

 PostGIS in Action, Second Edition

 Regina O. Obe and Leo S. Hsu

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Jeff Bleiel
Technical development editor: Deepak Vohra
Copyeditors: Benjamin Berg, Andy Carroll
Proofreader: Katie Tennant
Technical proofreader: David Pombal
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617291395

 Printed in the United States of America

 4 5 6 7 8 9 10 – SP – 21 20 19 18

Dedication

 To Dr. Ernest Olagbade Obe (1935–2012), professor, chief, daddy

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition of PostGIS in Action

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Introduction to PostGIS

 Chapter 1. What is a spatial database?

 Chapter 2. Spatial data types

 Chapter 3. Spatial reference system considerations

 Chapter 4. Working with real data

 Chapter 5. Using PostGIS on the desktop

 Chapter 6. Geometry and geography functions

 Chapter 7. Raster functions

 Chapter 8. PostGIS TIGER geocoder

 Chapter 9. Geometry relationships

 2. Putting PostGIS to work

 Chapter 10. Proximity analysis

 Chapter 11. Geometry and geography processing

 Chapter 12. Raster processing

 Chapter 13. Building and using topologies

 Chapter 14. Organizing spatial data

 Chapter 15. Query performance tuning

 3. Using PostGIS with other tools

 Chapter 16. Extending PostGIS with pgRouting and procedural languages

 Chapter 17. Using PostGIS in web applications

 Appendix A. Additional resources

 Appendix B. Installing, compiling, and upgrading

 Appendix C. SQL primer

 Appendix D. PostgreSQL features

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition of PostGIS in Action

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Introduction to PostGIS

 Chapter 1. What is a spatial database?

