

 [image: cover]

Nim in Action

 Dominik Picheta

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editors: Cynthia Kane, Dan Seiter,
Marina Michaels
Technical development editor: Andrew West
Review editor: Donna Clements
Project editor: Karen Gulliver
Copyeditor: Andy Carroll
Proofreader: Katie Tennant
Technical proofreader: Michiel Trimpe
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617293436

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. The basics of Nim

 Chapter 1. Why Nim?

 Chapter 2. Getting started

 2. Nim in practice

 Chapter 3. Writing a chat application

 Chapter 4. A tour through the standard library

 Chapter 5. Package management

 Chapter 6. Parallelism

 Chapter 7. Building a Twitter clone

 3. Advanced concepts

 Chapter 8. Interfacing with other languages

 Chapter 9. Metaprogramming

 Appendix A. Getting help

 Appendix B. Installing Nim

 Nim Reference

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. The basics of Nim

 Chapter 1. Why Nim?

 1.1. What is Nim?

 1.1.1. Use cases

 1.1.2. Core features

 1.1.3. How does Nim work?

 1.2. Nim’s benefits and shortcomings

 1.2.1. Benefits

 1.2.2. Areas where Nim still needs to improve

 1.3. Summary

 Chapter 2. Getting started

 2.1. Nim syntax

 2.1.1. Keywords

 2.1.2. Indentation

 2.1.3. Comments

 2.2. Nim basics

 2.2.1. Basic types

 2.2.2. Defining variables and other storage

 2.2.3. Procedure definitions

 2.3. Collection types

 2.3.1. Arrays

 2.3.2. Sequences

 2.3.3. Sets

 2.4. Control flow

 2.5. Exception handling

 2.6. User-defined types

 2.6.1. Objects

 2.6.2. Tuples

 2.6.3. Enums

 2.7. Summary

 2. Nim in practice

 Chapter 3. Writing a chat application

 3.1. The architecture of a chat application

 3.1.1. What will the finished application look like?

 3.2. Starting the project

 3.3. Retrieving input in the client component

 3.3.1. Retrieving command-line parameters supplied by the user

 3.3.2. Reading data from the standard input stream

 3.3.3. Using spawn to avoid blocking input/output

 3.4. Implementing the protocol

 3.4.1. Modules

 3.4.2. Parsing JSON

 3.4.3. Generating JSON

 3.5. Transferring data using sockets

 3.5.1. What is a socket?

 3.5.2. Asynchronous input/output

 3.5.3. Transferring data asynchronously

 3.6. Summary

 Chapter 4. A tour through the standard library

 4.1. A closer look at modules

 4.1.1. Namespacing

 4.2. Overview of the standard library

 4.2.1. Pure modules

 4.2.2. Impure modules

 4.2.3. Wrappers

 4.2.4. Online documentation

 4.3. The core modules

 4.4. Data structures and algorithms

 4.4.1. The tables module

 4.4.2. The sets module

 4.4.3. The algorithms

 4.4.4. Other modules

 4.5. Interfacing with the operating system

 4.5.1. Working with the filesystem

 4.5.2. Executing an external process

 4.5.3. Other operating system services

 4.6. Understanding and manipulating data

 4.6.1. Parsing command-line arguments

 4.7. Networking and the internet

 4.8. Summary

 Chapter 5. Package management

 5.1. The Nim package manager

 5.2. Installing Nimble

 5.3. The nimble command-line tool

 5.4. What is a Nimble package?

 5.5. Installing Nimble packages

 5.5.1. Using the install command

 5.5.2. How does the install command work?

 5.6. Creating a Nimble package

 5.6.1. Choosing a name

 5.6.2. A Nimble package’s directory layout

 5.6.3. Writing the .nimble file and sorting out dependencies

 5.7. Publishing Nimble packages

 5.8. Developing a Nimble package

 5.8.1. Giving version numbers meaning

 5.8.2. Storing different versions of a single package

 5.9. Summary

 Chapter 6. Parallelism

 6.1. Concurrency vs. parallelism

 6.2. Using threads in Nim

 6.2.1. The threads module and GC safety

 6.2.2. Using thread pools

 6.2.3. Exceptions in threads

 6.3. Parsing data

 6.3.1. Understanding the Wikipedia page-counts format

 6.3.2. Parsing the Wikipedia page-counts format

 6.3.3. Processing each line of a file efficiently

 6.4. Parallelizing a parser

 6.4.1. Measuring the execution time of sequential_counts

 6.4.2. Parallelizing sequential_counts

 6.4.3. Type definitions and the parse procedure

 6.4.4. The parseChunk procedure

 6.4.5. The parallel readPageCounts procedure

 6.4.6. The execution time of parallel_counts

 6.5. Dealing with race conditions

 6.5.1. Using guards and locks to prevent race conditions

 6.5.2. Using channels so threads can send and receive messages

 6.6. Summary

 Chapter 7. Building a Twitter clone

 7.1. Architecture of a web application

 7.1.1. Routing in microframeworks

 7.1.2. The architecture of Tweeter

 7.2. Starting the project

 7.3. Storing data in a database

 7.3.1. Setting up the types

 7.3.2. Setting up the database

 7.3.3. Storing and retrieving data

 7.3.4. Testing the database

 7.4. Developing the web application’s view

 7.4.1. Developing the user view

 7.4.2. Developing the general view

 7.5. Developing the controller

 7.5.1. Implementing the /login route

 7.5.2. Extending the / route

 7.5.3. Implementing the /createMessage route

 7.5.4. Implementing the user route

 7.5.5. Adding the Follow button

 7.5.6. Implementing the /follow route

 7.6. Deploying the web application

 7.6.1. Configuring Jester

 7.6.2. Setting up a reverse proxy

 7.7. Summary

 3. Advanced concepts

 Chapter 8. Interfacing with other languages

 8.1. Nim’s foreign function interface

 8.1.1. Static vs. dynamic linking

 8.1.2. Wrapping C procedures

 8.1.3. Type compatibility

 8.1.4. Wrapping C types

 8.2. Wrapping an external C library

 8.2.1. Downloading the library

 8.2.2. Creating a wrapper for the SDL library

 8.2.3. Dynamic linking

 8.2.4. Wrapping the types

 8.2.5. Wrapping the procedures

 8.2.6. Using the SDL wrapper

 8.3. The JavaScript backend

 8.3.1. Wrapping the canvas element

 8.3.2. Using the Canvas wrapper

 8.4. Summary

 Chapter 9. Metaprogramming

 9.1. Generics

 9.1.1. Generic procedures

 9.1.2. Generics in type definitions

 9.1.3. Constraining generics

 9.1.4. Concepts

 9.2. Templates

 9.2.1. Passing a code block to a template

 9.2.2. Parameter substitution in templates

 9.2.3. Template hygiene

