

 Spring in Action, Fifth Edition

 Craig Walls

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

 ©2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jennifer Stout
Project manager: Janet Vail
Copy editors: Frances Buran, Andy Carroll
Proofreaders: Melody Dolab, Katie Tennant
Technical proofreader: Joshua White
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617294945

 Printed in the United States of America

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for Spring in Action, 4th edition

 Preface

 Acknowledgments

 About this book

 1. Foundational Spring

 Chapter 1. Getting started with Spring

 Chapter 2. Developing web applications

 Chapter 3. Working with data

 Chapter 4. Securing Spring

 Chapter 5. Working with configuration properties

 2. Integrated Spring

 Chapter 6. Creating REST services

 Chapter 7. Consuming REST services

 Chapter 8. Sending messages asynchronously

 Chapter 9. Integrating Spring

 3. Reactive Spring

 Chapter 10. Introducing Reactor

 Chapter 11. Developing reactive APIs

 Chapter 12. Persisting data reactively

 4. Cloud-native Spring

 Chapter 13. Discovering services

 Chapter 14. Managing configuration

 Chapter 15. Handling failure and latency

 5. Deployed Spring

 Chapter 16. Working with Spring Boot Actuator

 Chapter 17. Administering Spring

 Chapter 18. Monitoring Spring with JMX

 Chapter 19. Deploying Spring

 Appendix. Bootstrapping Spring applications

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for Spring in Action, 4th edition

 Preface

 Acknowledgments

 About this book

 1. Foundational Spring

 Chapter 1. Getting started with Spring

 1.1. What is Spring?

 1.2. Initializing a Spring application

 1.2.1. Initializing a Spring project with Spring Tool Suite

 1.2.2. Examining the Spring project structure

 1.3. Writing a Spring application

 1.3.1. Handling web requests

 1.3.2. Defining the view

 1.3.3. Testing the controller

 1.3.4. Building and running the application

 1.3.5. Getting to know Spring Boot DevTools

 1.3.6. Let’s review

 1.4. Surveying the Spring landscape

 1.4.1. The core Spring Framework

 1.4.2. Spring Boot

 1.4.3. Spring Data

 1.4.4. Spring Security

 1.4.5. Spring Integration and Spring Batch

 1.4.6. Spring Cloud

 Summary

 Chapter 2. Developing web applications

 2.1. Displaying information

 2.1.1. Establishing the domain

 2.1.2. Creating a controller class

 2.1.3. Designing the view

 2.2. Processing form submission

 2.3. Validating form input

 2.3.1. Declaring validation rules

 2.3.2. Performing validation at form binding

 2.3.3. Displaying validation errors

 2.4. Working with view controllers

 2.5. Choosing a view template library

 2.5.1. Caching templates

 Summary

 Chapter 3. Working with data

 3.1. Reading and writing data with JDBC

 3.1.1. Adapting the domain for persistence

 3.1.2. Working with JdbcTemplate

 3.1.3. Defining a schema and preloading data

 3.1.4. Inserting data

 3.2. Persisting data with Spring Data JPA

 3.2.1. Adding Spring Data JPA to the project

 3.2.2. Annotating the domain as entities

 3.2.3. Declaring JPA repositories

 3.2.4. Customizing JPA repositories

 Summary

 Chapter 4. Securing Spring

 4.1. Enabling Spring Security

 4.2. Configuring Spring Security

 4.2.1. In-memory user store

 4.2.2. JDBC-based user store

 4.2.3. LDAP-backed user store

 4.2.4. Customizing user authentication

 4.3. Securing web requests

 4.3.1. Securing requests

 4.3.2. Creating a custom login page

 4.3.3. Logging out

 4.3.4. Preventing cross-site request forgery

 4.4. Knowing your user

 Summary

 Chapter 5. Working with configuration properties

 5.1. Fine-tuning autoconfiguration

 5.1.1. Understanding Spring’s environment abstraction

 5.1.2. Configuring a data source

 5.1.3. Configuring the embedded server

 5.1.4. Configuring logging

 5.1.5. Using special property values

 5.2. Creating your own configuration properties

 5.2.1. Defining configuration properties holders

 5.2.2. Declaring configuration property metadata

 5.3. Configuring with profiles

 5.3.1. Defining profile-specific properties

 5.3.2. Activating profiles

 5.3.3. Conditionally creating beans with profiles

 Summary

 2. Integrated Spring

 Chapter 6. Creating REST services

 6.1. Writing RESTful controllers

 6.1.1. Retrieving data from the server

 6.1.2. Sending data to the server

 6.1.3. Updating data on the server

 6.1.4. Deleting data from the server

 6.2. Enabling hypermedia

 6.2.1. Adding hyperlinks

 6.2.2. Creating resource assemblers

 6.2.3. Naming embedded relationships

 6.3. Enabling data-backed services

 6.3.1. Adjusting resource paths and relation names

 6.3.2. Paging and sorting

 6.3.3. Adding custom endpoints

 6.3.4. Adding custom hyperlinks to Spring Data endpoints

 Summary

 Chapter 7. Consuming REST services

 7.1. Consuming REST endpoints with RestTemplate

 7.1.1. GETting resources

 7.1.2. PUTting resources

 7.1.3. DELETEing resources

 7.1.4. POSTing resource data

 7.2. Navigating REST APIs with Traverson

 Summary

 Chapter 8. Sending messages asynchronously

 8.1. Sending messages with JMS

 8.1.1. Setting up JMS

 8.1.2. Sending messages with JmsTemplate

 8.1.3. Receiving JMS messages

 8.2. Working with RabbitMQ and AMQP

 8.2.1. Adding RabbitMQ to Spring

 8.2.2. Sending messages with RabbitTemplate

 8.2.3. Receiving message from RabbitMQ

 8.3. Messaging with Kafka

 8.3.1. Setting up Spring for Kafka messaging

 8.3.2. Sending messages with KafkaTemplate

 8.3.3. Writing Kafka listeners

 Summary

 Chapter 9. Integrating Spring

 9.1. Declaring a simple integration flow

 9.1.1. Defining integration flows with XML

 9.1.2. Configuring integration flows in Java

 9.1.3. Using Spring Integration’s DSL configuration

 9.2. Surveying the Spring Integration landscape

 9.2.1. Message channels

 9.2.2. Filters

 9.2.3. Transformers

 9.2.4. Routers

 9.2.5. Splitters

 9.2.6. Service activators

 9.2.7. Gateways

 9.2.8. Channel adapters

 9.2.9. Endpoint modules

 9.3. Creating an email integration flow

 Summary

 3. Reactive Spring

 Chapter 10. Introducing Reactor

 10.1. Understanding reactive programming

 10.1.1. Defining Reactive Streams

 10.2. Getting started with Reactor

 10.2.1. Diagramming reactive flows

 10.2.2. Adding Reactor dependencies

 10.3. Applying common reactive operations

 10.3.1. Creating reactive types

 10.3.2. Combining reactive types

 10.3.3. Transforming and filtering reactive streams

 10.3.4. Performing logic operations on reactive types

 Summary

 Chapter 11. Developing reactive APIs

 11.1. Working with Spring WebFlux

 11.1.1. Introducing Spring WebFlux

 11.1.2. Writing reactive controllers

 11.2. Defining functional request handlers

 11.3. Testing reactive controllers

 11.3.1. Testing GET requests

 11.3.2. Testing POST requests

 11.3.3. Testing with a live server

 11.4. Consuming REST APIs reactively

 11.4.1. GETting resources

 11.4.2. Sending resources

 11.4.3. Deleting resources

 11.4.4. Handling errors

 11.4.5. Exchanging requests

 11.5. Securing reactive web APIs

 11.5.1. Configuring reactive web security

 11.5.2. Configuring a reactive user details service

 Summary

 Chapter 12. Persisting data reactively

 12.1. Understanding Spring Data’s reactive story

 12.1.1. Spring Data reactive distilled

 12.1.2. Converting between reactive and non-reactive types

 12.1.3. Developing reactive repositories

 12.2. Working with reactive Cassandra repositories

 12.2.1. Enabling Spring Data Cassandra

 12.2.2. Understanding Cassandra data modeling

 12.2.3. Mapping domain types for Cassandra persistence

 12.2.4. Writing reactive Cassandra repositories

 12.3. Writing reactive MongoDB repositories

 12.3.1. Enabling Spring Data MongoDB

 12.3.2. Mapping domain types to documents

 12.3.3. Writing reactive MongoDB repository interfaces

 Summary

 4. Cloud-native Spring

 Chapter 13. Discovering services

 13.1. Thinking in microservices

 13.2. Setting up a service registry

 The naked truth concerning Eureka

 Why a client-side load balancer?

