

 [image: cover]

Streaming Data: Understanding the real-time pipeline

 Andrew G. Psaltis

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Karen Miller
Technical development editor: Gregor Zurowski
Project editor: Janet Vail
Copyeditor: Corbin Collins
Proofreader: Elizabeth Martin
Technical proofreader: Al Krinker
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617292286

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. A new holistic approach

 Chapter 1. Introducing streaming data

 Chapter 2. Getting data from clients: data ingestion

 Chapter 3. Transporting the data from collection tier: decoupling the data pipeline

 Chapter 4. Analyzing streaming data

 Chapter 5. Algorithms for data analysis

 Chapter 6. Storing the analyzed or collected data

 Chapter 7. Making the data available

 Chapter 8. Consumer device capabilities and limitations accessing the data

 2. Taking it real world

 Chapter 9. Analyzing Meetup RSVPs in real time

 The streaming data architectural blueprint

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. A new holistic approach

 Chapter 1. Introducing streaming data

 1.1. What is a real-time system?

 1.2. Differences between real-time and streaming systems

 1.3. The architectural blueprint

 1.4. Security for streaming systems

 1.5. How do we scale?

 1.6. Summary

 Chapter 2. Getting data from clients: data ingestion

 2.1. Common interaction patterns

 2.1.1. Request/response pattern

 2.1.2. Request/acknowledge pattern

 2.1.3. Publish/subscribe pattern

 2.1.4. One-way pattern

 2.1.5. Stream pattern

 2.2. Scaling the interaction patterns

 2.2.1. Request/response optional pattern

 2.2.2. Scaling the stream pattern

 2.3. Fault tolerance

 2.3.1. Receiver-based message logging

 2.3.2. Sender-based message logging

 2.3.3. Hybrid message logging

 2.4. A dose of reality

 2.5. Summary

 Chapter 3. Transporting the data from collection tier: decoupling the data pipeline

 3.1. Why we need a message queuing tier

 3.2. Core concepts

 3.2.1. The producer, the broker, and the consumer

 3.2.2. Isolating producers from consumers

 3.2.3. Durable messaging

 3.2.4. Message delivery semantics

 3.3. Security

 3.4. Fault tolerance

 3.5. Applying the core concepts to business problems

 Finance: fraud detection

 Internet of Things: a tweeting Coke machine

 E-commerce: product recommendations

 3.6. Summary

 Chapter 4. Analyzing streaming data

 4.1. Understanding in-flight data analysis

 4.2. Distributed stream-processing architecture

 A generalized architecture

 Apache Spark Streaming

 Apache Storm

 Apache Flink

 Apache Samza

 4.3. Key features of stream-processing frameworks

 4.3.1. Message delivery semantics

 State management

 Fault tolerance

 4.4. Summary

 Chapter 5. Algorithms for data analysis

 5.1. Accepting constraints and relaxing

 5.2. Thinking about time

 Stream time vs. event time

 Windows of time

 5.2.1. Sliding window

 Example usage

 Framework support

 5.2.2. Tumbling window

 Example use

 Framework support

 5.3. Summarization techniques

 5.3.1. Random sampling

 5.3.2. Counting distinct elements

 5.3.3. Frequency

 5.3.4. Membership

 5.4. Summary

 Chapter 6. Storing the analyzed or collected data

 6.1. When you need long-term storage

 Direct writing

 Indirect writing

 6.2. Keeping it in-memory

 6.2.1. Embedded in-memory/flash-optimized

 6.2.2. Caching system

 Read-through

 Refresh-ahead

 Write-through

 Write-around

 Write-back (write-behind)

