

 [image: manning]

 ScyllaDB in Action

 Bo Ingram

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964

   Email: orders@manning.com

 ©2025 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The authors and publisher have made every effort to ensure that the information in this book was correct at press time. The authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Connor O’Brien
 Technical editor: Piotr Wiktor Sarna
 Review editor: Kishor Rit
 Production editor: Keri Hales
 Copy editor: Tiffany Taylor
 Proofreader: Olga Milanko
 Technical proofreader: Alex Ott
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

 ISBN: 9781633437265

 Printed in the United States of America

 dedication

 to Ernie, the best

 contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Getting started

 1 Introducing ScyllaDB

 1.1 ScyllaDB, a different database

 1.1.1 Hypothetical databases

 1.1.2 Real-world databases

 1.1.3 Unpacking the definition

 1.2 ScyllaDB, a distributed database

 1.2.1 Distributing data

 1.2.2 ScyllaDB vs. relational databases

 1.2.3 ScyllaDB vs. Cassandra

 1.2.4 ScyllaDB vs. Amazon Aurora, Amazon DynamoDB, Google Cloud Spanner, and Google AlloyDB

 1.2.5 ScyllaDB vs. document stores

 1.2.6 ScyllaDB vs. distributed relational databases

 1.2.7 When to prefer other databases

 1.3 ScyllaDB, a practical database

 1.3.1 Fault tolerance

 1.3.2 Scalability

 1.3.3 Production usage

 2 Touring ScyllaDB

 2.1 Launching your first cluster

 2.1.1 The first node

 2.1.2 Your new friend, nodetool

 2.1.3 Building the cluster

 2.2 Creating your first table

 2.2.1 Keyspaces and tables

 2.2.2 Creating a schema

 2.3 Running your first queries

 2.3.1 Inserting data

 2.3.2 Reading data

 2.3.3 Updating data

 2.3.4 Deleting data

 2.4 Handling failures

 2.4.1 Shutting down a node

 2.4.2 Experimenting with consistency

 Part 2 Query-first design

 3 Data modeling in ScyllaDB

 3.1 Application design before schema design

 3.1.1 Your query-first design toolbox

 3.1.2 The sample application requirements

 3.1.3 Determining the queries

 3.2 Identifying tables

 3.2.1 Denormalization

 3.2.2 Extracting tables

 3.3 Distributing data efficiently on the hash ring

 3.3.1 The hash ring

 3.3.2 Making good partitions

 4 Data types in ScyllaDB

 4.1 Preparing yourself

 4.1.1 Data-type playground

 4.1.2 Identifying the fields

 4.2 The most common types: Text and numbers

 4.2.1 Text

 4.2.2 Numbers

 4.3 Dates and times

 4.3.1 Working with dates and times

 4.3.2 Durations

 4.3.3 When to use timestamps, dates, and times

 4.4 IDs

 4.4.1 UUIDs

 4.4.2 Picking an ID type

 4.5 Collections

 4.5.1 Lists

 4.5.2 Sets

 4.5.3 Maps

 4.5.4 User-defined types

 4.5.5 Frozen collections

 4.5.6 Storing images

 4.6 A few other types to know

 4.6.1 Blobs

 4.6.2 IP addresses

 4.6.3 Counters

 5 Tables in ScyllaDB

 5.1 Completing your query-first design

 5.1.1 Reviewing restaurant reviews

 5.1.2 The final two questions

 5.1.3 Bucketing

 5.1.4 Finishing the design

 5.2 Keyspace configuration

 5.2.1 SimpleStrategy

 5.2.2 NetworkTopologyStrategy

 5.3 Creating your application’s tables

 5.3.1 Articles

 5.3.2 Article summaries

 5.3.3 Authors

 Part 3 Querying the database

 6 Writing data to ScyllaDB

 6.1 Inserting and updating data

 6.1.1 Writing data

 6.1.2 Concurrent operations

 6.2 Deleting data

 6.2.1 Executing deletes

 6.2.2 Tombstones

 6.2.3 Compaction

 6.2.4 Deleting multiple rows

 6.3 Time to live

 6.3.1 Expiring temporary data

 6.3.2 The difference between inserts and updates

 6.3.3 Table TTLs

 6.4 Batching data

 6.4.1 Executing a batch

 6.4.2 Logged vs. unlogged batches

 6.5 Lightweight transactions

 6.5.1 The power of IF

 6.5.2 Not lightweight

 7 Reading data from ScyllaDB

 7.1 Selecting

 7.1.1 The basics

 7.1.2 Limiting results

 7.1.3 Paginating queries

 7.1.4 Ordering results

 7.1.5 Counting

 7.1.6 Grouping rows in your queries

 7.2 Read performance

 7.2.1 What does a read do?

 7.2.2 Avoiding slow queries

 7.2.3 Allowing filtering

 7.3 Materialized views

 7.3.1 Constructing a view

 7.3.2 Easier denormalization

 7.3.3 Indexes

 Part 4 Operating the database

 8 ScyllaDB’s architecture

 8.1 Scylla’s design goals

 8.2 Distributed systems in Scylla

 8.2.1 Revisiting the hash ring

 8.2.2 Consistency

 8.2.3 Communication protocols

 8.2.4 Gossip

 8.2.5 Consensus

 8.3 On-node architecture

 8.3.1 The memtable and the commit log

 8.3.2 Shards

 8.3.3 SSTables

 8.3.4 Tablets: The future

 8.4 Cluster operations

 8.4.1 Compaction

 8.4.2 Repairs

 8.4.3 Hinted handoff

 9 Running ScyllaDB in production

 9.1 Building a production cluster

 9.1.1 The config file

 9.1.2 Seeds

 9.1.3 Addresses

 9.1.4 Authentication

 9.1.5 Authorization

 9.1.6 Snitches

 9.2 Building your cluster

 9.2.1 Designing your cluster topology

 9.2.2 Computing your nodes

 9.2.3 Testing the cluster

 9.3 Managing the cluster

 9.3.1 Repairing a node

 9.3.2 Backing up your cluster

 9.3.3 Compacting a node

 9.3.4 Troubleshooting tables

 9.4 Managing the node lifecycle

 9.4.1 Stopping and starting a node

 9.4.2 Replacing a node

 9.4.3 Adding a node

 9.4.4 Removing a node

 10 Application development with ScyllaDB

 10.1 Your application

 10.1.1 Python

 10.1.2 Virtual environments

 10.1.3 Flask

 10.2 Querying Scylla

 10.2.1 A new Scylla cluster

 10.2.2 Connecting to the cluster

 10.2.3 Your first application query

 10.3 Reading data

 10.3.1 Prepared statements

 10.3.2 Reading articles

 10.4 Writing data

 10.4.1 The necessary data

 10.4.2 Laying the write groundwork

 10.4.3 Batch-writing articles

 10.4.4 Working with user-defined types

 10.5 Configuring the driver

 10.5.1 Consistency

 10.5.2 Load balancing

 10.5.3 Retrying queries

 10.6 Authentication and authorization

 10.6.1 Enabling authentication and authorization

 10.6.2 Implementing role-based access control

 10.6.3 Authenticating via the app

 11 Monitoring ScyllaDB

 11.1 The monitoring stack

 11.1.1 Deploying monitoring

 11.1.2 Prometheus

 11.1.3 Grafana

 11.1.4 Alertmanager

 11.1.5 Other monitoring needs

 11.2 Causing stress with cassandra-stress

 11.2.1 Setting up cassandra-stress

 11.2.2 Examining performance

 11.3 Common incidents

 11.3.1 A hot partition

 11.3.2 An overwhelmed database

 11.3.3 Failing to meet consistency requirements

 12 Moving data in bulk with ScyllaDB

 12.1 Extracting data from ScyllaDB

 12.1.1 Using token ranges

 12.1.2 Change data capture

 12.2 Migrating to ScyllaDB

 12.2.1 Dual writing

 12.2.2 SSTableLoader

 12.2.3 Spark Migrator

 12.2.4 Writing a migrator

 12.2.5 Validating migrations

 appendix Docker

 A.1 Linux

 A.2 macOS

 A.3 Windows

 A.4 Running ScyllaDB on Docker

 index

 preface

 It was 2021, and I had a week off before starting a new job at Discord. They told me I’d be working with the distributed database Apache Cassandra to start, but they were in the midst of switching to ScyllaDB—a more performant rewrite of Cassandra. That week, I went hunting for resources to learn about ScyllaDB, but resources outside of the official docs were few and far between. I ended up mostly studying Cassandra and pretending that every time I saw the word Cassandra, it actually said ScyllaDB. This approach wasn’t the worst option, but it left some definite gaps in my knowledge that I had to work to fill in later.