 1.1. Thinking spatially

 1.2. Introducing PostGIS

 1.2.1. Why PostGIS

 1.2.2. Alternatives to PostGIS

 1.2.3. Installing PostGIS

 1.3. Spatial data types

 1.3.1. Geometry type

 1.3.2. Geography type

 1.3.3. Raster type

 1.3.4. Topology type

 1.4. Hello real world

 1.4.1. Digesting the problem

 1.4.2. Modeling

 1.4.3. Loading data

 1.4.4. Writing the query

 1.4.5. Viewing spatial data with OpenJump

 1.5. Summary

 Chapter 2. Spatial data types

 2.1. Type modifiers

 2.1.1. Subtype type modifiers

 2.1.2. Spatial reference identifier

 2.2. Geometry

 2.2.1. Points

 2.2.2. Linestrings

 2.2.3. Polygons

 2.2.4. Collection geometries

 2.2.5. The M coordinate

 2.2.6. The Z coordinate

 2.2.7. Polyhedral surfaces and TINs

 2.2.8. Curved geometries

 2.2.9. Spatial catalog for geometry

 2.2.10. Managing geometry columns

 2.3. Geography

 2.3.1. Differences between geography and geometry

 2.3.2. Spatial catalogs for geography

 2.4. Raster

 2.4.1. Properties of rasters

 2.4.2. Creating rasters

 2.4.3. Spatial catalog for rasters

 2.5. Summary

 Chapter 3. Spatial reference system considerations

 3.1. Spatial reference systems: what are they?

 3.1.1. Geoids

 3.1.2. Ellipsoids

 3.1.3. Datum

 3.1.4. Coordinate reference system

 3.1.5. Spatial reference system essentials

 3.1.6. Projections

 3.2. Selecting a spatial reference system for storing data

 3.2.1. Pros and cons of using EPSG:4326

 3.2.2. Geography data type for EPSG:4326

 3.2.3. Mapping just for presentation

 3.2.4. Covering the globe when distance is a concern

 3.3. Determining the spatial reference system of source data

 3.3.1. Guessing at a spatial reference system

 3.3.2. When the spatial reference system is missing from spatial_ref_sys table

 3.4. Summary

 Chapter 4. Working with real data

 4.1. General utilities

 4.1.1. PostgreSQL built-in tools

 4.1.2. Downloading files

 4.1.3. Extracting files

 4.2. Importing and exporting shapefiles

 4.2.1. Importing with shp2pgsql

 4.2.2. Importing and exporting with shp2pgsql-gui

 4.2.3. Exporting with pgsql2shp

 4.3. Importing and exporting vector data with ogr2ogr

 4.3.1. Environment variables

 4.3.2. Ogrinfo

 4.3.3. Importing with ogr2ogr

 4.3.4. Exporting with ogr2ogr

 4.4. Importing OpenStreetMap data with osm2pgsql

 4.4.1. Getting OSM data

 4.4.2. Loading OSM-formatted data with osm2pgsql

 4.5. Importing and exporting raster data

 4.5.1. Using gdalinfo to inspect rasters

 4.5.2. Importing raster data with raster2pgsql

 4.5.3. Gdal_translate and gdalwarp

 4.5.4. Using PostgreSQL functions to output raster data

 4.6. Summary

 Chapter 5. Using PostGIS on the desktop

 5.1. Desktop viewing tools at a glance

 5.1.1. Capsule reviews

 5.1.2. Spatial database support

 5.1.3. Format support

 5.1.4. Web services supported

 5.2. OpenJUMP workbench

 5.2.1. OpenJUMP feature summary

 5.2.2. PostGIS support

 5.2.3. Register data source

 5.2.4. Rendering PostGIS geometries

 5.2.5. Exporting data

 5.3. QGIS

 5.3.1. Installing QGIS

 5.3.2. Using QGIS with PostGIS

 5.3.3. Importing and exporting layers

 5.4. uDig

 5.4.1. Using uDig with PostGIS

 5.4.2. Connecting to PostGIS

 5.4.3. Viewing and filtering PostGIS data

 5.5. gvSIG

 5.5.1. Using gvSIG with PostGIS

 5.5.2. Exporting data

 5.6. Summary

 Chapter 6. Geometry and geography functions

 6.1. Output functions

 6.1.1. Well-known binary (WKB) and well-known text (WKT)

 6.1.2. Keyhole Markup Language (KML)

 6.1.3. Geography Markup Language (GML)

 6.1.4. Geometry JavaScript Object Notation (GeoJSON)

 6.1.5. Scalable Vector Graphics (SVG)

 6.1.6. Extensible 3D Graphics (X3D)

 6.1.7. Examples of output functions

 6.1.8. Geohash

 6.2. Constructor functions

 6.2.1. Creating geometries from text and binary formats

 6.2.2. Creating geographies from text and binary formats

 6.2.3. Using text or binary representations as function arguments

 6.3. Accessor and setter functions

 6.3.1. Spatial reference identifiers

 6.3.2. Transforming geometry to different spatial references

 6.3.3. Using transformation with the geography type

 6.3.4. Geometry type functions

 6.3.5. Geometry and coordinate dimensions

 6.3.6. Retrieving coordinates

 6.3.7. Checking geometry validity

 6.3.8. Number of points that defines a geometry

 6.4. Measurement functions

 6.4.1. Geometry planar measurements

 6.4.2. Geodetic measurements

 6.5. Decomposition functions

 6.5.1. Bounding box of geometries

 6.5.2. Boundaries and converting polygons to linestrings

 6.5.3. Centroid and point on surface

 6.5.4. Returning points defining a geometry

 6.5.5. Decomposing multi-geometries and geometry collections

 6.6. Composition functions

 6.6.1. Making points

 6.6.2. Making polygons

 6.6.3. Promoting single geometries to multi-geometries

 6.7. Simplification functions

 6.7.1. Grid snapping and coordinate rounding

 6.7.2. Simplification

 6.8. Summary

 Chapter 7. Raster functions

 7.1. Raster terminology

 7.2. Raster constructors

 7.2.1. Converting geometries to rasters with ST_AsRaster

 7.2.2. Loading rasters with raster2pgsql

 7.2.3. Constructing rasters from scratch: ST_MakeEmptyRaster and ST_AddBand

 7.2.4. Setting pixels: ST_SetValue and ST_SetValues

 7.2.5. Creating rasters from other rasters

 7.2.6. Converting other raster formats with ST_FromGDALRaster

 7.3. Raster output functions

 7.3.1. ST_AsPNG, ST_AsJPEG, and ST_AsTiff

 7.3.2. Output using ST_AsGDALRaster

 7.3.3. Using psql to export rasters

 7.4. Raster accessors and setters

 7.4.1. Basic raster metadata properties

 7.4.2. Pixel statistics

 7.4.3. Pixel value accessors

 7.4.4. Band metadata setters

 7.5. Georeferencing functions

 7.5.1. Metadata setters

 7.5.2. Processing functions

 7.6. Reclassing functions

 7.7. Polygonizing functions

 7.7.1. ST_ConvexHull

 7.7.2. ST_Envelope

 7.7.3. ST_Polygon

 7.7.4. ST_MinConvexHull

 7.8. Summary

 Chapter 8. PostGIS TIGER geocoder

 8.1. Installing the PostGIS TIGER geocoder

 8.2. Loading TIGER data

 8.2.1. Configuration tables

 8.2.2. Loading nation and state data

 8.3. Normalizing addresses

 8.3.1. Using normalize_address

 8.3.2. Using the PAGC address normalizer

 8.4. Geocoding

 8.4.1. Geocoding using address text

 8.4.2. Geocoding using normalized addresses

 8.4.3. Batch geocoding

 8.5. Reverse geocoding

 8.6. Summary

 Chapter 9. Geometry relationships

 9.1. Bounding box and geometry comparators

 9.1.1. The bounding box

 9.1.2. Bounding box comparators

 9.2. Relating two geometries

 9.2.1. Interior, exterior, and boundary of a geometry

 9.2.2. Intersections

 9.2.3. A house plan model

 9.2.4. Contains and within

 9.2.5. Covers and covered by

 9.2.6. Contains properly

 9.2.7. Overlapping geometries

 9.2.8. Touching geometries

 9.2.9. Crossing geometries

 9.2.10. Disjoint geometries

 9.3. The faces of equality: geometry

 9.3.1. Spatial equality versus geometric equality

 9.3.2. Bounding-box equality

 9.4. Underpinnings of relationship functions

 9.4.1. The intersection matrix

 9.4.2. Using ST_Relate

 9.5. Summary

 2. Putting PostGIS to work

 Chapter 10. Proximity analysis

 10.1. Nearest neighbor searches

 10.1.1. Which places are within X distance?

 10.1.2. Using ST_DWithin and ST_Distance for N closest results

 10.1.3. Using ST_DWithin and DISTINCT ON to find closest locations

 10.1.4. Intersects with tolerance

 10.1.5. Finding N closest places using KNN distance bounding-box operators

 10.1.6. Combining KNN distance-box operators with ST_Distance

 10.1.7. Using window functions to find closest N places

 10.2. Using KNN with geography types

 10.3. Geotagging

 10.3.1. Tagging data to a specific region

 10.3.2. Linear referencing: snapping points to the closest linestring

 10.4. Summary

 Chapter 11. Geometry and geography processing

 11.1. Using spatial aggregate functions

 11.1.1. Creating a multipolygon from many multipolygon records

 11.1.2. Creating linestrings from points

 11.2. Clipping, splitting, tessellating

 11.2.1. Clipping

 11.2.2. Splitting

 11.2.3. Tessellating

 11.3. Breaking linestrings into smaller segments

 11.3.1. Segmentizing linestrings

 11.3.2. Creating two-point linestrings from many-point linestrings

 11.3.3. Breaking linestrings at point junctions

 11.4. Translating, scaling, and rotating geometries

 11.4.1. Translating

 11.4.2. Scaling

 11.4.3. Rotating

 11.5. Using geometry functions to manipulate and create geographies

 11.5.1. Cast-safe functions

 11.5.2. Transformation-recommended functions

 11.6. Summary

 Chapter 12. Raster processing

 12.1. Loading and preparing data

 12.2. Forming larger rasters using spatial aggregate functions

 12.2.1. Reconstituting tiled files

 12.2.2. Carving out areas of interest using clipping and unioning

 12.2.3. Using specific expression types with ST_Union

 12.3. Working with bands

 12.3.1. Using ST_AddBand to form multiband rasters from single-band rasters

 12.3.2. Using ST_Band to process a subset of bands

 12.4. Tiling rasters

 12.5. Raster and geometry intersections

 12.5.1. Pixel stats

 12.5.2. Adding a Z coordinate to a 2D linestring using ST_Value

 12.5.3. Converting 2D polygon to 3D polygon

 12.6. Raster statistics

 12.6.1. Extruding pixel values

 12.6.2. Raster statistics functions

 12.7. Map algebra

 12.7.1. Choosing between expression or callback function

 12.7.2. Using a single-band map algebra expression

 12.7.3. Using a single-band map algebra function

 12.7.4. Map algebra with neighborhoods

 12.8. Summary

 Chapter 13. Building and using topologies

 13.1. What topology is

 13.2. Using topologies

 13.2.1. Installing the topology extension

 13.2.2. Creating a topology

 13.2.3. The topogeometry type

 13.2.4. Recap of using topologies

 13.3. Topology of Victoria, BC

 13.3.1. Creating the Victoria topology

 13.3.2. Adding primitives to a topology

 13.3.3. Creating topogeometries

 13.4. Fixing topogeometry issues by editing topology primitives

 13.4.1. Removing faces by removing edges

 13.4.2. Checking for shared faces

 13.4.3. Editing topogeometries

 13.5. Inserting and editing large data sets

 13.6. Simplifying with topology in mind

 13.7. Topology validation and summary functions

 13.8. Summary

 Chapter 14. Organizing spatial data

 14.1. Spatial storage approaches

 14.1.1. Heterogeneous columns

 14.1.2. Homogeneous columns

 14.1.3. Typmod versus constraints

 14.1.4. Table inheritance

 14.2. Modeling a real city

 14.2.1. Modeling using heterogeneous geometry columns

 14.2.2. Modeling using homogeneous geometry columns

 14.2.3. Modeling using inheritance

 14.3. Making auto-updateable views

 14.4. Using rules and triggers

 14.4.1. Rules versus triggers

 14.4.2. Using rules

 14.4.3. Using triggers

 14.5. Summary

 Chapter 15. Query performance tuning

 15.1. The query planner

 15.1.1. Different kinds of spatial queries

 15.1.2. Common table expressions and how they affect plans

 15.2. Planner statistics

 15.3. Using explain to diagnose problems

 15.3.1. Text explain versus pgAdmin graphical explain

 15.3.2. The plan with no index

 15.4. Planner and indexes

 15.4.1. The plan with a spatial index

 15.4.2. Options for defining indexes

 15.5. Common SQL patterns and how they affect plans

 15.5.1. SELECT subqueries

 15.5.2. FROM subqueries and basic CTEs

 15.5.3. Window functions and self-joins

 15.5.4. Laterals

 15.6. System and function settings

 15.6.1. Key system variables that affect plan strategy

 15.6.2. Function-specific settings

 15.7. Optimizing spatial data

 15.7.1. Fixing invalid geometries

 15.7.2. Reducing the number of vertices by simplification

 15.7.3. Clustering

 15.8. Summary

 3. Using PostGIS with other tools

 Chapter 16. Extending PostGIS with pgRouting and procedural languages

 16.1. Solving network routing problems with pgRouting

 16.1.1. Installing pgRouting

 16.1.2. Basic navigation

 16.1.3. Traveling salesman

 16.2. Extending PostgreSQL with PLs

 16.2.1. Basic installation of PLs

 16.2.2. What you can do with PLs

 16.3. PL/R

 16.3.1. Getting started with PL/R

 16.3.2. Saving data sets and plotting

 16.3.3. Using R packages in PL/R

 16.3.4. Converting geometries into R spatial objects and plotting spatial objects

 16.3.5. Outputting plots as binaries

 16.4. PL/Python

 16.4.1. Installing PL/Python

 16.4.2. Writing a PL/Python function

 16.4.3. Using Python packages

 16.4.4. Geocoding example

 16.5. PL/V8, CoffeeScript, and LiveScript

 16.5.1. Installing PL/V8

 16.5.2. Using other JavaScript libraries and functions in PL/V8

 16.5.3. Using PL/V8 to write map algebra functions

 16.6. Summary

 Chapter 17. Using PostGIS in web applications

 17.1. Limitations of conventional web technologies

 17.2. Mapping servers

 17.2.1. Platform considerations

 17.2.2. OGC web service support

 17.2.3. Supported data sources

 17.3. Mapping clients

 17.3.1. Proprietary services

 17.4. Using MapServer

 17.4.1. Installing MapServer

 17.4.2. Creating WMS and WFS services

 17.4.3. Calling a mapping service using a reverse proxy

 17.5. Using GeoServer

 17.5.1. Installing GeoServer

 17.5.2. Setting up PostGIS workspaces

 17.5.3. Accessing PostGIS layers via GeoServer WMS/WFS

 17.6. Basics of OpenLayers and Leaflet

 17.6.1. OpenLayers primer

 17.6.2. Leaflet primer

 17.6.3. Synopsis of the three different APIs

 17.7. Displaying data with PostGIS queries and web scripting

 17.7.1. Displaying PostGIS rasters using raster queries

 17.7.2. Using PostGIS and PostgreSQL geometry output functions

 17.8. Summary

 Appendix A. Additional resources

 A.1. Planet sites

 A.2. Open source tools and offerings

 A.2.1. Self-contained GIS suites that include PostGIS

 A.2.2. Open source desktop tools

 A.2.3. Open source extract-transform-load (ETL)

 A.3. Proprietary vendors that support PostGIS

 A.4. Places to get free data

 Appendix B. Installing, compiling, and upgrading

 B.1. Installing PostgreSQL and PostGIS

 B.1.1. Desktop Linux, Windows, Mac OS X using one-click installers

 B.1.2. Installing on a Linux server (Red Hat EL, CentOS) using YUM

 B.1.3. Mac OS X–specific installers

 B.1.4. PostgreSQL APT repository

 B.1.5. Other available binaries and distros

 B.1.6. Compiling and installing from PostGIS source

 B.2. Creating a PostGIS database

 B.2.1. Spatializing a PostgreSQL 9.0 or lower database or PostGIS without raster

 B.3. Upgrading PostGIS

 B.3.1. PostGIS soft upgrade using extensions

 B.3.2. Upgrading PostGIS from 1.X to 2.X

 Appendix C. SQL primer

 C.1. information_schema

 C.2. Querying data with SQL

 C.2.1. SELECT, FROM, WHERE, and ORDER BY clauses

 C.2.2. Using subselects

 C.2.3. JOINs

 C.2.4. Sets

 C.2.5. Using SQL aggregates

 C.2.6. Window functions and window aggregates

 C.2.7. LATERALs

 C.3. UPDATE, INSERT, and DELETE

 C.3.1. UPDATE

 C.3.2. INSERT

 C.3.3. DELETE

 Appendix D. PostgreSQL features

 D.1. What makes PostgreSQL special?

 D.1.1. PostgreSQL’s unique features

 D.1.2. Basic enterprise features

 D.1.3. Advanced enterprise features

 D.1.4. More features in PostgreSQL 9.3, 9.4, and coming in 9.5

 D.2. Useful PostgreSQL resources

 D.2.1. General resources

 D.2.2. PostgreSQL-specific tools

 D.3. Connecting to a PostgreSQL server

 D.3.1. Core configuration files

 D.3.2. Launching psql

 D.3.3. Launching pgAdmin III

 D.3.4. Connection difficulties

 D.3.5. Enabling advanced administration for pgAdmin III

 D.4. Controlling access to data

 D.4.1. Connection rules

 D.4.2. Users and groups (roles)

 D.4.3. Rights management

 D.5. Backup and restore

 D.5.1. Backup

 D.5.2. Restore

 D.5.3. Setting up automated jobs for backup

 D.6. Data structures and objects

 D.6.1. PostgreSQL objects

 D.6.2. Built-in data types

 D.6.3. Anatomy of a database function

 D.6.4. Defining custom data types

 D.6.5. Creating tables and views

 D.7. Writing functions in SQL

 D.7.1. When to use SQL functions

 D.7.2. Creating an SQL function

 D.7.3. Rules

 D.7.4. Creating aggregate functions

 D.8. Writing functions in PL/pgSQL

 D.8.1. When to use PL/pgSQL functions

 D.8.2. Creating a PL/pgSQL function

 D.8.3. Creating triggers

 D.9. Index performance

 D.9.1. B-tree index gotchas

 D.9.2. Functional index gotchas

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition of PostGIS in Action

 All PostGIS users, from novices to experts, will benefit from this book. Don’t use PostGIS without it!

 Brent Wood, NIWA

 An elegant introduction to a difficult domain.

 Mark Leslie, LISAsoft Pty Ltd.

 It’s next to impossible to explain geospatial SQL succinctly, but this book pulls it off!

