

 [image: cover]

 Flexible Rails: Flex 3 on Rails 2

 Peter Armstrong

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

 Copyright © 2006-2007 by Peter Armstrong
Version 2007-12-29

 All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means, including
 information storage and retrieval systems, without permission in writing from Peter Armstrong, except by a reviewer who may
 quote brief passages in a review.

 Rails, Ruby on Rails, and the Rails logo are trademarks of David Heinemeier Hansson. Flash, Flex, and Flex Builder are trademarks
 of Adobe Systems Incorporated. Furthermore, many of the designations used by manufacturers and sellers to distinguish their
 products are claimed as trademarks. Where those designations appear in this book, and Peter Armstrong was aware of a trademark
 claim, the designations have been printed in initial capital letters or in all capitals.

 Much effort went into the preparation of this book. However, the publisher and author assume no responsibility for errors
 or omissions, or for damages that may result from the use of information (including program listings) contained herein. The
 opinions expressed within are solely the personal opinions of Peter Armstrong.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental
 chlorine.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Copyeditor: Tiffany Taylor
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08 07

Dedication

 For Caroline and Evan

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Why are we here? Where are we going?

 Chapter 2. Hello World

 Chapter 3. Getting started

 2. Building the application

 Chapter 4. Creating the main Flex UI

 Chapter 5. Expanding the Rails code, RESTfully

 Chapter 6. Flex on Rails

 Chapter 7. Validation

 3. Refactoring

 Chapter 8. Refactoring to Cairngorm

 Chapter 9. Holding state on the client properly

 4. Finishing up

 Chapter 10. Finishing the application

 Chapter 11. Refactoring to RubyAMF

 Chapter 12. Rails on AIR (Adobe Integrated Runtime)

 Appendix A. How to use Subversion with Flex + Rails

 Appendix B. Handwaving at omitted topics

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Why are we here? Where are we going?

 1.1. Overview of the features and strengths of Flex 3 and Rails 2

 1.1.1. Overview of Flex 3

 1.1.2. Overview of Rails 2

 1.1.3. Overview of using Flex 3 and Rails 2 together

 1.2. Flash 9? Are you kidding me?

 1.3. History

 1.4. A preview of the book

 1.5. Summary

 Chapter 2. Hello World

 2.1. Installing everything

 2.1.1. Installing Ruby

 2.1.2. Installing Rails

 2.1.3. Installing MySQL

 2.1.4. Installing Flex

 2.1.5. Installing a text editor or IDE (SDK users only)

 2.1.6. Creating the Rails project

 2.1.7. How to read the rest of this iteration

 2.2. Windows or Mac OS X + Flex Builder 3

 2.2.1. Creating the Flex project

 2.2.2. “Hello World” from Flex

 2.2.3. “Hello World” from Rails

 2.2.4. “Hello World” from Flex and Rails

 2.3. Windows + Flex SDK

 2.3.1. Creating the Aptana RadRails project

 2.3.2. “Hello World” from Flex

 2.3.3. “Hello World” from Rails

 2.3.4. “Hello World” from Flex and Rails

 2.4. Mac OS X (or Linux) + Flex SDK

 2.4.1. Creating the TextMate project (or launch Emacs or vi)

 2.4.2. “Hello World” from Flex

 2.4.3. “Hello World” from Rails

 2.4.4. “Hello World” from Flex and Rails

 2.5. Summary

 Chapter 3. Getting started

 3.1. If you’re starting here

 3.2. Freezing the Rails version

 3.3. Disabling browser navigation integration

 3.4. Adding login functionality to Rails

 3.4.1. Installing and running restful_authentication

 3.4.2. Editing and running the CreateUsers migration, and checking the result

 3.4.3. Adding RESTful routes

 3.4.4. Modifying the includes and before_filter as instructed by the comments

 3.4.5. Testing account creation from HTML

 3.4.6. Testing login from HTML

 3.5. Adding login functionality to Flex

 3.5.1. “Hello World,” this time with meaning!