 Because we were running both databases together when I started, I was able to compare their behaviors. I immediately was a big fan of how, by distributing their data, they provide scalability and fault tolerance. Coming from a relational database background, I’d seen how a single database node going offline due to a cloud-provider problem could wreck an application’s availability. ScyllaDB’s and Cassandra’s more gradual degradation paradigm brings immediate benefits. The catch lies in their comparative performance. The Cassandra database felt like it was always alerting, paging someone to fix a failure or mitigate an overwhelmed cluster. But the ScyllaDB databases were quiet; they rarely paged, and they exhibited better performance. We finished the ScyllaDB migration a few months later, and the barrage of Cassandra alerts ceased.

 In 2023, Jonathan Gennick from Manning Publications reached out to me and asked if I would be interested in writing a book on ScyllaDB. I’ve always wanted to write a book, and this cold email out of the blue found an incredibly willing participant. I immediately had flashbacks to 2021 when I was trying to find a book about ScyllaDB. ScyllaDB in Action is the book I desperately wanted all those years ago (if any of you ever build a time machine, I wouldn’t say no to Past Bo being handed a copy). I wanted something that not only covered ScyllaDB-specific features but also was practical and would explain why I was getting paged at 3 a.m. Also, with a dreamer’s arrogance, I thought that if I ever wrote a technical book, I’d want it to be in Manning’s in Action series; as a reader, I love Manning’s focus on practical and actionable teaching. Accordingly, I’ve focused this book on teaching the database from the basics and preparing you to run the database in production so you’ll know what a hot partition is, what queries are likely to cause it, and why it can cause performance degradation in your cluster.

 I’m excited to share this work with you, and I hope you find it as instructive and helpful for you as it was enjoyable and rewarding for me to assemble. Happy reading!

 acknowledgments

 I can’t begin anywhere else than by thanking my best friend, accomplice, and wife, Emily. Without her support, encouragement, and willingness to listen to me blather about writing challenges, we’d never have gotten past page 1. I must also thank one very good dog: my writing muse, Ernie. His inclusion as the proprietor of Ernie's Eats reflects the immensity of his contributions. He passed away just as I finished writing, and I miss him terribly. I would also like to thank my teammates at Discord. Our experiences operating ScyllaDB have been invaluable when writing this book, and I’m hoping that our lessons learned can spare readers from some late-night alerts. I’d like to especially thank Mike Sun, my manager, who encouraged me to write this book after my shock from the initial reach-out from Manning.

 I thank all the Manning staff for their tremendous help in getting this book to print: Jonathan Gennick, acquisitions editor, Connor O’Brien, developmental editor, Kishor Rit, review editor, Alex Ott, technical proofreader, and Piotr Wiktor Sarna, a long-time contributor and former maintainer of ScyllaDB, the Seastar framework, and libSQL who worked as my technical editor. I’d like to also thank Toni Arritola, my original developmental editor on the book, for her help in the first few chapters. In addition, thanks to all the behind-the-scenes production staff who whipped this book into shape.

 Thanks also to all the reviewers: Albert Leung, Ali Shakiba, Andres Sacco, Ankit Virmani, Dirk Gómez, Eder Andrés Ávila Niño, Ganesh Swaminathan, Giampiero Granatella, Greg Kreiter, Heng Zhang, Iyabo Sindiku, Jeff Smith, Jens Christian Bredahl Madsen, John McCormack, Jose San Leandro, Nadir Doctor, Ozay Duman, Piotr Jastrzebski, Rui Liu, Sasha Sankova, Sergio Britos Arévalo, Simone Sguazza, Sumit Pal, Valerie Parham-Thompson, and Victor Duran. Your suggestions helped make this a better book.

 about this book

 ScyllaDB in Action was written to teach you how to operate and build applications on ScyllaDB. Throughout the book, you’ll be considering a small design problem as a tool to learn about ScyllaDB: a restaurant review application. It begins by grounding you in the database’s basics—how to read and write data—through building some simple tables for your application. You’ll then learn how to design a database schema by taking the requirements for your restaurant review app and performing query-first design: determining what queries your database needs to support and building the schema from that. Having created your schema, you’ll learn how reads and writes work and perform efficiently in Scylla. The book continues by examining Scylla’s architecture, building an API on top of Scylla in Python, examining how to run and monitor Scylla in production, and learning how to move data in bulk in and out of your database.

 Who should read this book

 ScyllaDB in Action is written for anyone looking to learn ScyllaDB or work with it. To get the best out of it, you should have some basic familiarity with SQL. You’ve probably written a SELECT statement before, and that knowledge will assist you throughout the book as you learn about Scylla. If you’re a database expert, that’s okay too! You’ll get to break some habits and pick up some new ones to effectively use ScyllaDB. You should also have some experience with a programming language—preferably Python, as you’ll use it to build the sample application to learn about the database driver and its client-side features.

 How this book is organized: A road map

 Like many books, this one has chapters. I’ve divided it into 4 parts totaling 12 chapters. Part 1 begins you on your ScyllaDB journey, introducing the database and letting you play with it locally:

 	 Chapter 1 provides an overview of ScyllaDB, sharing its benefits and comparing and contrasting it with different databases.

 	 Chapter 2 shows you how to build a small ScyllaDB cluster on your laptop and run some basic queries against it.

 In Part 2, you’ll learn how to design a database schema that best fits ScyllaDB through a practice called query-first design:

 	 Chapter 3 discusses how to gather application requirements and, by looking at the queries that fulfill those requirements, ultimately translate them into database tables.

 	 Chapter 4 uses your application requirements, queries, and tables to teach ScyllaDB’s data types by determining the types needed to meet those requirements.

 	 Chapter 5 finishes your design by polishing it up and transforming it into correctly configured tables in a database.

 Part 3 takes a close look at querying Scylla, using the database schema created in part 2:

 	 Chapter 6 is all about writes—inserting, updating, and deleting data.

 	 Chapter 7 is the companion chapter to the previous one; you’ll learn all about reads, their performance, and the various tools Scylla provides to help you read data efficiently.

 The last part of the book, part 4, covers running Scylla:

 	 Chapter 8 teaches you about ScyllaDB’s architecture by examining its design goals and how each feature of the database exists to fulfill at least one of them.

 	 Chapter 9 covers running ScyllaDB in production, discussing configuring, sizing, and operating a Scylla cluster.

