

 [image: cover]

Redux in Action

 Marc Garreau and Will Faurot

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Acquisitions editor: Brian Sawyer
Development editor: Toni Arritola
Technical development editor: German Frigerio
Review editor: Ivan Martinović
Project manager: David Novak
Copy editor: Katie Petito
Technical proofreader: Ryan Burrows
Proofreader: Alyson Brener
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617294976

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Dedication

 To my wife for her dance moves, my family and friends for pretending to know what I’m on about, and the universe for plain
 good luck

 Marc Garreau

 For M + D

 Will Faurot

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 Chapter 1. Introducing Redux

 Chapter 2. Your first Redux application

 Chapter 3. Debugging Redux applications

 Chapter 4. Consuming an API

 Chapter 5. Middleware

 Chapter 6. Handling complex side effects

 Chapter 7. Preparing data for components

 Chapter 8. Structuring a Redux store

 Chapter 9. Testing Redux applications

 Chapter 10. Performance

 Chapter 11. Structuring Redux code

 Chapter 12. Redux beyond React

 Installation

 Index

 List of Figures

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 Chapter 1. Introducing Redux

 1.1. What is state?

 1.2. What is Flux?

 1.2.1. Actions

 1.2.2. Dispatcher

 1.2.3. Stores

 1.2.4. Views

 1.3. What is Redux?

 1.3.1. React and Redux

 1.3.2. The three principles

 1.3.3. The workflow

 1.4. Why should I use Redux?

 1.4.1. Predictability

 1.4.2. Developer experience

 1.4.3. Testability

 1.4.4. Learning curve

 1.4.5. Size

 1.5. When should I use Redux?

 1.6. Alternatives to Redux

 1.6.1. Flux implementations

 1.6.2. MobX

 1.6.3. GraphQL clients

 Summary

 Chapter 2. Your first Redux application

 2.1. Building a task-management application

 2.1.1. Designing the state shape

 2.2. Using Create React App

 2.2.1. Installing Create React App

 2.3. Basic React components

 2.4. Revisiting the Redux architecture

 2.5. Configuring the Redux store

 2.5.1. The big picture and the store API

 2.5.2. Creating a Redux store

 2.5.3. The tasks reducer

 2.5.4. Default reducer state

 2.6. Connecting Redux and React with react-redux

 2.6.1. Adding the Provider component

 2.6.2. Passing data from Redux to React components

 2.6.3. Container and presentational components

 2.7. Dispatching actions

 2.8. Action creators

 2.8.1. Using action creators

 2.8.2. Action creators and side effects

 2.9. Handling actions with reducers

 2.9.1. Responding to actions in reducers

 2.10. Exercise

 2.11. Solution

 2.11.1. The status drop-down

 2.11.2. Dispatching an edit action

 2.11.3. Handling the action in a reducer

 Summary

 Chapter 3. Debugging Redux applications

 3.1. Introducing the Redux DevTools

 3.2. Time-travel debugging

 3.3. Visualizing changes with DevTools monitors

 3.4. Implementing the Redux DevTools

 3.5. The role of Webpack

 3.6. Hot module replacement

 3.6.1. Hot-loading components

 3.6.2. Hot-loading reducers

 3.6.3. Limitations of hot module replacement

 3.7. Preserving local state with React Hot Loader

 3.8. Exercise

 3.9. Solution

 Summary

 Chapter 4. Consuming an API

 4.1. Asynchronous actions

 4.2. Invoking async actions with redux-thunk

 4.2.1. Fetching tasks from a server

 4.2.2. API clients

 4.2.3. View and server actions

 4.3. Saving tasks to the server

 4.4. Exercise

 4.5. Solution

 4.6. Loading states

 4.6.1. The request lifecycle

 4.6.2. Adding the loading indicator

 4.7. Error handling

 4.7.1. Dispatching an error action

 Summary

 Chapter 5. Middleware

 5.1. What’s in middleware?

 5.2. Middleware basics

 5.2.1. Composing middleware

 5.3. Example: logging middleware

 5.3.1. Creating the logger middleware

 5.3.2. Using applyMiddleware to register the middleware

 5.4. Example: analytics middleware

 5.4.1. The meta property

 5.4.2. Adding analytics middleware

 5.4.3. Interlude: when and when not to use middleware

 5.4.4. Case study: how not to use middleware

 5.5. API middleware

 5.5.1. The desired API

 5.5.2. Outlining the API middleware

 5.5.3. Making the AJAX call

 5.5.4. Updating the reducer

 5.5.5. Wrapping up API middleware

 5.6. Exercise

 5.7. Solution

 Summary

 Chapter 6. Handling complex side effects

 6.1. What are side effects?

 6.2. Revisiting thunks

 6.2.1. Strengths

 6.2.2. Weaknesses

 6.3. Introducing sagas

 6.3.1. Strengths

 6.3.2. Weaknesses

 6.4. What are generators?

 6.4.1. Generator syntax

 6.4.2. Iterators

 6.4.3. Looping with generators

 6.4.4. Why generators?

 6.5. Implementing sagas