 3.5.2. Binding? What the...?

 3.5.3. This MXML looks strange

 3.5.4. Flex 3 documentation? Where?

 3.5.5. Stubbing out an account-creation and login UI in Flex

 3.5.6. Making account create and login functional

 3.6. Adding data to the test fixtures

 3.7. Checking the tests

 3.8. Configuring Flex Builder to run and debug pomodo

 3.9. Summary

 2. Building the application

 Chapter 4. Creating the main Flex UI

 4.1. Requirements

 4.2. Design

 4.3. Code

 4.4. Summary

 Chapter 5. Expanding the Rails code, RESTfully

 5.1. A brief note about REST

 5.1.1. Disclaimer: doing REST wrong

 5.1.2. What is REST?

 5.1.3. Why use a RESTful approach?

 5.2. Calling the user by name

 5.2.1. Adding a primitive debug console to Flex

 5.2.2. The case of the missing first name

 5.2.3. Fixing to_xml temporarily

 5.2.4. Fixing to_xml permanently

 5.3. Creating the new resources (including migrations, models, and controllers)

 5.3.1. Creating the Task, Project, and Location resources

 5.3.2. Adding the associations to the model

 5.3.3. A tour of the TasksController

 5.3.4. Understanding how routing works to set the requested format

 5.3.5. Making the UsersController and SessionsController RESTful

 5.3.6. Editing and running the migrations

 5.3.7. Ad hoc testing with the HTML views

 5.4. Security

 5.4.1. Ensuring destructive actions are done by POST

 5.4.2. Requiring login

 5.4.3. Access control

 5.5. Expanding our fixtures and keeping our tests passing

 5.6. Summary

 Chapter 6. Flex on Rails

 6.1. Setup

 6.2. Listing tasks in Flex

 6.2.1. Should we use to_xml with :include?

 6.3. Creating tasks in Flex

 6.4. Creating and listing projects and locations in Flex

 6.5. Making the Projects and Locations ComboBoxes work in the TaskCreateBox

 6.5.1. Refactoring the list data location

 6.5.2. Making the projects and locations show up

 6.5.3. Using a ComboBox prompt

 6.5.4. Adding a None object to the ComboBox dataProvider

 6.5.5. Saving the project and location choices

 6.6. About that None project and location

 6.7. Updating and deleting tasks, projects, and locations

 6.7.1. Adding update_xml and destroy_xml methods to the Rails controllers

 6.7.2. Getting ComboBox itemRenderers to work in the TasksListBox

 6.7.3. Adding Delete buttons

 6.7.4. Adding Completed CheckBoxes to the TasksListBox

 6.7.5. Editing the task name and notes in the TasksListBox

 6.7.6. Adding Delete buttons and Completed check boxes to the ProjectsListBox and LocationsListBox

 6.8. Keeping our tests passing

 6.9. Summary

 6.10. Exercises for the reader

 Chapter 7. Validation

 7.1. Revisiting the HTML account signup screen

 7.2. Rails and Flex validation—should you stay DRY?

 7.3. Understanding Rails validation, and building custom XML for errors

 7.4. A Quick look at validation in Flex 3

 7.5. Integrating Rails validation with Flex 3 validation

 7.6. Flex validators revisited

 7.7. Keeping our tests passing

 7.8. Summary

 7.9. Exercises for the reader

 3. Refactoring

 Chapter 8. Refactoring to Cairngorm

 8.1. Background and setup

 8.1.1. Cairngorm history

 8.1.2. Do you need to use Cairngorm?

 8.1.3. Downloading Cairngorm 2.2.1

 8.1.4. Importing the Cairngorm sources into Flex Builder

 8.1.5. Getting and running the ModifiedCairngormStore

 8.1.6. Adding Cairngorm to pomodo

 8.1.7. Creating the standard directories

 8.2. Cairngorm event sequence overview

 8.3. Creating com.pomodo.model.PomodoModelLocator

 8.4. Creating com.pomodo.control.*

 8.4.1. EventNames.as

 8.4.2. PomodoController.as

 8.5. Adding CairngormUtils and ServiceUtils to com.pomodo.util.*

 8.5.1. CairngormUtils.as

 8.5.2. ServiceUtils.as

 8.6. Creating com.pomodo.command.*

 8.6.1. CreateTaskCommand.as

 8.6.2. CreateProjectCommand.as

 8.6.3. CreateLocationCommand.as

 8.6.4. CreateSessionCommand.as

 8.6.5. CreateUserCommand.as