 9.3. Macros

 9.3.1. Compile-time function execution

 9.3.2. Abstract syntax trees

 9.3.3. Macro definition

 9.3.4. Arguments in macros

 9.4. Creating a configuration DSL

 9.4.1. Starting the configurator project

 9.4.2. Generating the object type

 9.4.3. Generating the constructor procedure

 9.4.4. Generating the load procedure

 9.4.5. Testing the configurator

 9.5. Summary

 Appendix A. Getting help

 A.1. Real-time communication

 A.2. Forum

 A.3. Other communication methods

 Appendix B. Installing Nim

 B.1. Installing the Nim compiler

 B.1.1. Getting up-to-date installation info

 B.1.2. Building from source

 B.2. Installing the Aporia IDE

 B.3. Testing your new development environment

 B.4. Troubleshooting

 B.4.1. Nim command not found

 B.4.2. Nim and C compiler disagree on target architecture

 B.4.3. Could not load DLL

 Nim Reference

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Nim has been my labor of love over the years. Gradually, from the time I discovered it, I’ve become increasingly involved
 in its development. Although I sacrificed considerable time working on it, Nim gave back in the form of experience and knowledge.
 My work with Nim has taught me far more than any other work or studies have done. Many opportunities have also opened up for
 me, a shining example being this book.

 I never actually thought I would end up writing a book, and until a Manning acquisitions editor got in touch with me, I didn’t
 realize that I wanted to. While planning this book, I looked to other books and determined where they fell short. I realized
 that this, the first book on Nim, must be written for programmers with a bit of experience. I decided that I wanted to write
 a book that teaches programmers about Nim, but that also teaches other programming concepts that work well in Nim’s particular
 programming paradigms. These concepts can also be applied to other programming languages and have been very useful in my career.

 My other goal for this book was to make it fun and engaging. I decided to do this by building some chapters around small projects.
 The projects are designed to be practical and to teach a number of Nim features and concepts. By following along and developing
 these projects, you’ll gain hands-on experience developing Nim applications. This should put you in a good position to write
 your own software, which is the ultimate goal of this book.

 Nim in Action covers a lot, but it can’t cover everything. It shouldn’t be viewed as a complete Nim reference; instead, it should be considered
 a practical guide to writing software in Nim.

 It’s my hope that this book helps you learn Nim and that you find it a useful reference for many years to come. I and the
 Nim community are at your disposal and are available online to help you solve any problems you run into. Thank you for purchasing
 this book and taking an interest in Nim.

Acknowledgments

 First, I would like to thank Andreas Rumpf for creating Nim and for both his reviews and words of encouragement throughout
 the development of this book. Andreas created a one-of-a-kind programming language, and without his commitment to Nim, this
 book wouldn’t exist.

 This book wouldn’t be what it is today without the brilliant and passionate people at Manning publications. I give my thanks
 to Marjan Bace, who made it possible to publish this book; my editors Cynthia Kane, Dan Seiter, and Marina Michaels, for helping
 me improve my writing; and the production team, including Andy Carroll, Janet Vail, Karen Gulliver, and Katie Tennant.

 I thank the Nim community and everyone who participated in reviews and provided feedback on the manuscript, including technical
 proofreader Michiel Trimpe, and the following reviewers: Andrea Ferretti, Yuriy Glukhov, Michał Zieliński, Stefan Salewski,
 Konstantin Molchanov, Sébastien Ménard, Abel Brown, Alessandro Campeis, Angelo Costa, Christoffer Fink, Cosimo Attanasi, James
 Anaipakos, Jonathan Rioux, Marleny Nunez, Mikkel Arentoft, Mohsen Mostafa Jokar, Paulo Nuin, Peter Hampton, Robert Walsh,
 Samuel Bosch, Thomas Ballinger, and Vincent Keller.

 Thanks also to the readers of the Manning Early Access Program (MEAP). Their corrections and comments on the manuscript as
 it was being written were invaluable.

 Finally, I’d like to thank my family and friends, who in their own way steered my life in a positive direction, leading me
 to authoring this book. First, I thank my mother, Bogumiła Picheta, for her bravery and hard work, without which I wouldn’t
 have had the means to start my programming journey, and I especially thank her for making a hard decision that turned out
 to be very beneficial for my future. I would also like to thank my uncle, Piotr Kossakowski-Stefański, and aunt, Marzena Kossakowska--Stefańska,
 for inspiring and challenging me to write software, and also for always being there to share their advice. Thanks to Ilona,
 Maciej Sr., and Maciej Jr. Łosinski for my first exposure to a computer and the internet. And I thank Kazimierz Ślebioda,
 a.k.a Kazik, for the Age of Empires 2 LAN parties and for showing me how delicious chicken with garlic can be.

 Most of all, I thank my partner, Amy-Leigh Shaw, for always believing in me, and for her patience and support throughout my
 work on this book. I love you very much Amy, and am lucky to have you.

About this Book

 Nim in Action is a practical way to learn how to develop software using the open source Nim programming language. This book includes many
 examples, both large and small, to show and teach you how software is written in Nim.

 Nim is unique. It’s multi-paradigm, and unlike most other languages, it doesn’t emphasize object-oriented programming. Because
 of this, I encourage you to consciously absorb the styles used in this book instead of applying your own. Nim in Action will teach you a set of best practices and idioms that you’ll also find useful in other programming languages.

 By learning Nim, you’ll discover a language that straddles the lines between efficiency, expressiveness, and elegance. Nim
 will make you productive and your end users happy.