 6.5.1. Connecting saga middleware to the store

 6.5.2. Introducing the root saga

 6.5.3. Saga effects

 6.5.4. Responding to and dispatching actions

 6.6. Handling long-running processes

 6.6.1. Preparing data

 6.6.2. Updating the user interface

 6.6.3. Dispatching an action

 6.6.4. Writing a long-running saga

 6.6.5. Handling the action in the reducer

 6.6.6. Using channels

 6.7. Exercise

 6.8. Solution

 6.9. Additional side-effect management strategies

 6.9.1. Asynchronous functions with async/await

 6.9.2. Handling promises with redux-promise

 6.9.3. redux-loop

 6.9.4. redux-observable

 Summary

 Chapter 7. Preparing data for components

 7.1. Decoupling Redux from React components

 7.2. What are selectors?

 7.3. Implementing search

 7.3.1. Scaffolding out the UI

 7.3.2. Local state versus Redux state

 7.3.3. Dispatching a filter action

 7.3.4. Handling filter actions in a reducer

 7.3.5. Writing your first selector

 7.4. Introducing reselect

 7.4.1. Reselect and memoization

 7.4.2. Reselect and composition

 7.5. Implementing reselect

 7.6. Exercise

 7.7. Solution

 Summary

 Chapter 8. Structuring a Redux store

 8.1. How should I store data in Redux?

 8.2. An introduction to normalized data

 8.3. Implementing projects with nested data

 8.3.1. Overview: fetching and rendering projects

 8.3.2. Updating the server with projects

 8.3.3. Adding and dispatching fetchProjects

 8.3.4. Updating the reducer

 8.3.5. Updating mapStateToProps and selectors

 8.3.6. Adding the projects drop-down menu

 8.3.7. Editing tasks

 8.3.8. Unnecessary rendering

 8.3.9. Summary—nested data

 8.4. Normalizing projects and tasks

 8.4.1. Defining a schema

 8.4.2. Updating reducers for entities

 8.4.3. Updating selectors

 8.4.4. Creating tasks

 8.4.5. Summary—normalized data

 8.5. Organizing other types of state

 8.6. Exercise

 8.7. Solution

 Summary

 Chapter 9. Testing Redux applications

 9.1. Introduction to testing tools

 9.1.1. What does Jasmine provide?

 9.1.2. What does Jest provide?

 9.1.3. Alternatives to Jest

 9.1.4. Component testing with Enzyme

 9.2. How does testing Redux differ from React?

 9.3. Testing action creators

 9.3.1. Testing synchronous action creators

 9.3.2. Testing asynchronous action creators

 9.4. Testing sagas

 9.5. Testing middleware

 9.6. Testing reducers

 9.7. Testing selectors

 9.8. Testing components

 9.8.1. Testing presentational components

 9.8.2. Snapshot testing

 9.8.3. Testing container components

 9.9. Exercise

 9.10. Solution

 Summary

 Chapter 10. Performance

 10.1. Performance-assessment tools

 10.1.1. Performance timeline

 10.1.2. react-addons-perf

 10.1.3. why-did-you-update

 10.1.4. React developer tools

 10.2. React optimizations

 10.2.1. shouldComponentUpdate

 10.2.2. PureComponent

 10.2.3. Pagination and other strategies

 10.3. Redux optimizations

 10.3.1. Connecting the right components

 10.3.2. A top-down approach

 10.3.3. Connecting additional components to Redux

 10.3.4. Adding connect to Header and TasksPage

 10.3.5. mapStateToProps and memoized selectors

 10.3.6. Rules of thumb for advanced connect usage

 10.3.7. Batching actions

 10.4. Caching

 10.5. Exercise

 10.6. Solution

 Summary

 Chapter 11. Structuring Redux code

 11.1. Rails-style pattern

 11.1.1. Pros

 11.1.2. Cons

 11.2. Domain-style pattern

 11.2.1. Pros

 11.2.2. Cons

 11.3. Ducks pattern

 11.3.1. Pros

 11.3.2. Cons

 11.4. Selectors

 11.5. Sagas

 11.6. Styles

 11.7. Tests

 11.8. Exercise and solutions

 Summary

 Chapter 12. Redux beyond React

 12.1. Mobile Redux: React Native

 12.1.1. Handling side-effects

 12.1.2. Network connectivity

 12.1.3. Performance

 12.2. Desktop Redux: Electron

 12.2.1. Why native desktop?

 12.2.2. How Electron works

 12.2.3. Introducing Redux to Electron

 12.3. Other Redux bindings

 12.3.1. Angular

 12.3.2. Ember

 12.4. Redux without a framework

 12.5. Exercise and solutions

 Summary

 Installation

 Setting up a server

 Installing and configuring json-server

 Installing axios

 Redux Thunk

 Configuring the Redux DevTools

 Installing lodash

 Installing Enzyme

 Installation script

 Index

 List of Figures

 List of Listings

Foreword

 Since its release in mid-2015, Redux has captured the attention of the JavaScript world. From its humble beginnings as a proof-of-concept
 for a conference demo and label as “just another Flux implementation,” it’s grown to become the most widely used state management
 solution for React applications. It’s also been adopted for use by the Angular, Ember, and Vue communities and inspired dozens
 of imitations and spinoffs.