 	 Chapter 10 guides you through connecting a Python application to a ScyllaDB cluster using a database driver.

 	 Chapter 11 demonstrates how you monitor a ScyllaDB cluster running in production and assess its performance via observability and load-testing, as well as what to do when the graphs tell you that your cluster isn’t having a great time.

 	 Chapter 12 ends the book by examining data migrations in ScyllaDB, both into the cluster and out of it.

 About the code

 This book contains source code and code output throughout, through both inline examples and numbered listings. In all cases, code is identified by using this fixed-width font. Output is also potentially formatted or abridged when necessary; although we can always horizontally scroll terminal windows, we can’t do that in a book. Occasionally, a line-continuation marker (↪) has been added to indicate that a command or output continues onto a new line.

 For commands the reader should execute, I’ve attempted to notate where they should be run using the following conventions:

 	 Lines beginning with a $ should be executed in your local terminal.

 	 Lines beginning with (scylla-reviews) $ should be executed in the terminal of the Docker container in parentheses (scylla-reviews in this example).

 	 Lines beginning with cqlsh:> should be executed within a cqlsh session inside a Docker container.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/scylladb-in-action. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/scylladb-in-action and in the book’s GitHub code repo at https://github.com/scylladb-in-action/code.

 liveBook discussion forum

 Purchase of ScyllaDB in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/scylladb-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 Bo Ingram is a staff software engineer at Discord, working in database infrastructure. He has extensive experience working with ScyllaDB as both an operator and an application developer.

 about the cover illustration

 The figure on the cover of ScyllaDB in Action, titled “La Figurante,” is taken from a book by Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Getting started

 The first part of the book focuses on introducing you to ScyllaDB. In chapter 1, you’ll begin by learning about this distributed database and seeing what it is and why it’s useful to you. In chapter 2, you’ll get your hands dirty by spinning up a local Scylla cluster and playing with some basic queries to get the data flowing.

1 Introducing ScyllaDB

 This chapter covers

 	ScyllaDB and what it is

 	ScyllaDB versus other databases

 	How ScyllaDB takes advantage of being a distributed system

 ScyllaDB is a distributed NoSQL database designed to be a more-performant rewrite of Apache Cassandra. Although it rhymes with “Godzilla” and has an adorable creature as a mascot, it’s designed not to be monstrous to operate.

 Compared with relational databases, ScyllaDB brings two big weapons to the Great Database Battle Royale: scalability and fault tolerance. It is a distributed database that runs multiple nodes to store and serve data. This distribution simplifies scalability; to add additional capacity, operators only need to add more nodes. By providing users with the capability to tune how many nodes respond to a query, ScyllaDB also provides fault tolerance because the system can handle the loss of a configurable number of nodes before being unable to serve requests, as seen in figure 1.1.

 [image: figure]

Figure 1.1 ScyllaDB is a distributed database that provides scalability and fault tolerance.

 This distributed design impacts everything around it: how you design applications, how you query data, how you monitor the database, and how you recover the system during an outage. We’ll explore all of these areas, showing how ScyllaDB can be the practical distributed database for any application. Let’s dive in!

1.1 ScyllaDB, a different database

 ScyllaDB is a database—it says so in its name! Users give it data; the database gives the data back when asked. This very basic and oversimplified interface isn’t too dissimilar from popular relational databases like PostgreSQL and MySQL. ScyllaDB, however, is not a relational database; it eschews joins and relational data modeling to provide a different set of benefits. To illustrate these, let’s look at a fictitious example.

1.1.1 Hypothetical databases

 Let’s imagine you’ve just moved to a new town, and when you go to restaurants, you want to remember what you ate so that you can order it again or avoid it next time. You could write your order in a journal or save it in the Notes app on your phone, but you hear about a new business model that has people remember information you send them. Your friend Robert has just started a similar venture: Robert’s Rememberings.

 Robert’s Rememberings

 Robert’s business (figure 1.2) is straightforward: you can text Robert’s phone number, and he will remember whatever information you send him. He’ll also retrieve information for you, so you won’t need to remember everything you’ve eaten in your new town. That’s Robert’s job.

 [image: figure]

Figure 1.2 Robert’s Rememberings has a seemingly simple plan.

 The plan works swimmingly at first, but problems begin to appear. Once, you text Robert and he doesn’t respond. He apologizes later and says he had a doctor’s appointment. Not unreasonable—you want your friend to be healthy. Another time, you text him about a new meal, and it takes him several minutes to reply instead of his usual instant response. He says that business is booming, and he’s been inundated with requests—so response time has suffered. He reassures you and says not to worry; he has a plan (figure 1.3).

 [image: figure]

Figure 1.3 Robert adds a friend to his system to solve problems, but doing so introduces complications.

 Robert has hired a friend to help him out. He sends you the new updated rules for his system. If you only want to ask a question, you can text his friend, Rosa. All updates are still sent to Robert; he will send everything you save to Rosa so she’ll have an up-to-date copy. At first, you slip up and continue to ask Robert questions, but the system seems to work well. Robert is no longer overwhelmed with read requests, and Rosa’s responses are prompt.

 One day, you realize that when you asked Rosa a question, she texted back an old review that you had previously overwritten. You message Robert about this discrepancy, worried that your review of the much-improved tacos at Main Street Tacos is lost forever. Robert tells you there was a problem in the system so Rosa didn’t receive messages from Robert but was still able to get requests from customers. Your request hasn’t been lost, and they’re reconciling to get back in sync.

 You wanted to be able to answer one question: is the food at this restaurant good or not? Now you’re worrying about contacting multiple people depending on whether you’re reading a review or writing a review, whether data is in sync, and whether your friend’s system can scale to satisfy all users' requests. What happens if Robert can’t even handle every save request? When you begin brainstorming intravenous energy drink solutions, you realize it’s time to consider other options.

 ABC Data: A different approach

 Your research leads you to another business: ABC Data. The company tells you that its system is a little different: it employs three people—Alice, Bob, and Charlotte—and any of them can save information or answer questions. They communicate with each other to ensure that each of them has the latest data, as shown in figure 1.4. You’re curious what happens if one of them is unavailable, and the company says it provides a cool feature: because there are multiple employees, they coordinate among themselves to provide redundancy for your data as well as increased availability. If Charlotte is unavailable, Alice and Bob will receive the request and answer. If Charlotte returns later, Alice and Bob will get Charlotte back up to speed on the latest changes.

 [image: figure]

Figure 1.4 ABC Data’s approach is designed to meet the scaling challenges that Robert encountered.

 This setup is impressive, but because each request can lead to additional requests, you’re worried that the system may be overwhelmed even more easily than Robert’s. This distribution, ABC Data tells you, is the beauty of its system. It creates multiple copies of the data set. The employees then divide this redundant data among themselves. If the company needs to expand, it only needs to add additional people, who take over some of the existing slices of data. When a hypothetical fourth person, Diego, joins, one customer’s data may be owned by Alice, Charlotte, and Diego, whereas Bob, Charlotte, and Diego may own other data.

 Because it allows you to choose how many people should respond internally for a successful request, ABC Data gives you control over availability and correctness (figure 1.5). If you want to always have the most up-to-date data, you can require all three holders to coordinate to give you the answer. If you want to prioritize getting an answer, even if it isn’t the most recent one, you can require only one holder to respond, skipping any internal coordination and returning immediately. You can balance these properties by requiring two holders to respond—you can tolerate the loss of one, but you can ensure that a majority of them have seen the most up-to-date data, so you should get the most recent information.

 [image: figure]

Figure 1.5 ABC Data’s approach gives you control over availability and correctness.