Who should read this book

 This is by no means a beginner’s book. It assumes that you know at least one other programming language and have experience
 writing software in it. For example, I expect you to be aware of basic programming language features such as functions, variables,
 and types. The fundamentals of programming aren’t explained in this book.

 This book will teach you how to develop practical software in the Nim programming language. It covers features that are present
 in all programming languages, such as concurrency, parallelism, user-defined types, the standard library, and more. In addition,
 it covers Nim features that you may not be familiar with, such as asynchronous input/output, metaprogramming, and the foreign
 function interface.

How the book is organized

 The book is divided into three parts and includes a total of nine chapters.

 Part 1 introduces the language and its basic features:

 	
Chapter 1 explains what Nim is, compares it to other programming languages, and discusses its strengths and weaknesses.

 	
Chapter 2 teaches the basics, such as the syntax and fundamental features of the language. This includes a demonstration of procedure
 definitions and exception handling.

 Part 2 includes a wide range of examples to show how Nim is used in practice:

 	
Chapter 3 is where you’ll develop your first nontrivial Nim application. The primary purpose of this application is communication:
 it allows messages to be sent through a network. You’ll learn, among other things, how to create command-line interfaces,
 parse JSON, and transfer data over a network in Nim.

 	
Chapter 4 gives an overview of the standard library, particularly the parts of it that aren’t covered in other chapters but are useful.

 	
Chapter 5 discusses package management in Nim and teaches you how to create your own packages and make them available to others.

 	
Chapter 6 explains what parallelism is and how it can be applied to different programming tasks. You’ll see a parsing example, demonstrating
 different ways to parse data in Nim and how parsing can be parallelized.

 	
Chapter 7 is where you’ll develop your second nontrivial Nim application: a web application based on Twitter. You’ll learn how to store
 data in a SQL database and generate HTML.

 Part 3 introduces some advanced Nim features:

 	
Chapter 8 looks at the foreign function interface and shows how it can be used to make use of C and JavaScript libraries. You’ll develop
 a simple application that draws the letter N on the screen, first using a C library and then using JavaScript’s Canvas API.

 	
Chapter 9 explains what metaprogramming is, discussing features such as generics, templates, and macros. At the end of this chapter,
 you’ll use macros to create a domain-specific language.

 You may wish to skip the first two chapters if you already know the basics of Nim. I recommend reading the book from beginning
 to end, and I especially encourage you to follow along with the examples. Each chapter teaches you something new about Nim,
 even if it primarily focuses on a standalone example. If you get stuck, feel free to get in touch with me or the Nim community.
 Appendix A contains information on how to get help, so use it to your advantage.

Code conventions and downloads

 The source code examples in this book are fairly close to the samples that you’ll find online, but for the sake of brevity,
 many of the comments were removed. The online samples include a lot of comments to make them as easy to understand as possible,
 so you’re encouraged to take a look at them to learn more.

 The source code is available for download from the publisher’s website at https://manning.com/books/nim-in-action and from GitHub at https://github.com/dom96/nim-in-action-code. Nim is still evolving, so be sure to watch the repository for changes. I’ll do my best to keep it up to date with the latest
 Nim version.

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source
 code is formatted in a mono-spaced typeface like this, to distinguish it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature is added to existing code.

 In many cases, the original source code has been reformatted for print; we’ve added line breaks and reworked the indentation
 to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation
 markers ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.

Book forum

 The purchase of Nim in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/nim-in-action. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest
 his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as
 long as the book is in print.

About the Author

 DOMINIK PICHETA (@d0m96, picheta.me) is a Computer Science student at Queen’s University Belfast. He is one of the core developers of the
 Nim programming language and has been using it for most of its history. He also wrote Nimble, the official Nim package manager,
 and many other Nim libraries and tools.

About the Cover Illustration

 The figure on the cover of Nim in Action is captioned “Morlaque de l’Isle Opus,” or “A Morlach from the Island of Opus.” The Morlachs were a Vlach people originally
 centered around the eastern Adriatic port of Ragusa, or modern Dubrovnik. The illustration is taken from a collection of dress
 costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
 collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from
 each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
 they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to
 tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly, for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Grasset de Saint-Sauveur’s pictures.

Part 1. The basics of Nim

 This part of the book begins your study of the Nim programming language. It doesn’t assume you know much about Nim, so chapter 1 begins by looking at the characteristics of the language, what makes it different from other languages, and how it’s used
 in the real world. Chapter 2 looks at some of the most commonly used elements of any programming language—the syntax, semantics, and type system—and in
 doing so teaches you the necessary foundations for writing simple applications in Nim.

Chapter 1. Why Nim?

 This chapter covers

 	What Nim is

 	Why you should learn about it

 	Comparing Nim to other programming languages

 	Use cases

 	Strengths and weaknesses

 Nim is still a relatively new programming language. In fact, you’re holding one of the very first books about it. The language
 is still not fully complete, but core aspects, like its syntax, the semantics of procedures, methods, iterators, generics,
 templates, and more, are all set in stone. Despite its newness, there has been significant interest in Nim from the programming
 community because of the unique set of features that it implements and offers its users.

 This chapter answers questions that you may ask before learning Nim, such as why you might want to use it. In this chapter,
 I outline some of the common practical uses of Nim, compare it to other programming languages, and discuss some of its strengths
 and weaknesses.

1.1. What is Nim?

 Nim is a general-purpose programming language designed to be efficient, expressive, and elegant. These three goals are difficult
 to achieve at the same time, so Nim’s designers gave each of them different priorities, with efficiency being the most important
 and elegance being the least.

 But despite the fact that elegance is relatively unimportant to Nim’s design, it’s still considered during the design process.
 Because of this, the language remains elegant in its own right. It’s only when trade-offs between efficiency and elegance
 need to be made that efficiency wins.