 One of my favorite quotes is, “Redux is a generic framework that provides a balance of just enough structure and just enough
 flexibility. As such, it provides a platform for developers to build customized state management for their use-cases, while
 being able to reuse things like the graphical debugger or middleware.”[1] Indeed, while Redux supplies a basic set of tools to work with and outlines a general pattern to follow for organizing your
 app’s update logic, it’s ultimately up to you to decide how to build your app around Redux. You lay out your app’s file structures,
 write the reducer logic, connect the components, and determine how much abstraction you want to use on top of Redux.

 1

Joseph Savona, Facebook engineer (https://github.com/reactjs/redux/issues/775#issuecomment-257923575).

 The learning curve for Redux can be steep at times. Functional programming and immutability are unfamiliar concepts to most
 developers coming from object-oriented languages. Writing yet another TodoMVC example doesn’t really showcase the benefits
 of Redux, or how to tackle building a “real” application. But the end benefits are worth it. The ability to clearly trace
 data flow in your application and understand where/when/why/how a particular piece of state changed is incredibly valuable,
 and good Redux usage ultimately leads to code that’s more maintainable and predictable for the long term.

 I’ve spent most of my time as a Redux maintainer helping people learn Redux by answering questions, improving the docs, and
 writing tutorial blog posts. In the process, I’ve seen hundreds of different Redux tutorials. With that in mind, I’m extremely
 happy to recommend Redux in Action as one of the best resources to learn Redux.

 With Redux in Action, Marc Garreau and Will Faurot have written the Redux book I wish I’d written myself. It’s comprehensive, it’s practical,
 and it does a great job of teaching many key topics for real-world Redux apps. I especially appreciate the way this book covers
 areas that don’t always have a single clear-cut answer, such as structuring a project, by laying out the pros and cons and
 letting the reader know this is an area where they may have to decide for themselves.

 In today’s fast-moving programming world, no one book can completely capture everything there is to know about a tool. But,
 Redux in Action will give you a solid foundation and understanding of the fundamentals of Redux, how the pieces fit together, how to use
 that knowledge for real-world apps, and where to look for more information. I’m excited to see this book released and look
 forward to having you join the Redux community!

 MARK ERIKSON
Redux co-maintainer

Preface

 Redux is a curious little tool. As you’ll discover, there’s not all that much to it. You can familiarize yourself with each
 of its methods before you finish a cup of coffee.

 Not only is Redux well-contained, but it’s also a finished product. How often do you hear that? There’s no roadmap, project
 manager, or Kanban board. Commits are still added to the GitHub repository, but they’re usually improvements to documentation
 or the official examples.

 How’s that possible? You may find it helpful to think of Redux as an architecture pattern. The package you install from npm
 is an implementation of that pattern and it provides you with enough functionality to get your application off the ground.

 The real kicker is how much you can accomplish with only those few methods. The stark truth is that the Redux pattern can
 completely untangle a JavaScript application, leaving behind something more predictable, intuitive, and performant. Thanks
 to the same pattern, the developer tools also provide unprecedented insight into an application’s state and the flow of data
 through it.

 But what’s the catch? All software choices come with tradeoffs, and Redux is no exception. The cost is tremendous flexibility.
 That may sound like another advantage, but it presents interesting challenges. The Redux pattern isn’t strictly enforced by
 the library or any other tool, and the small package cannot hope to educate or guide the developer to use the pattern effectively
 itself.

 In the end, it’s up to the developer to find their own way. This explains why the lines of documentation in the GitHub repository
 dramatically outnumber the lines of implementation code. As excellent as the official documentation is, developers typically
 gather context and best practices from scattered resources on and off the web: blog posts, books, tweets, videos, online courses,
 and so on.

 The flexibility allowed by Redux also results in a rich ecosystem of add-ons: libraries for selectors, enhancers, middleware,
 and more. You’ll be hard-pressed to find two Redux applications using exactly the same toolset. While it’s great that each
 project can tailor their tools to their unique needs, this can be a source of confusion for newly introduced developers. Newcomers
 to Redux often find themselves staring down a challenging learning curve when they’re asked to absorb not only Redux, but
 also the complexity of supplemental packages layered on. This is the main reason we wanted to write the book: to distill our
 personal experience and knowledge from dozens of different sources into one neat, accessible package.

 We believe the real value of this book will be measured by how well it guides you through the rich Redux ecosystem, one bite-sized
 piece at a time. This won’t be an exhaustive look at all the supplemental tooling. Instead, we’ve chosen a handful of the
 most popular add-ons that you’re likely to see in the wild and are robust enough to tackle any client project. With that,
 happy reading! We’re grateful you’ve chosen to spend your time with us.

Acknowledgments

 Writing a book is quite the undertaking. There are so many people who were vital to the process, whether directly or indirectly,
 that naming them all here may require all of the 300+ pages left in the book. We stand on the shoulders of decades of giants.

 A strong community is the foundation of all successful software. The Redux community is a particularly strong one, and we’re
 indebted to everyone who shared an approach they liked in a blog post, helped a fellow Redux user on a GitHub issue, or answered
 a question on any of the many online platforms frequented by Redux users across the globe.

 First and foremost, this book wouldn’t be possible without the work of Dan Abramov and Andrew Clark, the creators of Redux.
 On top of spending the time to research and implement Redux, they’ve spent countless hours supporting developers over the
 past few years. We’d also like to thank the current maintainers of Redux, Mark Erikson and Tim Dorr. On top of regular maintenance,
 like responding to issues and merging code, they volunteer their time on several different platforms. Together, these folks
 contributed a substantial amount of research to this book, and it wouldn’t have been possible without them. Whether its weighing
 in on best practices, writing documentation, or providing feedback to curious developers, none of it goes unnoticed. We appreciate
 you.

