

 7.4. Creating a dynamic components app

 7.5. Setting up async components

 7.6. Converting the pet store app using Vue-CLI

 7.6.1. Creating a new application with Vue-CLI

 7.6.2. Setting up our routes

 7.6.3. Adding CSS, Bootstrap, and Axios to our application

 7.6.4. Setting up our components

 7.6.5. Creating the Form component

 7.6.6. Adding the Main component

 7.7. Routing

 7.7.1. Adding a product route with parameters

 7.7.2. Setting up a router-link with tags

 7.7.3. Setting up a router-link with style

 7.7.4. Adding a child edit route

 7.7.5. Using redirection and wildcards

 Exercise

 Summary

 Chapter 8. Transitions and animations

 8.1. Transitions basics

 8.2. Animations basics

 8.3. JavaScript hooks

 8.4. Transitioning components

 8.5. Updating the pet store application

 8.5.1. Adding a transition to the pet store application

 8.5.2. Adding an animation to the pet store application

 Exercise

 Summary

 Chapter 9. Extending Vue

 9.1. Reusing functionality with mixins

 9.1.1. Global mixins

 9.2. Learning custom directives with examples

 9.2.1. Global custom directives with modifiers, values, and args

 9.3. Render functions and JSX

 9.3.1. Render function example

 9.3.2. JSX example

 Exercise

 Summary

 3. Modeling data, consuming APIs, and testing

 Chapter 10. Vuex

 10.1. Vuex, what is it good for?

 10.2. Vuex state and mutations

 10.3. Getters and actions

 10.4. Adding Vuex to Vue-CLI with the pet store app

 10.4.1. Vuex installation in Vue-CLI

 10.5. Vuex helpers

 10.6. A quick look at modules

 Exercise

 Summary

 Chapter 11. Communicating with a server

 11.1. Server-side rendering

 11.2. Introducing Nuxt.js

 11.2.1. Creating a music search app

 11.2.2. Creating a project and installing dependencies

 11.2.3. Creating our building blocks and components

 11.2.4. Updating the default layout

 11.2.5. Adding a store using Vuex

 11.2.6. Using middleware

 11.2.7. Generating routes using Nuxt.js

 11.3. Communicating with a server using Firebase and VuexFire

 11.3.1. Setting up Firebase

 11.3.2. Setting up our pet store app with Firebase

 11.3.3. Updating Vuex with authentication state

 11.3.4. Updating the header component with authentication

 11.3.5. Updating Main.vue to use Firebase Realtime database

 Exercise

 Summary

 Chapter 12. Testing

 12.1. Creating test cases

 12.2. Continuous integration, delivery, and deployment

 12.2.1. Continuous integration

 12.2.2. Continuous delivery

 12.2.3. Continuous deployment

 12.3. Types of tests

 12.4. Setting up our environment

 12.5. Creating our first test case with vue-test-utils

 12.6. Testing components

 12.6.1. Testing props

 12.6.2. Testing text

 12.6.3. Testing CSS classes

 12.6.4. Testing with a mocked Vuex

 12.7. Setting up the Chrome debugger

 Exercise

 Summary

 A. Setting up your environment

 A.1. Chrome Developer Tools

 A.2. vue-devtools for Chrome

 A.3. Obtaining a chapter’s companion code

 A.4. Installing Node.js and npm

 A.4.1. Installing Node.js using one-click installers

 A.4.2. Install Node.js using NVM

 A.4.3. Install Node.js via Linux package management system

 A.4.4. Install Node.js using MacPorts or Homebrew

 A.4.5. Verifying that Node is installed

 A.5. Installing Vue-CLI

 B. Solutions to chapter exercises

 Chapter 2

 Chapter 3

 Chapter 4

 Chapter 5

 Chapter 6

 Chapter 7

 Chapter 8

 Chapter 9

 Chapter 10

 Chapter 11

 Chapter 12

 Cheat sheet

 Component information

 Custom events

 Lifecycle hooks

 Using a single slot

 Multiple slots

 Cheat sheet

 Expressions

 Directives

 List rendering

 Binding

 Actions/events

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Frontend web development has become astoundingly complex. If you’ve never used a modern JavaScript framework, building your
 first app that only displays “Hello” can take a whole week! That might sound ridiculous—and I would agree, it is. The problem is that most frameworks assume knowledge of the terminal, advanced JavaScript, tools such as the Node Package
 Manager (NPM), Babel, Webpack, and often more.