 Andy Saurin, Saurin Solutions

 A great guide for the beginner and a great reference for the advanced user.

 Bruce Rindahl, Ventura County Watershed Protection District

 Required reading for anyone wanting to get the most out of PostGIS.

 James Fee, WeoGeo.com

 The must-have guide if you aim to do any serious professional PostGIS development.

 Paolo Corti, European Forest Fire Information System (EFFIS)

 If you don’t understand the benefits of PostGIS, this book will give you the Aha! moment you have been waiting for. It is the most comprehensive book of its kind.

 Jeff Addison, Southgate Software Ltd.

 This is the PostGIS reference I’ve always wished for.

 Bill Dollins, Zekiah Technologies, Inc.

Foreword

 As children, we were probably all told at one time or another that “we are what we eat,” as a reminder that our diet is integral to our health and quality of life. In the modern world, with location-aware smartphones in our pockets, GPS units in our vehicles, and the internet addresses of our computers geocoded, it has also become true that “who we are is where we are”—every individual is now a mobile sensor, generating a ceaseless flow of location-encoded data as they move about the planet.

 To manage and tame that flow of data, and the parallel flow of data opened up by economical satellite imaging and crowdsourced mapping, we need a tool equal to the task—a tool that can persistently store the data, efficiently access it, and powerfully analyze it. We need a spatial database, like PostGIS.

 Prior to the advent of spatial databases, computer analysis of location and mapping data was done with geographic information systems (GIS) running on desktop workstations. When it was first released in 2001, the project name was just a simple play on words—naturally, a spatial extension of the PostgreSQL database would be named PostGIS.

 But the name has come to have further significance as the project has matured. Each year, new functions have been added for data analysis, and each year users have pressed those functions further and further, doing the kinds of work that in earlier years would have required a specialized GIS workstation. PostGIS is actually creating a world that is post-GIS—we don’t need GIS software to do GIS work anymore. A spatial database suffices.

 In March of 2002, not even one year after the first release of PostGIS, I asked on the user mailing list for examples of how people were using PostGIS. In her first post to the list, Regina Obe answered this way:

 We use it here [city of Boston] for proximity analysis. Part of our department is in charge of distributing foreclosed property to developers, etc., to build houses, businesses, etc. We use PostGIS to list properties by proximity ... so that if a developer wants to develop on a piece of land that is, say, X in size, they will be able to get a better sense of whether it can be done.

 Even at that early date in the project, Regina Obe was already testing the capabilities of PostGIS and creating clever analyses.

 Since the first edition of PostGIS in Action in 2011, PostGIS has itself remained very much in action, adding new features for raster analysis, 3D, and more. And the world has kept on moving, too.

 Only a decade ago, when PostGIS was brand new, the idea that almost every person would have a GPS unit (a phone) in their pocket was pretty crazy, and now it’s commonplace. The features of PostGIS for managing location are now being used widely by developers who only a few years ago had never heard of spatial data.

 Within the next few years, satellite and aerial imagery will move into the mass market, as drone systems and new low-cost satellite systems become affordable. The raster-management capabilities of PostGIS are now there for the next generation of developers to work with.

 Enjoy this book and enjoy the insights it provides in putting location data to work. Regina and Leo have distilled a huge body of information into a concise guide that is truly one of a kind.

 PAUL RAMSEY

 CHAIR, POSTGIS PROJECT STEERING COMMITTEE

Preface

 PostGIS (pronounced post-jis) is a spatial database extender for the PostgreSQL open source relational database management system. It’s the most powerful open source spatial database engine. It adds to PostgreSQL several spatial data types and over 300 functions for working with these spatial types. It does for PostgreSQL what Oracle Spatial and Oracle Locator do for Oracle, what IBM DB2 Spatial Extender and IBM Informix Spatial DataBlade do for DB2 and Informix, and what the geometry and geography types packaged in Microsoft SQL Server 2008+ do for SQL Server. PostGIS supports many of the OGC/ISO SQL/MM–compliant spatial functions you’ll find in these other OGC-compliant databases, as well as numerous additional ones that are unique to PostGIS.

 Readers coming from other ANSI/ISO–compliant spatial databases, or other relational databases such as those we’ve mentioned, will feel right at home with PostgreSQL and PostGIS. PostgreSQL is the most ANSI/ISO SQL–compliant database management system around. In a similar vein, PostGIS supports many of the industry-standard OGC/ISO SQL/MM spatial database functions, types, and operations.

 The main raison d’être of this book is to provide a companion volume to the official PostGIS documentation—to serve as a guidebook for navigating through the hundreds of functions offered by PostGIS. We wanted to create a book that would catalog many of the common spatial problems we’ve come across and various strategies for solving them with PostGIS.

 Above and beyond our primary mission, we hope to lay the foundation for thinking spatially. We hope that you’ll be able to adapt our numerous examples and recipes to your own field of endeavor, and perhaps even spawn creative scions of your own.

Acknowledgments

 We thank each other for making this book possible. If only one of us was writing this book, it would have been either a random stream of consciousness or an obsessively organized masterpiece that would never have been finished in our lifetime.

 We thank our technical reviewer, David Pombal, who went above and beyond the call of duty in reviewing all chapters of our book, testing the code, and providing invaluable constructive criticism. We’d also like to thank Paul Ramsey for contributing the foreword, and our illustrators, Gary Battiston and Alejandro Gomez.

 We thank everyone at Manning Publications. In particular, we acknowledge publisher Marjan Bace; review editor Aleksandar Dragosavljevic for organizing reviewer feedback; our development editor, Jeff Bleiel, who endured many revisions of our chapters; and our production team of Benjamin Berg, Andy Carroll, Katie Tennant, Dottie Marsico, Janet Vail, Mary Piergies, and others for keeping us focused during the production process.

 Our exposure to PostGIS would not be possible without the City of Boston Department of Neighborhood Development (DND), particularly the MIS and Policy Development and Research divisions where Regina was first exposed to GIS and PostGIS. A special thanks to fellow members of the PostGIS development team and Steering Committee: Bborie Park, Paul Ramsey, Sandro Santilli, Nicklas Avén, Olivier Courtin, Mateusz Loskot, Pierre Racine, Jorge Arévalo, and others; each ensures that every new release of PostGIS has great features and that bug reports get immediate attention. We also thank the PostGIS community of newsgroup subscribers who answer questions as best and as quickly as they can, PostGIS bloggers, and package maintainers; each in their own way gives newcomers to PostGIS a warm and fuzzy feeling.

 Finally, we thank our Early Access readers and the reviewers who flagged errors and ambiguities in our text and code before publication, in particular, Alban Thomas, Alfredo Alessandrini, Amit Kulkarni, Andrew Parker, Bborie Park, Charlie Gaines, Federico Ferreri, Guy Ndjeng, Jiří Fejfar, Jonathan DeCarlo, Kulwadee Somboonviwat, Marcus Brown, Matthew Kenny, Nicklas Aven, Paolo Corti, Phillip Warner, Sarah Goodwin, Sergio Arbeo, Stephen Mather, Steven Parr, and Tarin Gamberini.

About this Book

 This second edition is updated for and focused on the PostGIS 2.0 and 2.1 series and PostgreSQL 9.1–9.3 with highlights of PostgreSQL 9.4 and the upcoming PostGIS 2.2. This book isn’t a substitute for either the official PostGIS or PostgreSQL documentation. The official PostGIS documentation does a good job of introducing you to the myriad of functions available in PostGIS and provides examples on how to use each. But it won’t tell you how to combine all these functions into a recipe to solve your problems. That’s the purpose of our book. Although it doesn’t cover all the functions available in PostGIS, this book does cover the more commonly used and interesting ones and gives you the skills you need to combine them to solve classic and more esoteric but interesting problems in spatial analysis and modeling.

 Although you can use this book as a reference source, we recommend that you also visit the official PostGIS site at http://postgis.net.

 This book focuses on two- and three-dimensional non-curved Cartesian vector geometries, two-dimensional geodetic vector geometries, raster data, and network topologies.

 Although the main purpose of this book is the use of PostGIS, we’d fall short of our mission if we neglected to provide some perspective on the landscape it lives in. PostGIS is not an island and rarely works alone. To complete the cycle, we also include the following:

 	An extensive appendix that covers PostgreSQL in great detail from setup, to backup, to security management. The appendix also covers the fundamentals of SQL and creating functions and other objects with it.

 	Several chapters dedicated to the use of PostGIS in web mapping, viewing using desktop tools, PostgreSQL PL languages commonly used with PostGIS, and extra open source add-ons such as the PostGIS-packaged TIGER geocoder and separately packaged pgRouting.

 This book in no way attempts to provide a rigorous treatment of the math underlying the PostGIS libraries. We rely on intuitive understanding for concepts such as points, lines, and polygons. In the same vein, we’re not able to delve into database theory. If we predict that a particular index should be more effective than another, we’re making educated guesses from experience, not from having mastered relational algebra and dissecting a few computer chips along the way.

Who should read this book?

 This book provides an introduction to PostGIS, and it assumes a basic comfort level with programming and working with data. The types of people we’ve found are most attracted to PostGIS and are best suited for reading this book are listed here.

GIS practitioners and programmers

 You know everything about data, geoids, and projections. You know where to find sources of data. You can create stunning applications with ArcGIS, MapInfo, Google Earth, OpenLayers, Adobe Flex, Silverlight, or other Ajax-enabled toolkits. You’re adept at generating data sources in Esri shapefiles, using MapInfo, and creating cartographic masterpieces. You may even be able to add and extract data from a spatially enabled database, but when asked questions about the data, you’re stuck. Being able to draw all the Walmarts in the United States on a map is one thing, but being able to answer the question, “How many Walmarts are east of the Mississippi?” without counting individual pushpins is a whole different ball game. Sure, you may have used desktop tools and written procedural code to answer these questions, but we hope to show you a much faster way.

 So what does a spatially enabled database offer that you don’t already have at your fingertips?

 	It provides the ability to easily intermingle spatial data with other corporate data, such as financial information, observational data, and marketing information. Yes, you can do these with Esri shapefiles, KML files, and other GIS file formats, but that requires an extra step and limits your options for joining with other relevant data. A database such as PostgreSQL has features such as a query planner that improves the speed of your joins and many commonly used statistical functions to make fairly complex questions and summary stats relatively fast to run and quick to write.