 8.6.6. UpdateTaskCommand.as

 8.6.7. UpdateProjectCommand.as

 8.6.8. UpdateLocationCommand.as

 8.6.9. DestroyTaskCommand.as

 8.6.10. DestroyProjectCommand.as

 8.6.11. DestroyLocationCommand.as

 8.6.12. ListTasksCommand.as

 8.6.13. ListProjectsCommand.as

 8.6.14. ListLocationsCommand.as

 8.7. Creating com.pomodo.business.*

 8.7.1. TaskDelegate.as

 8.7.2. ProjectDelegate.as

 8.7.3. LocationDelegate.as

 8.7.4. UserDelegate.as

 8.7.5. SessionDelegate.as

 8.8. Deleting the com.pomodo.events package

 8.9. Modifying the com.pomodo.components.*

 8.9.1. TaskCreateBox.mxml

 8.9.2. ProjectCreateBox.mxml

 8.9.3. LocationCreateBox.mxml

 8.9.4. TasksListBox.mxml

 8.9.5. ProjectsListBox.mxml

 8.9.6. LocationsListBox.mxml

 8.9.7. AccountCreateBox.mxml

 8.9.8. LoginBox.mxml

 8.9.9. MainBox.mxml

 8.9.10. SplashBox.mxml

 8.10. Modifying Pomodo.mxml

 8.11. Running pomodo

 8.12. HTTPService Gotchas

 8.13. Summary

 8.14. Exercise for the reader

 Chapter 9. Holding state on the client properly

 9.1. Refactoring, samurai coder style

 9.2. Creating the model classes

 9.2.1. Task.as

 9.2.2. Project.as

 9.2.3. Location.as

 9.2.4. User.as

 9.3. Modifying the PomodoModelLocator

 9.4. Modifying ServiceUtils

 9.5. Modifying the business delegates

 9.5.1. TaskDelegate.as

 9.5.2. ProjectDelegate.as

 9.5.3. LocationDelegate.as

 9.5.4. SessionDelegate.as

 9.5.5. UserDelegate.as

 9.6. Modifying the commands

 9.6.1. CreateSessionCommand.as

 9.6.2. CreateUserCommand.as

 9.6.3. DestroyTaskCommand.as

 9.6.4. ListLocationsCommand.as

 9.6.5. ListProjectsCommand.as

 9.6.6. ListTasksCommand.as

 9.6.7. UpdateLocationCommand.as

 9.6.8. UpdateProjectCommand.as

 9.6.9. UpdateTaskCommand.as

 9.7. Modifying the components

 9.7.1. MainBox.mxml

 9.7.2. TaskCreateBox.mxml

 9.7.3. ProjectCreateBox.mxml

 9.7.4. LocationCreateBox.mxml

 9.7.5. AccountCreateBox.mxml

 9.7.6. TasksListBox.mxml

 9.7.7. ProjectsListBox

 9.7.8. LocationsListBox.mxml

 9.8. Summary

 4. Finishing up

 Chapter 10. Finishing the application

 10.1. Notely

 10.2. Better security with attr_accessible

 10.3. GTD semantics, including the Next Action concept and :dependent

 10.4. Filtering tasks

 10.5. The CommandShell

 10.6. Logging out

 10.7. Marketing!

 10.8. Deleting users

 10.9. Exercises for the Reader

 Chapter 11. Refactoring to RubyAMF

 11.1. Warning: biased author

 11.2. Hello RubyAMF

 11.3. Refactoring to RubyAMF, fast-forwarded

 11.3.1. Modifying rubyamf_config.rb

 11.3.2. Modifying the Rails controllers

 11.3.3. Creating Services.mxml and modifying Pomodo.mxml

 11.3.4. Creating the value objects

 11.3.5. Modifying the model objects to produce value objects

 11.3.6. Modifying the business delegates

 11.3.7. Modifying the PomodoModelLocator

 11.3.8. Modifying the commands

 11.4. Summary

 Chapter 12. Rails on AIR (Adobe Integrated Runtime)

 12.1. Converting pomodo to an AIR application

 12.1.1. Deleting the old project

 12.1.2. Creating the new project

 12.1.3. Getting it running

 12.2. Refactoring event triggering

 12.3. Online/Offline support

 12.4. Summary

 12.5. Exercises for the reader

 12.6. Conclusion

 Appendix A. How to use Subversion with Flex + Rails

 Appendix B. Handwaving at omitted topics

 Testing

 Multiple-file upload with Flash, Flex, AIR, and Rails or Merb

 WebORB

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 It was early in 2006 when I was discussing my fanaticism for the emerging framework Ruby On Rails down at the pub with friends.
 I mentioned to Mike Jones, a career Flash developer, that I thought Ruby On Rails would be great for integrating with his
 new favorite plaything, the Adobe Flex 2 beta. Here were two technologies born of the desire to make cool things easier to
 build. It was a match made in heaven, and I knew someone would do it soon.