 13.2.1. Configuring Eureka

 13.2.2. Scaling Eureka

 13.3. Registering and discovering services

 13.3.1. Configuring Eureka client properties

 13.3.2. Consuming services

 Summary

 Chapter 14. Managing configuration

 14.1. Sharing configuration

 14.2. Running Config Server

 14.2.1. Enabling Config Server

 14.2.2. Populating the configuration repository

 14.3. Consuming shared configuration

 14.4. Serving application- and profile-specific properties

 14.4.1. Serving application-specific properties

 14.4.2. Serving properties from profiles

 14.5. Keeping configuration properties secret

 14.5.1. Encrypting properties in Git

 14.5.2. Storing secrets in Vault

 14.6. Refreshing configuration properties on the fly

 14.6.1. Manually refreshing configuration properties

 14.6.2. Automatically refreshing configuration properties

 Summary

 Chapter 15. Handling failure and latency

 15.1. Understanding circuit breakers

 A point to make about Hystrix’s name

 15.2. Declaring circuit breakers

 15.2.1. Mitigating latency

 15.2.2. Managing circuit breaker thresholds

 15.3. Monitoring failures

 15.3.1. Introducing the Hystrix dashboard

 15.3.2. Understanding Hystrix thread pools

 15.4. Aggregating multiple Hystrix streams

 Summary

 5. Deployed Spring

 Chapter 16. Working with Spring Boot Actuator

 16.1. Introducing Actuator

 16.1.1. Configuring Actuator’s base path

 16.1.2. Enabling and disabling Actuator endpoints

 16.2. Consuming Actuator endpoints

 16.2.1. Fetching essential application information

 16.2.2. Viewing configuration details

 16.2.3. Viewing application activity

 16.2.4. Tapping runtime metrics

 16.3. Customizing Actuator

 16.3.1. Contributing information to the /info endpoint

 16.3.2. Defining custom health indicators

 16.3.3. Registering custom metrics

 16.3.4. Creating custom endpoints

 16.4. Securing Actuator

 Summary

 Chapter 17. Administering Spring

 17.1. Using the Spring Boot Admin

 17.1.1. Creating an Admin server

 17.1.2. Registering Admin clients

 17.2. Exploring the Admin server

 17.2.1. Viewing general application health and information

 17.2.2. Watching key metrics

 17.2.3. Examining environment properties

 17.2.4. Viewing and setting logging levels

 17.2.5. Monitoring threads

 17.2.6. Tracing HTTP requests

 17.3. Securing the Admin server

 17.3.1. Enabling login in the Admin server

 17.3.2. Authenticating with the Actuator

 Summary

 Chapter 18. Monitoring Spring with JMX

 18.1. Working with Actuator MBeans

 18.2. Creating your own MBeans

 18.3. Sending notifications

 Summary

 Chapter 19. Deploying Spring

 19.1. Weighing deployment options

 19.2. Building and deploying WAR files

 Microservices in application servers?

 19.3. Pushing JAR files to Cloud Foundry

 19.4. Running Spring Boot in a Docker container

 19.5. The end is where we begin

 Summary

 Appendix. Bootstrapping Spring applications

 A.1. Initializing a project with Spring Tool Suite

 A.2. Initializing a project with IntelliJ IDEA

 A.3. Initializing a project with NetBeans

 A.4. Initializing a project at start.spring.io

 A.5. Initializing a project from the command line

 A.5.1. curl and the Initializr API

 A.5.2. Spring Boot command-line interface

 A.6. Creating Spring applications with a meta-framework

 A.7. Building and running projects

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for Spring in Action, 4th edition

 “The best book for Spring—updated and revised.”

 Gregor Zurowski, Sotheby’s

 “The classic, remastered and full of awesomeness.”

 Mario Arias, Cake Solutions Ltd.

 “Informative, accurate, and insightful!

 Jeelani Shaik, D3Banking.com

 “After ten years, this is still the clearest and most comprehensive introduction to the core concepts of the Spring platform.”

 James Wright, Sword-Apak

 “This book is a quick and easy way to get into the Spring Framework Universe. Simply perfect for Java developers.”

 Jens O’Richter, freelance Senior Software Architect

 “This book belongs on the bookshelf of any serious Java developer who uses Spring.”

 Jonathan Thoms, Expedia Inc.

 “Spring in Action is an excellent travel companion for the huge landscape that is the Spring Framework.”

 Ricardo Lima, Senado Federal do Brasil

 “Pragmatic advice for Java’s most important framework.”

 Mike Roberts, Information Innovators

Preface

 After nearly 15 years of working with Spring and having written five editions of this book (not to mention Spring Boot in Action), you’d think that it’d be hard to come up with something exciting and new to say about Spring when writing the preface for this book. But nothing could be further from the truth!

 Every single release of Spring, Spring Boot, and all of the other projects in the Spring ecosystem unleashes some new amazing capabilities that rekindle the fun in developing applications. With Spring reaching a significant milestone with its 5.0 release and Spring Boot releasing version 2.0, there’s so much more Spring to enjoy that it was a no-brainer to write another edition of Spring in Action.

 The big story of Spring 5 is reactive programming support, including Spring WebFlux, a brand new reactive web framework that borrows its programming model from Spring MVC, allowing developers to create web applications that scale better and make better use of fewer threads. Moving toward the backend of a Spring application, the latest edition of Spring Data enables the creation of reactive, non-blocking data repositories. And all of this is built on top of Project Reactor, a Java library for working with reactive types.

 In addition to the new reactive programming features of Spring 5, Spring Boot 2 now provides even more autoconfiguration support than ever before as well as a completely reimagined Actuator for peeking into and manipulating a running application.

 What’s more, as developers look to break down their monolithic applications into discrete microservices, Spring Cloud provides facilities that make it easy to configure and discover microservices, as well as fortify them so they’re more resilient to failure.

 I’m happy to say that this fifth edition of Spring in Action covers all of this and more! If you’re a seasoned veteran with Spring, Spring in Action, Fifth Edition will be your guide to everything new that Spring has to offer. On the other hand, if you’re new to Spring, then there’s no better time than now to get in on the action and the first few chapters will get you up and running in no time!

 It’s been an exciting 15 years of working with Spring. And now that I’ve written this fifth edition of Spring in Action, I’m eager to share that excitement with you!

Acknowledgments

 One of the most amazing things that Spring and Spring Boot do is to automatically provide all of the foundational plumbing for an application, leaving you as a developer to focus primarily on the logic that’s unique to your application. Unfortunately, no such magic exists for writing a book. Or does it?

 At Manning, there were several people working their magic to make sure that this book is the best it can possibly be. Many thanks in particular to Jenny Stout, my development editor, and to the production team, including project manager Janet Vail, copyeditors Andy Carroll and Frances Buran, and proofreaders Katie Tennant and Melody Dolab. Thanks, too, to technical proofer Joshua White who was thorough and helpful.