 6.2.3. In-memory database and in-memory data grid

 6.3. Use case exercises

 6.3.1. In-session personalization

 Embedded in-memory/flash-optimized

 Caching system

 IMDB or IMDG

 Taking it to the next level

 6.3.2. Next-generation energy company

 6.4. Summary

 Chapter 7. Making the data available

 7.1. Communications patterns

 7.1.1. Data Sync

 Benefits

 Drawbacks

 7.1.2. Remote Method Invocation and Remote Procedure Call

 Benefits

 Drawbacks

 7.1.3. Simple Messaging

 Benefits

 Drawbacks

 7.1.4. Publish-Subscribe

 Benefits

 Drawbacks

 7.2. Protocols to use to send data to the client

 7.2.1. Webhooks

 7.2.2. HTTP Long Polling

 7.2.3. Server-sent events

 7.2.4. WebSockets

 7.3. Filtering the stream

 7.3.1. Where to filter

 7.3.2. Static vs. dynamic filtering

 7.4. Use case: building a Meetup RSVP streaming API

 7.5. Summary

 Chapter 8. Consumer device capabilities and limitations accessing the data

 8.1. The core concepts

 UI/end-user application

 Integration with third-party/stream processors

 8.1.1. Reading fast enough

 Third-party streaming API

 Your streaming API

 8.1.2. Maintaining state

 8.1.3. Mitigating data loss

 8.1.4. Exactly-once processing

 8.2. Making it real: SuperMediaMarkets

 8.3. Introducing the web client

 8.3.1. Integrating with the streaming API service

 8.4. The move toward a query language

 8.5. Summary

 2. Taking it real world

 Chapter 9. Analyzing Meetup RSVPs in real time

 9.1. The collection tier

 9.1.1. Collection service data flow

 9.2. Message queuing tier

 9.2.1. Installing and configuring Kafka

 9.2.2. Integrating the collection service and Kafka

 9.3. Analysis tier

 9.3.1. Installing Storm and preparing Kafka

 9.3.2. Building the top n Storm topology

 9.3.3. Integrating analysis

 9.4. In-memory data store

 9.5. Data access tier

 9.5.1. Taking it to production

 9.6. Summary

 The streaming data architectural blueprint

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 For as long as I can remember, I have been fascinated with speed as it relates to computing and am always trying to find a
 way to do something faster. In the late 1990s, when I spent most of my time writing software in C++, my favorite keyword was
 __asm, which means “the following block of code is in assembly language,” and I understood what was happening at the machine level.
 I worked on mobile software in the early 2000s and again the story was how could we sync data faster or make things run faster
 on the PalmPilots and Windows CE devices we were using? At the time we had huge (by that day’s standards, anyway) medical
 databases (around 25–50 MB in size) that required external cards on a PalmPilot to store and several applications that needed
 to provide interactive speed when searching and browsing the data.

 As data volumes started to grow in the industries I was working in, I found myself at the perfect intersection of large data
 sets and speed to business insight. The data was growing in volume and being generated at faster and faster speeds, and business
 wanted answers to questions in shorter and shorter timeframes from the time data was being generated. To me, it was the perfect
 marriage: large data and a need for speed. Around 2001 I began to work on marketing analytics and e-commerce applications,
 where data was continuously being updated and we needed to provide insight into it in near real time. In 2009 I started working
 at Webtrends, where my love for speed and delivering insight at speed really matured. At Webtrends, analytics was our core
 business, and the idea of real-time analytics was just starting to catch the interest of our customers. The first project
 I worked on aimed to deliver key metrics in a dashboard within five minutes of a clickstream event happening anywhere in the
 world. At the time, that was pushing the envelope.

 In 2011 I was part of an emerging products team. Our mission was to continue to push the idea of real-time analytics and try
 to disrupt our industry. After spending time researching, prototyping, and thinking through our next step, a perfect storm
 occurred. We had been looking at Apache Kafka, and then in September 2011 Apache Storm was open sourced. We immediately started
 to run like crazy with it. By winter we had early-adopter customers looking at what we were building. At that point we never
 looked back and set our sights on delivering on a Service Level Agreement (SLA) that was, in essence: “From click to dashboard
 in three seconds or less, globally!” After many months and a lot of work by what became a much larger team, we delivered on
 our promise and won the Digital Analytics New Technology of the Year award (www.digitalanalyticsassociation.org/awards2013). I was deeply involved in building and architecting all aspects of this solution, from the data collection to the initial
 UI (which was affectionately called “Bare Bones,” due to my lack of UI skills).