 In April and May of that year, I wrote a two-part tutorial on my blog liverail.net and also delivered a presentation at the
 London Flash Platform User Group, developing a RIA CRUD interface in Flex with a Ruby On Rails backend.

 This was only the start of a wave of people marrying the two technologies that were gaining traction in the development community,
 from Flash/Flex developers with their first forays into backend development to seasoned Ruby programmers who would never have
 dreamed of developing anything on Flash, scared off by “The Timeline.” Since my initial blog posts, several people have taken
 to Flex and Rails with a lot of passion, developing integration software, launching startups, and posting blogs—none more
 so than Peter, who was dedicated/passionate/foolish enough to believe there was a whole book on the subject waiting to be
 written.

 Time has proven him right, and Peter has run with the concept and seen it grow in strength, with new start-ups in Flex and
 Rails launched every month. Peter has continually delivered Flexible Rails, keeping up to date with Flex 3 and Rails 2 and
 working with Cairngorm (the Flex MVC framework), and he’s at the cutting edge with RubyAMF. Peter’s book delivers tutorial
 after tutorial, leading us through the complete lifecycle of his phantom RIA startup pomodo from database to desktop with
 Adobe AIR.

 If you are looking to develop your next RIA startup, internal data-warehousing client, or just something a bit different,
 this book will be your cup of tea.

 STUART ECCLES

 TECHNICAL DIRECTOR AND CO-FOUNDER

 MADE BY MANY LTD., U.K.

Preface

 On January 31, 2006, after over a year and a half of working with Flex and more than six months of playing with Rails (building
 toy apps, reading Agile Web Development with Rails, and so on), I finally realized that for many applications Rails was the perfect server-side technology to complement Flex—and
 on the flip side, that Flex offered capabilities that were either difficult, impossible, buggy, or merely annoying to do with
 JavaScript/AJAX/DHTML on the client side (especially if, like me, you’re not a JavaScript guru like Thomas Fuchs). Despite
 the productivity of Rails, at the end of the day we’re still dealing with the joys of HTML, JavaScript, CSS, and browser compatibility
 issues.

 So, I did what I always do whenever I have a Really Great Idea: I registered a domain name. I wanted a name that would be
 good for promoting a possible book about using Flex and Rails together, so the natural choice was flexiblerails.com. I also
 got flexiblerails.net and .org because I was so sure how good an idea this was. By January 2006, the massive success of Agile Web Development with Rails had put dollar signs in the heads not only of publishers but also of many in the Rails community who had blogs. After all,
 writing a book couldn’t be much harder than writing a few blog posts, right?

 I then did what I typically do whenever I have a Really Great Idea: nothing.

 Between the demands of my job and my two-year-old son, I was too busy, too tired, and so forth. Besides, I had a lot of Really
 Great Ideas (and domain names to go with them), and I wasn’t acting on any of them.

 So, time passed.

 Then, it was announced that the Flex 2 SDK would be free (as in beer), and I thought again: Yep, Flex and Rails will be perfect
 together, especially because Flex 2 will be so much better than Flex 1.5.

 Again: nothing. I’m too busy; I’m too tired; I’d rather play Civ 4; the list went on.

 Then, Flex 2 went through its beta cycles and was released, with Flex Builder costing only $499, half of what had been expected.

 Again: nothing.

 Then, in July 2006, I stumbled upon an excellent tutorial by Stuart Eccles on liverail.net which had been written on April
 16, 2006, about using Flex and Rails together, and then upon another one (written on the same day!) on Christophe Coenraets’
 blog, and I realized that I wasn’t alone in thinking this really was a Really Great Idea—and that if I was ever going to write
 anything about it, I’d better get off my butt and do it now.

	

Note

 The ironic thing was that the liverail.net tutorial rails application was called (you guessed it) flexiblerails. For me, this was truly the “get off your butt and do something, you moron” moment: The first really good tutorial about Flex and Rails together used the same name for its example application that I had registered
 as a domain name months earlier! (If anyone cares: I registered flexiblerails.com on January 31, 2006. Stuart Eccles published part 1 of his excellent tutorial on April 16, 2006, and I had missed seeing it until July 2006!) If I hadn’t loved my domain name
 so much, I would have named this book something else, so as not to cause confusion between this book and the tutorial on his
 blog. I hope that this chronology is a sufficient acknowledgment of—and even an homage to—his tutorial: This book would not
 exist if his tutorial hadn’t motivated me to finally do what I had already thought of doing.