 Along the way, we got feedback from several peer reviewers who made sure that the book stayed on target and covered the right stuff. For this, my thanks goes to Andrea Barisone, Arnaldo Ayala, Bill Fly, Colin Joyce, Daniel Vaughan, David Witherspoon, Eddu Melendez, Iain Campbell, Jettro Coenradie, John Gunvaldson, Markus Matzker, Nick Rakochy, Nusry Firdousi, Piotr Kafel, Raphael Villela, Riccardo Noviello, Sergio Fernandez Gonzalez, Sergiy Pylypets, Thiago Presa, Thorsten Weber, Waldemar Modzelewski, Yagiz Erkan, and Željko Trogrlić.

 As always, there’d be absolutely no point in writing this book if it weren’t for the amazing work done by the members of the Spring engineering team. I’m amazed at what you’ve created and how we continue to change how software is developed.

 Many thanks to my fellow speakers on the No Fluff/Just Stuff tour. I continue to learn so much from every one of you. I especially want to thank Brian Sletten, Nate Schutta, and Ken Kousen for conversations and emails about Spring that have helped shape this book.

 Once again, I’d like to thank the Phoenicians. You know what you did.

 Finally, to my beautiful wife Raymie, the love of my life, my sweetest dream, and my inspiration: Thank you for your encouragement and for putting up with another book project. And to my sweet and wonderful girls, Maisy and Madi: I am so proud of you and of the amazing young ladies you are becoming. I love all of you more than you can imagine or I can possible express.

About this book

 Spring in Action, Fifth Edition was written to equip you to build amazing applications using the Spring Framework, Spring Boot, and a variety of ancillary members of the Spring ecosystem. It begins by showing you how to develop web-based, database-backed Java applications with Spring and Spring Boot. It then expands on the essentials by showing how to integrate with other applications, program using reactive types, and then break an application into discrete microservices. Finally, it discusses how to ready an application for deployment.

 Although all of the projects in the Spring ecosystem provide excellent documentation, this book does something that none of the reference documents do: provide a hands-on, project-driven guide to bringing the elements of Spring together to build a real application.

Who should read this book

 Spring in Action, 5th edition is for Java developers who want to get started with Spring Boot and the Spring Framework as well as for seasoned Spring developers who want to go beyond the basics and learn the newest features of Spring.

How this book is organized: a roadmap

 The book has 5 parts spanning 19 chapters. Part 1 covers the foundational topics of building Spring applications:

 	
Chapter 1 introduces Spring and Spring Boot and how to initialize a Spring project. In this chapter, you’ll take the first steps toward building a Spring application that you’ll expand upon throughout the course of the book.

 	
Chapter 2 discusses building the web layer of an application using Spring MVC. In this chapter, you’ll build controllers that handle web requests and views that render information in the web browser.

 	
Chapter 3 delves into the backend of a Spring application where data is persisted to a relational database.

 	In chapter 4, you’ll use Spring Security to authenticate users and prevent unauthorized access to an application.

 	
Chapter 5 reveals how to configure a Spring application using Spring Boot configuration properties. You’ll also learn how to selectively apply configuration using profiles.

 Part 2 covers topics that help integrate your Spring application with other applications:

 	
Chapter 6 expands on the discussion of Spring MVC started in chapter 2 by looking at how to write REST APIs in Spring.

 	
Chapter 7 turns the tables on chapter 6 to show how a Spring application can consume a REST API.

 	
Chapter 8 looks at using asynchronous communication to enable a Spring application to both send and receive messages using the Java Message Service, RabbitMQ, or Kafka.

 	
Chapter 9 discusses declarative application integration using the Spring Integration project.

 Part 3 explores the exciting new support for reactive programming in Spring:

 	
Chapter 10 introduces Project Reactor, the reactive programming library that underpins Spring 5’s reactive features.

 	
Chapter 11 revisits REST API development, introducing Spring WebFlex, a new web framework that borrows much from Spring MVC while offering a new reactive model for web development.

 	
Chapter 12 takes a look at writing reactive data persistence with Spring Data to read and write data to Cassandra and Mongo databases.

 Part 4 breaks down the monolithic application model, introducing you to Spring Cloud and microservice development:

 	
Chapter 13 dives into service discovery, using Spring with Netflix’s Eureka registry to both register and discover Spring-based microservices.

 	
Chapter 14 shows how to centralize application configuration in a configuration server that shares configuration across multiple microservices.

 	
Chapter 15 introduces the circuit breaker pattern with Hystrix, enabling microservices that are resilient in the face of failure.

 In part 5, you’ll ready an application for production and see how to deploy it:

 	
Chapter 16 introduces the Spring Boot Actuator, an extension to Spring Boot that exposes the internals of a running Spring application as REST endpoints.

 	In chapter 17 you’ll see how to use the Spring Boot Admin to put a user-friendly browser-based administrative application on top of the Actuator.

 	
Chapter 18 discusses how to expose and consume Spring beans as JMX MBeans.

 	Finally, in chapter 19 you’ll see how to deploy your Spring application in a variety of production environments.

 In general, developers new to Spring should start with chapter 1 and work through each chapter sequentially. Experienced Spring developers may prefer to jump in at any point that interests them. Even so, each chapter builds upon the previous chapter, so there may be some context missing if you dive into the middle of the book.

About the code

 This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 Source code for the examples in this book is available for download from the publisher’s website at www.manning.com/books/spring-in-action-fifth-edition as well as from the author’s GitHub account at github.com/habuma/spring-in-action-5-samples.

Book forum

 Purchase of Spring in Action, 5th edition, includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/spring-in-action-fifth-edition. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Need additional help?

 	The Spring website has several useful getting-started guides (some of which were written by the author of this book) at https://spring.io/guides.

 	The Spring tag at StackOverflow (https://stackoverflow.com/questions/tagged/spring) as well as the Spring Boot tag at StackOverflow are great places to ask questions and help others with Spring. Helping someone else with their Spring questions is a great way to learn Spring!

About the author

 CRAIG WALLS is a principal engineer with Pivotal. He’s a zealous promoter of the Spring Framework, speaking frequently at local user groups and conferences and writing about Spring. When he’s not slinging code, Craig is planning his next trip to Disney World or Disneyland and spending as much time as he can with his wife, two daughters, two birds, and three dogs.

About the cover illustration

 The figure on the cover of Spring in Action, 5th edition, is “Le Caraco,” or an inhabitant of the province of Karak in southwest Jordan. Its capital is the city of Al-Karak, which boasts an ancient hilltop castle with magnificent views of the Dead Sea and surrounding plains. The illustration is taken from a French travel book, Encyclopédie des Voyages by J. G. St. Sauveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and travel guides such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other regions of France and abroad.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the distinctiveness and individuality of the world’s towns and provinces just two hundred years ago. This was a time when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other. The travel guide brings to life a sense of isolation and distance of that period, and of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitants of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life. We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

 Part 1. Foundational Spring

 Part 1 of this book will get you started writing a Spring application, learning the foundations of Spring along the way.

 In chapter 1, I’ll give you a quick overview of Spring and Spring Boot essentials and show you how to initialize a Spring project as you work on building Taco Cloud, your first Spring application. In chapter 2, you’ll dig deeper into the Spring MCV and learn how to present model data in the browser and how to process and validate form input. You’ll also get some tips on choosing a view template library. You’ll add data persistence to the Taco Cloud application in chapter 3. There, we’ll cover using Spring’s JDBC template, how to insert data, and how to declare JPA repositories with Spring Data. Chapter 4 covers security for your Spring application, including autoconfiguring Spring Security, defining custom user storage, customizing the login page, and securing against cross-site request forgery (CSRF) attacks. To close out part 1, we’ll look at configuration properties in chapter 5. You’ll learn how to fine-tune autoconfigured beans, apply configuration properties to application components, and work with Spring profiles.

 Chapter 1. Getting started with Spring

 This chapter covers

 	Spring and Spring Boot essentials

 	Initializing a Spring project

 	An overview of the Spring landscape

 Although the Greek philosopher Heraclitus wasn’t well known as a software developer, he seemed to have a good handle on the subject. He has been quoted as saying, “The only constant is change.” That statement captures a foundational truth of software development.