 We continued our pursuit and began looking at Spark Streaming when it was still part of the Berkley AMPLab. Since those days
 I have continued to pursue building more and more streaming systems that deliver on the ultimate goal of delivering insights
 at the speed of thought. Today I continue to speak internationally on the topic and work with companies across the globe in
 designing, building, and solving streaming problems.

 Even today I still see a widespread lack of understanding of all the pieces that go into building and delivering a streaming
 system. You can usually find references to pieces of the stack, but rarely do you find out how to think through the entire
 stack and understand each of the tiers.

 It is therefore with great pleasure that I have tried in this book to share and distill this real-world experience and knowledge.
 My goal has been to provide a solid foundation from which you can build and explore a complete streaming system.

Acknowledgments

 First, I want to thank my family for their support during the writing of this book. There were many weekends and nights of
 “Sorry, I can’t help with the garden (or play lacrosse or go to the get-together)—I need to write.” I’m sure that wasn’t easy
 for my children to hear; nor was it always easy for my wife to buffer and pick up my slack. Through all the highs and lows
 that go into this process their support never wavered and they remained a constant source of encouragement and inspiration.
 For this I owe a tremendous debt of gratitude to my wife and children; a simple thank you cannot express it enough.

 Thanks to Karen, my development editor, for her endless patience, understanding, and willingness to always talk things through
 with me throughout this entire journey. To Robin, my acquisition editor, for believing in me, nurturing the idea of this book,
 and being a sounding board to make sure the train was staying on the tracks during some rough patches in the early days. To
 Bert, for his teachings on how to tell a story, how to find the right level of depth with a narrative, and pedagogical insight
 into the construction of a technical book. To my technical development editor Gregor, whose very thoughtful and insightful
 feedback helped craft this book into what it is today. Lastly, but certainly not least, thanks to the entire Manning team
 for the fantastic effort to finally get us to this point.

 Thanks also to all the people who bought and read early versions of the manuscript through the MEAP early access program,
 to those who contributed to the Author Online forum, and to the countless reviewers for their invaluable feedback, including
 Andrew Gibson, Dr. Tobias Bürger, Jake McCrary, Rodrigo Abreu, Andy Keffalas, John Guthrie, Kosmas Chatzimichalis, Giuliano
 Bertoti, Carlos Curotto, Andy Kirsch, Douglas Duncan, Jeff Smith, and Sergio Fernández González, Jaromir D.B. Nemec, Jose
 Samonte, Jan Nonnen, Romit Singhai, Chris Allan, Jonathan Thoms, Steven Jenkins, Lee Gilbert, Amandeep Khurana, Charlie Gaines.
 Without all of you, this book wouldn’t be what it is today.

 Many others contributed in various different ways. I can’t mention everyone by name because the acknowledgments would just
 roll on and on, but a big thank you goes out to everyone else who had a hand in helping make this possible!

About this Book

 The world of real-time systems has been around for a long time; for many years real-time and/or streaming was solely the domain
 of hardware real-time systems. Those are systems where if an SLA isn’t met, there is potential loss of life. Over the last
 decade near-real-time systems have emerged and grown at an amazing rate. Everywhere you look you can find examples of data
 streaming: social media, games, smart cities, smart meters, your new washing machine, and the list goes on. Consider the following:
 Today if a byte of data were a gallon of water, an average home would be filled within 10 seconds; by the year 2020, it will
 only take 2 seconds. Making sense of and using such a deluge of data means building streaming systems.

 Focusing on the big ideas of streaming and real-time data, the goals of this book are two-fold: The first objective is to
 teach you how to think about the entire pipeline so you’re equipped with the skills to not only build a streaming system but
 also understand the tradeoffs at every tier. Secondly, this book is meant to provide a solid launching point for you to delve
 deeper into each tier, as your business needs require or as your interest pulls you.

How to use this book

 Although this book was designed to read from start to finish, each chapter provides enough information so that you can read
 and understood it on its own. Therefore if want to understand a particular tier, you should feel comfortable jumping straight
 to that chapter and then using what you learned there as your base for deeper exploration of the other chapters.