 	When collecting user data, whether that user is drawing a geometry on the screen and inputting related information or clicking a point on the map, there’s so much infrastructure built around databases that the task is much easier if you’re using one. Take, for example, rolling your own web application in .NET, PHP, Perl, Python, Java, or some other language. Each already has a driver for PostgreSQL to make inserting and querying data easy. Add to that mix the text-to-geometry functions, geometry-to-SVG, -KML, and -GeoJSON functions, and other processing functions that PostGIS provides, along with the geometry generation and manipulation functions that platforms like OpenLayers, Map-Server, and GeoServer have, and you have a myriad of options to choose from.

 	A relational database provides administrative support to easily control who has access to what, whether that be a text attribute or a geometry.

 	PostgreSQL offers triggers that can allow the generation of other things like related geometries in other tables when certain database events happen.

 	PostgreSQL has a multi-version concurrency control (MVCC) transactional core to ensure that when 100 users are reading or updating your data at the same time, your system doesn’t come screeching to a halt.

 	PostgreSQL provides the ability to write custom functions in the database that can be called from disparate applications. PostgreSQL offers several choices of languages to choose from when writing stored functions.

 	If you’re married to your preferred GIS desktop tools, don’t worry. Choosing a spatial DBMS such as PostGIS doesn’t mean you need to abandon your tools of choice. Manifold, Cadcorp, MapInfo 10+, AutoCAD, Esri ArcGIS, ArcMap, Server tools, and various commonly used desktop tools have built-in support for PostGIS. Safe FME, an extract-transform-load (ETL) favorite of GIS professionals, has supported PostGIS for a long time.

DB practitioners

 At some point in your database career, someone might have asked you a spatially oriented question about the data. Without a spatially enabled database, you’re forced to limit your thinking in terms of coordinates, location names, or other geographical attributes that can be reduced to numbers and letters. This works fine for point data, but you’re at a complete loss once areas and regions come into play. You may be able to find all the people named Smith within a county, but if we were to ask you to find all the Smiths living within 10 miles of the county, you’d be stuck.

 We want readers coming from a standard relational database background to realize that data is more than just numbers, dates, and characters, and that amazing feats of SQL can be accomplished against non-textual data. Sure, you might have stored images, documents, and other oddities in your relational database, but we doubt you were able to do much in the way of writing SQL joins against these fields.

Scientists, researchers, educators, and engineers

 A lot of highly skilled scientists, researchers, educators, and engineers use spatial analysis tools to analyze their collected data, model their inventions, or train students. Although we don’t consider ourselves the same as them, we admire these people the most because they create knowledge and improve our lives in fundamental ways. They may know a lot about mathematics, biology, chemistry, geology, physics, engineering, and so forth, but they aren’t trained in database management, relational database use, or GIS. If you’re one of these people, we hope to provide just enough of a framework to get you up to speed without too much fuss.

 What does PostgreSQL/PostGIS hold for you?

 	It gives you the ability to integrate with statistical packages such as R, and you can even write database procedural functions in PL/R that leverage the power of R.

 	PostgreSQL also supports PL/Python, which allows you to leverage the growing Python libraries for scientific research right in the database, where it can work even closer with the data than in a plain Python environment.

 	While many think of PostGIS as a tool for geographic information systems, and that’s implied by the name, we see it as a tool for spatial analysis. The distinction is that whereas geography focuses on the earth and the reference systems that bind the earth, spatial analysis focuses on space and the use of space. That space and coordinate reference system may be specific to an anthill, or to a map of a nuclear plant whose location is yet to be defined, or it may be used as a visualization tool to model the inherently non-visual, such as in process modeling. Although you may think of your particular area of interest as not being touched by spatial analysis, we challenge you to dig deeper.

 	A database is a natural repository for large quantities of data and has a lot of built-in statistical/rollup functions and constructs for producing useful reports and analyses. If you’re dealing with data of a spatial nature or using space as a visualization tool, PostGIS provides more functions to extend that analysis.

 	Much of the data needed for scientific research can be easily collected by machines (GPS, alarm systems, remote sensing devices) and directly piped to the database via automated feeds or standard import formats. In fact, collection tools such as smartphones and unmanned aircraft are becoming cheaper each day and more accessible to the general population, and the hardware to store the data is also getting cheaper.

 	Portions of data are easily distributed. A relational database is ideal for creating what we call “data dispensers” or “datamarts,” which allow other researchers to easily grab just the subset of data they need for their research or to provide data for easy download by the public.

 These profiles are the basic groups of spatial database users, but they’re not the only ones. If you’ve ever looked at the world and thought “Wouldn’t it be great if I could correlate crime statistics with the locations where we’ve planted trees?” or “Where’s the best place and time to plant our crops given the elevation model and temperature fluctuations of an area?” then PostGIS might be the easiest and most cost-effective tool for you.

Roadmap

 This book is divided into three major parts and has several supporting appendixes.

Part 1: Learning PostGIS

 Part 1 covers the fundamental concepts of spatial relational databases and PostGIS/PostgreSQL in particular. The goal of this part is to introduce you to industry-standard GIS database concepts and practices. By the end of this part, you should have a solid foundation in the various geometry, geography, raster, and topology types, and what problems each strives to solve. You should have a basic understanding of spatial reference systems and database storage options. Most important, you’ll have the ability to load, query, and view spatial data in a PostGIS-enabled PostgreSQL database.

Part 2: Putting PostGIS to work

 This part focuses on using PostGIS to solve real-world spatial problems and on optimizing for speed. You’ll learn how to do a variety of things:

 	How to do proximity analysis using both geometry and geography

 	How to use different kinds of vector operations to optimize your data

 	How to perform seamless raster processing using raster and vector data

 	How to create new vector data using raster processing, map algebra, histograms, and other raster statistics functions to compute statistics about an area of interest

 	How to create big rasters from smaller rasters using raster aggregate functions

 	How to use the packaged PostGIS TIGER geocoder for address normalization, geocoding, and reverse geocoding

 	How to use topology to ensure consistency of editing

 	How to simplify a whole network of geometries and still maintain connectedness in your simplified dataset

Part 3: Using PostGIS with other tools

 Part 3 encompasses the tools most commonly used with PostGIS for building applications. We’ll cover pgRouting, a tool you can use with PostGIS directly in the database for creating network routing applications. In addition, we’ll cover PostgreSQL stored procedure languages: PL/Python, PL/R, and PL/V8 (a.k.a. PL/JavaScript). Finally, we’ll end with a brief study of PostGIS in web applications. We’ll cover the various mapping servers used with PostGIS as well as mapping JavaScript APIs: OpenLayers and Leaflet.

Appendixes

 There are four appendixes.

 Appendix A provides additional resources for getting help on PostGIS and the ancillary tools discussed in the book.

 Appendix B shows how to get up and running with PostgreSQL and PostGIS.

 Appendix C is an SQL primer that explains the concepts of JOIN, UNION, INTERSECT, and EXCEPT. It discusses the fundamentals of rolling up data with aggregate functions and aggregate constructs, as well as the more advanced topic of using window functions and frames.

 Appendix D covers features of PostgreSQL that are rarely found in other databases.

Code and other conventions

 The following typographical conventions are used throughout the book:

 	Courier typeface is used in all code listings.

 	Courier typeface is used within the text for certain code words.

 	Sidebars and notes are used to highlight key points or introduce new terminology.

 	Code annotations are used in place of inline comments in the code. These highlight important concepts or areas of the code. Some annotations appear with numbered bullets like this, ❶, that are referenced later in the text.

Code downloads

 The examples and data for all chapters of this book can be downloaded via http://www.postgis.us/chapters_edition_2. On the book site you’ll also find descriptions of each chapter with related links for each chapter. Each chapter page has a link where you can download the full data and code for that chapter.

 The code can also be downloaded from the publisher’s website at http://www.manning.com/PostGISinActionSecondEdition. Two free sample chapters are also available for download from this site.

Author Online

 The purchase of PostGIS In Action, Second Edition includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and other users. You can access and subscribe to the forum at http://www.manning.com/PostGISinActionSecondEdition. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print. Lastly, there will be additions to the content added to the author’s online website for the book, located at www.postgis.us.

 You may also visit the authors at the PostgreSQL and Open Source GIS companion sites: www.postgresonline.com and www.bostongis.com.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through stages of exploration, play, and, interestingly, retelling of what’s being learned. People understand and remember new things, which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it’s example driven. It encourages the reader to try things out, to play with new code, and to explore new ideas.

 There’s another, more mundane, reason for the title of this book: Our readers are busy. They use books to do a job or solve a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want it. They need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration

 The figure on the cover of PostGIS in Action, Second Edition is captioned “A woman from Ubli, Croatia.” The illustration is taken from a reproduction of an album of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 Ubli is the main ferry port on the island of Lastovo, located in an archipelago of islets in the Adriatic Sea off the coast of Croatia. The main characteristic of an Ubli woman’s costume is the rich and colorful embroidery. Over a white linen dress that is trimmed with red bands, women typically wear a long blue vest decorated with red woolen roses as well as an embroidered apron. Colorful woolen socks and a little red hat decorated on the edges complete the costume. Live flowers are often added to the back of the hat.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

 Part 1. Introduction to PostGIS

 Welcome to PostGIS in Action, Second Edition. PostGIS is a spatial database extender for the PostgreSQL database management system. This book will teach you the fundamentals of spatial databases in general, key concepts in geographic information systems (GIS), and more specifically how to configure, load, and query a PostGIS-enabled database. You’ll learn how to perform actions with single lines of SQL code that you thought were possible only with a desktop GIS system. By using spatial SQL, much of the heavy lifting that would require many manual steps in desktop GIS tools can be scripted and automated.

 This book is divided into three sections and four appendixes. Part 1 covers the fundamentals of spatial databases, GIS, and working with spatial data. Although part 1 is focused on PostGIS, many of the concepts you’ll learn in part 1 are equally applicable to other spatial relational databases.

 Chapter 1 covers the fundamentals of spatial databases and what you can do with a spatially enabled database that you can’t do with a standard relational database. It also introduces features that are fairly unique to PostGIS. It concludes with a fast-paced example of loading fast-food restaurant longitude/latitude data and converting it to geometric points, loading road data from Esri shapefiles, and doing spatial summaries by joining these two sets of data.

 Chapter 2 covers all the spatial types that PostGIS has to offer. You’ll learn how to create these using various functions and learn about concepts unique to each spatial type.

 Chapter 3 is an introduction to spatial reference systems, and we’ll explain the concepts behind them, why they’re important for working with geometry, raster, and topology, and how to work with them.