 On the surface, Nim shares many of Python’s characteristics. In particular, many aspects of Nim’s syntax are similar to Python’s,
 including the use of indentation to delimit scope as well as the tendency to use words instead of symbols for certain operators.
 Nim also shares other aspects with Python that aren’t related to syntax, such as the highly user-friendly exception tracebacks,
 shown here:

 Traceback (most recent call last)
request.nim(74) request
request.nim(25) getUsers
json.nim(837) []
tables.nim(147) []
Error: unhandled exception: key not found: totalsForAllResults [KeyError]

 You’ll also see many differences, especially when it comes to the semantics of the language. The major differences lie within
 the type system and execution model, which you’ll learn about in the next sections.

 	

 A little bit about Nim’s history

 Andreas Rumpf started developing Nim in 2005. The project soon gained support and many contributions from the open source
 community, with many volunteers around the world contributing code via pull requests on GitHub. You can see the current open
 Nim pull requests at https://github.com/nim-lang/Nim/pulls.

 	

 	

 Contributing to Nim

 The compiler, standard library, and related tools are all open source and written in Nim. The project is available on GitHub,
 and everyone is encouraged to contribute. Contributing to Nim is a good way to learn how it works and to help with its development.
 See Nim’s GitHub page for more information: https://github.com/nim-lang/Nim#contributing.

 	

 1.1.1. Use cases

 Nim was designed to be a general-purpose programming language from the outset. As such, it consists of a wide range of features
 that make it usable for just about any software project. This makes it a good candidate for writing software in a wide variety
 of application domains, ranging from web applications to kernels. In this section, I’ll discuss how Nim’s features and programming
 support apply in several use cases.

 Although Nim may support practically any application domain, this doesn’t make it the right choice for everything. Certain
 aspects of the language make it more suitable for some categories of applications than others. This doesn’t mean that some
 applications can’t be written using Nim; it just means that Nim may not support the code styles that are best suited for writing
 some kinds of applications.

 Nim is a compiled language, but the way in which it’s compiled is special. When the Nim compiler compiles source code, it
 first translates the code into C code. C is an old but well supported systems programming language that allows easier and
 more direct access to the physical hardware of the machine. This makes Nim well suited to systems programming, allowing projects
 such as operating systems (OSs), compilers, device drivers, and embedded system software to be written.

 Internet of Things (IoT) devices, which are physical devices with embedded electronics that are connected to the internet,
 are good targets for Nim, primarily thanks to the power offered by Nim’s ease of use and its systems programming capabilities.

 A good example of a project making use of Nim’s systems programming features is a very simple OS called NimKernel available
 on GitHub: https://github.com/dom96/nimkernel.

 	

 How does Nim compile source code?

 I describe Nim’s unusual compilation model and its benefits in detail in section 1.1.3.

 	

 Applications written in Nim are very fast; in many cases, just as fast as applications written in C, and more than thirteen
 times faster than applications written in Python. Efficiency is the highest priority, and some features make optimizing code
 easy. This goes hand in hand with a soft real-time garbage collector, which allows you to specify the amount of time that
 should be spent collecting memory. This feature becomes important during game development, where an ordinary garbage collector
 may slow down the rendering of frames on the screen if it uses too much time collecting memory. It’s also useful in real-time
 systems that need to run in very strict time frames.

 Nim can be used alongside other much slower languages to speed up certain performance-critical components. For example, an
 application written in Ruby that requires certain CPU-intensive calculations can be partially written in Nim to gain a considerable
 speed advantage. Such speed-ups are important in areas such as scientific computing and high-speed trading.

 Applications that perform I/O operations, such as reading files or sending data over a network, are also well supported by
 Nim. Web applications, for example, can be written easily using a number of web frameworks like Jester (https://github.com/dom96/jester). Nim’s script-like syntax, together with its powerful, asynchronous I/O support, makes it easy to develop these applications
 rapidly.

 Command-line applications can benefit greatly from Nim’s efficiency. Also, because Nim applications are compiled, they’re
 standalone and so don’t require any bulky runtime dependencies. This makes their distribution incredibly easy. One such application written in Nim is Nimble;
 it’s a package manager for Nim that allows users to install Nim libraries and applications.

 These are just a few use cases that Nim fits well; it’s certainly not an exhaustive list.

 Another thing to keep in mind is that, at the time of writing, Nim is still in development, not having yet reached version
 1.0. Certain features haven’t been implemented yet, making Nim less suited for some applications. For example, Nim includes
 a backend that allows you to write JavaScript applications for your web pages in Nim. This backend works, but it’s not yet
 as mature as the rest of the language. This will improve with time.

 Of course, Nim’s ability to compile to JavaScript makes it suitable for full-stack applications that need components that
 run on a server and in a browser. This is a huge advantage, because code can easily be reused for both the browser and server
 components of the application.

 Now that you know a little bit about what Nim is, its history, and some of the applications that it’s particularly well suited
 for, let’s look at some of Nim’s features and talk about how it works.

 1.1.2. Core features

 In many ways, Nim is very innovative. Many of Nim’s features can’t be found in any other programming language. If you enjoy
 learning new programming languages, especially those with interesting and unique features, then Nim is definitely the language
 for you.

 In this section, we’ll look at some of the core features of Nim—in particular, the features that make Nim stand out from other
 programming languages:

 	A facility called metaprogramming, used for, among many things, molding the language to your needs.

 	Style-insensitive variable, function, and type names. By using this feature, which is slightly controversial, you can treat
 identifiers in whatever style you wish, no matter if they were defined using camelCase or snake_case.

 	A type system that’s rich in features such as generics, which make code easier to write and maintain.

 	Compilation to C, which allows Nim programs to be efficient and portable. The compilation itself is also very fast.

 	A number of different types of garbage collectors that can be freely selected or removed altogether.

Metaprogramming

 The most practical, and in some senses unique, feature of Nim is its extensive metaprogramming support. Metaprogramming allows
 you to read, generate, analyze, and transform source code. It was by no means a Nim invention, but there’s no other programming
 language with metaprogramming that’s so extensive and at the same time easy to pick up as Nim’s. If you’re familiar with Lisp, then you might have some experience with metaprogramming already.

 With metaprogramming, you treat code as data in the form of an abstract syntax tree. This allows you to manipulate existing code as well as generate brand new code while your application is being compiled.