Who should read this book

 This book is perfect for developers or architects and has been written to be easily accessible to technical managers and business
 decision makers—no prior experience with streaming or real-time data systems required. The only technical requirement this
 book makes is that you should feel comfortable reading Java. The source code is written in Java, as is the example code that
 accompanies chapter 9

Roadmap

 The roadmap of this book is represented in figure 1. A synopsis of each chapter follows.

 Figure 1. Architectural blueprint with chapter mappings

 [image:]

 Chapter 1 introduces the architectural blueprint of the book, which tells you where we are in the pipeline and serves as a great map
 if you need to jump from tier to tier. After laying out this blueprint, chapter 1 defines a real-time system, explores the differences between real-time and in-the-moment systems, and briefly touches on
 the importance of security (which could be its own book).

 Chapter 2 explores all aspects of collecting data for a streaming system, from the interaction patterns through scaling and fault-tolerance
 techniques. This chapter covers all the relevant aspects of the collection tier and prepares you to build a scalable and reliable
 tier.

 Chapter 3 is all about how to decouple the data being collected from the data being analyzed by using a message queuing tier in the
 middle. You will learn why you need a message queuing tier, how to understand message durability and different message delivery
 semantics, and how to choose the right technology for your business problem.

 Chapter 4 dives into the common architectural patterns of distributed stream-processing frameworks, covering topics such as what message
 delivery semantics mean for this tier, how state is commonly handled, and what fault tolerance is and why we need it.

 Chapter 5 jumps from discussing architecture to querying a stream, the problems with time, and the four popular summarization techniques.
 If chapter 4 is the what for distributed stream-processing engines, chapter 5 is the how.

 Chapter 6 discusses options for storing data in-memory during and post analysis. It doesn’t spend much time discussing disk-based long-term
 storage solutions because they’re often used out of band of a streaming analysis and don’t offer the performance of the in-memory
 stores.

 Chapter 7 is where we start to discuss what to do with the data we have collected and analyzed. It talks about communications patterns
 and protocols used for sending data to a streaming client. Along the way we’ll find out how to match up our business requirements
 to the various protocols and how to choose the right one.

 Chapter 8 explores concepts to keep in mind when building a streaming client. This is not a chapter on just building an HTML web app;
 it goes much deeper into lower-level things to consider when designing the client side of a streaming system.

 Chapter 9 . . . at this point, if you have read all the way through, congrats! A lot of material is covered in the first eight chapters.
 Chapter 9 is where we make it all come to life. Here we build a complete streaming data pipeline and discuss taking our sample to production.

About the code

 All the code shown in the final chapter of this book can be found in the sample source code that accompanies this book. You
 can download the sample code free of charge from the Manning website at www.manning.com/books/streaming-data. You may also find the code on GitHub at https://github.com/apsaltis/StreamingData-Book-Examples.

 The sample code is structured as separate Maven projects, one for each of the tiers we walk through in chapter 9. Instructions for building and running the software are provided during the walkthrough in chapter 9.

 All source code in listings or in the text is in a fixed-width font like this to separate it from ordinary text. In some listings, the code is annotated to point out the key concepts.

About the author

 Andrew Psaltis is deeply entrenched in streaming systems and obsessed with delivering insight at the speed of thought. He spends most of
 his waking hours thinking about, writing about, and building streaming systems. He helps customers of all sizes build and/or
 fix complex streaming systems, speaks around the globe about streaming, and teaches others how to build streaming systems.
 When he’s not busy being busy, he’s spending time with his lovely wife, two kids, and watching as much lacrosse as possible.

Author Online

 The purchase of Streaming Data includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. To access and subscribe to the forum, point your browser to www.manning.com/books/streaming-data. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where meaningful dialogue between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking him challenging questions,
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the cover illustration

 The figure on the cover of Streaming Data is captioned “Habit of a Moor of Morrocco in winter in 1695.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer
 who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local
 dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century and collections
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then and the diversity by region and country, so rich at the time, has
 faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically,
 we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual
 and technical life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Jeffreys’ pictures.