	

I released the first Alpha Version of this book in self-published form in September 2006. It was buggy and had terrible formatting
 for the code samples. Despite this, I got amazing feedback from many readers, which led to a much better book as a result.
 Over the year that followed, I released numerous revised Alpha and then Beta versions, adding iterations, updating Rails versions,
 rewriting the entire book, and so on. Throughout this process, my readers were remarkably helpful and patient, even though
 the roadmap for the book kept changing almost monthly.

 As the book got better and more popular, publishers became interested. Manning approached me and we worked out a contract
 that ensured I could keep all of my promises to my existing readers while working with Manning to revise the book. During
 this time, Flex 3 went to Beta 2, and Rails 2 went to pre-release status. So, I rewrote the book again, this time using Flex 3 and Rails 2. The book doesn’t use all the new features, but it does use some of them, the RESTful
 URLs are correct, and so on. During the author review process, I did yet another pass through the code, re-creating all the
 code samples by following along with my own book, using Release Candidate 1 of Rails 2 (1.99.0). Then, just after the book
 went into typesetting, Rails 2 final (2.0.1) was released. So, during typesetting, I did yet another pass through the book,
 following along again using Rails 2.0.1. So, while the text of the book refers to Rails 1.99.0, rest assured that it has been
 tested with both Rails 1.99.0 and Rails 2.0.1.

 This book has been part of my life for almost two years, consuming countless evenings and weekends. My sincere hope is that
 it will be an enjoyable read for you, and that you can build something great using the code written in it as the foundation.

Acknowledgments

 First and foremost, I never would have finished this book without the infinite patience and support of my wife Caroline. Thank
 you.

 I have had very supportive friends as well. Thomas Yip gave me much appreciated early encouragement and very insightful, extensive
 feedback on the first version. Steven Baker introduced me to many people within the Rails community who saw the potential
 when my toy Flex + Rails app was little more than Hello World. Len and Mike Epp have been great friends throughout; thanks
 especially to Len for his hospitality when I was working on this book from his flat in London. Finally, an enormous thank
 you to Dima Berastau for convincing me that my book was done, when I still thought that I should delay it for another 3–6
 months to add 200–300 more pages to it.

 Next, thanks to my father: In late summer 2006, he took time during a visit to read the first 200-page version and contributed
 numerous helpful grammar suggestions. Most interestingly, I think he finally really understood what I do for a living.

 I won’t thank any readers by name, because I would need to name the hundreds of readers who helped me with feedback and encouragement
 when this book existed in self-published form.

 An enormous thank-you to Christopher Bailey for jumping in at the last minute to do the technical proofreading for the book—and
 to not only do it, but to do it extremely well. Chris runs Cobalt Edge LLC (cobaltedge.com), a software development and consulting
 company. He is V.P. of Engineering at Bring Light (bringlight.com), an online social network inspiring a new generation of
 philanthropy. Chris also contributes to Building Web Apps (buildingwebapps.com), a great resource for increasing your web
 development knowledge. Chris lives with his wife, and two children, in Eugene, OR.

 Thanks to Adam Springer, Tim Steele, Matt Wyman, and Steve Byrne. Thanks also to Ross Ladell, Cary Newfeldt, Brad Sokol, Justin
 Damer, Hao Vuong, Joel Greensite, and Darrell Snow.

 Thanks to the following people at Adobe: Mike Potter, Ryan Stewart, Duane Nickull and Suzanne Nguyen.

 Thanks to the peer reviewers, who provided invaluable feedback on the book shortly before it went into production: Erik Hatcher,
 Arne Pfeilsticker, Louis F. Springer, Brent Schooley, Christopher Bailey, Mike Tian-Jian Jiang, Robert Dempsey, Christophe
 Bun, Paul Fernando Larini, and Jeremy Anderson

 Thanks to the many people at Manning:

 First, thanks to Mike Stephens for approaching me in the first place, and for enabling me to meet my commitments to my existing
 readers. Also, thanks for his patience with me: Shortly after he acquired what he thought was a “finished” book, I decided
 that I needed to miss the deadline in order to rewrite the book to use Flex 3 and Rails 2 and to add a RubyAMF chapter. The
 book is much better for it, so thanks for taking the gamble.

 Next, thanks to my editor Douglas Pundick, who got the pleasure of working with me when I was at my most clueless about how
 “real” books are put together, and for dealing with me cheerfully as I attempted to rewrite the book from half the Starbucks
 locations in London and various hotels in Italy.