 The way we develop applications today is different than it was a year ago, 5 years ago, 10 years ago, and certainly 15 years ago, when an initial form of the Spring Framework was introduced in Rod Johnson’s book, Expert One-on-One J2EE Design and Development (Wrox, 2002, http://mng.bz/oVjy).

 Back then, the most common types of applications developed were browser-based web applications, backed by relational databases. While that type of development is still relevant, and Spring is well equipped for those kinds of applications, we’re now also interested in developing applications composed of microservices destined for the cloud that persist data in a variety of databases. And a new interest in reactive programming aims to provide greater scalability and improved performance with non-blocking operations.

 As software development evolved, the Spring Framework also changed to address modern development concerns, including microservices and reactive programming. Spring also set out to simplify its own development model by introducing Spring Boot.

 Whether you’re developing a simple database-backed web application or constructing a modern application built around microservices, Spring is the framework that will help you achieve your goals. This chapter is your first step in a journey through modern application development with Spring.

1.1. What is Spring?

 I know you’re probably itching to start writing a Spring application, and I assure you that before this chapter ends, you’ll have developed a simple one. But first, let me set the stage with a few basic Spring concepts that will help you understand what makes Spring tick.

 Any non-trivial application is composed of many components, each responsible for its own piece of the overall application functionality, coordinating with the other application elements to get the job done. When the application is run, those components somehow need to be created and introduced to each other.

 At its core, Spring offers a container, often referred to as the Spring application context, that creates and manages application components. These components, or beans, are wired together inside the Spring application context to make a complete application, much like bricks, mortar, timber, nails, plumbing, and wiring are bound together to make a house.

 The act of wiring beans together is based on a pattern known as dependency injection (DI). Rather than have components create and maintain the lifecycle of other beans that they depend on, a dependency-injected application relies on a separate entity (the container) to create and maintain all components and inject those into the beans that need them. This is done typically through constructor arguments or property accessor methods.

 For example, suppose that among an application’s many components, there are two that you’ll address: an inventory service (for fetching inventory levels) and a product service (for providing basic product information). The product service depends on the inventory service to be able to provide a complete set of information about products. Figure 1.1 illustrates the relationships between these beans and the Spring application context.

 Figure 1.1. Application components are managed and injected into each other by the Spring application context.

 [image:]

 On top of its core container, Spring and a full portfolio of related libraries offer a web framework, a variety of data persistence options, a security framework, integration with other systems, runtime monitoring, microservice support, a reactive programming model, and many other features necessary for modern application development.

 Historically, the way you would guide Spring’s application context to wire beans together was with one or more XML files that described the components and their relationship to other components. For example, the following XML declares two beans, an InventoryService bean and a ProductService bean, and wires the InventoryService bean into ProductService via a constructor argument:

 <bean id="inventoryService"
 class="com.example.InventoryService" />

<bean id="productService"
 class="com.example.ProductService" />
 <constructor-arg ref="inventoryService" />
</bean>

 In recent versions of Spring, however, a Java-based configuration is more common. The following Java-based configuration class is equivalent to the XML configuration:

 @Configuration
public class ServiceConfiguration {
 @Bean
 public InventoryService inventoryService() {
 return new InventoryService();
 }

 @Bean
 public ProductService productService() {
 return new ProductService(inventoryService());
 }
}

 The @Configuration annotation indicates to Spring that this is a configuration class that will provide beans to the Spring application context. The configuration’s class methods are annotated with @Bean, indicating that the objects they return should be added as beans in the application context (where, by default, their respective bean IDs will be the same as the names of the methods that define them).

 Java-based configuration offers several benefits over XML-based configuration, including greater type safety and improved refactorability. Even so, explicit configuration with either Java or XML is only necessary if Spring is unable to automatically configure the components.

 Automatic configuration has its roots in the Spring techniques known as autowiring and component scanning. With component scanning, Spring can automatically discover components from an application’s classpath and create them as beans in the Spring application context. With autowiring, Spring automatically injects the components with the other beans that they depend on.

 More recently, with the introduction of Spring Boot, automatic configuration has gone well beyond component scanning and autowiring. Spring Boot is an extension of the Spring Framework that offers several productivity enhancements. The most well-known of these enhancements is autoconfiguration, where Spring Boot can make reasonable guesses of what components need to be configured and wired together, based on entries in the classpath, environment variables, and other factors.

 I’d like to show you some example code that demonstrates autoconfiguration. But I can’t. You see, autoconfiguration is much like the wind. You can see the effects of it, but there’s no code that I can show you and say “Look! Here’s an example of autoconfiguration!” Stuff happens, components are enabled, and functionality is provided without writing code. It’s this lack of code that’s essential to autoconfiguration and what makes it so wonderful.

 Spring Boot autoconfiguration has dramatically reduced the amount of explicit configuration (whether with XML or Java) required to build an application. In fact, by the time you finish the example in this chapter, you’ll have a working Spring application that has only a single line of Spring configuration code!

 Spring Boot enhances Spring development so much that it’s hard to imagine developing Spring applications without it. For that reason, this book treats Spring and Spring Boot as if they were one and the same. We’ll use Spring Boot as much as possible, and explicit configuration only when necessary. And, because Spring XML configuration is the old-school way of working with Spring, we’ll focus primarily on Spring’s Java-based configuration.

 But enough of this chitchat, yakety-yak, and flimflam. This book’s title includes the phrase in action, so let’s get moving, and you can start writing your first application with Spring.

1.2. Initializing a Spring application

 Through the course of this book, you’ll create Taco Cloud, an online application for ordering the most wonderful food created by man—tacos. Of course, you’ll use Spring, Spring Boot, and a variety of related libraries and frameworks to achieve this goal.

 You’ll find several options for initializing a Spring application. Although I could walk you through the steps of manually creating a project directory structure and defining a build specification, that’s wasted time—time better spent writing application code. Therefore, you’re going to lean on the Spring Initializr to bootstrap your application.

 The Spring Initializr is both a browser-based web application and a REST API, which can produce a skeleton Spring project structure that you can flesh out with whatever functionality you want. Several ways to use Spring Initializr follow:

 	From the web application at http://start.spring.io

 	From the command line using the curl command

 	From the command line using the Spring Boot command-line interface

 	When creating a new project with Spring Tool Suite

 	When creating a new project with IntelliJ IDEA

 	When creating a new project with NetBeans

 Rather than spend several pages of this chapter talking about each one of these options, I’ve collected those details in the appendix. In this chapter, and throughout this book, I’ll show you how to create a new project using my favorite option: Spring Initializr support in the Spring Tool Suite.

 As its name suggests, Spring Tool Suite is a fantastic Spring development environment. But it also offers a handy Spring Boot Dashboard feature that (at least at the time I write this) isn’t available in any of the other IDE options.

 If you’re not a Spring Tool Suite user, that’s fine; we can still be friends. Hop over to the appendix and substitute the Initializr option that suits you best for the instructions in the following sections. But know that throughout this book, I may occasionally reference features specific to Spring Tool Suite, such as the Spring Boot Dashboard. If you’re not using Spring Tool Suite, you’ll need to adapt those instructions to fit your IDE.

 1.2.1. Initializing a Spring project with Spring Tool Suite

 To get started with a new Spring project in Spring Tool Suite, go to the File menu and select New, and then Spring Starter Project. Figure 1.2 shows the menu structure to look for.

 Figure 1.2. Starting a new project with the Initializr in Spring Tool Suite

 [image:]

 Once you select Spring Starter Project, a new project wizard dialog (figure 1.3) appears. The first page in the wizard asks you for some general project information, such as the project name, description, and other essential information. If you’re familiar with the contents of a Maven pom.xml file, you’ll recognize most of the fields as items that end up in a Maven build specification. For the Taco Cloud application, fill in the dialog as shown in figure 1.3, and then click Next.

 Figure 1.3. Specifying general project information for the Taco Cloud application

 [image:]

 The next page in the wizard lets you select dependencies to add to your project (see figure 1.4). Notice that near the top of the dialog, you can select which version of Spring Boot you want to base your project on. This defaults to the most current version available. It’s generally a good idea to leave it as is unless you need to target a different version.