 Thanks to the entire team at Manning, including all our editors, for their guidance and support. We’d like to extend a special
 thank you to Ryan Burrows for his valuable feedback that helped improve the code for this book, as well as Mark Erikson for
 taking the time to put together a wonderful foreword. We would also like to recognize the reviewers who took the time to read
 and comment on our book: Alex Chittock, Clay Harris, Fabrizio Cucci, Ferit Topcu, Ian Lovell, Jeremy Lange, John Hooks, Jorge
 Ezequiel Bo, Jose San Leandro, Joyce Echessa, Matej Strasek, Matthew Heck, Maura Wilder, Michael Stevens, Pardo David, Rebecca
 Peltz, Ryan Burrows, Ryan Huber, Thomas Overby Hansen, and Vasile Boris. Thanks to all of you.

 An extra-special thank you goes to our MEAP readers and forum participants. Your feedback and encouragement were crucial to
 the development of the book.

Marc Garreau

 Thanks first to my wife, Becky, who made the ultimate sacrifice: living with someone who’s writing a book. I promise that
 I will probably not write another. Thank you to my family for mirroring my excitement, even if I were writing a book about
 slugs. Thanks to my friends for inspiring me, helping me combat imposter syndrome, and providing healthy distractions. More
 thanks to Jeff Casimir, Jorge Téllez, Steve Kinney, Rachel Warbelow, Josh Cheek, and Horace Williams for opening doors for
 Will and me in this industry. Thank you to Ingrid Alongi and Chris McAvoy for modeling empathic technical leadership in my
 career. Finally, thank you to my early JavaScript mentors, and particularly Michael Phillips, for imparting not only tolerance,
 but also enthusiasm for the technology.

Will Faurot

 Thank you first and foremost to my parents. I wouldn’t have made it without your guidance, enthusiasm, and encouragement.
 You helped me realize that something like this was even possible. You taught me how to believe in myself. Thank you.

 Thank you to my family for all your support and love.

 Thanks to everyone at Instacart who helped by giving feedback or by talking over ideas. Special thanks to Dominic Cocchiarella
 and Jon Hsieh.

 Finally, thanks to Lovisa Svallingson, Alan Smith, Allison Larson, Gray Gilmore, Tan Doan, Hilary Denton, Andrew Watkins,
 Krista Nelson, and Regan Kuchan, who all provided invaluable feedback and encouragement throughout the writing process. You’re
 the best friends and software confidants I could ask for.

About this book

 Redux is a state management library, designed to make building complicated user interfaces easier. It’s most commonly used
 with React, which we pair it with in this book, but it’s also becoming popular with other front end libraries such as Angular.

 In 2015, the React ecosystem sorely needed Redux to come along. Predating Redux, the Flux architecture pattern was an exciting
 breakthrough, and React developers around the world tried their hand at an implementation. Dozens of libraries received noteworthy
 attention and use. Eventually, the excitement gave way to exhaustion. The number of choices for managing state in a React
 application was overwhelming.

 Redux immediately started to pick up steam after its release, and soon became the most recommended Flux-inspired library.
 Its use of a single store, focus on immutability, and amazing developer experience proved Redux to be a more simple, elegant,
 and intuitive solution to most of the issues facing existing Flux libraries. You still have several options for managing state
 in complex applications, but for those who prefer a Flux-like pattern, Redux has become the default.

 This book will walk you through the fundamentals of Redux before moving on to explore the powerful developer tools. Together,
 we’ll work step-by-step through a task-management application, where we’ll explore real-world Redux usage with a focus on
 best practices. Finally, we’ll circle back to testing strategies and the various conventions for structuring your applications.

Who should read this book

 Readers should be comfortable with JavaScript (including ES2015) and have at least basic proficiency with React. We understand,
 though, that many developers end up getting thrown into Redux at approximately the same moment they’re being introduced to
 React. We’ve tried our best to accommodate those in this category, and we believe they can make their way through this book
 with a little extra effort. However, our official recommendation is to gain a strong foundation in React prior to reading
 this book. If you haven’t done any React development, consider the Manning titles React Quickly (https://www.manning.com/books/react-quickly) or React in Action (https://www.manning.com/books/react-in-action).

How this book is organized: a roadmap

 This book includes 12 chapters and an appendix.

 Chapter 1 introduces the landscape that Redux was born into and why it was created. You’ll learn what Redux is, what it’s used for,
 and when not to use it. The chapter wraps up with several state management alternatives to Redux.

 Chapter 2 jumps headlong into your first React and Redux application. It’s a whirlwind tour of a typical workflow used to create new
 features. You’ll get a good high-level view of each of the actors involved: actions, reducers, the store, and so on.

 Chapter 3 takes a step back to introduce the high-powered Redux DevTools. The developer tools are one of the biggest selling points
 for using Redux, and this chapter demonstrates why.

 Chapter 4 finally introduces side effects to the example started in chapter 2. You’ll set up a local server and handle API requests within the Redux pattern.