 Metaprogramming in Nim is special because languages with good metaprogramming features typically belong to the Lisp family
 of languages. If you’re already familiar with the likes of Java or Python, you’ll find it easier to start using Nim than Lisp.
 You’ll also find it more natural to learn how to use Nim’s metaprogramming features than Lisp’s.

 Although it’s generally an advanced topic, metaprogramming is a very powerful feature that you’ll get to know in far more
 detail in chapter 9 of this book. One of the main benefits that metaprogramming offers is the ability to remove boilerplate code. Metaprogramming
 also allows the creation of domain-specific languages (DSLs); for example,

 html:
 body:
 p: "Hello World"

 This DSL specifies a bit of HTML code. Depending on how it’s implemented, the DSL will likely be translated into Nim code
 resembling the following:

 echo("<html>")
echo(" <body>")
echo(" <p>Hello World</p>")
echo(" </body>")
echo("</html>")

 That Nim code will result in the following output:

 <html>
 <body>
 <p>Hello World</p>
 </body>
</html>

 With Nim’s metaprogramming, you can define DSLs and mix them freely with your ordinary Nim code. Such languages have many
 use cases; for example, the preceding one can be used to create HTML templates for your web apps.

 Metaprogramming is at the center of Nim’s design. Nim’s designer wants to encourage users to use metaprogramming in order
 to accommodate their style of programming. For example, although Nim does offer some object-oriented programming (OOP) features,
 it doesn’t have a class definition construct. Instead, anyone wishing to use OOP in Nim in a style similar to that of other
 languages should use metaprogramming to create such a construct.

Style insensitivity

 Another of Nim’s interesting and likely unique features is style insensitivity. One of the hardest things a programmer has
 to do is come up with names for all sorts of identifiers like variables, functions, and modules. In many programming languages,
 these names can’t contain whitespace, so programmers have been forced to adopt other ways of separating multiple words in
 a single name. Multiple differing methods were devised, the most popular being snake_case and camelCase. With Nim, you can use snake_case even if the identifier has been defined using camelCase, and vice versa. So you can write code in your preferred style even if the library you’re using adopted a different style
 for its identifiers.

 Listing 1.1. Style insensitivity

 import strutils 1
echo("hello".to_upper()) 2
echo("world".toUpper()) 3

 	
1 The strutils module defines a procedure called toUpper.

 	
2 You can call it using snake_case.

 	
3 As it was originally defined, you can call it using camelCase.

 This works because Nim considers the identifiers to_upper and toUpper to be equal.

 When comparing identifiers, Nim considers the case of the first character, but it doesn’t bother with the case of the rest of the identifier’s characters, ignoring the underscores as well. As a result,
 the identifiers toUpper and ToUpper aren’t equal because the case of the first character differs. This allows type names to be distinguished from variable names,
 because, by convention, type names should start with an uppercase letter and variable names should start with a lowercase
 letter.

 The following listing shows one scenario where this convention is useful.

 Listing 1.2. Style insensitivity and type identifiers

 type
 Dog = object 1
 age: int 2

let dog = Dog(age: 3) 3

 	
1 The Dog type is defined with an uppercase first letter.

 	
2 Only primitive types such as int start with a lowercase letter.

 	
3 A dog variable can be safely defined because it won’t clash with the Dog type.

Powerful type system

 One of the many characteristics that differentiate programming languages from one another is their type system. The main purpose
 of a type system is to reduce the opportunities for bugs in your programs. Other benefits that a good type system provides
 are certain compiler optimizations and better documentation of code.

 The main categories used to classify type systems are static and dynamic. Most programming languages fall somewhere between the two extremes and incorporate ideas from both. This is because both
 static and dynamic type systems require certain trade-offs. Static typing finds more errors at compile time, but it also decreases
 the speed at which programs can be written. Dynamic typing is the opposite.

 Nim is statically typed, but unlike some statically typed programming languages, it also incorporates many features that make
 development fast. Type inference is a good example of that: types can be resolved by the compiler without the need for you
 to write the types out yourself (though you can choose to). Because of that, your program can be bug-free and yet your development
 speed isn’t hindered. Nim also incorporates some dynamic type-checking features, such as runtime type information, which allows
 for the dynamic dispatch of functions.

 One way that a type system ensures that your program is free of bugs is by verifying memory safety. Some programming languages,
 like C, aren’t memory safe because they allow programs to access memory that hasn’t been assigned for their use. Other programming
 languages are memory safe at the expense of not allowing programs to access low-level details of memory, which in some cases
 is necessary. Nim combines both: it’s memory safe as long as you don’t use any of the unsafe types, such as ptr, in your program, but the ptr type is necessary when interfacing with C libraries. Supporting these unsafe features makes Nim a powerful systems programming
 language.

 By default, Nim protects you against every type of memory error:

 	Arrays are bounds-checked at compile time, or at runtime when compile-time checks aren’t possible, preventing both buffer
 overflows and buffer overreads.

 	Pointer arithmetic isn’t possible for reference types as they’re entirely managed by Nim’s garbage collector; this prevents
 issues such as dangling pointers and other memory issues related to managing memory manually.

 	Variables are always initialized by Nim to their default values, which prevents variables containing unexpected and corrupt
 data.

 Finally, one of the most important features of Nim’s type system is the ability to use generic programming. Generics in Nim
 allow for a great deal of code reuse without sacrificing type safety. Among other things, they allow you to specify that a
 single function can accept multiple different types. For example, you may have a showNumber procedure that displays both integers and floats on the screen:

 proc showNumber(num: int | float) =
 echo(num)

showNumber(3.14)
showNumber(42)

 Here, the showNumber procedure accepts either an int type or a float type. The | operator specifies that both int and float can be passed to the procedure.

 This is a simple demonstration of Nim’s generics. You’ll learn a lot more about Nim’s type system, as well as its generics,
 in later chapters.

Compilation

 I mentioned in the previous section that the Nim compiler compiles source code into C first, and then feeds that source code
 into a C compiler. You’ll learn a lot more about how this works in section 1.1.3, but right now I’ll talk about some of the many practical advantages of this compilation model.