 Vue, refreshingly, doesn’t assume. We call it the “progressive” JavaScript framework because it scales down as well as up. If your app is simple, you can use Vue the same way you use jQuery: by dropping in a <script> tag. But as your skills and needs grow more advanced, Vue grows with you to make you more powerful and productive.

 Something else typically stands out. Vue is built not only by computer scientists, but also by designers, educators, and others
 from more people-focused trades. As a result, our documentation, guides, and devtools are world-class. The experience of using Vue is as important to us as its performance, reliability, and versatility.

 Erik has carried that people-focused spirit into this book. First, it’s remarkably visual. The many detailed illustrations
 and annotated screenshots firmly ground his examples in the workflow of real developers. As a result, you actually learn how
 to use the browser and Vue’s devtools to confirm what you’re learning—and more importantly, troubleshoot when something goes
 wrong.

 For those without a strong background in frontend development, JavaScript, or even programming, Erik also carefully explains
 the foundational concepts for understanding what Vue is doing and why. That, combined with his project-centered approach to
 introducing new features, means the book is ideal for relatively new developers looking to expand their skills with Vue as
 their first modern, frontend framework.

 —CHRIS FRITZ, Vue core team member and docs curator

Preface

 In early 2017, I was approached with an opportunity to write this book after Benjamin Listwon had to bow out for personal
 reasons. I had recently finished my MBA from the University of Nevada, Reno, and it had been a full year since I published
 my last book, the Ember.js Cookbook (Pact Publishing, 2016). I’d begun my YouTube channel, Program with Erik, and I was spending most of my time trying to figure out how best to record programming tutorials for my small but growing
 audience. Around this time, I started a screencast series on Vue.js and got positive feedback from my viewers. This made me
 want to explore Vue.js more.

 I began by listening to Evan You, the creator of Vue.js, and his roadmap for the framework. I then watched countless YouTube
 tutorials and videos from other creators. I dropped into online forums and Facebook groups to see what people were talking
 about. Everywhere I went, people were excited about Vue.js and the possibilities for the framework. This made me want to explore
 the possibility of writing this book.

 After much consideration, and a talk with my wife, I decided to go for it. Luckily, Benjamin had laid out a great foundation
 for me to build on, so I could hit the ground running. For the next 10 months, I spent countless nights and weekends researching,
 testing, and writing.

 I wish I could tell you that writing this book was easy, or that I didn’t run into any problems. Let’s say it didn’t go exactly
 as planned. I had personal setbacks, missed deadlines, suffered writer’s block, and if that wasn’t enough, I ended up having
 to do major revisions after Vue.js did an update.

 With all that said, I’m very proud of this book. With every setback, I was motivated to work twice as hard. I was determined
 to get this book finished with the highest possible quality that I could muster. I hope that comes through when you’re reading
 it.

 Thank you, reader, so much for buying this book. I really hope it helps you in your journey in learning Vue.js. Please let
 me know if it did. You can tweet me at @ErikCH, email me at erik@programwitherik.com or join my mailing list at https://goo.gl/UmemSS! Thanks again!

Acknowledgments

 First and foremost, I’d like to thank my wife, Susan, because without her help, this book would have never been completed.
 I’d like to thank my son, Wyatt, and my daughter, Vivian. They’re why I work so hard. I’d like to thank all the reviewers,
 the Vue.js in Action forum members, and anyone else who helped give feedback on this book. Your help has made this book immensely
 better than I could have ever done alone. Also, thank you, Chris Fritz, for writing an amazing foreword. Last, I’d like to
 give my warmest heartfelt gratitude to the Vue.js community, Evan You, and everyone who makes Vue.js such a great framework.