 Chapter 5 dives into a more advanced feature: middleware. You’ll learn where middleware sits in the stack, what it’s capable of, and
 how to build custom middleware of your own.

 Chapter 6 explores an advanced pattern for handling more complex side effects. You’ll learn how to leverage ES6 generator functions;
 then you’ll learn how to use sagas to manage long-running processes.

 Chapter 7 puts the spotlight on the connection between the Redux store and your views. You’ll learn how selector functions work, then
 implement a robust solution using the reselect library.

 Chapter 8 addresses the common question as to how best to structure data in a Redux store. You’ll reflect on the strategy used up to
 this point in the book, then explore an alternative approach: normalization.

 Chapter 9 circles back to cover all things testing. You’ll learn about popular testing tools such as Jest and Enzyme, as well as strategies
 for testing Redux actions, reducers, selectors, and much more.

 Chapter 10 is all about keeping your application lean and mean. It covers performance profiling tools, React best practices, and Redux-specific
 strategies for boosting performance.

 Chapter 11 covers several strategies for organizing your Redux application. Redux doesn’t mind where you put things, so you’ll learn
 popular conventions that have been established.

 Chapter 12 reminds you that Redux can manage the state of more than a React web application. You’ll get a quick tour of the role Redux
 can play in mobile, desktop, and other web application environments.

 The appendix provides instructions for environment setup and tool installation. The book will direct you to the appendix at
 appropriate points.

About the code

 Most of the code examples are for Parsnip, the book’s example application. These examples are included as numbered listings,
 many of which are annotated to provide clarity and reasoning behind certain code choices. Code examples directly in the text
 can be identified by a fixed-width typeface, like this.

 Source code for the examples in the book can be downloaded from the publisher’s website at https://www.manning.com/books/redux-in-action or at https://github.com/wfro/parsnip.

 One-step install scripts are available for OSX, Linux, and Windows, and are available along with the rest of the book’s source
 code. See the appendix for instructions on getting started.

Software requirements

 Most of the code examples, especially those related to the example application, require a web browser. We recommend Chrome,
 which will work seamlessly with React and Redux developer tools.

 We bootstrapped the example application with create-react-app, which isn’t strictly required, but highly recommended. It’s
 the most painless way to set up a modern React development environment.

 We used the following Create React App and Redux versions:

 	Redux: 3.7.2

 	Create React App: 1.0.17

Book forum

 Purchase of Redux in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum, go to https://forums.manning.com/forums/redux-in-action. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors challenging questions
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

Other online resources

 The Redux community is incredibly active on several different platforms. We recommend all the following resources to learn
 more, help solidify concepts, and ask questions:

 	Reactiflux, the major chatroom for discussing React and Redux, is located at https://www.reactiflux.com/.

 	Glossary from the Redux docs. For all its benefits, Redux does require a fair amount of jargon. Especially for beginners,
 referencing back to the glossary is incredibly valuable. See https://github.com/reactjs/redux/blob/master/docs/Glossary.md for more information.

 	The official Redux documentation is at https://redux.js.org/.

 	Mark Erikson’s “Practical Redux” blog series. This is better for intermediate to advanced Redux users, because it provides
 more of a deep dive into real-world Redux usage. For more information, see http://blog.isquaredsoftware.com/2016/10/practical-redux-part-0-introduction/.

About the authors

 [image:]

 MARC GARREAU is a developer at the Ethereum Foundation on the Mist core team, where he wrangles application state in the Mist browser.
 Previously, he architected and executed applications using Redux at consultancies Cognizant and Quick Left. He’s written a
 number of popular Redux blog posts and has spoken at several JavaScript meetups in the Denver area.

 [image:]

 WILL FAUROT is a full stack developer at Instacart, where he works on various consumer-facing products. A lover of all things front end,
 he specializes in building complex user interfaces with React and Redux. In past lives he taught tennis professionally and
 recorded old-time and bluegrass music. If you listen closely on a quiet night in the Bay Area, you may hear him plucking a
 few banjo strings.

About the cover illustration

 The figure on the cover of Redux in Action is captioned “Habit of a Moorish Woman in 1695.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer
 who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local
 dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century and collections
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then and the diversity by region and country, so rich at the time, has
 faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically,
 we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual
 and technical life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Jeffreys’ pictures.

Chapter 1. Introducing Redux

 This chapter covers

 	Defining Redux

 	Understanding the differences between Flux and Redux

 	Using Redux with React

 	Introducing actions, reducers, and the store

 	Learning when to use Redux

 If you hop into any React web application in 2018, there’s a good chance you’ll find Redux there to manage its state. It’s
 remarkable that we reached this place so quickly, though. A few years ago, Redux had yet to be created and React enjoyed an
 excited and blossoming user base. Early adopters of React believed that they’d found the best solution yet to the view layer—the
 “V” of the MVC (Model-View-Controller) front-end framework puzzle. What they couldn’t agree on was how to manage the state
 of those applications once they became the size and complexity that the real world demands. Eventually, Redux settled the
 debate.

 Throughout the course of this book, we’ll explore Redux and its ecosystem through the lens of a React application. As you’ll
 learn, Redux can be plugged into JavaScript applications of all flavors, but React is an ideal playground for a few reasons.
 Chief among those reasons: Redux was created in the context of React. You’re most likely to encounter Redux within a React
 application, and React is agnostic about how you manage the data layer of your application. Without further ado, let’s jump
 in.