 Chapter 4 covers how to load spatial data into PostGIS using packaged tools as well as additional third-party open source tools. You’ll learn how to load geometry and geography data using the shp2pgsql command-line tool packaged with all PostGIS distributions, as well as the shp2pgsql-gui GUI loader/exporter that’s packaged with some desktop distributions of PostGIS. You’ll also learn how to load raster data using the PostGIS-packaged raster2pgsql command-line tool and how to import and export both raster and vector data of various formats using the GDAL/OGR suite. You’ll also learn how to load OpenStreetMap data using the commonly available osm2pgsql command-line tool.

 Chapter 5 covers some of the more common, open source, desktop tools for viewing and querying PostGIS data.

 Chapter 6 starts getting into the simpler core functions that are used with geometry and geography functions. These all take single geometry or geography objects and morph them or take text representations of them and convert them to PostGIS spatial objects.

 Chapter 7 is an introduction to raster functions. It covers some functions for creating rasters, interrogating rasters, and setting pixel values.

 Chapter 8 covers geocoding with the packaged PostGIS TIGER geocoder. You’ll learn how to load U.S. Census TIGER data using functions packaged with the TIGER geocoder. Once the data is loaded, you’ll learn how to use the packaged functions to normalize, geocode, and reverse geocode data.

 Chapter 9 concludes this first part by introducing you to spatial relationships. Spatial relationships are most important when working with sets of data. In later sections of the book, we’ll use these concepts to do things like spatial joins.

 Chapter 1. What is a spatial database?

 This chapter covers:

 Spatial databases in problem solving

 Spatial data types

 Modeling with spatial in mind

 Why you might use PostGIS/PostgreSQL for a spatial database

 Loading and querying spatial data

 Most folks experience their first spatially enabled application when they see pushpins tacked onto points of interest on an interactive map. This provides a glimpse into the vast and varied field of geographic information systems (GIS).

 We’ll begin this chapter with a pushpin model. As we demonstrate its limited usefulness, we’ll introduce the need for a spatial database—not just any database, but PostGIS. PostGIS is a spatial database extender for the PostgreSQL database management system. We’ll provide a brief introduction to the entire PostGIS suite and whet your appetite with an example that goes far beyond what you can accomplish with pushpins. The data and code used in this chapter can be found at http://www.postgis.us/chapter_01_edition_2.

1.1. Thinking spatially

 Popular mapping sites such as OpenStreetMap, Google Maps, Bing Maps, MapQuest, and Yahoo have empowered people in many walks of life to answer the question “Where is something?” by displaying teardrop shapes on a gorgeously detailed, interactive map. No longer are we restricted to textual descriptions of “where,” like “Turn right at the supermarket and it’ll be the third house on the right with a mangy dog out front.” Nor are we faced with the frustrating problem of not being able to figure out our current location on a paper map.

 Going beyond getting directions, organizations large and small have discovered that mapping can be a great resource for analyzing patterns in data. By plotting the addresses of pizza lovers, a national pizza chain can assess where to locate the next grand opening. Political organizations planning grassroots campaigns can easily see on a map where the undecided or unregistered voters are located and target their route walks accordingly. Even though the pushpin model offers unprecedented geographical insight, the reasoning that germinates from it is entirely on visual.

 In the pizza example, the chain might be able to see the concentration of pizza lovers in a city by means of adding pushpins. But what if they need to differentiate pizza lovers by income level? If the chain has a gourmet offering, it would be a good idea to locate new restaurants in the midst of mid- to high-income pizza lovers. The pizza chain planners could use pushpins of different colors on an interactive map to indicate various income tiers, but the heuristic visual reasoning will now be much more complicated, as shown in figure 1.1. Not only do the planners need to look at the concentration of pushpins, they must also keep the varying colors or icons of the pins in mind. Add another variable to the map, like households with lactose-intolerant adults, and the problem overwhelms our feeble minds. Spatial databases come to the rescue. A spatial database has column data types specifically designed to store objects in space—these data types can be added to database tables. The information stored is usually geographic in nature, such as a point location or the boundary of a lake. The spatial database also provides special functions and indexes for querying and manipulating that data, which can be called from a query language such as Structured Query Language (SQL). A spatial database is often used as just a storage container for spatial data, but it can do much more than that. Although a spatial database need not be relational in nature, most are.

 Figure 1.1. Pushpin madness!

 [image:]

 A spatial database gives you a storage tool, an analysis tool, and an organizing tool all in one. Presenting data visually isn’t a spatial database’s only goal. The pizza shop planners can store an infinite number of attributes of the pizza-loving household, including income level, number of children in the household, pizza-ordering history, and even religious preferences and cultural upbringing (as they relate to topping choices on a pizza). More important, the analysis need not be limited to the number of variables that can be juggled in the brain. The planners can make very specific requests, like “Give me a list of neighborhoods ranked by the number of high-income pizza lovers who have more than two children.” Furthermore, they can easily incorporate additional data from varied sources, such as the location and rating of existing pizzerias from restaurant review sites or the health-consciousness level of various neighborhoods as identified by the local health commission. Their questions of the database could be as complicated as “Show me the region with the highest number of households where the average closest distance to any pizza parlor with a star-ranking below 5 is greater than 16 kilometers (10 miles). Oh, and toss out the health-conscious neighborhoods.”

 Table 1.1 shows what the results of such a spatial query might look like.

 Table 1.1. Results of a spatial query

 	
 Region

 	
 Households

 	
 Restaurants

 	
 Distance

 	Region A

 	194

 	1

 	17.1 km

 Suppose you aren’t a mapping user, but are more of a data user. You work with data day in and day out, never needing to plot anything on a map. You’re familiar with questions like, “Give me all the employees who live in Chicago,” or “Count up the number of customers in each postal code.” Suppose you have the latitude and longitude of all the employees’ addresses; you could ask questions like “Give me the average distance that each employee must travel to work.” This is the extent of the kind of spatial queries that you can formulate with conventional databases, where data types consist mainly of text, numbers, and dates.

 Suppose the question posed is “Give me the number of houses within two miles of the coastline requiring evacuation in the event of a hurricane” or “How many households would be affected by the noise of a newly proposed runway?” Without spatial support, these questions would require you to collect or derive additional values for each data point. For the coastline question, you’d need to determine the distance from the beach, house by house. This could involve algorithms to find the shortest distance to fixed intervals along the coastline or require a series of SQL queries to order all the houses by proximity to the beach and then make a cut. With spatial support, all you need to do is reformulate the question slightly as “Find all houses within a two-mile radius of the coastline.” A spatially enabled database can intrinsically work with data types like coastlines (modeled as linestrings), buffer zones (modeled as polygons), and beach houses (modeled as points).

 As with most things in life worth pursuing, nothing comes without some effort. You’ll need to climb a gentle learning curve to tap into the power of spatial analysis. The good news is that unlike other good things in life, the database that we’ll introduce you to is completely free—moneywise.

 If you’re able to figure out how to get data into your Google map, you’ll have no problem taking the next step. If you can write queries in non-spatially enabled databases, we’ll open your eyes and mind to something beyond the mundane world of numbers, dates, and strings. Let’s get started.

1.2. Introducing PostGIS

 PostGIS is a free and open source library that spatially enables the free and open source PostgreSQL object-relational database management system (ORDBMS). We want you to choose PostgreSQL as your relational database and PostGIS as your spatial database extender for PostgreSQL.

 1.2.1. Why PostGIS

 PostGIS started as a project of Refractions Research and has since been adopted and improved on by government, public organizations, and private companies.

 The power of PostGIS is enhanced by other supporting projects:

 	
Proj4 —Provides projection support

 	
Geometry Engine Open Source (GEOS) —Advanced geometry-processing support

 	
Geospatial Data Abstraction Library (GDAL) —Provides many advanced raster-processing features

 	
Computational Geometry Algorithms Library (CGAL/SFCGAL) —Enables advanced 3D analysis

 Most of these projects, including PostGIS, now fall under the umbrella of the Open Source Geospatial Foundation (OSGeo). The foundation of PostGIS is the PostgreSQL ORDBMS, which provides transactional support, gist index support for spatial objects, and a query planner out of the box. It’s a great testament to the power and flexibility of PostgreSQL that Refractions chose to build on top of PostgreSQL rather than on any other open source database.

Standards conformance

 PostGIS and PostgreSQL conform to industry standards more closely than most products. PostgreSQL supports many of the newer ANSI SQL features. PostGIS supports Open Geospatial Consortium (OGC) standards and the new SQL Multimedia Spec (SQL/MM) spatial standard. This means that you aren’t simply learning how to use a set of products; you’re garnering knowledge about industry standards that will help you understand other commercial and open source geospatial databases and mapping tools.

 What are OGC, OSGeo, ANSI SQL, and SQL/MM?

 OGC stands for Open Geospatial Consortium, and it’s the body that exists to standardize how geographic and spatial data is accessed and distributed. Towards that goal, they have numerous specifications that govern accessing geospatial data from web services, geospatial data delivery formats, and querying of geospatial data.

 OSGeo stands for Open Source Geospatial Foundation, and it’s the body whose initiative is to fund, support, and market open source tools and free data for GIS. There’s some overlap between the OSGeo and OGC. Both strive to make GIS data and tools available to everyone, which means they’re both concerned about open standards.

 You’ll also often hear the term American National Standards Institute (ANSI) or International Organization of Standardization (ISO) SQL. The ANSI/ISO SQL standards define general guidelines that SQL implementations should follow. These guidelines are often year-dated like ANSI SQL 92 and ANSI SQL:2011 and they build upon prior-year specs. You’ll find that many relational databases support most of the ANSI SQL 92 spec but not as much of the later specs. PostgreSQL supports many of the newer guidelines, some of which we’ll cover in appendix C. The ANSI/ISO SQL Multimedia spec (SQL/MM) is a specification that, among other things, defines standard functions for spatial data used in SQL.

 As spatial became not so special and almost an expected part of high-end relational databases, much of what OGC governed fell under the ANSI/ISO SQL–making body. As a result, you’ll often see the newer SQL/MM specs referring to spatial types with an ST_prefix, like ST_Geometry and ST_Polygon, instead of the unadorned Geometry and Polygon from the older OGC/SFSQL (Spatial Features for SQL) specs.