 —ERIK HANCHETT

 Above all, I’d like to give my most sincere thanks to my wife, Kiffen, for her support and encouragement, not only for my
 participation in this endeavor, but in every aspect of our lives. To our son, Leo, the star at the center of our family’s
 universe, I’d like to thank you for your bottomless smiles, hugs, and cheer. For all their encouragement, understanding and
 support, I’d like to wholeheartedly thank the editorial team at Manning. To Erik, without whom this book would not have come
 to life, my genuine thanks and appreciation; I wish you all the best. Finally, to Evan You and all the many folks who have
 contributed to Vue.js, thanks for bringing together a great bit of software, and an even greater community. It’s truly my
 honor to be a small part of that community.

 —BENJAMIN LISTWON

 We would both like to thank our technical proofreader, Jay Kelkar, as well as all the reviewers who provided feedback along
 the way, including Alex Miller, Alexey Galiullin, Chris Coppenbarger, Clive Harber, Darko Bozhinovski, Ferit Topcu, Harro
 Lissenberg, Jan Pieter Herweijer, Jesper Petersen, Laura Steadman, Marko Letic, Paulo Nuin, Philippe Charriere, Rohit Sharma,
 Ronald Borman, Ryan Harvey, Ryan Huber, Sander Zegveld, Ubaldo Pescatore, and Vittorio Marino.

About this book

 Before you dive into learning how to make Vue.js applications, let’s talk about a few things you should know first.

 In this book we’ll look at everything you need to know to become proficient in Vue.js. The goal of the book is to get you
 the knowledge you need so you can jump into any Vue.js application without hesitation.

 While doing research for this book, I heard repeatedly that the official Vue.js guides were the best resource for learning
 Vue.js. While the official guides are great, and I highly recommend you check them out as additional references while you
 learn Vue.js, they don’t cover everything, and they’re not perfect. As I wrote the book, I took it upon myself to go beyond
 what the official guides covered. I made the examples more understandable and relatable, so you could more easily adapt the
 concepts to your own projects. Where I thought a topic was beyond the scope of the book, or not important enough, I added
 a reference where you can learn more about it inside the official guides.

 This book can be used in a couple of different ways. You can read it from front to back. In that instance, you’ll get the
 full breadth of what Vue.js has to offer. Or you can use this book as a reference manual to look up whatever concept you need
 more information on. Either way is acceptable and fine.

 Later in the book we’ll transition to creating Vue.js apps using a build system. Don’t worry, I’ve included instructions on
 how to get started with a Vue.js build tool called Vue-CLI in appendix A. One of the most important benefits of Vue-CLI is that it helps us create more complex Vue.js applications without having
 to worry about building or transpiling our code.

 Throughout the book we’ll create a Vue.js pet store application. Certain chapters use the pet store example more than others.
 I did this on purpose, so you could easily learn a concept without having to learn how it works with the pet store app. But
 people who prefer to learn with a real application still have that option.

Audience

 This book is for anyone who’s interested in learning Vue.js and has JavaScript, HTML, and CSS experience. I don’t expect you
 to have much knowledge on this but knowing the basics, such as arrays, variables, loops, and HTML tags will help. As for CSS,
 we’ll use Bootstrap 3, a CSS library. However, you don’t need to know anything about Bootstrap to follow along with the examples.
 It’s only there to help with styling.

 Early in the book, I introduce the example code using ECMAScript 2015, otherwise known as ES6. It would be a good idea to
 look it over before you start this book. For the most part, I use only a few ES6 features, such as arrow functions and ES6
 imports. I’ll warn you in the book when we make this transition.

Roadmap

 The book is broken into three parts, each building upon the previous one. Part 1 is keyed toward getting to know Vue.js. In chapters 1 and 2 we’ll create our first Vue.js application. We’ll look at what a Vue.js instance is and how it relates to our application.

 In part 2, chapters 3–9, we’ll look more closely at the View and ViewModel. In this section we dive into several of the meatiest parts of Vue.js.
 Part 1 is more of an appetizer to Vue.js, while part 2 is the main course. You’ll learn the intricacies of how to create a Vue.js application. We’ll begin by learning the reactive
 model, and we’ll create a pet store application that we’ll use throughout the rest of the book.