1.1. What is state?

 React components have the concept of local, or component, state. Within any given component, you can keep track of the value
 of an input field or whether a button has been toggled, for example. Local state makes easy work of managing a single component’s
 behavior. However, today’s single-page applications often require synchronizing a complex web of state. Nested levels of components
 may render a different user experience based on the pages a user has already visited, the status of an AJAX request, or whether
 a user is logged in.

 Let’s consider a use case involving the authentication status of a user. Your product manager tells you that when a user is
 logged into an ecommerce store, the navigation bar should display the user’s avatar image, the store should display items
 nearest to the user’s zip code first, and the newsletter signup form should be hidden. Within a vanilla React architecture,
 your options are limited for syncing state across each of the components. In the end, you’ll likely end up passing the authentication
 status and additional user data from one top-level component down to each of these nested components.

 This architecture has several disadvantages. Along the way, data may filter through components that have no use for it other
 than to pass the data on to their children. In a large application, this can result in tons of data moving through unrelated
 components, passed down via props or passed up using callbacks. It’s likely that a small number of components at the top of
 the application end up with an awareness of most of the state used throughout the entire application. At a certain scale,
 maintaining and testing this code becomes untenable. Because React wasn’t intended to solve the same breadth of problems that
 other MVC frameworks attempted to address, an opportunity existed to bridge those gaps.

 With React in mind, Facebook eventually introduced Flux, an architecture pattern for web applications. Flux became tremendously
 influential in the world of front-end development and began a shift in how we thought about state management in client-side
 applications. Facebook offered its own implementation of this pattern, but soon more than a dozen Flux-inspired state management
 libraries emerged and competed for React developers’ attention.

 This was a tumultuous time for React developers looking to scale an application. We saw the light with Flux but continued
 to experiment to find more elegant ways to manage complex state in applications. For a time, newcomers encountered a paradox
 of choice; a divided community effort had produced so many options, it was anxiety-inducing. To our surprise and delight,
 though, the dust is already settling and Redux has emerged as a clear winner.

 Redux took the React world by storm with a simple premise, a big payoff, and a memorable introduction. The premise is to store
 your entire application state in a single object using pure functions. The payoff is a totally predictable application state.
 The introduction, for most early users, came in Dan Abramov’s 2015 React Europe conference talk, titled “Live React: Hot Reloading
 with Time Travel.” Dan wowed attendees by demonstrating a Redux developer experience that blew established workflows out of
 the water. A technique called hot loading makes live application updates while maintaining existing state, and his nascent
 Redux developer tools enable you to time travel through application state—rewinding and replaying user actions with a single
 click. The combined effect offers developers debugging super powers, which we’ll explain in detail in chapter 3.

 To understand Redux, we’d first like to properly introduce you to Flux, the architecture pattern developed at Facebook and
 credited to Jing Chen. Redux and many of its alternatives are variations of this Flux architecture.

1.2. What is Flux?

 Flux is foremost an architecture pattern. It was developed as an alternative to the prevailing MVC JavaScript patterns popularized
 by incumbent frameworks, such as Backbone, Angular, or Ember. Although each framework puts its own spin on the MVC pattern,
 many share similar frustrations: generally, the flow of data between models, views, and controllers can be difficult to follow.

 Many of these frameworks use two-way data binding, in which changes to the views update corresponding models, and changes
 in the models update corresponding views. When any given view can update one or more models, which in turn can update more
 views, you can’t be blamed for losing track of the expected outcome at a certain scale. Chen contested that although MVC frameworks
 work well for smaller applications, the two-way data-binding models that many of them employ don’t scale well enough for the
 size of Facebook’s application. Developers at the company became apprehensive of making changes, for fear of the tangled web
 of dependencies producing unintended consequences.

 Flux sought to address the unpredictability of state and the fragility of a tightly coupled model and view architecture. Chen
 scrapped the two-way data-binding model in favor of a unidirectional data flow. Instead of permitting each view to interact
 with its corresponding models, Flux requires all changes to state to follow a single path. When a user clicks a Submit button
 on a form, for example, an action is sent to the application’s one and only dispatcher. The dispatcher will then send the
 data through to the appropriate data stores for updating. Once updated, the views will become aware of the new data to render.
 Figure 1.1 illustrates this unidirectional data flow.

 Figure 1.1. Flux specifies that data must flow in a single direction.

 [image:]

 1.2.1. Actions

 Every change to state starts with an action (figure 1.1). An action is a JavaScript object describing an event in your application. They’re typically generated by either a user
 interaction or by a server event, such as an HTTP response.

 1.2.2. Dispatcher

 All data flow in a Flux application is funneled through a single dispatcher. The dispatcher itself has little functionality,
 because its purpose is to receive all actions and send them to each store that has been registered. Every action will be sent
 to every store.

 1.2.3. Stores

 Each store manages the state of one domain within an application. In an ecommerce site, you may expect to find a shopping
 cart store and a product store, for example. Once a store is registered with the dispatcher, it begins to receive actions.
 When it receives an action type that it cares about, the store updates accordingly. Once a change to the store is made, an
 event is broadcast to let the views know to update using the new state.