 You’ve learned about two imaginary databases here: one that seems straightforward but introduces complexity as requests increase, and another with a more complex implementation that attempts to handle the drawbacks of the first system. Before contemplating the awkwardness of telling a friend you’re leaving his business for a competitor, let’s snap back to reality and translate these hypothetical databases to the real world.

1.1.2 Real-world databases

 Robert’s database is a metaphorical relational database like PostgreSQL or MySQL. These are relatively straightforward to run, fit a multitude of use cases, and are performant, and their relational data model has been used in practice for more than 50 years. Very often, a relational database is a safe and strong option. Accordingly, developers tend to default toward these systems. But as demonstrated, they also have drawbacks. Availability is often all or nothing. Even if you run with a read replica, which in Robert’s database is his friend Rosa, you would potentially be able to do reads only if you lost your primary instance. Scalability can also be tricky: a server has a maximum amount of compute resources and memory. Once you hit that limit, you’re out of room to grow. ScyllaDB differentiates itself by addressing these drawbacks.

 The ABC Data system is ScyllaDB. Like ABC Data, ScyllaDB is a distributed database that replicates data across its nodes to provide both scalability and fault tolerance. Scaling is straightforward; with a well-designed data model, you only need to add more nodes. This elasticity in node count extends to queries. ScyllaDB lets you decide how many replicas are required to respond for a successful query, giving your application room to handle the loss of a server.

1.1.3 Unpacking the definition

 ScyllaDB (informally called Scylla) is commonly described as a distributed wide-column NoSQL database and is a rewrite of the popular Cassandra database, which, as you may imagine, shares similar properties. This definition demonstrates how Scylla differentiates itself from other databases. It aims to be both more scalable than a relational database and more performant than Cassandra. This positioning is typified by ScyllaDB’s description as a NoSQL database. PostgreSQL and MySQL, as their names suggest, are classified as SQL databases. They use SQL (Structured Query Language) to query a relational database schema. NoSQL has become a catch-all term to describe databases that do not conform to this model. A broad array of databases fall under this model, from ScyllaDB to document stores like MongoDB to “not-only SQL” databases like CockroachDB.

 What’s a wide-column database?

 ScyllaDB and Cassandra are often called wide-column databases. In this type of database, data can be thought of as a multidimensional map or a key-key-value store, where tables have columns but aren’t required to have values for every column. These tables, or column families, as they were originally called in Cassandra, are stored together on disk. This approach contrasts with a columnar database, where all values of a given column are stored together.

 In a columnar database, storing all values for a given column together allows you to easily perform aggregations on all values in a column. The database can easily calculate the average value of a column that stores numbers because all the values are stored together and co-located, so it doesn’t need to locate and read every row in the database to aggregate that data. The following figure illustrates how the columnar approach differs from a wide-column database.

 [image: sidebar figure]
 Although they have similar names, columnar and wide-column databases differ significantly in their storage paradigms. ScyllaDB is a wide-column database.

 The way I remember the difference is that in ScyllaDB and Cassandra, tables—they’re not called column families anymore—can be arbitrarily wide. Therefore, ScyllaDB is a wide-column store. The rows in these tables can be distributed across the database—another example of width. I find wide-column to be a superfluous term, so I encourage you to focus on the rest of the definition: ScyllaDB is a distributed NoSQL database that accentuates fault tolerance and scalability compared to other databases.

 NoSQL databases tend to emphasize scalability and fault tolerance over total correctness and accuracy of the data in the database, a property called consistency. This tradeoff may sound ridiculous at first, but you’ll examine it closely throughout the book. In practice, Scylla works to be eventually consistent, converging toward correctness over time. To achieve its desired scalability and fault tolerance, ScyllaDB runs multiple instances of itself in a cluster.

 [image: figure]

Figure 1.6 ScyllaDB is a distributed database that provides scalability and fault tolerance.

 There is no overarching, all-powerful leader; each node is just as important as any other node. Not only are there multiple nodes in the system, but data is distributed across all these nodes. ScyllaDB isn’t a distributed database because distributed systems are cool; it’s distributed because it was designed to make a more reliable and scalable database. If you distribute data across all nodes in a cluster, what happens if you lose one node? ScyllaDB stores multiple copies of the data, and by letting you choose how many replicas are required to respond to a query, picking any number fewer than the maximum lets the database tolerate node failure. This distribution also helps with scalability. If one node is taking a large amount of traffic, the rest of the cluster won’t be affected. Requests that don’t hit your one heavily trafficked node won’t be affected by any overburdening of another node. This fault tolerance is critical to ScyllaDB’s design. Instead of putting all your eggs in one basket, you can have many eggs in many baskets. If you lose a basket, you still have lots of eggs!

1.2 ScyllaDB, a distributed database

 ScyllaDB runs multiple nodes, making it a distributed system. By spreading its data across its deployment, it achieves its desired availability and consistency, which, when combined, differentiates the database from other systems.

1.2.1 Distributing data

 All distributed systems have a bar to meet: they must deliver enough value to overcome the introduced complexity. ScyllaDB, designed to be a distributed system, achieves its scalability and fault tolerance through this design.

 When users write data to ScyllaDB, they start by contacting any node. Many systems follow a leader-follower topology, where one node is designated as a leader, giving it special responsibilities in the system. If the leader dies, a new leader is elected, and the system continues operating.

 ScyllaDB does not follow this model; each node is as special as any other. Without a centralized coordinator deciding who stores what, each node must know where any given piece of data should be stored. Internally, Scylla can map a given row to the node that owns it, forwarding requests to the appropriate nodes by calculating its owner using the hash ring that you’ll learn about in chapter 3.

 To provide fault tolerance, ScyllaDB not only distributes data but also replicates it across multiple nodes. The database stores a row in multiple locations—the number depends on the configured replication factor. In a perfect world, each node acknowledges every request instantly every time, but what happens if they don’t? To help with unexpected trouble, the database provides tunable consistency.

 How you query data depends on what degree of consistency you’re looking to get. ScyllaDB is an eventually consistent database, and you may see inconsistent data as the system converges toward consistency. Developers must keep this eventual consistency in mind when working with the database. To facilitate the various needs of consistency, ScyllaDB provides a variety of consistency levels for queries, including those listed in table 1.1.

Table 1.1 Sample of consistency level options, assuming a cluster with three replicas

 	

 Consistency level

 	

 Description

 	

 Number required to succeed

 	

 Failures tolerated

 	 ALL

 	 Requires all replicas to succeed

 	 3

 	 0

 	 QUORUM

 	 Requires a majority of replicas to succeed

 	 2

 	 1

 	 ONE

 	 Requires a single replica to succeed

 	 1

 	 2

 With a consistency level of ALL, you can require that all replicas for a key acknowledge a query, but this setting harms availability. You can no longer tolerate the loss of a node. With a consistency level of ONE, you require a single replica for a key to acknowledge a query, but this greatly increases the chances of inconsistent results.

 Luckily, some options aren’t as extreme. ScyllaDB lets you tune consistency via the concept of quorums. A group that includes a majority of members is a quorum. Legislative bodies, such as the US Senate, do not operate when the number of members present is below the quorum threshold. When this concept is applied to ScyllaDB, you can achieve intermediate forms of consistency.

 With a QUORUM consistency level, the database requires a majority of replicas for a key to acknowledge a query. If you have three replicas, two of them must accept every read and every write. If you lose one node, you can still rely on the other two to keep serving traffic. You additionally guarantee that a majority of your nodes get every update, preventing inconsistent data if you use the same consistency level when reading.