 If your data and your APIs implement standards supported by many kinds of software—Cadcorp, Safe FME, AutoCAD, Manifold, MapInfo, Esri ArcGIS, ogr2ogr/GDAL, OpenJUMP, QGIS, deegree, MapGuide, UMN MapServer, GeoServer, or even standard programming tools like PHP, Python, Perl, ASP.NET, SQL, or new emerging tools—then everyone can use the tools that they feel most comfortable with, or that fit their work processes, or that they can afford, and share information with one another. OSGeo tries to ensure that regardless of how small your pocketbook is, you can still afford to view and analyze GIS data. OGC and ANSI/ISO SQL try to enforce standards across all products so that regardless of how expensive your GIS platform is, you can still make your hard work available to everyone. This is especially important for government agencies whose salaries and tools are paid for with tax dollars; for students who have a lot of will, the intelligence to learn, and advanced technology but have small pockets; and even for smaller vendors who have a compelling offering for specific kinds of users but who are often snubbed by larger vendors because they can’t support (or lack access to) the private API standards of the big-name vendors.

 PostGIS is supported by a vast number of GIS proprietary desktop and server tools. You can find a listing of some of these in appendix A, section A.3. PostGIS is also the preferred spatial relational database of most open source geospatial desktop and web-mapping server tools. We’ll cover some of the more common ones in chapters 5 and 17.

PostGIS is powerful

 PostGIS provides many spatial operators, spatial functions, spatial data types, and spatial indexing enhancements to PostgreSQL. If you add to the mix the complementary features that PostgreSQL and other related projects provide, then you have a jam-packed powerhouse at your disposal that’s well suited for sophisticated GIS analysis and is a valuable tool for learning GIS.

 You’ll be hard pressed to find the following features in other spatial databases:

 	Functions to work with GeoJSON and Keyhole Markup Language (KML), allowing web applications to talk directly to PostGIS without the need for additional serializing schemes or translations

 	Comprehensive geometry-processing functions that go far beyond basic geometric operations, including functions for fixing invalid geometries and for simplifying and deconstructing geometries

 	Built-in 3D and topology support

 	Over 150 seamless operations for working with vectors and rasters in tandem, as well as for converting between the two families

 GeoJSON and KML data formats

 Geographic JavaScript Object Notation (GeoJSON; http://geojson.org) and Keyhole Markup Language (KML; http://en.wikipedia.org/wiki/Keyhole_Markup_Language) are two of the most popular vector formats used by web-mapping applications:

 	GeoJSON is an extension of JSON that’s used for representing JavaScript objects. It adds to the JSON standard support for geographic objects.

 	KML is an XML format developed by Keyhole (which was purchased by Google), first used in Google’s mapping products and later supported by various mapping APIs.

 These are only two of the many formats that PostGIS can output.

Built on top of PostgreSQL

 The major reason PostGIS was built on the PostgreSQL platform was the ease of extensibility PostgreSQL provided for building new types and operators and for controlling the index operators. PostgreSQL was designed to be extensible from the ground up.

 PostgreSQL has a regal lineage that dates back almost to the dawn of relational databases. It’s a cousin of the Sybase and Microsoft SQL Server databases, because the people who started Sybase came from UC Berkeley and worked on the Ingres or PostgreSQL projects with Michael Stonebraker. Michael Stonebraker is considered by many to be the father of Ingres and PostgreSQL and to be one of the founding fathers of object-relational database management systems. The source code of Sybase SQL Server was later licensed to Microsoft to produce Microsoft SQL Server.

 PostgreSQL’s claim to fame is that it’s the most advanced open source database in existence. It has the speed and functionality to compete with the popular commercial enterprise offerings, and it’s used to power databases terabytes in size. As time has moved on, new usability features have been added, making it not only the most advanced, but perhaps the most flexible relational database out there. For more details about the features of PostgreSQL and the key enhancements in newer versions that are lacking in most other databases (including expensive proprietary ones), please refer to appendix B.

 PostgreSQL is becoming a one-size-fits-all database that doesn’t sacrifice the needs and wants of any database users. Most OS distributions carry a fairly new version that provides a quick and painless install process. Since the last edition of this book, cloud offerings have come on board that provide PostgreSQL with PostGIS out of the box. Some popular cloud versions of PostgreSQL that PostGIS users enjoy are CartoDB, Heroku PostgreSQL, and Amazon RDS for PostgreSQL.

Free—as in money

 The starting package of Esri’s ArcGIS for Server is well over $10,000 and gets higher as you add more cores. Licenses for SQL Server start at $5,000 and can easily cost you $20,000 for a modest server. The commercial version of Oracle’s Spatial starts at $20,000 per core and doesn’t even include the cost of the Enterprise license.

 Oracle Standard ships with Oracle Locator, but this elementary tool lacks most of the medium and advanced functionality that PostGIS offers. The comparable Oracle Spatial requires the purchase of Oracle Enterprise.

 PostGIS is free. ‘Nuff said.

Free—as in freedom

 PostGIS and PostgreSQL are open source. PostGIS is under a GPL v2 license; PostgreSQL is under a BSD-style license, which means you can both see and modify the source code. If you find a feature missing, you can contribute a patch or pay a developer to add the feature. Adding features to PostGIS and PostgreSQL generally costs much less than the licensing costs for proprietary counterparts. If you discover a bug in PostGIS, you can fix it instead of just reporting it. You have more freedom to control your destiny with PostGIS and PostgreSQL than you do with comparable proprietary offerings. You can install them on as many servers as you want, and you aren’t limited by artificial restrictions on how many cores you can use.

 The openness of PostGIS has spawned an explosion of user-contributed add-ons and community-funded features. These are the most notables ones to date: raster support, geodetic support, topology support, improved 3D support, faster spatial indexes, and Topologically Integrated Geographic Encoding and Referencing (TIGER) geocoder enhancements.

 The release cycles for PostGIS and PostgreSQL are radically shorter than those of commercial offerings. With contributions from users, PostgreSQL evolves at a rate of one minor version per year and one micro version per two months, with bugs getting immediate attention. You don’t have to wait years in anticipation of features promised in subsequent releases. If you choose to live on the bleeding edge, you can even download a new build every other week.

 1.2.2. Alternatives to PostGIS

 Admittedly, PostGIS isn’t the only spatial database in use today. Early entrants were dominated by proprietary offerings, and PostGIS broke this mold. Successors to PostGIS are gravitating towards installations with lightweight footprints for use on mobile devices. We’re also beginning to see rudimentary spatial features in NoSQL databases like MongoDB, CouchDB, and Solr.

Oracle Spatial

 Oracle was the one that started it all. In Oracle 7, joint development efforts with Canadian scientists gave birth to SDO (Spatial Data Option). In later releases, Oracle redubbed this lovechild Oracle Spatial.

 Oracle Spatial isn’t available with lower-priced editions of Oracle. Only when you fork out the money for Oracle Enterprise Edition will you have the luxury of being able to buy the Oracle Spatial option.

 Standard Oracle installations do come with something called Oracle Locator, which offers the basic geometry types, proximity functions, and some spatial aggregates, but it lacks processing features like union aggregation functions and intersection functions.

Microsoft SQL Server

 Microsoft introduced spatial support in their SQL Server 2008 offering with its built-in Geometry and Geodetic Geography types and companion spatial functions. To Microsoft’s credit, you’ll get the same feature set with their express, standard, enterprise, and data center offerings. You may just be limited regarding database size, how many processors you can use, and what query plan features you’re allowed.

 Microsoft’s spatial feature, except their curved and geodetic support, pales in comparison to PostGIS. Admittedly, Microsoft SQL Server 2012 has probably got the best curve and geodetic support of any database—it’s the only one to support curved geometries in geodetic space. But don’t expect to find numerous output/input functions, such as input/output for KML and JSON, or raster support, or the numerous processing functions that PostGIS has.

SpatiaLite

 Our favorite kid on the block is SpatiaLite, which is an add-on to the open source SQLite portable database. SpatiaLite is especially interesting because it can be used as a low-end companion to PostGIS and other high-end, spatially enabled databases. It can run on an Android smartphone, and it can be used to create master/slave applications to provide basic lightweight spatial support for portable devices.

 SpatiaLite also has a companion, RasterLite, that’s mostly focused on raster data storage and display, and so makes a great companion to the raster analysis that’s present in PostGIS. SpatiaLite and RasterLite also use many of the core libraries that PostGIS uses: GEOS, PROJ, and GDAL. This makes it an even more fitting companion to PostGIS, because many of the conventions are the same and much of the ecosystem around PostGIS also supports or is starting to support SpatiaLite/RasterLite.

 What SpatiaLite lacks is a strong enterprise database behind it that allows for writing advanced functions and spatial aggregate functions. That’s why some spatial queries possible in PostGIS are harder to write or are not even possible in SpatiaLite.

 SpatiaLite/SQLite stores data as a single file that’s easily transportable. This makes it less threatening to deploy for users new to databases or GIS, and easier to deploy as a lightweight offline database companion to a server-side database like PostGIS/PostgreSQL.

MySQL

 MySQL has had elementary spatial support since version 4, but as a database MySQL is handicapped by its lack of a powerful SQL engine. Its primary audience is still developers who are looking for a database that will store something, rather than do something. Earlier MySQL spatial support made a fatal mistake of not providing indexing capabilities except on MyISAM tables—spatial queries rely heavily on indexing for speedy performance. In version 5.6, MySQL extended geometric operations to work beyond bounding boxes and also allowed spatial indexes on its InnoDB storage engine.

 Oracle MySQL and other MySQL forks like MariaDB have made strides in the 5.6 variants by improving the performance of subqueries, but the query planner and SQL feature set in the MySQL family is still a kid when compared to the likes of PostgreSQL, SQL Server, and Oracle, so MySQL is not suitable for doing anything as complex as most spatial analysis.

ArcGIS by Esri

 We must give a nod to Esri, which has long packaged its spatial database engine (SDE) with its ArcGIS for Server product. The SDE engine is integrated into the ArcGIS line of products and is often used to spatially enable or augment legacy or weak database products, such as Microsoft SQL Server 2005 and Oracle Locator.

 Older versions of ArcGIS desktop required going through an SDE middle tier to get at the native offerings of your spatial database. Newer versions, starting around ArcGIS 10.0, allow for direct read-only access to PostGIS and other databases. By sidestepping the middleware, you’re free to use any version of PostGIS with ArcGIS desktop. Although their proprietary model doesn’t sit well with us, we must give them credit—a lot of credit, in fact—for being one of the first major companies to introduce GIS analysis to commercial and government organizations. They paved the way, but still stand in the way, for the rise of free and open source GIS.