 1.2.4. Views

 Flux may have been designed with React in mind, but the views aren’t required to be React components. For their part, the
 views need only subscribe to the stores from which they want to display data. The Flux documentation encourages the use of
 the controller-view pattern, whereby a top-level component handles communication with the stores and passes data to child
 components. Having both a parent and a nested child component communicating with stores can lead to extra renders and unintended
 side-effects.

 Again, Flux is an architecture pattern first. The Facebook team maintains one simple implementation of this pattern, aptly
 (or confusingly, depending on your perspective) named Flux. Many alternative implementations have emerged since 2014, including
 Alt, Reflux, and Redux. A more comprehensive list of these alternative implementations can be found in section 1.6.

1.3. What is Redux?

 We can’t put it much better than the official docs: “Redux is a predictable state container for JavaScript applications” (https://redux.js.org/). It’s a standalone library, but it’s used most often as a state management layer with React. Like Flux, its major goal is
 to bring consistency and predictability to the data in applications. Redux divides the responsibilities of state management
 into a few separate units:

 	The store holds all your application state in a single object. (We’ll commonly refer to this object as the state tree.)

 	The store can be updated only with actions, an object describing an event.

 	Functions known as reducers specify how to transform application state. Reducers are functions that take the current state
 in the store and an action, then return the next state after applying any updates.

 Technically speaking, Redux may not qualify as a Flux implementation. It nontrivially deviates from several of the components
 of the prescribed Flux architecture, such as the removal of the dispatcher altogether. Ultimately though, Redux is Flux-like
 and the distinction is a matter of semantics.

 Redux enjoys the benefits of a predictable data flow from the Flux architecture, but it has also found ways to alleviate the
 uncertainty of store callback registrations. As alluded to in the previous section, it can be a pain to reconcile the state
 of multiple Flux stores. Redux, instead, prescribes a single store to manage the state of an entire application. You’ll learn
 more about how this works and what the implications are in the coming sections.

 1.3.1. React and Redux

 Although Redux was designed and developed in the context of React, the two libraries are completely decoupled. React and Redux
 are connected using bindings, as shown in figure 1.2.

 Figure 1.2. Redux isn’t part of any existing framework or library, but additional tools called bindings connect Redux with React. Over
 the course of the book you’ll use the react-redux package for this.

 [image:]

 It turns out that the Redux paradigm for state management can be implemented alongside most JavaScript frameworks. Bindings
 exist for Angular, Backbone, Ember, and many more technologies.

 Although this book is fundamentally about Redux, our treatment of it is closely tied to React. Redux is a small, standalone
 library, but it fits particularly well with React components. Redux will help you define what your application does; React will handle how your application looks.

 Most of the code we’ll write over the course of the book, not to mention most of the React/Redux code you’ll write period,
 will fall into a few categories:

 	The application’s state and behavior, handled by Redux

 	Bindings, provided by the react-redux package, that connect the data in the Redux store with the view (React components)

 	Stateless components that comprise much of your view layer

 You’ll find that React is a natural ecosystem for Redux. While React has mechanisms to manage state directly in components,
 the door is wide open for Redux to come in and manage the greater application state. If you’re interested in an alternative
 ecosystem, chapter 12 explores the relationship between Redux and several other JavaScript frameworks.

 1.3.2. The three principles

 You have covered substantial ground by grokking that state in Redux is represented by a single source of truth, is read-only,
 and changes to it must be made with pure functions.

Single source of truth

 Unlike the various domain stores prescribed by the Flux architecture, Redux manages an entire application’s state in one object,
 inside one store. The use of a single store has important implications. The ability to represent the entire application state
 in a single object simplifies the developer experience; it’s dramatically easier to think through the application flow, predict
 the outcome of new actions, and debug issues produced by any given action. The potential for time-travel debugging, or the
 ability to flip back and forth through snapshots of application state, is what inspired the creation of Redux in the first
 place.

State is read-only

 Like Flux, actions are the only way to initiate changes in application state. No stray AJAX call can produce a change in state
 without being communicated via an action. Redux differs from many Flux implementations, though, in that these actions don’t
 result in a mutation of the data in the store. Instead, each action results in a shiny, new instance of the state to replace
 the current one. More on that subject in the next section.

Changes are made with pure functions

 Actions are received by reducers. It’s important that these reducers be pure functions. Pure functions are deterministic;
 they always produce the same output given the same inputs, and they don’t mutate any data in the process. If a reducer mutates
 the existing state while producing the new one, you may end up with an erroneous new state, but you also lose the predictable
 transaction log that each new action should provide. The Redux developer tools and other features, such as undo and redo functionality,
 rely on application state being computed by pure functions.

 1.3.3. The workflow

 We’ve touched briefly upon topics such as actions, reducers, and the store, but in this section, we cover each in more depth.
 What’s important to take away here is the role that each element plays and how they work together to produce a desired result.
 For now, don’t worry about finer implementation details, because you’ll have plenty of time in later chapters to apply the
 concepts you’re about to explore.

 Modern web applications are ultimately about handling events. They could be initiated by a user, such as navigating to a new
 page or submitting a form. Or they could be initiated by another external source, such as a server response. Responding to
 events usually involves updating state and re-rendering with that updated state. The more your application does, the more
 state you need to track and update. Combine this with the fact that most of these events occur asynchronously, and you suddenly
 have real obstacles to maintaining an application at scale.