 The C programming language is very well established as a systems programming language and has been in use for over 40 years.
 C is one of the most portable programming languages, with multiple implementations for Windows, Linux, Mac OS, x86, AMD64,
 ARM, and many other, more obscure OSs and platforms. C compilers support everything from supercomputers to microcontrollers.
 They’re also very mature and implement many powerful optimizations, which makes C very efficient.

 Nim takes advantage of these aspects of C, including its portability, widespread use, and efficiency.

 Compiling to C also makes it easy to use existing C and C++ libraries—all you need to do is write some simple wrapper code.
 You can write this code much faster by using a tool called c2nim. This tool converts C and C++ header files to Nim code, which wraps those files. This is of great benefit because many popular
 libraries are written in C and C++.

 Nim also offers you the ability to build libraries that are compatible with C and C++. This is handy if you want your library
 to be used from other programming languages. You’ll learn all about wrapping C and C++ libraries in chapter 8.

 Nim source code can also be compiled into Objective C and JavaScript. The Objective C language is mainly used for iOS software
 development; by compiling to it, you can write iOS applications natively in Nim. You can also use Nim to develop Android applications
 by using the C++ compilation backend. JavaScript is the client-side language used by billions of websites; it’s sometimes
 called the “assembly language of the web” because it’s the only programming language that’s supported by all the major web
 browsers. By compiling to JavaScript, you can write client-side applications for web browsers in Nim. Figure 1.1 shows the available Nim backends.

 Figure 1.1. Compilation backends

 [image:]

 You may now be wondering just how fast Nim is at compiling software. Perhaps you’re thinking that it’s very slow; after all,
 Nim needs to translate source code to an intermediate language first. But in fact it’s fairly fast. As an example, the Nim
 compiler, which consists of around 100,000 lines of Nim code, takes about 12 seconds to compile on a MacBook Pro with a 2.7
 GHz Intel Core i5 CPU. Each compilation is cached, so the time drops to 5 seconds after the initial compilation.

Memory management

 C and C++ both require you to manually manage memory, carefully ensuring that what you allocate is deallocated once it’s no
 longer needed. Nim, on the other hand, manages memory for you using a garbage collector. But there are situations when you
 may want to avoid garbage collectors; they’re considered by many to be inadequate for certain application domains, like embedded
 systems and games. For this reason, Nim supports a number of different garbage collectors with different applications in mind.
 The garbage collector can also be removed completely, giving you the ability to manage memory yourself.

 	

 Garbage collectors

 Switching between garbage collectors is easy. You just need to specify the --gc:<gc_name> flag during compilation and replace <gc_name> with markandsweep, boehm, or none.

 	

 This was just a small taste of Nim’s most prominent features. There’s a lot more to it: not just the unique and innovative
 features, but also the unique composition of features from existing programming languages that makes Nim as a whole very unique
 indeed.

 1.1.3. How does Nim work?

 One of the things that makes Nim unique is its implementation. Every programming language has an implementation in the form
 of an application, which either interprets the source code or compiles the source code into an executable. These implementations
 are called an interpreter and a compiler, respectively. Some languages may have multiple implementations, but Nim’s only implementation is a compiler. The compiler
 compiles Nim source code by first translating the code to another programming language, C, and then passing that C source
 code to a C compiler, which then compiles it into a binary executable. The executable file contains instructions that indicate
 the specific tasks that the computer should perform, including the ones specified in the original Nim source code. Figure 1.2 shows how a piece of Nim code is compiled into an executable.

 Figure 1.2. How Nim compiles source code

 [image:]

 The compilers for most programming languages don’t have this extra step; they compile the source code into a binary executable
 themselves. There are also others that don’t compile code at all. Figure 1.3 shows how different programming languages transform source code into something that can be executed.

 Figure 1.3. How the Nim compilation process compares to other programming languages

 [image:]

 Nim connects to the C compilation process in order to compile the C source code that was generated by it. This means that
 the Nim compiler depends on an external C compiler, such as GCC or Clang. The result of the compilation is an executable that’s
 specific to the CPU architecture and OS it was compiled on.

 This should give you a good idea of how Nim source code is transformed into a working application, and how this process is
 different from the one used in other programming languages. Every time you make a change to your Nim source code, you’ll need
 to recompile it.

 Now let’s look at Nim’s positive and negative aspects.

1.2. Nim’s benefits and shortcomings

 It’s important to understand why you might want to use a language, but it’s just as important to learn why that language may
 not be correct for your particular use case.

 In this section, I’ll compare Nim to a number of other programming languages, focusing on a variety of characteristics and
 factors that are typically used in such comparisons. After that, I’ll discuss some of the areas where Nim still needs to catch
 up with other languages.

 1.2.1. Benefits

 As you read this book, you may wonder how Nim compares to the programming languages that you’re familiar with. There are many
 ways to draw a comparison and multiple factors that can be considered, including the language’s execution speed, expressiveness,
 development speed, readability, ecosystem, and more. This section looks at some of these factors to give you a better idea
 of the benefits of Nim.

Nim is efficient

 The speed at which applications written in a programming language execute is often used in comparisons. One of Nim’s goals
 is efficiency, so it should be no surprise that it’s a very efficient programming language.

 C is one of the most efficient programming languages, so you may be wondering how Nim compares. In the previous section, you
 learned that the Nim compiler first translates Nim code into an intermediate language. By default, the intermediate language
 is C, which suggests that Nim’s performance is similar to C’s, and that’s true.

 Because of this feature, you can use Nim as a complete replacement for C, with a few bonuses:

 	Nim has performance similar to C.

 	Nim results in software that’s more reliable than software written in C.

 	Nim features an improved type system.

 	Nim supports generics.

 	Nim implements an advanced form of metaprogramming.

 In comparison to C, metaprogramming in Nim is unique, as it doesn’t use a preprocessor but is instead a part of the main compilation
 process. In general, you can expect to find many modern features in Nim that you won’t find in C, so picking Nim as a C replacement
 makes a lot of sense.

 Table 1.1 shows the results of a small benchmark test.[1] Nim matches C’s speed and is significantly faster than Python.