 Once you have picked your consistency level, you know how many replicas you need to execute a successful query. A client sends a request to a node, which serves as the coordinator for that query. Your coordinator node reaches out to the replicas for the given key, including itself if it is a replica. Those replicas return results to the coordinator, and the coordinator evaluates them according to your consistency. If it finds that the result satisfies the consistency requirements, it returns the result to the caller.

 The CAP theorem (www.scylladb.com/glossary/cap-theorem) classifies distributed systems by saying that they cannot provide all three of these properties: consistency, availability, and network partition tolerance, as shown in figure 1.7. For the CAP theorem’s purposes, we define consistency as every request reading the most recent write; it’s a measure of correctness in the database. Availability is whether the system can serve requests, and network partition tolerance is the ability to handle a disconnected node.

 [image: figure]

Figure 1.7 The CAP theorem says a database can only provide two of these three properties: consistency, availability, and partition tolerance. ScyllaDB is classified as an AP system.

 According to the CAP theorem, a distributed system must have partition tolerance, so it ultimately chooses between consistency and availability. If a system is consistent, it must be impossible to read inconsistent data. To achieve consistency, it must ensure that all nodes receive all necessary copies of data. This requirement means it cannot tolerate the loss of a node, therefore losing availability.

 Note  In practice, systems aren’t as rigidly classified as the CAP theorem suggests. For a more nuanced discussion of these properties, you can research the PACELC theorem (https://www.scylladb.com/glossary/pacelc-theorem/), which illustrates how systems make partial tradeoffs between latency and consistency.

 ScyllaDB is typically classified as an AP system. When it encounters a network partition, it chooses to sacrifice consistency and maintain availability. You can see this in its design: ScyllaDB repeatedly makes choices, via quorums and eventual consistency, to keep the system up and running in exchange for potentially weaker consistency. In its emphasis on availability, you see one of ScyllaDB’s differentiators against its most popular competition—relational databases.

1.2.2 ScyllaDB vs. relational databases

 I’ve introduced ScyllaDB by describing its features in comparison with relational databases, but we’ll examine the differences in closer detail here. Relational databases such as PostgreSQL and MySQL are the standard for data storage in software applications, and they’re almost always the default choice for a new developer looking to build an application. Relational databases are a very strong option for many use cases, but that doesn’t mean they’re suitable for every use case.

 ScyllaDB is a distributed NoSQL database. By distributing data across a cluster, ScyllaDB unlocks better availability when nodes go awry than a single-node all-or-nothing relational database. PostgreSQL and MySQL can run in a distributed mode, but that is powered through extensions or newer storage engines and is not the primary native mode of the database. This distribution is native to ScyllaDB and is the bedrock of its design.

 By running as a distributed system, ScyllaDB empowers horizontal scalability. Many relational databases are only vertically scalable—you can add more resources only by running the database on a bigger server. With horizontal scalability, you can add nodes to a system to increase its capacity. ScyllaDB supports this expansion; administrators can add more nodes, and the cluster will rebalance itself, offloading data to the new cluster member. In a relational database, horizontal scaling is possible, but it’s often manual. Operators need to manually shard data between multiple nodes to achieve this behavior.

 ScyllaDB does not provide a relational database’s ACID (atomicity, consistency, isolation, and durability) guarantees, instead opting for a softer model called BASE (basic availability, soft-state, and eventual consistency), where the database has basic availability and is eventually consistent. This decision leads to faster writes than a relational database, which has to validate the consistency of the database after every write; ScyllaDB only needs to save the write because it doesn’t promise that degree of correctness. The tradeoff, though, is that developers need to consider ScyllaDB’s weaker consistency.

 ACID vs. BASE

 ACID provides a set of guarantees for transactions. A transaction is one or more statements applied to a database. When developers refer to a transaction in a database, they are almost always referring to ACID transactions. ACID provides the following:

 	 Atomicity—All statements in the transaction succeed together or fail together.

 	 Consistency—The database is in a valid state after every transaction.

 	 Isolation—A transaction cannot interfere with a concurrently executing transaction.

 	 Durability—Any change in a transaction will be persisted.

 I like to think of ACID as how you would expect a database to run. You want a consistent database, and you’d like your writes to be durable. You’d be dismayed if you wrote data to the database and it didn’t persist.

 ScyllaDB provides a softer set of guarantees called BASE. Softer isn’t bad, though; these guarantees let ScyllaDB more easily provide scalability and fault tolerance. BASE provides the following:

 	 Basic availability—The database is basically available. Some portions of the database may be down, but overall, the system is available.

 	 Soft state—Every node in the database doesn’t have to be consistent at every moment in time.

 	 Eventually consistent—The database converges toward consistency over time.

 Although I remain convinced that the designer of BASE named the property “soft state” to make the acronym work, it does accurately describe ScyllaDB’s benefits. It can tolerate the loss of a node and remain available, but to do this, it has to weaken consistency. Nevertheless, it should strive and converge toward consistency. In upcoming chapters, we’ll discuss these properties, how they affect ScyllaDB and your usage of it, and how the system’s architecture provides them.

 Ultimately, ScyllaDB versus relational databases is a foundational and philosophical decision. They operate so differently and provide such varying guarantees to their clients that picking one over the other has large effects on an application. If you’re looking for availability and scalability in your database, ScyllaDB is a strong option.

1.2.3 ScyllaDB vs. Cassandra

 ScyllaDB is a rewrite of Apache Cassandra. It is frequently described as “a more performant Cassandra” or “Cassandra but in C++.” ScyllaDB is designed to be compatible with Cassandra: it uses a compatible API, query language, on-disk storage format, and hash-ring architecture. “Like Cassandra, but better,” is ScyllaDB’s goal; it makes some improvements to accomplish this.

 The choice of language in the rewrite immediately unlocks better performance. Cassandra is written in Java, which uses a garbage collector to perform memory management. Because objects are loaded into memory, at some point they need to be removed. Java’s garbage-collection algorithms handle this removal, but it comes at the cost of compute. Time spent garbage collecting is time Cassandra can’t spend executing queries. If garbage collection reaches a certain threshold, the Java Virtual Machine will briefly pause all execution while it cleans up memory, referred to as a “stop the world” pause. Even if it’s just for milliseconds, that pause can be painful to clients. Although Java exposes many configuration knobs and improves the garbage collector with each release, it’s a tax that all Java-based applications have to pay—whether in garbage-collection time or time spent mitigating it.

 ScyllaDB avoids this tax because it is implemented in C++ and provides more granular controls for memory management. By having full control over memory allocation and cleanup, ScyllaDB doesn’t need to let a garbage collector perform this functionality on an application-wide scale. It avoids “stop the world” pauses and can dedicate its compute time to executing queries.

 ScyllaDB’s biggest architectural difference is its shard-per-core architecture (figure 1.8). Both Cassandra and ScyllaDB shard a data set across various nodes via placement in a hash ring, which you’ll learn more about in chapter 3. ScyllaDB takes this further by using the Seastar framework (https://seastar.io) to shard data within a node, splitting it per CPU core and giving each shard its own CPU, memory, and network bandwidth allocation.

 [image: figure]

Figure 1.8 ScyllaDB shards data not only within the cluster but also within each instance.

 This sharding further limits the blast radius due to hot traffic patterns—the damage is limited to just that shard on that node. Cassandra does not follow this paradigm, however, and limits the sharding to only per node. If a data partition receives a large number of requests, they can overwhelm the node, leading to cluster-wide struggles.