 We’ll add in forms and inputs and how to bind information using Vue.js’s powerful directives, then look at conditionals, looping,
 and forms.

 Chapters 6 and 7 are extremely important. We’ll learn how to break a Vue.js app into several logical parts using components, and we’ll have
 a first look at the build tools you’ll need to create Vue.js apps.

 Chapter 7 also covers routing. In earlier chapters, we use simple conditionals to navigate our application. With the addition of routing,
 we can properly move around our application and pass information between routes.

 Chapter 8 introduces you to the powerful animations and transitions you can perform using Vue.js. These features are baked into the
 language and are nice features you should check out.

 In chapter 9 we’ll learn how to use mixins and custom directives to easily extend Vue without repeating ourselves.

 Part 3 is all about modeling data, consuming APIs, and testing. In chapters 10 and 11, we begin with a deep dive into Vue’s state management system called Vuex. We’ll then look at how we can start communicating
 to a backend server, and we’ll learn more about Nuxt.js, a server-side rendered framework.

 Chapter 12 is dedicated to testing. In any professional environment, you’ll need to know testing, and we’ll look at the essentials you
 must know.

Book Forum

 Purchase of Vue.js in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/vue-js-in-action. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

Source code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes boldface is used to highlight code that has changed from previous steps in the chapter, such as when a new feature is added to an
 existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 The source code for this book is available to download from the publisher’s website (www.manning.com/books/vue-js-in-action) and from my personal GitHub repository (https://github.com/ErikCH/VuejsInActionCode). You can also find more instructions on downloading the code and setting up your programming environment in appendix A.

 While going through the book, you’ll notice I often split the source code into separate files. I’ve included both the completed
 file and the separated files in each chapter with the source code, so you can follow along. If you find a bug in the code,
 feel free to send over a pull request to my GitHub. I’ll maintain the repo, and I’ll leave a comment in the readme with any
 updates.

Software requirements

 To make things easy, all the code in this book will work on any modern browser. I’ve tested it personally on Firefox 58, Chrome
 65, and Microsoft Edge 15. I wouldn’t recommend trying to run any of my apps on older browsers, because you’ll certainly run
 into problems. Vue.js itself doesn’t support IE8 and below. It must have a ECMAScript 5 compliant browser.

 In several of the earlier chapters, I use a few ES6 features. You’ll need to have a modern web browser to run those examples.

 The pet store app we’ll create throughout the book will work on a mobile browser. However, the pet store application isn’t
 optimized for mobile, so I recommend you run the examples on a desktop computer.

 You don’t have to worry about your operating system. If the web browser runs, you should be fine. There are really no other
 requirements.

Online resources

 As I mentioned earlier, the Vue.js official guides are great to use as references while you’re working the examples in the
 book. You can find the guides at https://vuejs.org/v2/guide/. They’re continually being updated.

 There’s a curated list of awesome things related to Vue.js on the GitHub page https://github.com/vuejs/awesome-vue. Here, you can find links to Vue.js podcasts, additional Vue.js resources, third-party libraries, and even companies that
 use Vue.js. I highly recommend checking it out.

 The Vue.js community is huge and is continuously growing. One of the best places to talk to other Vue.js developers is the
 official Vue.js forum at https://forum.vuejs.org/. Here you can discuss or get help on anything Vue.

 If you’re looking for more video tutorials, my channel, http://erik.video on YouTube, covers a ton of information on Vue.js and JavaScript in general. Check it out!

More info?

 In this 300-page book I cover a large amount of material. Please, don’t hesitate to reach out to me, the author, if you’re
 getting stuck, or you need help. If I can’t help you, I’ll at least point you in the right direction. Don’t be shy. You’ll
 find those of us in the Vue.js community are approachable to beginners.

 Also, as you go through the book, try to take several of the concepts you learn and implement them yourself. One of the best
 ways of learning is doing. For example, instead of following along with the pet store app, try to create your own ecommerce
 site. Use the book as guide rails to make sure you don’t get stuck.