 1

You can read more about this benchmark test on Dennis Felsing’s HookRace blog: http://hookrace.net/blog/what-is-special-about-nim/#good-performance.

 Table 1.1. Time taken to find which numbers from 0 to 100 million are prime

 	
 Programming language

 	
 Time (seconds)

 	C
 	2.6

 	Nim
 	2.6

 	Python (CPython)
 	35.1

 In this benchmark, the Nim application’s runtime matches the speed of the C app and is significantly faster than the app implemented
 in Python. Micro benchmarks such as this are often unreliable, but there aren’t many alternatives. Nim’s performance matches that of C, which is already one of
 the most efficient programming languages out there.

Nim is readable

 Nim is a very expressive language, which means that it’s easy to write Nim code that’s clear to both the compiler and the
 human reader. Nim code isn’t cluttered with the curly brackets and semicolons of C-like programming languages, such as JavaScript
 and C++, nor does it require the do and end keywords that are present in languages such as Ruby.

 Compare this expressive Nim code with the less-expressive C++ code

 Listing 1.3. Iterating from 0 to 9 in Nim

 for i in 0 .. <10:
 echo(i)

 Listing 1.4. Iterating from 0 to 9 in C++

 #include <iostream>
using namespace std;

int main()
{
 for (int i = 0; i < 10; i++)
 {
 cout << i << endl;
 }

 return 0;
}

 The Nim code is more readable and far more compact. The C++ code contains many elements that are optional in Nim, such as
 the main function declaration, which is entirely implicit in Nim.

 Nim is easy to write but, more importantly, it’s also easy to read. Good code readability goes a long way. For example, it
 makes debugging easier, allowing you to spend more time writing beautiful Nim code, cutting down your development time.

Nim stands on its own

 This has been mentioned already, but it’s worth revisiting to describe how other languages compare, and in particular why
 some require a runtime.

 Compiled programming languages such as Nim, C, Go, D, and Rust produce an executable that’s native to the OS on which the
 compiler is running. Compiling a Nim application on Windows results in an executable that can only be executed on Windows.
 Similarly, compiling it on Mac OS results in an executable that can only be executed on Mac OS. The CPU architecture also
 comes into play: compilation on ARM results in an executable that’s only compatible with ARM CPUs. This is how things work
 by default, but it’s possible to instruct Nim to compile an executable for a different OS and CPU combination through a process
 known as cross-compilation.

 Cross-compilation is usually used when a computer with the desired architecture or OS is unavailable, or the compilation takes
 too long. One common use case would be compiling for ARM devices such as the Raspberry Pi, where the CPU is typically slow.
 More information about cross-compilation can be found in the Nim Compiler User Guide: http://nim-lang.org/docs/nimc.html#cross-compilation.

 Among other things, the JVM was created to remove the need for cross-compilation. You may have heard the phrase “write once,
 run anywhere.” Sun Microsystems created this slogan to illustrate Java’s cross-platform benefits. A Java application only
 needs to be compiled once, and the result of this compilation is a JAR file that holds all the compiled Java classes. The
 JAR file can then be executed by the JVM to perform the programmed actions on any platform and architecture. This makes the
 JAR file a platform and architecture-agnostic executable. The downside to this is that in order to run these JAR files, the
 JVM must be installed on the user’s system. The JVM is a very big dependency that may contain bugs and security issues. But
 on the other hand, it does allow the Java application to be compiled only once.

 Python, Ruby, and Perl are similar. They also use a virtual machine (VM) to execute code. In Python’s case, a VM is used to
 optimize the execution of Python code, but it’s mostly hidden away as an implementation detail of the Python interpreter.
 The Python interpreter parses the code, determines what actions that code is describing, and immediately executes those actions.
 There’s no compilation step like with Java, C, or Nim. But the advantages and disadvantages are mostly the same as the JVM’s;
 there’s no need for cross-compilation, but in order to execute a Python application, the system needs to have a Python interpreter
 installed.

 	

 Write once, run anywhere

 Similar to the “write once, run anywhere” slogan, other programming languages adopted the “write once, compile anywhere” philosophy,
 giving a computer program the ability to be compiled on all platforms without the need to modify its source code. This applies
 to languages such as C, Pascal, and Ada. But these languages still require platform-specific code when dealing with more-specialized
 features of the OS, such as when creating new threads or downloading the contents of a web page. Nim goes a step further;
 its standard library abstracts away the differences between OSs so you can use a lot of the features that modern OSs offer.

 	

 Unfortunately, in many cases, virtual machines and interpreters cause more problems than they solve. The number of common
 CPU architectures and the most popular OSs is not that large, so compiling for each of them isn’t that difficult. In contrast,
 the source code for applications written in interpreted languages is often distributed to the user, and they’re expected to
 install the correct version of the interpreter or virtual machine. This can result in a lot of problems.

 One example of the difficulty associated with distributing such applications is the recent introduction of Python 3. Because
 it’s not backward compatible with the previous version, it has caused many issues for software written originally in Python
 2. Python 3 was released in 2008, and as of this writing, there are still libraries written for Python 2 that don’t work with
 the Python 3 interpreter.[2] This wouldn’t be a problem with a compiled language because the binaries would still continue to work.

 2

See the Python 3 Readiness page for a list of Python 3–ready packages: http://py3readiness.org/.

 The lightweight nature of Nim should make it particularly appealing, especially in contrast to some of the languages mentioned
 in this section.

Nim is flexible

 There are many different styles that software can be written in. A programming paradigm is a fundamental style of writing
 software, and each programming language supports a different set of paradigms. You’re probably already familiar with one or
 more of them, and at the very least you know what object-oriented programming (OOP) is because it’s taught as part of many
 computer science courses.

 Nim is a multi-paradigm programming language. Unlike some popular programming languages, Nim doesn’t focus on the OOP paradigm.
 It’s mainly a procedural programming language, with varying support for OOP, functional, declarative, concurrent, and other
 programming styles.

 That’s not to say that OOP isn’t well supported. OOP as a programming style is simply not forced on you. Nim supports common
 OOP features, including inheritance, polymorphism, and dynamic dispatch.