 Figure 1.4. Choosing starter dependencies

 [image:]

 As for the dependencies themselves, you can either expand the various sections and seek out the desired dependencies manually, or search for them in the search box at the top of the Available list. For the Taco Cloud application, you’ll start with the dependencies shown in figure 1.4.

 At this point, you can click Finish to generate the project and add it to your workspace. But if you’re feeling slightly adventurous, click Next one more time to see the final page of the new starter project wizard, as shown in figure 1.5.

 Figure 1.5. Optionally specifying an alternate Initializr address

 [image:]

 By default, the new project wizard makes a call to the Spring Initializr at http://start.spring.io to generate the project. Generally, there’s no need to override this default, which is why you could have clicked Finish on the second page of the wizard. But if for some reason you’re hosting your own clone of Initializr (perhaps a local copy on your own machine or a customized clone running inside your company firewall), then you’ll want to change the Base Url field to point to your Initializr instance before clicking Finish.

 After you click Finish, the project is downloaded from the Initializr and loaded into your workspace. Wait a few moments for it to load and build, and then you’ll be ready to start developing application functionality. But first, let’s take a look at what the Initializr gave you.

 1.2.2. Examining the Spring project structure

 After the project loads in the IDE, expand it to see what it contains. Figure 1.6 shows the expanded Taco Cloud project in Spring Tool Suite.

 Figure 1.6. The initial Spring project structure as shown in Spring Tool Suite

 [image:]

 You may recognize this as a typical Maven or Gradle project structure, where application source code is placed under src/main/java, test code is placed under src/test/java, and non-Java resources are placed under src/main/resources. Within that project structure, you’ll want to take note of these items:

 	
mvnw and mvnw.cmd—These are Maven wrapper scripts. You can use these scripts to build your project even if you don’t have Maven installed on your machine.

 	pom.xml—This is the Maven build specification. We’ll look deeper into this in a moment.

 	
TacoCloudApplication.java—This is the Spring Boot main class that bootstraps the project. We’ll take a closer look at this class in a moment.

 	application.properties—This file is initially empty, but offers a place where you can specify configuration properties. We’ll tinker with this file a little in this chapter, but I’ll postpone a detailed explanation of configuration properties to chapter 5.

 	
static—This folder is where you can place any static content (images, stylesheets, JavaScript, and so forth) that you want to serve to the browser. It’s initially empty.

 	templates—This folder is where you’ll place template files that will be used to render content to the browser. It’s initially empty, but you’ll add a Thymeleaf template soon.

 	
TacoCloudApplicationTests.java—This is a simple test class that ensures that the Spring application context loads successfully. You’ll add more tests to the mix as you develop the application.

 As the Taco Cloud application grows, you’ll fill in this barebones project structure with Java code, images, stylesheets, tests, and other collateral that will make your project more complete. But in the meantime, let’s dig a little deeper into a few of the items that Spring Initializr provided.

Exploring the build specification

 When you filled out the Initializr form, you specified that your project should be built with Maven. Therefore, the Spring Initializr gave you a pom.xml file already populated with the choices you made. The following listing shows the entire pom.xml file provided by the Initializr.

 Listing 1.1. The initial Maven build specification

 <?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>sia</groupId>
 <artifactId>taco-cloud</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging> 1

 <name>taco-cloud</name>
 <description>Taco Cloud Example</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.4.RELEASE</version> 2
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>
 UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>
 UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency> 3
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>htmlunit-driver</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin> 4
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

</project>

 	1 JAR packaging

 	2 Spring Boot version

 	3 Starter dependencies

 	4 Spring Boot plugin

 The first noteworthy item in the pom.xml file is the <packaging> element. You chose to build your application as an executable JAR file, as opposed to a WAR file. This is probably one of the most curious choices you’ll make, especially for a web application. After all, traditional Java web applications are packaged as WAR files, leaving JAR files the packaging of choice for libraries and the occasional desktop UI application.

 The choice of JAR packaging is a cloud-minded choice. Whereas WAR files are perfectly suitable for deploying to a traditional Java application server, they’re not a natural fit for most cloud platforms. Although some cloud platforms (such as Cloud Foundry) are capable of deploying and running WAR files, all Java cloud platforms are capable of running an executable JAR file. Therefore, the Spring Initializr defaults to JAR packaging unless you tell it to do otherwise.

 If you intend to deploy your application to a traditional Java application server, then you’ll need to choose WAR packaging and include a web initializer class. We’ll look at how to build WAR files in more detail in chapter 2.

 Next, take note of the <parent> element and, more specifically, its <version> child. This specifies that your project has spring-boot-starter-parent as its parent POM. Among other things, this parent POM provides dependency management for several libraries commonly used in Spring projects. For those libraries covered by the parent POM, you won’t have to specify a version, as it’s inherited from the parent. The version, 2.0.4.RELEASE, indicates that you’re using Spring Boot 2.0.4 and, thus, will inherit dependency management as defined by that version of Spring Boot.

 While we’re on the subject of dependencies, note that there are three dependencies declared under the <dependencies> element. The first two should look somewhat familiar to you. They correspond directly to the Web and Thymeleaf dependencies that you selected before clicking the Finish button in the Spring Tool Suite new project wizard. The third dependency is one that provides a lot of helpful testing capabilities. You didn’t have to check a box for it to be included because the Spring Initializr assumes (hopefully, correctly) that you’ll be writing tests.

 You may also notice that all three dependencies have the word starter in their artifact ID. Spring Boot starter dependencies are special in that they typically don’t have any library code themselves, but instead transitively pull in other libraries. These starter dependencies offer three primary benefits:

 	Your build file will be significantly smaller and easier to manage because you won’t need to declare a dependency on every library you might need.

 	You’re able to think of your dependencies in terms of what capabilities they provide, rather than in terms of library names. If you’re developing a web application, you’ll add the web starter dependency rather than a laundry list of individual libraries that enable you to write a web application.

 	You’re freed from the burden of worry about library versions. You can trust that for a given version of Spring Boot, the versions of the libraries brought in transitively will be compatible. You only need to worry about which version of Spring Boot you’re using.

 Finally, the build specification ends with the Spring Boot plugin. This plugin performs a few important functions:

 	It provides a Maven goal that enables you to run the application using Maven. You’ll try out this goal in section 1.3.4.

 	It ensures that all dependency libraries are included within the executable JAR file and available on the runtime classpath.

 	It produces a manifest file in the JAR file that denotes the bootstrap class (TacoCloudApplication, in your case) as the main class for the executable JAR.

 Speaking of the bootstrap class, let’s open it up and take a closer look.

Bootstrapping the application

 Because you’ll be running the application from an executable JAR, it’s important to have a main class that will be executed when that JAR file is run. You’ll also need at least a minimal amount of Spring configuration to bootstrap the application. That’s what you’ll find in the TacoCloudApplication class, shown in the following listing.

 Listing 1.2. The Taco Cloud bootstrap class

 package tacos;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication 1
public class TacoCloudApplication {

 public static void main(String[] args) {
 SpringApplication.run(TacoCloudApplication.class, args); 2
 }

}

 	1 Spring Boot application

 	2 Runs the application

 Although there’s little code in TacoCloudApplication, what’s there packs quite a punch. One of the most powerful lines of code is also one of the shortest. The @SpringBootApplication annotation clearly signifies that this is a Spring Boot application. But there’s more to @SpringBootApplication than meets the eye.

 @SpringBootApplication is a composite application that combines three other annotations:

 	
@SpringBootConfiguration— Designates this class as a configuration class. Although there’s not much configuration in the class yet, you can add Java-based Spring Framework configuration to this class if you need to. This annotation is, in fact, a specialized form of the @Configuration annotation.

 	
@EnableAutoConfiguration— Enables Spring Boot automatic configuration. We’ll talk more about autoconfiguration later. For now, know that this annotation tells Spring Boot to automatically configure any components that it thinks you’ll need.