 1.2.3. Installing PostGIS

 We encourage you to install the latest version of PostgreSQL and PostGIS—PostgreSQL 9.4 and PostGIS 2.1 at the time of writing. The introduction of the extension model in PostgreSQL 9.1 greatly simplified the installation of add-ons (such as PostGIS) to two steps. First, you locate and install the binaries for your particular OS into your PostgreSQL directories. Second, you individually enable the extensions for each database as needed. For instance, if you have ten databases on your server, but only two require PostGIS, you’d only enable PostGIS for the two.

 PostGIS must be enabled in each database

 One characteristic of PostgreSQL that confuses many people coming from other database systems is that custom extensions like PostGIS, hstore, PL/JavaScript, and PL/Python must be enabled in each database they will be used in. This isn’t the case for built-in types like Full-Text, XML, PostgreSQL 9.2+ JSON, and so on, which are always present.

 Many of the popular Linux/Unix distributions include PostGIS 2.1 in their repository. Use yum or apt-get to install the binaries. For Mac users, there are a couple of popular distributions, all itemized on http://postgis.net/install. For Windows, we recommend using the EnterpriseDB StackBuilder. Please refer to appendix A for more details on where to obtain binaries for your OS.

 Once you’ve successfully installed the binaries, you can create a database with a command such as this:

 CREATE DATABASE postgis_in_action;

 You next enable PostGIS in your database by connecting to the database and running the single-line SQL command in the following listing. Enabling the extension rarely fails, but you may encounter dependency errors, especially if you have earlier versions of PostGIS floating around.

 Listing 1.1. Enabling PostGIS in a database

 CREATE EXTENSION postgis;

 Two popular tools come packaged with PostgreSQL: psql and pgAdmin. You use these tools to create databases, users, and compose queries.

 Psql is strictly a command-line tool. If you don’t have a GUI, psql is your only option.

 If you have the luxury of a graphical interface, we encourage you to use the more newbie-friendly pgAdmin. PgAdmin can be installed separately from PostgreSQL. You can find source code as well as precompiled binaries at the pgAdmin site, http://www.pgadmin.org.

 To enable extensions in pgAdmin, use the extension install section pictured in figure 1.2.

 Figure 1.2. Database with postgis extension installed

 [image:]

 If postgis isn’t listed, you can install it by right-clicking the Extensions branch, choosing New Extension, and picking postgis from the menu. You should see postgis listed in the Add Extension menu if you installed the binaries and don’t have it already installed in your selected database.

Verifying versions of PostGIS and PostgreSQL

 After a PostGIS install, do a quick verification of the version to make sure the installation succeeded. Execute the following query:

 SELECT postgis_full_version();

 If all is well, you should see the version of PostGIS, as well as the versions of the supporting GEOS, GDAL, PROJ, LIBXML, and LIBJSON libraries, as shown here:

 POSTGIS="2.1.2 r12389"
GEOS="3.4.2-CAPI-1.8.2 r3924"
PROJ="Rel. 4.8.0, 6 March 2012"
GDAL="GDAL 1.10.0, released 2013/04/24"
LIBXML="2.7.8" LIBJSON="UNKNOWN" RASTER

 Installing visualization tools

 Unlike conventional character-based databases, spatial databases must be experienced visually. When you view a bitmap file, you’d much rather see the rendered bitmap than the bits themselves. Similarly, you’d much rather see your spatial objects rendered rather than their textual representations.

 Many visualization tools are available for free download, with OpenJump and QGIS being two of the more popular ones. We encourage you to install multiple viewing tools for comparison. Chapter 5 offers a quick comparison and installation guide to get you started with these tools.

1.3. Spatial data types

 There are four key spatial types offered by PostGIS: geometry, geography, raster, and topology. PostGIS has always supported the geometry type from its inception. It introduced support for geography in PostGIS 1.5. PostGIS 2.0 raised the bar more by incorporating raster and network topology support. Although PostGIS 2.1 introduces many more functions, perhaps the most important feature it provides is faster speed, particularly for raster and geography operations:

 	
Geometry —The planar type. This was the very first model and it’s still the most popular type that PostGIS supports. It’s the foundation of the other types. It uses the Cartesian math you learned about in high school geometry.

 	
Geography —The spheroidal geodetic type. Lines and polygons are drawn on the earth’s curved surface, so they’re curved rather than straight lines.

 	
Raster —The multiband cell type. Rasters model space as a grid of rectangular cells, each containing a numeric array of values.

 	
Topology —The relational model type. Topology models the world as a network of connected nodes, edges, and faces. Objects are composed of these and may share these with other objects. There are really two related concepts in topology—the network, which defines what elements each thing is composed of, and routing. PostGIS 2+ packages the network topology model, which is often just referred to as topology. Network topology ensures that when you change the edge of an object, other objects sharing that edge will change accordingly. Routing is commonly used with PostGIS via a long-supported add-on called pgRouting. Routing not only cares about connectedness, but also how costly that connectedness is. PgRouting is mostly used for building trip navigation applications (taking into account the cost of tolls or delays due to construction), but it can be used for any application where costs along a path are important. We’ll cover pgRouting in later chapters of this book.

 These four types can coexist in the same database and even as separate columns in the same table. For example, you can have a geometry that defines the boundaries of a plant, and you can have a raster that defines the concentration of toxic waste along each part of the boundary.

 1.3.1. Geometry type

 In two dimensions, you can represent all geographical entities with three building blocks: points, linestrings, and polygons (see figure 1.3). For example, an interstate highway crossing the salt flats of Utah clearly jumps out as linestrings cutting through a polygon. A desolate gas station located somewhere along the interstate can be a point.

 Figure 1.3. Basic geometries: a point, a linestring, and a polygon

 [image:]

 But you need not limit yourself to the macro dimensions of road atlases. Look around your home. Use rectangular polygons to represent rooms. The wiring and the piping running behind the walls would be linestrings. You can use either a point or a polygon to stand in for the dog house, depending on its size. Just by abstracting the landscape to 2D points, linestrings, and polygons, you have enough to model everything that could crop up on a map or a blueprint.

 Don’t be overly concerned with the rigorous definition of the geometries. Questions such as how many angles will fit into a point, and what is the width of a linestring are best left for mathematicians and philosophers. To us, points, linestrings, and polygons are simplified models of reality. As such, they’ll never perfectly mimic the real thing. Also, don’t worry if you feel that we’re leaving out other geometries. Two good examples are beltways around a metropolis and hippodromes. The former could be well represented by circles; the latter by ellipses. You’ll do fine by approximating them using linestrings with many segments, and polygons with many edges.

 The geometry type treats the world as a flat Cartesian grid. The mathematics behind the model requires nothing more than the analytic geometry you learned in high school. The geometry model is intuitively appealing and computationally speedy, but it suffers from one major shortcoming—the flat earth.

 1.3.2. Geography type

 The curvature of the earth comes into play when you’re modeling anything that extends beyond the visual horizon. Although geometry works for architectural floor plans, city blocks, and runway diagrams, it comes up short when you model shipping lanes, airways, or continents, or whenever you consider two locations that are far apart. You can still perform distance computations without abandoning the Cartesian underpinnings by sprinkling a few sines and cosines into your formulas, but the minute you need to compute areas, the math becomes intractable.

 A better solution is to use a new family of data types based on geodetic coordinates—geography. This new family shields the PostGIS user from the complexity of the math. As a trade-off, geography offers fewer functions, and it trails geometry in speed. You’ll find the same point, linestring, and polygon data types in geography; just keep in mind that the linestrings and polygons conform to the curves of the earth.

 Are geometry and geography standard or not?

 The geometry type is a long-accepted OGC SQL/MM type that you’ll find in other relational databases. Geography, on the other hand, isn’t a standard type and is only found in PostGIS and SQL Server.

 The PostGIS geography type is loosely patterned after the SQL Server 2008+ geography type. For general use cases, you can think of the SQL Server geography type and PostGIS geography type as the same kind of animal.

 1.3.3. Raster type

 Geometry and geography are vector-based data types. Loosely speaking, anything you can sketch with an ultra-fine pen without running short on ink lends itself to vector representation. Vectors are well suited to modeling designed or constructed features, but suppose you snap a colored photo of the coral-rich Tasmania sea. With its motley colors and fractal patterns, you’re going to have a hard time constructing lines and polygons out of the photo. Your best hope is to quantize the photo into microscopic rectangles and assign a color value to each. Raster data is exactly this—a mosaic of pixels.

 Perhaps the best example of a raster is the television you stare at every day, for hours on end. A TV screen is nothing more than a giant raster with some 2 million pixels. Each pixel stores three different color values: the intensity of red, green, and blue (hence the term RGB). In raster-speak, each color is called a band. The scale of each pixel’s edges corresponds to the underlying spatial reference system—if you’re measuring in meters, the pixel represents one square meter of area.

 If you’re buying a TV set, the physical number of pixels will matter greatly to you: the larger the number of pixels, the bigger the viewing area and the more money it’ll cost you. For GIS purposes, the pixel has no physical meaning. It’s nothing more than a bundle of data. Terms like pixel length or size don’t apply. Each pixel represents a certain unit of area in reality, nothing more.

 Raster data almost always originates from instrumental data collection and often serves as the raw material for generating vector data. As such, you’ll encounter plenty more sources of raster data than vector data. PostGIS will let you overlay vector data atop raster data and vice versa. The satellite view of Google maps is a perfect example of such an overlay. You see roads superimposed on top of the satellite imagery.

 Rasters appear in the following applications:

 	Land coverage or land use.

 	Temperature and elevation variations. This is a single-band raster where each square holds a measured temperature or elevation value.

 	Color aerial and satellite photos. These have four bands—one for each of the colors of the RGBA color space.

 1.3.4. Topology type

 When you gaze down at the terrain from your private jet, what you witness is not distinct geometries on a barren terrestrial plane, but an interwoven network of points, linestrings, and polygons. A cornfield abuts a wheat field, abuts a pasture, abuts a large expanse of prairie. Roads, rivers, fences, or other artificial boundaries divide them all. The surface of the earth (at least the parts that host humanity) resembles a completed jigsaw puzzle. Topology models take on this jigsaw perspective of the world. Topology recognizes the inherent interconnection of geographic features and exploits it to help you better manage data.