 Performance justifies the rewrite. Both in benchmarks (see “Benchmarking Apache Cassandra (40 Nodes) vs. ScyllaDB (4 Nodes)” at https://mng.bz/1a6g) and in the wild (see “How Discord stores trillions of messages” at https://mng.bz/PNmP), ScyllaDB is faster and more consistent and requires fewer servers to operate than Cassandra.

1.2.4 ScyllaDB vs. Amazon Aurora, Amazon DynamoDB, Google Cloud Spanner, and Google AlloyDB

 I’ve lumped a few similar systems together here: Amazon Aurora, Amazon DynamoDB, Google Cloud Spanner, and Google AlloyDB. They can be generally described as scalable cloud-hosted databases. They aim to take a relational data model and provide greater scalability than out-of-the-box PostgreSQL or MySQL. This effort accentuates a need in the market for scalable databases, showing the value of ScyllaDB.

 These systems have two related drawbacks: cloud vendor lock-in and cost. Because cloud providers provide these databases, they run only in that specific vendor’s cloud environment. You can’t run Google Cloud Spanner in Amazon Web Services. If your application is heavily dependent on one of these systems, there can be a high engineering cost if you decide to switch cloud providers, as you’ll need to migrate data into a different system that may have a different storage paradigm.

 If you’re not using that provider (or any provider), these options aren’t even on the table for you. And by using a cloud provider, companies pay money for these services. Operating and maintaining a database is challenging (which is partly why you’re reading this book), and although these cloud vendors provide solutions to potentially make it simpler, that can be expensive for clients. Of course, operating a database yourself can also be costly.

 ScyllaDB, however, can be run anywhere. Companies run it on-premises or in various cloud providers. It provides a scalable and fault-tolerant database that you can take to any hosting solution.

1.2.5 ScyllaDB vs. document stores

 I’m not talking about Google Drive here but rather databases that store unstructured documents by a given key, such as MongoDB. Such systems support querying these documents, allowing users to access arbitrary document fields without defining a database schema.

 ScyllaDB eschews this flexibility to provide (relatively) predictable performance. By requiring users to define their schema up front, it clarifies to both users and the system how data is distributed across the cluster. By forcing users to query data in patterns that match this distribution, ScyllaDB can limit the number of nodes involved in a query, preventing surprisingly expensive queries.

 Document stores, on the other hand, tend to be biased toward initial ease of use. In MongoDB, no schema definition is required, but users still need to consider the design of their data to query it effectively. MongoDB runs as a distributed system, but unlike ScyllaDB, it doesn’t attempt out of the box to minimize inefficient queries that hit more than the expected number of nodes, leading to potential performance surprises.

 In the CAP theorem, MongoDB is a CP (consistent and partition-tolerant) system. Writes require the presence of a primary node and are blocked until a new primary is elected in the event of a network partition. But ScyllaDB prioritizes availability in its query path, keeping the system up and relying on its tunable consistency.

1.2.6 ScyllaDB vs. distributed relational databases

 One interesting development for databases over the past few years has been the growth of distributed transactional databases. These systems—such as CockroachDB, TiDB, and YugabyteDB—focus on improving the availability of a traditional relational database like PostgreSQL while still offering strong consistency. In the CAP theorem’s classifications, they’re CP systems; they prefer consistency over availability. By emphasizing correctness, they need a quorum of nodes to respond to successfully complete a query; if a quorum is lost, the database loses availability. ScyllaDB, however, provides tunable consistency to dodge this problem. By allowing weaker consistency levels, such as ONE, Scylla can handle a greater loss of availability to preserve functionality.

 In a relational database, writes are a computationally intensive operation. The database needs to validate its consistency on every write. Scylla, on the other hand, skips this verification, opting for speed and simplicity when writing data. The tradeoff, however, is that reads in Scylla will be slower than writes, as you need to gather data from multiple nodes that have data stored in different places on disk. You’ll learn a lot more about this behavior in chapters 6 and 7, but the big takeaway is that writes in Scylla will be faster than in these systems.

1.2.7 When to prefer other databases

 I’ve described ScyllaDB’s benefits relative to other databases, but sometimes, I admit, it’s not the best tool for the job. I can’t describe it as a unique database because of the Cassandra rewrite approach, but it does trade operational and design complexity for more graceful failure modes. Choosing Scylla requires you to design applications differently because it has specific data-modeling needs to best use its capabilities and adds more complexity than something like a cloud-hosted PostgreSQL server. If you don’t need ScyllaDB’s horizontal scalability and nuanced availability, the increased operational overhead may not be worth it. If your application is small, makes few requests, and isn’t expected to grow over time, ScyllaDB may be overkill. A database backing comments on your blog probably doesn’t need a ScyllaDB cluster unless, like many of us, you’re wanting that as an excuse to try it out.

 Operating and maintaining a ScyllaDB cluster isn’t a hands-off exercise. If you can’t dedicate time to operating and maintaining a cluster, that is another signal that a managed offering may be preferable for you. Teams must choose wisely about how they spend their time and money on what they do; choosing a less hands-on is a valid decision.

 One thing you’ll see about Scylla in upcoming chapters is that with data modeling, it can be inflexible to change your database’s design. Adding new query patterns that don’t fit in with your initial design can be challenging. Although there are ways to work around this, other databases can potentially give you more flexibility when you’re in the prototyping and learning stage of building features for an application.

 Finally, some use cases may prefer a stronger transactional model like ACID. If you’re working with financial data, you may want to use a relational database so you can have isolation in your operations. One popular example to demonstrate the importance of ACID transactions is concurrent access to bank accounts. Without isolation, you run the risk of concurrent operations causing a mismatch between how much money the database thinks you have and how much money you actually have. Accountants traditionally prefer accuracy in these areas, so you may prefer a relational database when working with something that needs stronger database transactions. Although scaling a relational database has its challenges, dealing with them may be preferable to surrendering ACID’s guarantees. Scylla can get closer to ACID through careful design and the use of some more advanced features you’ll learn about in chapter 6, but it’s not as “out-of-the-box” an experience as a relational database.

1.3 ScyllaDB, a practical database

 We’ve talked about what exactly ScyllaDB is and how it differs from other systems, but how does it run in practice? In this section, we’ll look at it as a real, deployed system and show that ScyllaDB isn’t just a distributed database but a practical one, too.

1.3.1 Fault tolerance

 If you’re on call for a database, you want it to handle failures gracefully so you can avoid the dreaded 3:00 a.m. alert and get a night of undisturbed rest. ScyllaDB is designed to be a fault-tolerant database to give you a good night’s sleep. Through its tunable consistency model, it can survive spontaneous downtime without any effect on queries. By using quorum consistency, not every node needs to be up and running to serve traffic. A server can crash, and if the underlying hardware self-recovers, the ScyllaDB process can start, rejoin the cluster, receive any data it missed, and return to serving traffic, with you asleep and none the wiser.

 If for some unfortunate reason a node is unable to recover, you don’t need to execute a complicated operation like restoring from backups. You can provision a new node and tell the cluster that the new node is a replacement for the old node. Because ScyllaDB replicates data across the cluster, your new node takes the place of the old node, and other replicas stream data to it until the node has caught up and joined the cluster, serving traffic.

1.3.2 Scalability

 If you’re hitting the limits of your existing data store or if handling growth is important to you, scalability is one of the prime reasons people choose ScyllaDB. Fortunately, in ScyllaDB, scalability is often straightforward—in a well-designed cluster, you add more nodes! Even with terabytes of data, adding a node should take no more than a few hours.