 Thanks to publisher Marjan Bace for his support of an unorthodox book that had a very unorthodox origin. Thanks very much
 to project editor Mary Piergies, who handled the schedule changes and the production effort that spanned the Christmas holiday
 season with grace. Next, an enormous thank-you to my copyeditor Tiffany Taylor: You’re Manning’s secret weapon! (I could go
 on and on, but that would be verbose, so I’ll edit out for you.) Another enormous thank-you to my proofreader, Maureen Spencer—this
 quote from one of her emails sums up her dedication: “I finished my read of Chapter 11 during the Caroling.” Thank you so much for your efforts in the proofreading and your cheerfulness as this book impacted
 your Christmas and New Year holidays.

 Finally, an apology to my son Evan: Daddy finally finished his book! I’m sorry it took so long.

About this Book

 Many technical books I’ve bought are like Disneyland: They seem promising, but they’re expensive, the examples are Mickey
 Mouse, they take forever, and I end up disappointed.

 This is not one of those books.

 In Flexible Rails, we’ll build a real application—well, as close to a real application as you can get in a book. As we go, I’ll explain the
 concepts introduced by the code, as well as explain the code itself. The code is all MIT-licensed, so you can take whatever
 you want from it and use it as the basis of whatever Web 2.0 startup you’re dreaming of, without owing me (or Manning) a penny.
 (If you do make millions, I won’t say no to unsolicited gifts, of course!)

Roadmap

 Like many applications developed iteratively, this book contains four parts:

	Getting started

 	Building the application

 	Refactoring

 	Finishing up

In part 1, “Getting started,” we’ll do the necessary setup work that will let us get to the fun stuff in the rest of the book. We’ll
 install everything, do a Flex and Rails version of “Hello World,” and then get user creation and login working in Rails and
 hook up the Flex UI to it. This part contains three iterations:

	
Iteration 1 “Why are we here? Where are we going?”— This iteration provides the motivation for the book, an understanding of the history of Flex and Rails and how they fit together,
 and an overview of the book.

 	
Iteration 2 “Hello World”— This iteration contains three separate sets of instructions (Windows or Mac OS X + Flex Builder 3, Windows + Flex SDK, and
 Mac OS X + Flex SDK) for installing everything we need and getting “Hello World” running.

 	
Iteration 3 “Getting started”— In this iteration, we’ll set up MySQL and then add account-creation and login functionality to our Rails application, using
 the restful_authentication plugin. We then hook up the Flex UI to use the Rails account creation and login functionality.

In part 2, “Building the application,” we’ll do a deep dive using Flex with Rails. By the end of it, we’ll have mastered the basics
 of using Flex with Rails. This part contains four iterations:

	
Iteration 4 “Creating the main Flex UI”— In this iteration, we’ll build a stubbed-out UI for the main part of the Flex application.

 	
Iteration 5 “Expanding the Rails code, RESTfully”— Next, we’ll add new Rails models and controllers for the tasks, projects, and locations—as well as the migrations needed to
 create their database tables. We also introduce REST in this iteration. Finally, we’ll address some basic security concerns
 that need to be considered at the outset.

 	
Iteration 6 “Flex on Rails”— In this iteration, we’ll hook up most of the main Flex UI we’ll build in iteration 4 to the Rails controllers we’ll build
 in iteration 5.

 	
Iteration 7 “Validation”— We’ll add full validation support on the Rails side and the Flex side to the account-creation process.

At this point, we’ll be ready to think about higher-level topics, which we’ll do in part 3, “Refactoring.” This part includes two iterations:

	
Iteration 8 “Refactoring to Cairngorm”— We’ll refactor the code we wrote in part 2 to use Cairngorm, an application framework for Flex.

 	
Iteration 9 “Holding state on the client properly”— We’ll refactor the code again, this time to add a proper object model instead of just using XML on the client.

At the end of this part, we’ll have a much better understanding of design in Flex and of the options available to us for data
 exchange between Flex and Rails. Doing the refactoring to decouple the object model from its method of transport (currently
 XML) will enable us to consider using an alternate method of transport.

 In the final part, “Finishing up,” we’ll finish the application, refactor it to use RubyAMF, and extend it to run on the Adobe
 Integrated Runtime (AIR).

 This part contains three iterations:

	
Iteration 10 “Finishing the application”— In this iteration, we’ll build the remaining features in pomodo.

 	
Iteration 11 “Refactoring to RubyAMF”— We’ll refactor pomodo to use RubyAMF instead of XML for sending data between Flex and Rails. Because AMF is a binary protocol
 and XML is text (and verbose text at that), this has the potential to lead to substantial performance improvements.