 Consider a historical example where you want to model the United States and Mexico as two large polygons. Prior to the Gadsden Purchase, the northern boundary of Mexico extended well into present day Arizona and parts of New Mexico. For 33 cents per acre, the U.S. “purchased” 30 million acres from Mexico. The U.S. polygon grew as the Mexico polygon shrank. If you were using the geometry family to model the two polygons, you’d have to perform two operations to get your record-keeping straight: enlarge the U.S. and shrink Mexico. Using the topology model, you only need to perform one operation—either the enlargement or the shrinkage—because topology tracks the fact that the U.S. abuts Mexico. If the U.S. grows on its southern border, Mexico must shrink on its northern border. One operation implies the other.

 Topology isn’t concerned with the exact shape and location of geographic features, but with how they’re connected to each other.

 Topology is useful in the following applications:

 	Parcel (land lot) data, where you want to ensure that the change of one parcel boundary adjusts all other parcels that share that boundary change as well.

 	Road management, water boundaries, and jurisdiction divisions. U.S. Census MAF/Topologically Integrated Geographic Encoding and Referencing system (TIGER) data is a perfect example (http://www.census.gov/geo/www/tiger/).

 	Architecture.

1.4. Hello real world

 In this section, we’ll walk you through a full example from start to finish. Unfortunately, PostGIS is not a programming language where a few lines of code will print a Hello World message on your screen. Instead, to provide you with a true taste of PostGIS, we’ll guide you through the following steps:

 	
Digesting a problem and formulating a solution

 	Modeling

 	Gathering and loading data

 	Writing a query

 	Viewing the result

 If you’re completely new to PostGIS, just perform the tasks we ask of you for now. You won’t understand most of what you’re typing, but you’ll have the rest of this book for that. Right now, we want to give you an overview of the steps involved in writing a spatial query.

 Before going further, you’ll need to have a working copy of PostGIS 2.0 or higher and PostgreSQL 9.0 or higher (preferably 9.1+ to take advantage of the new, simpler extension installation feature), as well as ancillary tools such as pgAdmin III to compose and execute your queries. Information about acquiring and installing these can be found in appendix B. As always, if you’re starting from scratch, we recommend that you install the latest versions.

 1.4.1. Digesting the problem

 Here’s the scenario you’re faced with: you need to find the number of fast-food restaurants within one mile of a highway. As for why someone might want to do this, any of the following reasons could apply:

 	A fast-food chain is trying to locate a new store where supply falls short.

 	A highway commissioner wants to satisfy the needs of motorists, who will be paying tolls.

 	A health-conscious parent is trying to cut down the availability of fast food in the neighborhood.

 	Hungry travelers are looking for their next meal.

 First, you need to realize that you’re not going to be able to answer this question quickly or accurately with your usual arsenal of Google Maps, MapQuest, or even the latest paper map you picked up from the auto association. Learning PostGIS may not be any quicker, but you’ll have at your disposal the tools and skills to solve any and all problems of this kind in the future. Replace the highway with a lake, and you can determine how many homes surrounding the lake can be considered waterfront property. On a geodetic scale, replace the highway with the continent of Australia, and you can determine the number of islands within territorial waters. From there, you can even go on to a planetary scale and ask how many moons are within 10 million kilometers at perigee.

 Once you have an initial understanding of the problem, we recommend that you immediately perform a feasibility study, even if it’s just in your mind. You don’t want to devote time to a solution if the problem itself is impossible to solve, lacking specificity, or, worse, you have no available data source.

 Before going further, you need the postgis_in_action database you set up in section 1.2.3.

 1.4.2. Modeling

 You need to translate the real world to a model that is composed of database objects. For this example, you’ll represent the highway as a geometric linestring and the locations of fast-food restaurants as points. You’ll then create two tables: highways and restaurants.

Using schemas

 First, you need to create a schema to hold your data for this chapter. A schema is a container you’ll find in most high-end databases. It logically segments objects (tables, views, functions, and so on) for easier management.

 CREATE SCHEMA ch01;

 In PostgreSQL it’s very easy to back up selected schemas and also to set up permissions based on schemas. You could, for example, have a big schema of fairly static data that you exclude from your daily backups, and also divide schemas along user groups so that you can allow each group to manage their own schema set of data. The postgis_in _action database schemas are chapter-themed so that it’s easy to download just the set of data you need for a specific chapter. Refer to appendix D for more details about schemas and security management.

Restaurants table

 Next, you need to create a lookup table to map franchise codes to meaningful names. You can then add all the franchises you’ll be dealing with.

 Listing 1.2. Create franchise lookup table

 [image:]

 Finally, you need to create a table to hold the data you’ll be loading.

 Listing 1.3. Create restaurants table

 [image:]

 The restaurant data has no primary key, and nothing in the data file lends itself to a good natural primary key, so you create a dummy one ❶. For your later analysis, you’ll need to uniquely identify restaurants so that you don’t double-count them. Also, certain mapping servers and viewers, such as MapServer and QGIS, balk at tables without integer primary keys or unique indexes, so you need to create an autonumber primary key on the restaurants table.

 Next, you use a point geometry column to store your restaurant locations ❷. The second argument to the geometry function indicates the spatial reference ID (SRID) that you’ve selected for the restaurant data. The SRID denotes the coordinate range and how the spherical space is projected on a flat surface. We’ll get into more detail about spatial reference systems in chapter 3. If you’re coming from a GIS background, you’ll know that you must have common projections before you can compare two data sets. This example uses EPSG:2163, which is an equal-area projection covering the continental United States.

 Next, you need to place a spatial index on your geometry column:

 CREATE INDEX idx_code_restaurants_geom ON ch01.restaurants USING gist(geom);

 As part of the definition of an index in PostgreSQL, you must specify the type of index as we did in the preceding CREATE INDEX. PostGIS spatial indexes are of the gist index type.

 Although it’s not necessary for this particular data set, because it won’t be updated, you’ll create a foreign key relationship between the franchise column in the restaurants table and the lookup table. This helps prevent people from mistyping franchises in the restaurants table. Adding CASCADE UPDATE DELETE rules when you add foreign key relationships will allow you to change the franchise ID for your franchises if you want, and have those changes update the restaurants table automatically. By restricting deletes, you prevent inadvertent removal of franchises with extant records in the restaurants table. (One added benefit of foreign keys is that relational designers, such as those you’ll find in OpenOffice Base and other ERD tools, will automatically draw lines between the two tables to visually alert you to the relationship.)

 ALTER TABLE ch01.restaurants
ADD CONSTRAINT fk_restaurants_lu_franchises FOREIGN KEY (franchise)
REFERENCES ch01.lu_franchises (id) ON UPDATE CASCADE ON DELETE RESTRICT;

 You can then create an index to make the join between the two tables more efficient:

 CREATE INDEX fki_restaurants_franchises ON ch01.restaurants (franchise);

Highways table

 Next you need to create a highways table to contain the road segments that are highways.

 Listing 1.4. Create highways table

 [image:]

 In this case, you’re creating the spatial index before loading the data, but for large tables that are loaded only once, it’s more efficient to create the indexes after you have loaded the data.

 1.4.3. Loading data

 To give this example some real-world flavor, we’ll scope out real data sources.

 In this chapter, you first created the data tables and are now chasing after data to populate them. Ideally, these are the steps you’d want to take. In reality, though, you’ll sometimes find yourself subservient to the available data and begrudgingly have to alter your ideal table structure to fit what’s available.

 But don’t surrender to the availability of real data too easily. You can often create SQL scripts that will translate the less-than-perfect data from your source into your perfected data structure. Always give primacy to your model. A well-thought-out model can often ride out the vagaries of a data source. We’ll follow this mantra as we continue.

Importing a CSV file

 Fastfoodmaps.com graciously provided us with a comma-delimited file of all fast-food restaurants circa 2005. To import a CSV file, you need to create a table beforehand. After quickly studying the CSV file, you can create a staging table:

 CREATE TABLE ch01.restaurants_staging (
 franchise text,
 lat double precision,
 lon double precision
);

 Use the psql \copy command to import the CSV file into your staging table:

 copy ch01.restaurants_staging
 FROM '/data/restaurants.csv' DELIMITER as ',';

 Your purpose here is to get the CSV data into a table so you can scrutinize it more carefully and write any additional queries to sanitize the data before you insert it into the production table. In this case, the data passes the quality check, so you can proceed with the insert:

 INSERT INTO ch01.restaurants (franchise, geom)
SELECT
 franchise,
 ST_Transform(ST_SetSRID(ST_Point(lon,lat),4326),2163) As geom
FROM ch01.restaurants_staging;

 In this example, we use SRID 4326 (which corresponds to WGS 84 lon/lat), but then transform all the data to our desired planar projection for faster analysis.

 Spatial reference IDs (SRID) and spatial reference systems (SRS)

 You’ll often find number identifiers such as 4326 and 2163 in PostGIS and other spatial database code. These refer to records in the spatial_ref_sys table, where srid is the column that uniquely identifies the record. The ID 4326 is the most popular and refers to an SRS that often goes by the name WGS 84 lon/lat. We’ll go into spatial reference systems in more detail in chapter 3.

Importing from an Esri shapefile

 You’ll find Esri shapefiles to be a common storage format for spatial data, mostly due to Esri’s early preponderance in GIS. To load data from shapefiles into a PostGIS database, use the shp2pgsql command-line utility that comes with all PostGIS installations. If you’re on Windows or Linux/Unix with a graphical desktop, you can also use the GUI version of the utility, dubbed shp2pgsql-gui. Both shp2pgsql and shp2pgsql-gui can load DBF files in addition to the Esri shapefile format.

 We’ll use shp2pgsql-gui to demonstrate loading the road network data we downloaded from the National Atlas website and packaged with this chapter’s download. Using pgAdmin III, you can first highlight the database and then fire up shp2pgsql-gui using the plug-in menu or button. See figure 1.4.

 Figure 1.4. Loading into the geometry data type

 [image:]

 What if the shp2pgsql-gui plug-in doesn’t show in plug-ins?

 There are generally two reasons why the PostGIS Shapefile and Dbf-Loader option doesn’t show in your pgAdmin plug-ins menu. The first is that your distribution doesn’t install this GUI. The second is that the .ini file that pgAdmin is looking for isn’t in the right place. Refer to the “Configured shp2pgsql-gui in pgAdmin III” page (www.postgresonline.com/journal/archives/180-shp2pgsql-gui.html) for troubleshooting help.

 You can use the Add File button to add one or more shapefiles, and each file appears in the Import List. Each shapefile will load into its own table. Clicking in any cell in the file list allows you to change the preset value.