Part 1. A new holistic approach

 Today data is streaming all around us, with new data sources coming online daily. If you’re not yet faced with building a
 real-time data system, it’s only a matter of time before you will be. More and more businesses will depend on being able to
 process and make decisions on streams of data. This first part of this book looks at a streaming system, from the point of
 ingestion all the way through delivering the data for display or consumption by other systems.

 Chapter 1 begins by introducing streaming data and laying the foundation of terms we will use. Streaming data and real time may mean different things to different people. This chapter clarifies how we will use these terms and defines our architectural blueprint that we will use as our guide throughout the book. At the end
 of chapter 1, we glance at how the security relates to streaming systems.

 The entry point to a streaming system is the collection or ingestion of data. The patterns of collecting data and preventing
 data loss are our focus throughout chapter 2.

 Upon ingestion of data we need to move it as fast as we can to a message queue (or as some may call it, message buffer). The technology used in this tier comes with various levels of durability, delivery semantics, and impact on the producers
 and consumers of data. Chapter 3 looks at best practices and how to take these features into account.

 Chapter 4 covers analyzing streaming data. The focus here is on in-flight data analysis, common stream-processing architectures, and
 the key features common to all distributed stream-processing engines.

 When using a distributed stream-processing engine, there are numerous things you need to think about. In particular, time.
 How should you think about time with a streaming system? You’ll find out in chapter 5. This chapter also discusses four powerful and common summarization techniques used when analyzing a stream of data.

 After analyzing a stream of data, you may need to store it. That may sound strange—why store it, we’re processing a stream
 of data! Chapter 6 discusses why you may need to store data, what you may want to store, and how to do it properly when processing a stream
 of data.

 By the time we get to chapter 7 we have collected, queued, analyzed, and potentially stored the stream of data. Now the discussion moves on to the next tier
 of making this data available, because in the end we need to provide the results of our analysis to another system that can
 take action on the stream.

 Chapter 8 wraps up part 1 with a discussion of the core principles to consider when building a streaming client, introduces the web client, and closes
 out with a discussion of querying a stream of data—something your users are going to want.

Chapter 1. Introducing streaming data

 This chapter covers

 	Differences between real-time and streaming data systems

 	Why streaming data is important

 	The architectural blueprint

 	Security for streaming data systems

 Data is flowing everywhere around us, through phones, credit cards, sensor-equipped buildings, vending machines, thermostats,
 trains, buses, planes, posts to social media, digital pictures and video—and the list goes on. In a May 2013 report, Scandinavian
 research center Sintef estimated that approximately 90% of the data that existed in the world at the time of the report had
 been created in the preceding two years. In April 2014, EMC, in partnership with IDC, released the seventh annual Digital
 Universe study (www.emc.com/about/news/press/2014/20140409-01.htm), which asserted that the digital universe is doubling in size every two years and would multiply 10-fold between 2013 and
 2020, growing from 4.4 trillion gigabytes to 44 trillion gigabytes. I don’t know about you, but I find those numbers hard
 to comprehend and relate to. A great way of putting that in perspective also comes from that report: today, if a byte of data were a gallon of water, in only 10 seconds there would be enough data to fill an average
 home. In 2020, it will only take 2 seconds.

 Although the notion of Big Data has existed for a long time, we now have technology that can store all the data we collect
 and analyze it. This does not eliminate the need for using the data in the correct context, but it is now much easier to ask
 interesting questions of it, make better and faster business decisions, and provide services that allow consumers and businesses
 to leverage what is happening around them.

 We live in a world that is operating more and more in the now—from social media, to retail stores tracking users as they walk through the aisles, to sensors reacting to changes in their
 environment. There is no shortage of examples of data being used today as it happens. What is missing, though, is a shared
 way to both talk about and design the systems that will enable not merely these current services but also the systems of the
 future.