 	
@ComponentScan— Enables component scanning. This lets you declare other classes with annotations like @Component, @Controller, @Service, and others, to have Spring automatically discover them and register them as components in the Spring application context.

 The other important piece of TacoCloudApplication is the main() method. This is the method that will be run when the JAR file is executed. For the most part, this method is boilerplate code; every Spring Boot application you write will have a method similar or identical to this one (class name differences notwithstanding).

 The main() method calls a static run() method on the SpringApplication class, which performs the actual bootstrapping of the application, creating the Spring application context. The two parameters passed to the run() method are a configuration class and the command-line arguments. Although it’s not necessary that the configuration class passed to run() be the same as the bootstrap class, this is the most convenient and typical choice.

 Chances are you won’t need to change anything in the bootstrap class. For simple applications, you might find it convenient to configure one or two other components in the bootstrap class, but for most applications, you’re better off creating a separate configuration class for anything that isn’t autoconfigured. You’ll define several configuration classes throughout the course of this book, so stay tuned for details.

Testing the application

 Testing is an important part of software development. Recognizing this, the Spring Initializr gives you a test class to get started. The following listing shows the baseline test class.

 Listing 1.3. A baseline application test

 package tacos;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class) 1
@SpringBootTest 2
public class TacoCloudApplicationTests {

 @Test 3
 public void contextLoads() {
 }

}

 	
1 Uses the Spring runner

 	2 A Spring Boot test

 	3 The test method

 There’s not much to be seen in TacoCloudApplicationTests: the one test method in the class is empty. Even so, this test class does perform an essential check to ensure that the Spring application context can be loaded successfully. If you make any changes that prevent the Spring application context from being created, this test fails, and you can react by fixing the problem.

 Also notice the class annotated with @RunWith(SpringRunner.class). @RunWith is a JUnit annotation, providing a test runner that guides JUnit in running a test. Think of it as applying a plugin to JUnit to provide custom testing behavior. In this case, JUnit is given SpringRunner, a Spring-provided test runner that provides for the creation of a Spring application context that the test will run against.

A test runner by any other name...

 If you’re already familiar with writing Spring tests or are maybe looking at some existing Spring-based test classes, you may have seen a test runner named SpringJUnit4ClassRunner. SpringRunner is an alias for SpringJUnit4ClassRunner, and was introduced in Spring 4.3 to remove the association with a specific version of JUnit (for example, JUnit 4). And there’s no denying that the alias is easier to read and type.

 @SpringBootTest tells JUnit to bootstrap the test with Spring Boot capabilities. For now, it’s enough to think of this as the test class equivalent of calling SpringApplication.run() in a main() method. Over the course of this book, you’ll see @SpringBootTest several times, and we’ll uncover some of its power.

 Finally, there’s the test method itself. Although @RunWith(SpringRunner.class) and @SpringBootTest are tasked to load the Spring application context for the test, they won’t have anything to do if there aren’t any test methods. Even without any assertions or code of any kind, this empty test method will prompt the two annotations to do their job and load the Spring application context. If there are any problems in doing so, the test fails.

 At this point, we’ve concluded our review of the code provided by the Spring Initializr. You’ve seen some of the boilerplate foundation that you can use to develop a Spring application, but you still haven’t written a single line of code. Now it’s time to fire up your IDE, dust off your keyboard, and add some custom code to the Taco Cloud application.

1.3. Writing a Spring application

 Because you’re just getting started, we’ll start off with a relatively small change to the Taco Cloud application, but one that will demonstrate a lot of Spring’s goodness. It seems appropriate that as you’re just starting, the first feature you’ll add to the Taco Cloud application is a homepage. As you add the homepage, you’ll create two code artifacts:

 	
A controller class that handles requests for the homepage

 	A view template that defines what the homepage looks like

 And because testing is important, you’ll also write a simple test class to test the homepage. But first things first ... let’s write that controller.

 1.3.1. Handling web requests

 Spring comes with a powerful web framework known as Spring MVC. At the center of Spring MVC is the concept of a controller, a class that handles requests and responds with information of some sort. In the case of a browser-facing application, a controller responds by optionally populating model data and passing the request on to a view to produce HTML that’s returned to the browser.

 You’re going to learn a lot about Spring MVC in chapter 2. But for now, you’ll write a simple controller class that handles requests for the root path (for example, /) and forwards those requests to the homepage view without populating any model data. The following listing shows the simple controller class.

 Listing 1.4. The homepage controller

 package tacos;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;

@Controller 1
public class HomeController {

 @GetMapping("/") 2
 public String home() {
 return "home"; 3
 }

}

 	1 The controller

 	2 Handles requests for the root path /

 	3 Returns the view name

 As you can see, this class is annotated with @Controller. On its own, @Controller doesn’t do much. Its primary purpose is to identify this class as a component for component scanning. Because HomeController is annotated with @Controller, Spring’s component scanning automatically discovers it and creates an instance of HomeController as a bean in the Spring application context.

 In fact, a handful of other annotations (including @Component, @Service, and @Repository) serve a purpose similar to @Controller. You could have just as effectively annotated HomeController with any of those other annotations, and it would have still worked the same. The choice of @Controller is, however, more descriptive of this component’s role in the application.

 The home() method is as simple as controller methods come. It’s annotated with @GetMapping to indicate that if an HTTP GET request is received for the root path /, then this method should handle that request. It does so by doing nothing more than returning a String value of home.

 This value is interpreted as the logical name of a view. How that view is implemented depends on a few factors, but because Thymeleaf is in your classpath, you can define that template with Thymeleaf.

Why Thymeleaf?

 You may be wondering why you chose Thymeleaf for a template engine. Why not JSP? Why not FreeMarker? Why not one of several other options?

 Put simply, I had to choose something, and I like Thymeleaf and generally prefer it over those other options. And even though JSP may seem like an obvious choice, there are some challenges to overcome when using JSP with Spring Boot. I didn’t want to go down that rabbit hole in chapter 1. Hang tight. We’ll look at other template options, including JSP, in chapter 2.

 The template name is derived from the logical view name by prefixing it with /templates/ and postfixing it with .html. The resulting path for the template is /templates/home.html. Therefore, you’ll need to place the template in your project at /src/main/resources/templates/home.html. Let’s create that template now.

 1.3.2. Defining the view

 In the interest of keeping your homepage simple, it should do nothing more than welcome users to the site. The next listing shows the basic Thymeleaf template that defines the Taco Cloud homepage.

 Listing 1.5. The Taco Cloud homepage template

 <!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 </head>

 <body>
 <h1>Welcome to...</h1>

 </body>
</html>

 There’s not much to discuss with regard to this template. The only notable line of code is the one with the tag to display the Taco Cloud logo. It uses a Thymeleaf th:src attribute and an @{...} expression to reference the image with a context-relative path. Aside from that, it’s not much more than a Hello World page.

 But let’s talk about that image a bit more. I’ll leave it up to you to define a Taco Cloud logo that you like. You’ll need to make sure you place it at the right place within the project.

 The image is referenced with the context-relative path /images/TacoCloud.png. As you’ll recall from our review of the project structure, static content such as images is kept in the /src/main/resources/static folder. That means that the Taco Cloud logo image must also reside within the project at /src/main/resources/static/images/TacoCloud.png.

 Now that you’ve got a controller to handle requests for the homepage and a view template to render the homepage, you’re almost ready to fire up the application and see it in action. But first, let’s see how you can write a test against the controller.

 1.3.3. Testing the controller

 Testing web applications can be tricky when making assertions against the content of an HTML page. Fortunately, Spring comes with some powerful test support that makes testing a web application easy.

 For the purposes of the homepage, you’ll write a test that’s comparable in complexity to the homepage itself. Your test will perform an HTTP GET request for the root path / and expect a successful result where the view name is home and the resulting content contains the phrase “Welcome to...”. The following should do the trick.