 One last thing: have fun. Be creative and make something cool. Make sure to hit me up on twitter @ErikCH if you do!

About the author

 [image:]

 ERIK HANCHETT is a web developer with more than 10 years of development experience. He’s the author of the Ember.js Cookbook (Packt Publishing, 2016), a YouTuber at http://erik.video, and a blogger at http://programwitherik.com. He runs a mailing list where he gives out tips and tricks for JavaScript developers at https://goo.gl/UmemSS. When he’s not working or writing code, he spends time with his children, Wyatt and Vivian, and his wife, Susan.

About the cover illustration

 The figure on the cover of Vue.js in Action is captioned “Habit of a Young Market Woman of Octha in Russia in 1765.” The illustration is taken from Thomas Jefferys’
 A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading
 map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of
 commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs
 of the lands he surveyed and mapped, which are brilliantly displayed in this collection. Fascination with faraway lands and
 travel for pleasure were relatively new phenomena in the late 18th century, and collections such as this one were popular,
 introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has
 faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically,
 we’ve traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual
 and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative
 of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back
 to life by Jeffreys’ pictures.

Part 1. Getting to know Vue.js

 Before we can learn all the cool things Vue has to offer, we need to get to know it first. In these first two chapters, we’ll
 look at the philosophy behind Vue.js, the MVVM pattern, and how it relates to other frameworks.

 Once we understand where Vue is coming from, we’ll look deeper at the Vue instance. The root Vue instance is the heart of
 the application, and we’ll explore how it’s structured. Later, we’ll look at how we can bind data in our application to Vue.

 These chapters will give you a great start in Vue.js. You’ll learn how to create a simple app and how Vue works.

Chapter 1. Introducing Vue.js

 This chapter covers

 	Exploring the MVC and MVVM design patterns

 	Defining a reactive application

 	Describing the Vue lifecycle

 	Evaluating the design of Vue.js

 Interactive websites have been around for a long time. During the beginning of the Web 2.0 days in the mid-2000s, a much larger
 focus was put on interactivity and engaging users. Companies such as Twitter, Facebook, and YouTube were all created during
 this time. The rise of social media and user-generated content was changing the web for the better.

 Developers had to keep up with these changes to allow more interactivity for the end user and early on, libraries and frameworks
 started making interactive websites easier to build. In 2006, jQuery was released by John Resig, greatly simplifying the client-side
 scripting of HTML. As time progressed, client-side frameworks and libraries were created.

 At first these frameworks and libraries were big, monolithic, and opinionated. Now, we’ve seen a shift to smaller, lighter-weight
 libraries that can be easily added to any project. This is where Vue.js comes in.

 Vue.js is a library that enables us to add that interactive behavior and functionality to any context where JavaScript can
 run. Vue can be used on individual webpages for simple tasks or it can provide the foundation for an entire enterprise application.

 	

 Tip

 The terms Vue and Vue.js are used somewhat interchangeably around the web. Throughout the book, I use the more colloquial
 Vue for the most part, reserving Vue.js for when I’m referring specifically to the code or the library.

 	

 From the interface that visitors interact with to the database that provides our application with its data, we’ll explore
 how Vue and its supporting libraries enable us to build complete, sophisticated web applications.

 Along the way, we’ll examine how each chapter’s code fits into the bigger picture, what industry best practices are applicable,
 and how you can incorporate what we’re working on into your own projects, both existing and new.

 This book is primarily written for web developers who have a moderate degree of JavaScript familiarity and a healthy understanding
 of HTML and CSS. That said, owing much to the versatility of its application programming interface (API), Vue is a library
 that grows with you as a developer as it grows with your project. Anyone who wants to build a prototype or an app for a personal
 side project should find this book a reliable guide on that journey.

1.1. On the shoulders of giants

 Before we write any code for our first application, or even dig into Vue at a high level, it’s important to understand a little
 bit of software history. It’s difficult to truly appreciate what Vue does for us without knowledge of the problems and challenges
 that web applications have faced in the past and what advantages Vue brings to the table.