 This book lays down a common architectural blueprint for how to talk about and design the systems that will handle all the
 amazing questions yet to be asked of the data flowing all around us. Even if you’ve never built, designed, or even worked
 on a real-time or Big Data system, this book will serve as a great guide. In fact, this book focuses on the big ideas of streaming
 and real-time data. As such, no experience with streaming or real-time data systems is required, making this perfect for the
 developer or architect who wants to learn about these systems. It’s also written to be accessible to technical managers and
 business decision makers.

 To set the stage, this chapter introduces the concepts of streaming data systems, previews the architectural blueprint, and
 gets you set to explore in-depth each of the tiers as we progress. Before I go over the architectural blueprint used throughout
 the book, it’s important that you gain an understanding of real-time and streaming systems that we can build upon.

1.1. What is a real-time system?

 Real-time systems and real-time computing have been around for decades, but with the advent of the internet they have become very popular. Unfortunately, with this
 popularity has come ambiguity and debate. What constitutes a real-time system?

 Real-time systems are classified as hard, soft, and near. The definitions I use in this book for hard and soft real-time are based on Hermann Kopetz’s book Real-Time Systems (Springer, 2011). For near real-time I use the definition found in the Portland Pattern Repository’s Wiki (http://c2.com/cgi/wiki?NearRealTime). For an example of the ambiguity that exists, you don’t need to look much further than Dictionary.com’s definition: “Denoting
 or relating to a data-processing system that is slightly slower than real-time.” To help clear up the ambiguity, table 1.1 breaks out the common classifications of real-time systems along with the prominent characteristics by which they differ.

 Table 1.1. Classification of real-time systems

 	
 Classification

 	
 Examples

 	
 Latency measured in

 	
 Tolerance for delay

 	Hard
 	Pacemaker, anti-lock brakes
 	Microseconds–milliseconds
 	None—total system failure, potential loss of life

 	Soft
 	Airline reservation system, online stock quotes, VoIP (Skype)
 	Milliseconds–seconds
 	Low—no system failure, no life at risk

 	Near
 	Skype video, home automation
 	Seconds–minutes
 	High—no system failure, no life at risk

 You can identify hard real-time systems fairly easily. They are almost always found in embedded systems and have very strict
 time requirements that, if missed, may result in total system failure. The design and implementation of hard real-time systems
 are well studied in the literature, but are outside the scope of this book. (If you are interested, check out the previously
 mentioned book by Hermann Kopetz.)

 Determining whether a system is soft or near real-time is an interesting exercise, because the overlap in their definitions
 often results in confusion. Here are three examples:

 	Someone you are following on Twitter posts a tweet, and moments later you see the tweet in your Twitter client.

 	You are tracking flights around New York using the real-time Live Flight Tracking service from FlightAware (http://flightaware.com/live/airport/KJFK).

 	You are using the NASDAQ Real Time Quotes application (www.nasdaq.com/quotes/real-time.aspx) to track your favorite stocks.

 Although these systems are all quite different, figure 1.1 shows what they have in common.

 Figure 1.1. A generic real-time system with consumers

 [image:]

 In each of the examples, is it reasonable to conclude that the time delay may only last for seconds, no life is at risk, and
 an occasional delay for minutes would not cause total system failure? If someone posts a tweet, and you see it almost immediately,
 is that soft or near real-time? What about watching live flight status or real-time stock quotes? Some of these can go either
 way: what if there were a delay in the data due to slow Wi-Fi at the coffee shop or on the plane? As you consider these examples,
 I think you will agree that the line differentiating soft and near real-time becomes blurry, at times disappears, is very
 subjective, and may often depend on the consumer of the data.

 Now let’s change our examples by taking the consumer out of the picture and focusing on the services at hand:

 	A tweet is posted on Twitter.

 	The Live Flight Tracking service from FlightAware is tracking flights.

 	The NASDAQ Real Time Quotes application is tracking stock quotes.

 Granted, we don’t know how these systems work internally, but the essence of what we are asking is common to all of them.
 It can be stated as follows:

 Is the process of receiving data all the way to the point where it is ready for consumption a soft or near real-time process?