 Listing 1.6. A test for the homepage controller

 package tacos;

import static org.hamcrest.Matchers.containsString;
import static
 org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static
 org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
import static
 org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;
import static
 org.springframework.test.web.servlet.result.MockMvcResultMatchers.view;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;

@RunWith(SpringRunner.class)
@WebMvcTest(HomeController.class) 1
public class HomeControllerTest {

 @Autowired
 private MockMvc mockMvc; 2

 @Test
 public void testHomePage() throws Exception {
 mockMvc.perform(get("/")) 3

 .andExpect(status().isOk()) 4

 .andExpect(view().name("home")) 5

 .andExpect(content().string(6
 containsString("Welcome to...")));
 }

}

 	
1 Web test for HomeController

 	2 Injects MockMvc

 	3 Performs GET /

 	4 Expects HTTP 200

 	5 Expects home view

 	6 Expects Welcome to...

 The first thing you might notice about this test is that it differs slightly from the TacoCloudApplicationTests class with regard to the annotations applied to it. Instead of @SpringBootTest markup, HomeControllerTest is annotated with @WebMvcTest. This is a special test annotation provided by Spring Boot that arranges for the test to run in the context of a Spring MVC application. More specifically, in this case, it arranges for HomeController to be registered in Spring MVC so that you can throw requests against it.

 @WebMvcTest also sets up Spring support for testing Spring MVC. Although it could be made to start a server, mocking the mechanics of Spring MVC is sufficient for your purposes. The test class is injected with a MockMvc object for the test to drive the mockup.

 The testHomePage() method defines the test you want to perform against the homepage. It starts with the MockMvc object to perform an HTTP GET request for / (the root path). From that request, it sets the following expectations:

 	The response should have an HTTP 200 (OK) status.

 	The view should have a logical name of home.

 	The rendered view should contain the text “Welcome to....”

 If, after the MockMvc object performs the request, any of those expectations aren’t met, then the test fails. But your controller and view template are written to satisfy those expectations, so the test should pass with flying colors—or at least with some shade of green indicating a passing test.

 The controller has been written, the view template created, and you have a passing test. It seems that you’ve implemented the homepage successfully. But even though the test passes, there’s something slightly more satisfying with seeing the results in a browser. After all, that’s how Taco Cloud customers are going to see it. Let’s build the application and run it.

 1.3.4. Building and running the application

 Just as there are several ways to initialize a Spring application, there are several ways to run one. If you like, you can flip over to the appendix to read about some of the more common ways to run a Spring Boot application.

 Because you chose to use Spring Tool Suite to initialize and work on the project, you have a handy feature called the Spring Boot Dashboard available to help you run your application inside the IDE. The Spring Boot Dashboard appears as a tab, typically near the bottom left of the IDE window. Figure 1.7 shows an annotated screenshot of the Spring Boot Dashboard.

 Figure 1.7. Highlights of the Spring Boot Dashboard

 [image:]

 I don’t want to spend much time going over everything the Spring Boot Dashboard does, although figure 1.7 covers some of the most useful details. The important thing to know right now is how to use it to run the Taco Cloud application. Make sure taco-cloud application is highlighted in the list of projects (it’s the only application shown in figure 1.7), and then click the start button (the left-most button with both a green triangle and a red square). The application should start right up.

 As the application starts, you’ll see some Spring ASCII art fly by in the console, followed by some log entries describing the steps as the application starts. Before the logging stops, you’ll see a log entry saying Tomcat started on port(s): 8080 (http), which means that you’re ready to point your web browser at the homepage to see the fruits of your labor.

 Wait a minute. Tomcat started? When did you deploy the application to Tomcat?

 Spring Boot applications tend to bring everything they need with them and don’t need to be deployed to some application server. You never deployed your application to Tomcat ... Tomcat is a part of your application! (I’ll describe the details of how Tomcat became part of your application in section 1.3.6.)

 Now that the application has started, point your web browser to http://localhost:8080 (or click the globe button in the Spring Boot Dashboard) and you should see something like figure 1.8. Your results may be different if you designed your own logo image. But it shouldn’t vary much from what you see in figure 1.8.

 Figure 1.8. The Taco Cloud homepage

 [image:]

 It may not be much to look at. But this isn’t exactly a book on graphic design. The humble appearance of the homepage is more than sufficient for now. And it provides you a solid start on getting to know Spring.

 One thing I’ve glossed over up until now is DevTools. You selected it as a dependency when initializing your project. It appears as a dependency in the produced pom.xml file. And the Spring Boot Dashboard even shows that the project has DevTools enabled. But what is DevTools, and what does it do for you? Let’s take a quick survey of a couple of DevTools’ most useful features.

 1.3.5. Getting to know Spring Boot DevTools

 As its name suggests, DevTools provides Spring developers with some handy development-time tools. Among those are

 	Automatic application restart when code changes

 	Automatic browser refresh when browser-destined resources (such as templates, JavaScript, stylesheets, and so on) change

 	Automatic disable of template caches

 	Built in H2 Console if the H2 database is in use

 It’s important to understand that DevTools isn’t an IDE plugin, nor does it require that you use a specific IDE. It works equally well in Spring Tool Suite, IntelliJ IDEA, and NetBeans. Furthermore, because it’s only intended for development purposes, it’s smart enough to disable itself when deploying in a production setting. (We’ll discuss how it does this when you get around to deploying your application in chapter 19.) For now, let’s focus on the most useful features of Spring Boot DevTools, starting with automatic application restart.

Automatic application restart

 With DevTools as part of your project, you’ll be able to make changes to Java code and properties files in the project and see those changes applied after a brief moment. DevTools monitors for changes, and when it sees something has changed, it automatically restarts the application.

 More precisely, when DevTools is in play, the application is loaded into two separate class loaders in the Java virtual machine (JVM). One class loader is loaded with your Java code, property files, and pretty much anything that’s in the src/main/ path of the project. These are items that are likely to change frequently. The other class loader is loaded with dependency libraries, which aren’t likely to change as often.

 When a change is detected, DevTools reloads only the class loader containing your project code and restarts the Spring application context, but leaves the other class loader and the JVM intact. Although subtle, this strategy affords a small reduction in the time it takes to start the application.

 The downside of this strategy is that changes to dependencies won’t be available in automatic restarts. That’s because the class loader containing dependency libraries isn’t automatically reloaded. This means that any time you add, change, or remove a dependency in your build specification, you’ll need to do a hard restart of the application for those changes to take effect.

Automatic browser refresh and template cache disable

 By default, template options such as Thymeleaf and FreeMarker are configured to cache the results of template parsing so that templates don’t need to be reparsed with every request they serve. This is great in production, as it buys a bit of performance benefit.

 Cached templates, however, are not so great at development time. Cached templates make it impossible to make changes to the templates while the application is running and see the results after refreshing the browser. Even if you’ve made changes, the cached template will still be in use until you restart the application.

 DevTools addresses this issue by automatically disabling all template caching. Make as many changes as you want to your templates and know that you’re only a browser refresh away from seeing the results.

 But if you’re like me, you don’t even want to be burdened with the effort of clicking the browser’s refresh button. It’d be much nicer if you could make the changes and witness the results in the browser immediately. Fortunately, DevTools has something special for those of us who are too lazy to click a refresh button.

 When DevTools is in play, it automatically enables a LiveReload (http://livereload.com/) server along with your application. By itself, the LiveReload server isn’t very useful. But when coupled with a corresponding LiveReload browser plugin, it causes your browser to automatically refresh when changes are made to templates, images, stylesheets, JavaScript, and so on—in fact, almost anything that ends up being served to your browser.

 LiveReload has browser plugins for Google Chrome, Safari, and Firefox browsers. (Sorry, Internet Explorer and Edge fans.) Visit http://livereload.com/extensions/ to find information on how to install LiveReload for your browser.