 Redux exists to create structure around how you handle events and manage state in your application, hopefully making you a
 more productive and happy human in the process.

 Let’s look at how to handle a single event in an application using Redux and React. Say you were tasked with implementing
 one of the core features of a social network—adding a post to your activity feed. Figure 1.3 shows a quick mockup of a user profile page, which may or may not take its inspiration from Twitter.

 Figure 1.3. A simple mockup of a profile page. This page is backed by two main pieces of data: the total post count and the list of post
 objects in the user’s activity feed.

 [image:]

 The following distinct steps are involved in handling an event such as a new post:

 	From the view, indicate that an event has occurred (a post submission) and pass along the necessary data (the content of the
 post to be created).

 	Update state based on the type of event—add an item to the user’s activity feed and increment the post count.

 	Re-render the view to reflect the updated state.

 Sounds reasonable, right? If you’ve used React before, you’ve likely implemented features similar to this directly in components.
 Redux takes a different approach. Code to satisfy the three tasks is moved out of React components into a few separate entities.
 You’re already familiar with the View in figure 1.4, but we’re excited to introduce a new cast of characters you’ll hopefully learn to love.

 Figure 1.4. A look at how data flows through a React/Redux application. We’ve omitted a few common pieces such as middleware and selectors,
 which we’ll cover in depth in later chapters.

 [image:]

Actions

 You want to do two things in response to a user submitting a new post: add the post to the user’s activity feed and increment
 their total post count. After the user submits, you’ll kick off the process by dispatching an action. Actions are plain old
 JavaScript objects that represent an event in your application, as follows:

 {
 type: 'CREATE_POST',
 payload: {
 body: 'All that is gold does not glitter'
 }
}

 Let’s break that down. You have an object with two properties:

 	
type—A string that represents the category of action being performed. By convention, this property is capitalized and uses underscores
 as delimiters.

 	
payload—An object that provides the data necessary to perform the action. In your case, you only need one field: the contents of
 the message we want to post. The name “payload” is only a popular convention.

 Actions have the advantage of serving as audits, which keep a historical record of everything happening in your application,
 including any data needed to complete a transaction. It’s hard to understate how valuable this is in maintaining a grasp on
 a complex application. Once you get used to having a highly readable stream describing the behavior of your application in
 real time, you’ll find it hard to live without.

 Throughout the book, we’ll frequently come back to this idea of what versus how. You can think of Redux as decoupling what happens in an application from how we respond to an event. Actions handle the
 what in this equation. They describe an event; they don’t know and don’t care what happens downstream. Somewhere down the
 road you’ll eventually have to specify how to handle an action. Sounds like a job fit for a reducer!

Reducers

 Reducers are functions responsible for updating your state in response to actions. They’re simple functions that take your
 current state and an action as arguments, and return the next state. See figure 1.5.

 Figure 1.5. An abstract representation of a reducer’s function signature. If this diagram looks simple, that’s because it is! Reducers
 are meant to be simple functions that compute a result, making them easy to work with and test.

 [image:]

 Reducers are typically easy to work with. Similar to all pure functions, they produce no side effects. They don’t affect the
 outside world in any way, and they’re referentially transparent. The same inputs will always yield the same return value.
 This makes them particularly easy to test. Given certain inputs, you can verify that you receive the expected result. Figure 1.6 shows how our reducer might update the list of posts and the total post count.

 Figure 1.6. Visualizing a reducer hard at work. It accepts as input an action and the current state. The reducer’s only responsibility
 is to calculate the next state based on these arguments. No mutations, no side-effects, no funny business. Data in, data out.

 [image:]

 You’re focusing on a single event in this example, which means you need only one reducer. However, you certainly aren’t limited
 to only one. In fact, more sizable applications frequently implement several reducer functions, each concerned with a different slice of the state tree. These reducers are combined, or composed, into a single “root reducer.”

Store

 Reducers describe how to update state in response to an action, but they can’t modify state directly. That privilege rests
 solely with the store.

 In Redux, application state is stored in a single object. The store has a few main roles, which follow:

 	Hold application state.

 	Provide a way to access state.

 	Provide a way to specify updates to state. The store requires an action be dispatched to modify state.

 	Allow other entities to subscribe to updates (React components in this case). View bindings provided by react-redux will allow
 you to receive updates from the store and respond to them in your components.

 The reducer processed the action and computed the next state. Now it’s time for the store to update itself and broadcast the
 new state to all registered listeners (you care specifically about the components that make up your profile page). See figure 1.7.

 Figure 1.7. The store now completes the loop by providing the new state to our profile page. Notice that the post count has incremented,
 and the new post has been added to the activity feed. If your user adds another post, you’d follow the same exact flow. The
 view dispatches an action, reducers specify how to update state, and the store broadcasts the new state back to the view.

OEBPS/01fig02_alt.jpg

OEBPS/01fig03.jpg

OEBPS/xxvfig02.jpg

OEBPS/01fig01.jpg

OEBPS/common2.jpg

OEBPS/logo.jpg

OEBPS/xxvfig01.jpg

OEBPS/common1.jpg

OEBPS/01fig04_alt.jpg

OEBPS/01fig06_alt.jpg

OEBPS/01fig05_alt.jpg

OEBPS/cover.jpg