 1.1.1. The Model–View–Controller pattern

 A testament to its utility, the client-side Model–View–Controller (MVC) pattern provides the architectural blueprint used
 by many modern web application development frameworks. (If you’re familiar with MVC, feel free to skip ahead.)

 It’s worth mentioning before we continue that the original MVC design pattern has changed throughout the years. Sometimes
 known as Classic MVC, it involved a separate set of rules on how the view, controller, and model interacted. For the sake
 of simplicity, we’ll discuss a simplified version of the client-side MVC pattern. This pattern is a more modern interpretation
 for the web.

 As you can see in figure 1.1, the pattern is used to separate the application’s concerns. The view is responsible for displaying information to the user.
 This represents the graphical user interface (GUI). The controller is in the middle. It helps transform events from the view
 to the model and data from the model to the view. Finally, the model holds business logic and could contain a kind of datastore.

 Figure 1.1. The roles of the model, view, and controller as described by the MVC pattern.

 [image:]

 	

 Info

 If you’re interested in learning more about the MVC pattern, start with Martin Fowler’s page on the evolution of MVC at https://martinfowler.com/eaaDev/uiArchs.html.

 	

 Many web framework authors have used a variation of this MVC pattern because of its solid, time-tested architecture. If you
 want to know more about how modern web frameworks are designed and architected, check out SPA Design and Architecture by Emmitt A. Scott Jr. (Manning, 2015).

 In modern software development, the MVC pattern is often used as a part of a single application and provides a great mechanism
 for separating the roles of application code. For websites using the MVC pattern, every request initiates a flow of information
 from the client to the server, then the database, and all the way back again. That process is time-consuming, resource-intensive,
 and doesn’t provide a responsive user experience.

 Over the years, developers have increased the interactivity of web-based applications by using asynchronous web requests and
 client-side MVC so that requests sent to the server are non-blocking and execution continues without a reply. But as web applications
 begin to function more like their desktop counterparts, waiting for any client/server interaction can make an application
 feel sluggish or broken. That’s where our next pattern comes to the rescue.

 	

 A word about business logic

 You’ll find a good degree of flexibility in the client-side MVC pattern when considering where business logic should be implemented.
 In figure 1.1 we consolidated the business logic in the model for simplicity’s sake, but it may also exist in other tiers of the application, including the controller. The MVC pattern has changed since it was introduced by Trygve Reenskaug in 1979 for
 Smalltalk-76.

 Consider the validation of a ZIP Code provided by a user:

 	The view might contain JavaScript that validates a ZIP Code as it’s entered or prior to submission.

 	The model might validate the ZIP Code when it creates an address object to hold the incoming data.

 	Database constraints on the ZIP Code field may mean that the model is also enforcing business logic, although this could be
 considered bad practice.

 It can be difficult to define what constitutes actual business logic, and in many cases, all the previous constraints may
 come into play within a single request.

 As we build our application in this book, we’ll examine how and where we’re organizing our business logic, as well as how
 Vue and its supporting libraries can help keep functionality from bleeding across boundaries.

 	

 1.1.2. The Model–View–ViewModel pattern

 When JavaScript frameworks began to support asynchronous programming techniques, web applications were no longer required
 to make requests for complete web pages. Websites and applications could respond faster with partial updates to the view,
 but doing so required a degree of duplicated effort. Presentation logic often mirrored business logic.

 A refinement of MVC, the primary difference in the Model–View–ViewModel (MVVM) pattern is the introduction of the view-model, and its data bindings (collectively, the binder). MVVM provides a blueprint for us to build client-side applications with more responsive user interaction and feedback,
 while avoiding costly duplication of code and effort across the overall architecture. It’s also easier to unit test. With
 that said, MVVM may be overkill for simple UIs, so take that into consideration.

 For web applications, the design of MVVM allows us to write software that responds immediately to user interaction and allows
 users to move freely from one task to the next. As you can see from figure 1.2, the view-model also wears different hats. This consolidation of responsibility has a single, profound implication for our
 application’s views: when data changes in the view-model, any view bound to it is automatically updated. The data binder exposes
 data and helps guarantee that when data changes, it’s reflected in the view.