 Graphically, this looks like figure 1.2.

 Figure 1.2. A generic real-time system with no consumers

 [image:]

 Does focusing on the data processing and taking the consumers of the data out of the picture change your answer? For example,
 how would you classify the following?

 	A tweet posted to Twitter

 	A tweet posted by someone whom you follow and your seeing it in your Twitter client

 If you classified them differently, why? Was it due to the lag or perceived lag in seeing the tweet in your Twitter client?
 After a while, the line between whether a system is soft or near real-time becomes quite blurry. Often people settle on calling them real-time. In this book, I aim to provide a better
 way to identify these systems.

1.2. Differences between real-time and streaming systems

 It should be apparent by now that a system may be labeled soft or near real-time based on the perceived delay experienced
 by consumers. We have seen, with simple examples, how the distinction between the types of real-time system can be hard to
 discern. This can become a larger problem in systems that involve more people in the conversation. Again, our goal here is
 to settle on a common language we can use to describe these systems. When you look at the big picture, we are trying to use
 one term to define two parts of a larger system. As illustrated in figure 1.3, the end result is that it breaks down, making it very difficult to communicate with others with these systems because we
 don’t have a clear definition.

 Figure 1.3. Real-time computation and consumption split apart

 [image:]

 On the left-hand side of figure 1.3 we have the non-hard real-time service, or the computation part of the system, and on the right-hand side we have the clients, called the consumption side of the system.

 	

 Definition: Streaming Data System

 In many scenarios, the computation part of the system is operating in a non-hard real-time fashion, but the clients may not
 be consuming the data in real time due to network delays, application design, or a client application that isn’t even running.
 Put another way, what we have is a non-hard real-time service with clients that consume data when they need it. This is called
 a streaming data system—a non-hard real-time system that makes its data available at the moment a client application needs it. It’s neither soft nor near—it is streaming.

 	

 Figure 1.4 shows the result of applying this definition to our example architecture from figure 1.3.

 Figure 1.4. A first view of a streaming data system

 [image:]

 The concept of streaming data eliminates the confusion of soft versus near and real-time versus not real-time, allowing us
 to concentrate on designing systems that deliver the information a client requests at the moment it is needed. Let’s use our
 examples from before, but this time think about them from the standpoint of streaming. See if you can split each one up and
 recognize the streaming data service and streaming client.

 	Someone you are following on Twitter posts a tweet, and moments later you see the tweet in your Twitter client.

 	You are tracking flights around New York using the real-time Live Flight Tracking service from FlightAware.

 	You are using the NASDAQ Real Time Quotes application to track your favorite stocks.

 How did you do? Here is how I thought about them:

 	
Twitter— A streaming system that processes tweets and allows clients to request the latest tweets at the moment they are needed; some
 may be seconds old, and others may be hours old.

OEBPS/01fig03_alt.jpg
Input data to process
(tweet, stock change,
flight status)

\
G
O

Non-hard reaktime.
computation

Non-hard real-time system
(computation)

7

Processed data being
consumed by clients

Clients.
(consumption)

OEBPS/01fig04_alt.jpg
Input data to process

(bweet, stock change,
fight status) /

©-

Streaming
computation \

Processed data being
‘consumed by clients

Streaming data service Streaming clients

OEBPS/01fig01.jpg
SOEIE R B o
(tweet, stock change,
flight status)

Processed data being
comsmid by ety

OEBPS/01fig02.jpg
Input data to process
(tweet, stock change,
flight status)

\

\\
S

Reaktime
‘computation

OEBPS/common0a.jpg

OEBPS/fig01_alt.jpg
Browser,
device, vending
‘machine, etc.

Chapter2

Browser,
device, vending
machine, etc.

Chapter &

|

L[]

Collection
ter

Chapter2

Message
queving tie

Chapter 3

Analysis In-memory Data
tor data store access e
Chapters 4.5 Chapter 6 Chapter 7

o

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common0b.jpg

OEBPS/cover.jpg
ferstanding the real-time pipeline

Andrew G. Psaltis

| | YT