 Note  With apologies to Spider-Man, with greater nodes comes greater responsibility. Upgrading to a new version of Scylla or rolling out an operating system patch means updating all of your nodes, which can be time-intensive if you’ve got a lot of them.

 Similar to when you replace a node in the cluster, adding a node involves joining the cluster, signing up for what slices of data the node will own, and then receiving data from other replicas until the node is caught up. Although this bootstrapping process is limited to one node at a time, it is a simple operation to execute.

1.3.3 Production usage

 Software developers tend to be conservative in their choice of data store, and with good reason: a database is the base for all of your data. A database may meet all the requirements, but it’s scary to be the only one running something. As a field, software development moves forward as more people use things, discovering bugs and finding pain points and solutions to them. A big question you’ll frequently hear when considering a less-ubiquitous solution is “Does anyone actually use this thing?”

 Yes! ScyllaDB is a database used in real-life production systems and is growing in popularity. Several companies use it today:

 	 Discord stores their trillions of messages in ScyllaDB.

 	 Epic Games uses ScyllaDB as a cache for binary assets.

 	 Comcast stores DVR data for its X1 cable platform in ScyllaDB.

 They’ve built systems that use Scylla because they want a scalable and fault-tolerant database. Each of these use cases involves highly distributed reads serving important functionality to their systems.

 As a reader of this book, you may be considering building a similar system using ScyllaDB. My goal is to get to that point by the end of this book: by learning how to structure schemas, query the database, and operate it, you will gain the knowledge to go off and build your own system. I’ve spent a lot of time introducing ScyllaDB; let’s dive in and query the thing!

 Summary

 	 ScyllaDB is a distributed NoSQL database compatible with Apache Cassandra’s API, providing scalability and fault tolerance by distributing its data across multiple nodes.

 	 Contrasting with a relational database, Scylla allows you to scale your database by adding nodes.

 	 To provide for the loss of a node, Scylla lets you tune how many nodes need to be online to serve a request so you can balance correctness and availability.

 	 ScyllaDB favors scalability and fault tolerance over consistency—the total correctness and accuracy of the database. It prefers eventual consistency, converging to correctness over time.

 	 The ALL consistency level requires every node to respond, whereas the ONE level requires a single node. With QUORUM, a majority of nodes must respond, balancing consistency and availability.

 	 The CAP theorem says that a distributed system must sacrifice one of the following properties: consistency, availability, and partition tolerance. ScyllaDB is classified as an available and partition-tolerant system, sacrificing consistency.

 	 Scylla’s horizontal scalability—adding nodes—contrasts with a relational database’s single-node approach, which can often only scale vertically by adding additional resources.

 	 As opposed to a relational database’s ACID (atomicity, consistency, isolation, and durability) guarantees, Scylla offers a BASE guarantee: basic availability, soft state, and eventual consistency.

 	 ScyllaDB is a rewrite of Cassandra in a non-memory-managed language and extends Cassandra’s replication by further sharding its data set in a node- per-CPU core.

 	 When a node crashes, Scylla self-heals, streaming data from other nodes to help the cluster recover.

 	 Scylla is used in production by many companies today; it is a tested and proven storage solution.

2 Touring ScyllaDB

 This chapter covers

 	Running ScyllaDB locally with Docker

 	Using nodetool to view operational details of the cluster at the command line

 	Creating a table and reading and writing data

 	Experimenting with failures and changing consistency levels

 Users use a database to store data. Whether it’s blog posts, text messages, or image metadata, the use case for every database begins with “I want to store data for later consumption.” Spending pages and pages discussing consistency, fault tolerance, and comparative benefits, although it’s useful information, gets away from this goal. I’ve written a lot about ScyllaDB in theory, but here, it’s time to delve into practice. In this chapter, you’ll launch your first ScyllaDB cluster, getting dirty with the database as you run your first queries and examine Scylla’s fault-tolerance guarantees.

2.1 Launching your first cluster

 ScyllaDB is an application written to run on Linux. Unfortunately for people at home, there is no support for running it directly on Windows or MacOS. Do not despair, though, for there is a solution. ScyllaDB provides a Docker image! Docker is an application that lets us run packaged applications called containers via a friendly interface to a virtual machine. If you’d like some guidance configuring Docker, you can learn more about it and get it installed in appendix A.

 Note  If you’d like to learn more about Docker, Manning’s Docker in Action by Jeff Nickoloff and Stephen Kuenzli is an excellent resource (www.manning.com/books/docker-in-action-second-edition)!

 To facilitate learning and experimenting with ScyllaDB, you will use Docker to spin up a three-node cluster on a local machine (figure 2.1). You’ll start up three containers that we’ll call scylla-1, scylla-2, and scylla-3. By running three nodes, ScyllaDB can demonstrate its distributed benefits. Later in the chapter, you’ll take one node offline and see how tuning consistency lets the cluster continue operating and serving traffic.

 [image: figure]

Figure 2.1 Launching three Scylla nodes in Docker containers lets you test a cluster on a local machine.

 Why do you run three nodes? You want to be able to tolerate the loss of a single node, so you need at least two. In the previous chapter, you learned that ScyllaDB provides the capability of changing a query’s consistency levels. By choosing quorum consistency, operators can guarantee that a majority of the nodes must respond to a query to be successful. In a two-node cluster, what’s the majority? You need greater than half, so the operation would require two nodes to respond—the entire cluster. That’s not ideal! By adding a third node, you can use quorum consistency and not lose availability if a node dies. Before you can have three nodes, though, you need to have one, so let’s go ahead and get the first node started.

2.1.1 The first node

 There is an initial bit of infrastructure work to do before you can create your first node. You need to provision a network for the containers, which can be accomplished by a command built into Docker. By creating your own specific network, the cluster can reference other nodes by their DNS names, skipping using IP addresses directly.

 Run the following command in a command-line prompt to create a network called scylla-network, allowing the nodes in the cluster to communicate over a dedicated network on your computer. This command will create the network and output its ID, a blob of hexadecimal text:

 $ docker network create scylla-network

 Now that the networking is set up, you’re clear to begin building the cluster. A ScyllaDB cluster consists of one or more ScyllaDB nodes. The database necessitates three nodes to derive its benefits, so you will build a three-node cluster. Scylla doesn’t have a “give me a cluster” executable (because it would need to connect potentially multiple nodes running on separate machines), so you must build your cluster one node at a time.

 Note  For examples in this book, you’ll be running ScyllaDB 5.4, the current version as of this writing. Docker lets you select a specific version, so you can verify the same behavior here. Scylla may add patches as time goes by, but the core functionality should remain the same in this version.

 To start, run the following docker run command. It tells Docker that you want to run a container. It has a friendly name, scylla-1, instead of the giant hash Docker wants to give it by default. You also specify the hostname, as you’ll need other nodes to connect to it to build the cluster. The --detach flag specifies that you want to run in detached mode, meaning the container will continue running in the background when the command returns. The -p flag specifies port forwardings, starting with the port you’d like to assign to from your local machine, followed by the port it should forward to in the container. Although you won’t use this for several chapters, it will be very helpful when building an application that connects to your Scylla cluster. Next you specify the container image you want to run, which identifies the application—in this case, ScyllaDB:

 $ docker run --name scylla-1 --hostname scylla-1 \
 --network scylla-network --detach -p 9241:9042 \
 -p 19241:9042 scylladb/scylla:5.4 --reactor-backend=epoll

 When you run this command, Docker starts your container, which is prepackaged by ScyllaDB to run a ScyllaDB node.