 	

 Info

 You can find more information on the MVVM pattern on Martin Fowler’s page on the Presentation model at https://martinfowler.com/eaaDev/PresentationModel.html.

 	

 Figure 1.2. The components of the Model–View–ViewModel pattern.

 [image:]

 1.1.3. What’s a reactive application?

 The reactive programming paradigm isn’t necessarily a new idea. Its adoption by web applications is relatively new and owes
 much to the availability of JavaScript frameworks such as Vue, React, and Angular.

 Many great resources on reactive theory are available on the web, but our needs are perhaps a bit more focused. For a web
 application to be thought of as reactive, it should do the following:

 	Observe changes in application state

 	Propagate change notification throughout the application

 	Render views automatically in response to changes in state

 	Provide timely feedback for user interactions

 Reactive web applications accomplish these goals by employing MVVM design principles using asynchronous techniques to avoid
 blocking continued interaction and using functional programming idioms where possible.

 While the MVVM pattern doesn’t imply a reactive application and vice versa, they share a common intention: to provide a more
 responsive, reliable experience to the users of an application. Superman and Clark Kent may present themselves differently,
 but they both want to do right by humanity. (No, I won’t say which of MVVM and Reactive I think wears the cape and which the
 glasses.)

 	

 Info

 If you’d like to learn more about Vue’s reactive programming paradigm, check out the Reactivity in Depth guide at https://vuejs.org/v2/guide/reactivity.html.

 	

 1.1.4. A JavaScript calculator

 To better understand the notions of data binding and reactivity, we’ll start by implementing a calculator in plain, vanilla
 JavaScript, as shown in this listing.

 Listing 1.1. The JavaScript calculator: chapter-01/calculator.html

 <!DOCTYPE>
<html>
 <head>
 <title>A JavaScript Calculator</title>
 <style>
 p, input { font-family: monospace; }
 p, { white-space: pre; }
 </style>
 </head>
 <!-- Bind to the init function -->
 <body>
 <div id="myCalc"> 1
 <p>x <input class="calc-x-input" value="0"></p>
 <p>y <input class="calc-y-input" value="0"></p>
 <p>--------------------</p>
 <p>= </p> 2
 </div>
 <script type="text/javascript">
 (function(){

 function Calc(xInput, yInput, output) { 3
 this.xInput = xInput;
 this.yInput = yInput;
 this.output = output;
 }

 Calc.xName = 'xInput';
 Calc.yName = 'yInput';

 Calc.prototype = {
 render: function (result) {
 this.output.innerText = String(result);
 }
 };

 function CalcValue(calc, x, y) { 4
 this.calc = calc;
 this.x = x;
 this.y = y;
 this.result = x + y;
 }

 CalcValue.prototype = {
 copyWith: function(name, value) {
 var number = parseFloat(value);

 if (isNaN(number) || !isFinite(number))
 return this;

 if (name === Calc.xName)
 return new CalcValue(this.calc, number, this.y);

 if (name === Calc.yName)
 return new CalcValue(this.calc, this.x, number);

 return this;
 },
 render: function() {
 this.calc.render(this.result);
 }
 };

 function initCalc(elem) { 5

 var calc =
 new Calc(
 elem.querySelector('input.calc-x-input'),
 elem.querySelector('input.calc-y-input'),
 elem.querySelector('span.calc-result')
);
 var lastValues =
 new CalcValue(
 calc,
 parseFloat(calc.xInput.value),
 parseFloat(calc.yInput.value)
);

 var handleCalcEvent = 6
 function handleCalcEvent(e) {
 var newValues = lastValues,
 elem = e.target;

 switch(elem) {
 case calc.xInput:
 newValues =
 lastValues.copyWith(
 Calc.xName,
 elem.value
);
 break;
 case calc.yInput:
 newValues =
 lastValues.copyWith(
 Calc.yName,
 elem.value
);
 break;
 }

 if(newValues !== lastValues){
 lastValues = newValues;
 lastValues.render();
 }
 };

 elem.addEventListener('keyup', handleCalcEvent, false); 7
 return lastValues;
 }

 window.addEventListener(
 'load',
 function() {
 var cv = initCalc(document.getElementById('myCalc'));
 cv.render();
 },
 false
);