 	
Iteration 12 “Rails on AIR (Adobe Integrated Runtime)”— In this last iteration of the book, we’ll convert the code to run on AIR and modify the Notely feature that we’ll build in
 this iteration to take advantage of AIR-specific features. This won’t be a complete tutorial introduction to AIR; instead,
 it will give you a taste of one of the exciting ways to take your Flex + Rails applications beyond the traditional web application
 model.

The overall approach of this book is “Flex and Rails Immersion”—instead of getting bogged down in theory and boring you with
 contrived examples, we’ll build a real application together and learn everything as we go. Also, I don’t pretend that the
 book exists in isolation: I reference many excellent resources, including not only the relevant books but also numerous blog
 posts. One of the hallmarks of the Rails community in particular is the number of prolific bloggers—most people in the Rails
 community learn from these blogs, so the honest thing to do is to provide a brief explanation in the book and reference them
 for the full explanation, instead of paraphrasing them.

What the book doesn’t compete with

 This book is intended to be an informative, interesting, useful, and occasionally mildly entertaining tutorial for software
 developers, regardless of how much Flex, Ruby, or Rails experience they have. This book is not attempting to provide a full
 Ruby, Rails, Flex, or ActionScript 3 tutorial—each of those topics needs an entire book. Luckily, they already have excellent
 books:

	
Ruby— Programming Ruby, 2nd ed.; The Ruby Way, 2nd ed.

 	
Rails— Agile Web Development with Rails, 2nd ed.

 	
Ruby and Rails— Ruby for Rails, 1st ed.

 	
Flex 3— Flex 3 Developer’s Guide (a free 1,435-page PDF from Adobe)

 	
ActionScript 3— Programming ActionScript 3.0 (a free 576-page PDF from Adobe)

This book does not compete with any of these books—it assumes that you either have them (or the knowledge contained in them) or are willing
 to buy them. (The Flex and ActionScript 3 PDFs are free.) If you’re going to do any serious work with Rails, you should buy
 the second edition of Programming Ruby (the first edition is free but outdated), the second edition of Agile Web Development with Rails (AWDwR), and/or the first edition of Ruby for Rails.

 What this book will try to do is provide enough information and external references that someone with no Flex, Ruby, or Rails experience can
 follow along and find help when necessary, but not so much that it would become annoying to someone who already understands
 all the basics of either Rails or Flex. My assumption is that most readers are coming from one camp (a Rails developer wanting
 to learn Flex as an alternative to AJAX or a Flex developer looking for a server-side technology other than Java). That said,
 if you have no Flex or Rails experience, but you have web or desktop UI software-development experience, you should be able
 to follow along with this book: Many readers have done exactly this.

A note about the iterations

 All the code in the book is available for download from http://www.flexiblerails.com/code-samples as well as from the publisher’s website at http://www.manning.com/armstrong or http://www.manning.com/FlexibleRails. The download is one big zip file that contains a separate folder for each completed iteration in the book, except iteration
 1, for which there is no code. This way, you can start at any iteration and follow along by using the directory from the previous
 iteration. Or, if you don’t like typing, you can load each completed iteration as you read.

 Because I’m lazy (in the good programmer way), they aren’t all separate projects—they’re copies of the same project at various
 stages. I recommend creating a staging-area folder called current and having Flex Builder point at it. This way, if you want
 to start at the end of any given iteration, you can delete your current folder and copy that iteration in place of the current
 one. When you relaunch Flex Builder, all it sees is that a bunch of files have changed—the project is the same. If you’re
 using the Flex Framework SDK, this doesn’t apply to you.

 Finally, note that this procedure has no correspondence to anything you would do when actually coding. For real development,
 use Subversion (or Git) and have it ignore the public\bin directory you’ll be creating for the Flex output. See appendix A for details on using Subversion with Flex and Rails. If you’re using Git, you don’t need a tutorial.

Which Flex?

 The short answer is: Flex 3.

 The longer answer is that much of the book was originally written using Flex 2, and that the code was updated to Flex 3 Beta
 2 before the most recent rewrite. So, the code in the book was all produced using Flex 3 Beta 2. During the typesetting process,
 the Flex code was tested with Flex 3 Beta 3. This had no effect except in iteration 12 (“Rails on AIR”): Flex 3 Beta 3 renamed
 Shell.shell to NativeApplication.nativeApplication, so the iteration 12 code was updated accordingly. All the Flex code—except for iteration 12, which uses AIR—will work in
 Flex 2 and Flex 3.