Built in H2 Console

 Although your project doesn’t yet use a database, that will change in chapter 3. If you choose to use the H2 database for development, DevTools will also automatically enable an H2 Console that you can access from your web browser. You only need to point your web browser to http://localhost:8080/h2-console to gain insight into the data your application is working with.

 At this point, you’ve written a complete, albeit simple, Spring application. You’ll expand on it throughout the course of the book. But now is a good time to step back and review what you’ve accomplished and how Spring played a part.

 1.3.6. Let’s review

 Think back on how you got to this point. In short, these are the steps you’ve taken to build your Spring-based Taco Cloud application:

 	You created an initial project structure using Spring Initializr.

 	You wrote a controller class to handle the homepage request.

 	You defined a view template to render the homepage.

 	You wrote a simple test class to prove out your work.

 Seems pretty straightforward, doesn’t it? With the exception of the first step to bootstrap the project, each action you’ve taken has been keenly focused on achieving the goal of producing a homepage.

 In fact, almost every line of code you’ve written is aimed toward that goal. Not counting Java import statements, I count only two lines of code in your controller class and no lines in the view template that are Spring-specific. And although the bulk of the test class utilizes Spring testing support, it seems a little less invasive in the context of a test.

 That’s an important benefit of developing with Spring. You can focus on the code that meets the requirements of an application rather than on satisfying the demands of a framework. Although you’ll no doubt need to write some framework-specific code from time to time, it’ll usually be only a small fraction of your codebase. As I said before, Spring (with Spring Boot) can be considered the frameworkless framework.

 How does this even work? What is Spring doing behind the scenes to make sure your application needs are met? To understand what Spring is doing, let’s start by looking at the build specification.

 In the pom.xml file, you declared a dependency on the Web and Thymeleaf starters. These two dependencies transitively brought in a handful of other dependencies, including

 	Spring’s MVC framework

 	Embedded Tomcat

 	Thymeleaf and the Thymeleaf layout dialect

 It also brought Spring Boot’s autoconfiguration library along for the ride. When the application starts, Spring Boot autoconfiguration detects those libraries and automatically

 	Configures the beans in the Spring application context to enable Spring MVC

 	Configures the embedded Tomcat server in the Spring application context

 	Configures a Thymeleaf view resolver for rendering Spring MVC views with Thymeleaf templates

 In short, autoconfiguration does all the grunt work, leaving you to focus on writing code that implements your application functionality. That’s a pretty sweet arrangement, if you ask me!

 Your Spring journey has just begun. The Taco Cloud application only touched on a small portion of what Spring has to offer. Before you take your next step, let’s survey the Spring landscape and see what landmarks you’ll encounter on your journey.

1.4. Surveying the Spring landscape

 To get an idea of the Spring landscape, look no further than the enormous list of checkboxes on the full version of the Spring Initializr web form. It lists over 100 dependency choices, so I won’t try to list them all here or to provide a screenshot. But I encourage you to take a look. In the meantime, I’ll mention a few of the highlights.

 1.4.1. The core Spring Framework

 As you might expect, the core Spring Framework is the foundation of everything else in the Spring universe. It provides the core container and dependency injection framework. But it also provides a few other essential features.

 Among these is Spring MVC, Spring’s web framework. You’ve already seen how to use Spring MVC to write a controller class to handle web requests. What you’ve not yet seen, however, is that Spring MVC can also be used to create REST APIs that produce non-HTML output. We’re going to dig more into Spring MVC in chapter 2 and then take another look at how to use it to create REST APIs in chapter 6.

 The core Spring Framework also offers some elemental data persistence support, specifically template-based JDBC support. You’ll see how to use JdbcTemplate in chapter 3.

 In the most recent version of Spring (5.0.8), support was added for reactive-style programming, including a new reactive web framework called Spring WebFlux that borrows heavily from Spring MVC. You’ll look at Spring’s reactive programming model in part 3 and Spring WebFlux specifically in chapter 10.

 1.4.2. Spring Boot

 We’ve already seen many of the benefits of Spring Boot, including starter dependencies and autoconfiguration. Be certain that we’ll use as much of Spring Boot as possible throughout this book and avoid any form of explicit configuration, unless it’s absolutely necessary. But in addition to starter dependencies and autoconfiguration, Spring Boot also offers a handful of other useful features:

 	The Actuator provides runtime insight into the inner workings of an application, including metrics, thread dump information, application health, and environment properties available to the application.

 	Flexible specification of environment properties.

 	Additional testing support on top of the testing assistance found in the core framework.

 What’s more, Spring Boot offers an alternative programming model based on Groovy scripts that’s called the Spring Boot CLI (command-line interface). With the Spring Boot CLI, you can write entire applications as a collection of Groovy scripts and run them from the command line. We won’t spend much time with the Spring Boot CLI, but we’ll touch on it on occasion when it fits our needs.

 Spring Boot has become such an integral part of Spring development; I can’t imagine developing a Spring application without it. Consequently, this book takes a Spring Boot–centric view, and you might catch me using the word Spring when I’m referring to something that Spring Boot is doing.

 1.4.3. Spring Data

 Although the core Spring Framework comes with basic data persistence support, Spring Data provides something quite amazing: the ability to define your application’s data repositories as simple Java interfaces, using a naming convention when defining methods to drive how data is stored and retrieved.

 What’s more, Spring Data is capable of working with a several different kinds of databases, including relational (JPA), document (Mongo), graph (Neo4j), and others. You’ll use Spring Data to help create repositories for the Taco Cloud application in chapter 3.

 1.4.4. Spring Security

 Application security has always been an important topic, and it seems to become more important every day. Fortunately, Spring has a robust security framework in Spring Security.

 Spring Security addresses a broad range of application security needs, including authentication, authorization, and API security. Although the scope of Spring Security is too large to be properly covered in this book, we’ll touch on some of the most common use cases in chapters 4 and 12.

 1.4.5. Spring Integration and Spring Batch

 At some point, most applications will need to integrate with other applications or even with other components of the same application. Several patterns of application integration have emerged to address these needs. Spring Integration and Spring Batch provide the implementation of these patterns for Spring-based applications.

 Spring Integration addresses real-time integration where data is processed as it’s made available. In contrast, Spring Batch addresses batched integration where data is allowed to collect for a time until some trigger (perhaps a time trigger) signals that it’s time for the batch of data to be processed. You’ll explore both Spring Batch and Spring Integration in chapter 9.

 1.4.6. Spring Cloud

 As I’m writing this, the application development world is entering a new era where we’ll no longer develop our applications as single deployment unit monoliths and will instead compose applications from several individual deployment units known as microservices.

 Microservices are a hot topic, addressing several practical development and runtime concerns. In doing so, however, they bring to fore their own challenges. Those challenges are met head-on by Spring Cloud, a collection of projects for developing cloud-native applications with Spring.

 Spring Cloud covers a lot of ground, and it’d be impossible to cover it all in this book. We’ll look at some of the most common components of Spring Cloud in chapters 13, 14, and 15. For a more complete discussion of Spring Cloud, I suggest taking a look at Spring Microservices in Action by John Carnell (Manning, 2017, www.manning.com/books/spring-microservices-in-action).

Summary

 	Spring aims to make developer challenges easy, like creating web applications, working with databases, securing applications, and microservices.

 	Spring Boot builds on top of Spring to make Spring even easier with simplified dependency management, automatic configuration, and runtime insights.

 	Spring applications can be initialized using the Spring Initializr, which is web-based and supported natively in most Java development environments.

 	The components, commonly referred to as beans, in a Spring application context can be declared explicitly with Java or XML, discovered by component scanning, or automatically configured with Spring Boot autoconfiguration.

 Chapter 2. Developing web applications

 This chapter covers

 	Presenting model data in the browser

 	Processing and validating form input

 	Choosing a view template library

 First impressions are important. Curb appeal can sell a house long before the home buyer enters the door. A car’s cherry paint job will turn more heads than what’s under the hood. And literature is replete with stories of love at first sight. What’s inside is very important, but what’s outside—what’s seen first—is important.