 }());
 </script>
 </body>
</html>

 	
1 Forms input to collect x and y that bind to the runCalc function

 	2 Shows results of x and y

 	3 Shows constructor to create calc instance

 	4 Shows constructor to create values for a calc instance

 	5 Initializes calc component

 	6 Shows the event handler

 	7 Sets the event listener on keyup

 This is a calculator using ES5 JavaScript (we’ll use the more modern version of JavaScript ES6/2015 later in the book). We’re
 using an immediately invoked function expression that kicks off our JavaScript. A constructor is used to hold values and the
 handleCalcEvent event handler fires on any keyup.

 1.1.5. A Vue calculator

 Don’t worry too much about the syntax of the Vue example because our goal here isn’t to understand everything going on in
 the code, but to compare the two implementations. That said, if you have a good sense of how the JavaScript example works
 (as shown in the following listing), much of the Vue code should make sense at least on a theoretical level.

 Listing 1.2. The Vue calculator: chapter-01/calculatorvue.html

 <!DOCTYPE html>
<html>
<head>
 <title>A Vue.js Calculator</title>
 <style>
 p, input { font-family: monospace; }
 p { white-space: pre; }
 </style>
</head>
<body>
 <div id="app"> 1
 <p>x <input v-model="x"></p> 2
 <p>y <input v-model="y"></p>
 <p>---------------------</p>
 <p>= </p> 3
 </div>

 <script src="https://unpkg.com/vue/dist/vue.js"></script> 4
 <script type="text/javascript">
 function isNotNumericValue(value) {
 return isNaN(value) || !isFinite(value);
 }
 var calc = new Vue({ 5
 el: '#app', 6
 data: { x: 0, y: 0, lastResult: 0 }, 7
 computed: { 8
 result: function() {
 let x = parseFloat(this.x);
 if(isNotNumericValue(x))
 return this.lastResult;

 let y = parseFloat(this.y);
 if(isNotNumericValue(y))
 return this.lastResult;

 this.lastResult = x + y;

 return this.lastResult;
 }
 }
 });
 </script>
</body>
</html>

OEBPS/01fig02_alt.jpg
The view is stll concerned.
it what o user sees, but
any dectaion-making Logie
moves tnto the view-model.
Tstead, views render content
based on the presence and
quanity of data i the
Current application state.

THE Mool Pemalng S

The view-model retains rsistent repository for our
T e i, ot e
data. in an object bypteally and-toend Javascript
Linmdaiel | sesiuaen .

contains all the data. required skrictly as a store without any

by the application at any given Logical restrictions imposed

Eime, lanown collectivels on tncoming data, nstead

as the stake of the application. shifting any business Logic
<c¢mnx £ the view-model.

View

wose)

The binder exposes data ko the
viess a3 properties, Views tnteract

The view-model, similar to a controler
with rekains the job of persiting data to the

this data. by calling methods-alzo model. However, such transactions need

exposed by the binder-that act upo

7R i e g

" ot be synchronous, allowing users to
Goulini Saskeling with Mia baicRiER,

OEBPS/f0xviii-01.jpg

OEBPS/01fig01_alt.jpg
A view is responsible for displaging
m{crmuﬂnnP&: a user, i

View

The controller acts as a mediator, 1t |

kelps gather and transform data from |
the model to propagate to the view, | —]|
o transform and route appropriate

cvents ko the model. from the vies. |

In a kypical WVC application, the model |

s represented by business and domain

ogic. 1t may contain a databaze.

User actions takcen in the
view send information to the
controler.After o request is
Complete the controtier
Teaponds with a nm e

Once the controller has
processed the incoming data,

& sends it ko the model for
persiztence. The databaze signals
the controller to proceed

hen that query finizhes.

OEBPS/common2.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/cover.jpg
INAC

p-

Erik Hanchett

witi Benjamin Listwon

Foreword by s i