 Note  I included an additional argument to your container: --reactor-backend=epoll. This argument tells Scylla to use a legacy implementation for async I/O internally, avoiding potential resource contention problems that may stop your development clusters from running.

 Docker provides access to the logs via a docker logs command, which takes a container name as an argument. To check on the first ScyllaDB node, you can tail its logs to see if it started successfully by passing the --follow flag. When you run this command, that container’s logs are printed to the command line:

 $ docker logs scylla-1 --follow

 For now, you’re looking for the two following messages in the output, which read serving and Scylla … initialization completed. These messages signal that ScyllaDB is initialized and ready to serve traffic:

 ...
INFO 2023-10-05 12:36:37,166 [shard 0] init - serving #1
INFO 2023-10-05 12:36:37,167 [shard 0] init - Scylla↪
↪ version Scylla version 5.4.1-0.20231231.
↪ 3d22f42cf9c3 initialization completed. #2

 #1 Indicates ScyllaDB is ready to serve traffic

#2 Indicates ScyllaDB initialization is complete

 Note  Startup can take a couple of minutes, so be patient!

 If something had gone awry, these messages might not be there. Throughout startup and while it’s running, ScyllaDB logs messages to describe what it’s doing as well as what errors it’s encountering. It’s a decent tool to analyze a node. For quicker debugging, you can use a tool packaged with ScyllaDB that can inspect the node and the cluster—called, appropriately enough, nodetool.

2.1.2 Your new friend, nodetool

 nodetool is a command-line tool shipped with ScyllaDB that contains a variety of commands to analyze the cluster and interact with it as a maintainer and operator. It’s an indispensable part of running ScyllaDB: you can see all the nodes in the cluster, view per-table performance, and even remove nodes from the cluster, all via a terminal.

 nodetool runs by connecting to the cluster. It can do this over a network, or it can communicate locally. The most straightforward option here is to open a shell in the container and run it there. To run commands in the container the node is running on, you can use docker exec to open bash in the container. Pass in the -it flags—i for interactive, meaning it won’t exit immediately, and -t to allocate a pseudoterminal. The exec command then takes a container to run the command in, as well as the command you want to run. By passing /bin/bash with the preceding arguments, you get a bash shell in your designated container:

 $ docker exec -it scylla-1 /bin/bash

 As an operator and one who has recently begun launching a cluster, the first question you probably have is “What’s the status of this thing?” Coincidentally, the nodetool command you’ll run most frequently helps you answer that. To get an overview of the state of the cluster, you can run nodetool status, which lists each node, its state, how much data it owns, and where it lives in the cluster. If you pass in --resolve-ip, you’ll also resolve the IP address of the nodes, seeing friendlier DNS names and not IP addresses.

 Note  To indicate when a command is running in a container, I’ve elected to prefix the shell session’s $ with the session’s container name:

 (scylla-1) $ nodetool status --resolve-ip

 nodetool status correctly identifies that there is one node in the cluster, but it contains a lot of information that, at the moment, lacks meaning. It says something about UN—does that mean the node is part of the United Nations? Let’s learn how to analyze the output:

 Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID Rack
UN scylla-1 572 KB 256 ? 75ddfa00-9624-4137-b926-429dff20e516 rack1

 The first line lists the node’s datacenter, which refers to a grouping of nodes. If you’re running on a single local machine or in the cloud, this can be a logical grouping, but if you’re running on-premises, this can also be an actual physical grouping. A cluster can comprise multiple datacenters, each with its own replication configuration. It provides an abstraction for a separation of groups of nodes to enable redundancy, cluster migrations, or maybe even a multiregional setup.

 Peeking ahead, the last column in the output lists the node’s rack, a further grouping within the datacenter. Just like the datacenter, it can be a logical-only grouping, or it may correspond to an actual server rack in a real-life datacenter or availability zone in the cloud. You’re using only the defaults here, but you’ll learn more about how ScyllaDB uses datacenters and racks in future chapters.

 The first column contains a two-letter abbreviation indicating what nodetool calls the status (table 2.1) and state of the cluster (table 2.2). Status refers to the node being Up or Down. It’s either up and healthy, or it isn’t. State, meanwhile, is about the node’s lifecycle state in the cluster. A node begins as Joining, which is a quick process initially but grows longer as your cluster gains more data. Once it’s joined, it becomes Normal, marking it as a full member of the cluster. If you want to remove a node and hand off its data, the node is in the Leaving status. If you explicitly move a node to a different location in the cluster, the node gets the Moving status.

Table 2.1 Possible values for the node’s status

 	

 Status letter

 	

 Meaning

 	

 Description

 	 U

 	 Up

 	 Node is taking traffic

 	 D

 	 Down

 	 Node is unhealthy and not taking traffic

Table 2.2 Possible values for the node’s state

 	

 State letter

 	

 Meaning

 	

 Description

 	 N

 	 Normal

 	 Node is in the normal state, having successfully joined the cluster previously

 	 J

 	 Joining

 	 Node is in the process of joining the cluster

 	 L

 	 Leaving

 	 Node is in the process of leaving the cluster

 	 M

 	 Moving

 	 Node is moving datacenters or racks in the cluster

 Tip If you forget which letter means what, run the command nodetool status at the prompt. It provides a helpful key before listing the nodes.

 When a node is ready to go, healthy, and taking traffic, nodetool status lists it as UN. Seeing other values here is an indication that the cluster is in an unusual state. Perhaps this is intentional—you may be adding additional nodes to the cluster, causing a node to be in the Joining state. It could also be unplanned—a server may have gone offline. By checking the status, you can get high-level insight into what’s happening in the cluster.

 After the status, nodetool lists the node’s address as follows:

 Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID Rack
UN scylla-1 572 KB 256 ? 75ddfa00-9624-4137-b926-429dff20e516 rack1

 By passing in the --resolve-ip flag (or -r), nodetool status resolves IP addresses and prints the DNS name. If that flag wasn’t present, you would see an IP address here. Next in the row is information about the data stored on that node.

 Load tells you the size of the data stored on that node. The Tokens field contains information about the allocation of data for this node. You’ll learn more about tokens when we discuss vnodes, or virtual nodes, and dive into the hash ring.

 Owns tells you what percentage of the data in the cluster this node owns. Depending on how tables are configured, however, nodetool is often unable to accurately compute this information and prints only a ?. Last, the Host ID is a node identifier in the cluster. Put together, you get a broad overview of the cluster’s status.

 Right now, when you run nodetool status, you get a very short list of nodes because one node alone doesn’t make a cluster. Let’s add a couple more.

2.1.3 Building the cluster

 Adding nodes is similar to starting the first node, but additional configuration is required so the second node can talk to the first and form a cluster. When ScyllaDB starts up, it assumes that it is either the first node in a brand-new cluster or an additional node in an existing cluster. When joining an existing cluster, operators must provide seed nodes as configuration to the joining node so that it can have a point of contact to learn about the rest of the cluster. A seed node is another already-running node in the cluster. It’s up to date, takes traffic, and can help get a newly joined node introduced into the cluster.

OEBPS/Images/cover0001.jpg

OEBPS/Images/1-3.png

OEBPS/Images/1-8.png

OEBPS/Images/1-1.png

OEBPS/Images/1-7.png

OEBPS/Images/1-2.png

OEBPS/Images/1-6.png

OEBPS/Images/1-4.png

OEBPS/Images/1-unnumb.png

OEBPS/Images/1-5.png

OEBPS/Images/2-1.png

OEBPS/Images/manning_m.jpg

OEBPS/Images/Manning_M_small.png