 To give you a better idea of what Nim’s primary paradigm looks like, let’s look at the one big difference between the OOP
 paradigm and the procedural paradigm. In the OOP paradigm, methods and attributes are bound to objects, and the methods operate
 on their own data structure. In the procedural paradigm, procedures are standalone entities that operate on data structures.
 This may be hard for you to visualize, so let’s look at some code examples to illustrate it.

 	

 Subroutine terminology

 In this subsection I mention methods and procedures. These are simply different names for subroutines or functions. Method is the term used in the context of OOP, procedure is used in procedural programming, and function is used in functional programming.

 	

 The following code listings show the same application. The first is written in Python using the OOP style. The second is written
 in Nim using the procedural style.

 Listing 1.5. Barking dog modeled using OOP in Python

 class Dog:
 def bark(self): 1
 print("Woof!")

dog = Dog()

dog.bark() 2

 	
1 The bark method is associated with the Dog class by being defined within it.

 	
2 The bark method can be directly invoked on the dog object by accessing the method via the dot.

 Listing 1.6. Barking dog modeled using procedural programming in Nim

 type
 Dog = object

proc bark(self: Dog) = 1
 echo("Woof!")

let dog = Dog()
dog.bark() 2

 	
1 The bark procedure isn’t directly associated with the Dog type by being defined within it. This procedure could also easily
 be defined outside this module.

 	
2 The bark procedure can still be directly invoked on the dog object, despite the fact that the procedure isn’t associated
 with the Dog type as it is in the Python version.

 In the Python code, the bark method is placed under the class definition. In the Nim code, the bark method (called a procedure in Nim) isn’t bound to the Dog type in the same way as it is in the Python code; it’s independent of the definition of the Dog type. Instead, its first argument specifies the type it’s associated with.

 You could also implement something similar in Python, but it wouldn’t allow you to call the bark method in the same manner. You’d be forced to call it like so: bark(dog), explicitly passing the dog variable to the method as its first argument. The reason this is not the case with Nim is because Nim rewrites dog.bark() to bark(dog), making it possible for you to call methods using the traditional OOP style without having to explicitly bind them to a class.

 This ability, which is referred to as Uniform Function Call Syntax (UFCS), has multiple advantages. It allows you to create
 new procedures on existing objects externally and allows procedure calls to be chained.

 	

 Classes in Nim

 Defining classes and methods in Nim in a manner similar to Python is also possible. Metaprogramming can be used to do this,
 and the community has already created numerous libraries that emulate the syntax. See, for example, the Nim OOP macro: https://nim-by-example.github.io/oop_macro/.

 	

 Another paradigm that Nim supports is the functional programming (FP) paradigm. FP is not as popular as OOP, though in recent
 years it has seen a surge in popularity. FP is a style of programming that primarily avoids the changing of state and the
 use of mutable data. It uses certain features such as first-class functions, anonymous functions, and closures, all of which
 Nim supports.

 Let’s look at an example to see the differences between programming in a procedural style and a functional one. The following
 code listings show code that separates people’s full names into first and last names. Listing 1.7 shows this done in a functional style and listing 1.8 in a procedural style.

 Listing 1.7. Iterating over a sequence using functional programming in Nim

 import sequtils, future, strutils 1
let list = @["Dominik Picheta", "Andreas Rumpf", "Desmond Hume"] 2
list.map(3
 (x: string) -> (string, string) => (x.split[0], x.split[1]) 4
).echo 5

 	
1 Imports the sequtils, future, and strutils modules. These modules define the map, ->, and split procedures respectively.

 	
2 Defines new list variable containing a list of names

 	
3 The map procedure is used to iterate over the list.

 	
4 The map procedure takes a closure that specifies how to modify each item in the list.

 	
5 The modified list is then displayed on the screen.

 Listing 1.8. Iterating over a sequence using a procedural style in Nim

 import strutils 1
let list = @["Dominik Picheta", "Andreas Rumpf", "Desmond Hume"] 2
for name in list:
 echo((name.split[0], name.split[1])) 3

 	
1 Imports the strutils module, which defines the split procedure

 	
2 A for loop is used to iterate over each item in the list.

 	
3 The code inside the for loop is executed during each iteration; in this case, each name is split into two and displayed as
 a tuple.

 The functional version uses the map procedure to iterate over the list variable, which contains a list of names. The procedural version uses a for loop. Both versions split the name into a first and last name. They then display the result in a tuple. (I’m throwing a lot
 of new terms at you here. Don’t worry if you aren’t familiar with them; I’ll introduce you to them in chapter 2.) The output of the code listings will look similar to this:

 (Field0: Dominik, Field1: Picheta)
(Field0: Andreas, Field1: Rumpf)
(Field0: Desmond, Field1: Hume)

 	

 The meaning of Field0 and Field1

 Field0 and Field1 are just default field names given to tuples when a field name isn’t specified.

 	

 Nim is incredibly flexible and allows you to write software in many different styles. This was just a small taste of the most
 popular paradigms supported by Nim and of how they compare to Nim’s main paradigm. Nim also supports more-obscure paradigms,
 and support for others can be introduced easily using metaprogramming.

Nim catches errors ahead of time

 Throughout this chapter, I’ve been comparing Python to Nim. While Nim does take a lot of inspiration from Python, the two
 languages differ in one important way: Python is dynamically typed and Nim is statically typed. As a statically typed language,
 Nim provides a certain level of type safety that dynamically typed programming languages don’t provide.

 Although Nim is statically typed, it feels very dynamic because it supports type inference and generics. You’ll learn more
 about these features later in the book. For now, think of it as a way to retain the high development speed that dynamically
 typed programming languages allow, while also providing extra type safety at compile time.

 In addition to being statically typed, Nim implements an exception-tracking mechanism that is entirely opt-in. With exception
 tracking, you can ensure that a procedure won’t raise any exceptions, or that it will only raise exceptions from a predefined
 list. This prevents unexpected crashes by ensuring that you handle exceptions.

OEBPS/01fig03_alt.jpg

OEBPS/01fig01_alt.jpg

OEBPS/01fig02.jpg

OEBPS/common01.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg

OEBPS/common02.jpg

OEBPS/cover.jpg