Which Rails?

 The short answer is: Rails 2.

 The slightly longer answer is that the most recent rewrite of this book was done using the first release candidate of Rails 2, whose gem version is 1.99.0. Rails 2 final, whose gem
 version is 2.0.1, was released when the book was already in typesetting. So, during typesetting, I updated my Rails to 2.0.1
 and did another full pass through the book, following along using Rails 2.0.1. So, while the text of the book refers to Rails
 1.99.0, rest assured that it has been tested with both Rails 1.99.0 and Rails 2.0.1. The code that is available for download
 from http://www.flexiblerails.com/code-samples, as well as from the publisher’s website, uses Rails 1.99.0. (Because I followed along with Rails 2.0.1, I could have released
 this code as well. However, its format wouldn’t have matched—copying and pasting from a PDF removes the formatting—so I didn’t
 do this.)

 The really long answer is that I have rewritten this book more than twice: I started writing the early iterations when Rails was at version 1.1.
 The iterations were originally shorter, and there were more than 20 of them. (It turns out that this is an unmaintainable
 nightmare for this style of book, since bugfixes must be ported forward.) So, in May 2007 I completely rewrote the book, dramatically reducing the number of iterations and updating the code to Rails 1.2. In summer 2007, I made an agreement to
 publish the book with Manning. However, Rails 2 went to preview release shortly afterward, so the book would have been outdated
 before it was off the press. So, in October 2007 I completely rewrote the book again, updating the version of Rails to the preview release of Rails 2 (gem version 1.2.3.7707). Then, in November and December
 2007 during the Author Review phase of the book I updated the book to be based on the first release candidate of Rails (gem
 version 1.99.0), by following along from the beginning. Finally, during typesetting I ensured that the code worked with Rails
 2 final (gem version 2.0.1), by following along again from the beginning.

 Writing is indeed rewriting, especially when the topic is as fast-moving as the combination of Flex and Rails.

Understanding the code examples

 For readability, I’ll show the source code of a file with new or modified lines of code in bold italics and lines of code that should be deleted shown in strikethrough. I’ll often omit unchanged portions of a file, using an ellipsis (...) to take the place of the unchanged code. If a large
 section of code is being deleted, I’ll often use an ellipsis inside the code being deleted (because showing tons of strikethrough
 code is a waste of paper). If you’re pasting code from the code samples into your code, make sure you omit or delete any lines
 shown in strikethrough. Furthermore, note that the book uses 64-column code. This results in some purely format-related modifications
 to generated Rails code in order to make it fit nicely within 64 columns. These changes may not be shown as modified or explained,
 because that would be tedious. Finally, note that sometimes it isn’t possible to get code to fit nicely in 64 columns—Rails
 code is often written in a way that favors long lines, and inline event-handling in MXML code lends itself to longer lines
 too. In these cases, the code will just auto-wrap, and a continuation symbol will be shown.

 A complete code zip file is available for download from http://www.flexiblerails.com/code-samples, as well as from the publisher’s website.

Author Online

 Purchase of Flexible Rails includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to http://www.manning.com/ FlexibleRails or http://www.manning.com/armstrong. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the author

 Peter Armstrong has been a Flex developer since July 2004 (since Flex 1.0) and he has been tracking Ruby on Rails since mid-2005
 (since before Rails 1.0). Before switching to Flex, he spent five years as a Java Swing developer, with a brief stint as a
 PHP developer during the dotcom bubble in 2000. As someone with a heavy Swing background, Peter initially found Flex appealing
 because it felt very familiar—more like Swing development than web development. After more than five years of working with
 Java, Ruby and Ruby on Rails felt like a breath of fresh air.

 Peter is the organizer of The Vancouver Ruby/Rails Meetup Group (http://ruby.meetup.com/112/). He has spoken about using Flex with Rails at the Vancouver Flash/Flex Meetup Group, at a RailsConf 2007 BOF, at the Vancouver
 RIA Developer Camp, at Rails to Italy 2007 and at VanDev.

 The author’s website for this book is at http://www.flexiblerails.com. The blog for this book is at http://www.flexiblerails.com/blog. Peter’s personal blog is at http://www.peterarmstrong.com. Peter’s consulting company, focused on Flex and Rails development, training, and workshops, is http://www.ruboss.com.

 Peter lives with his wife Caroline and his son Evan in the Vancouver, British Columbia area. When he’s not coding, writing,
 reading, or being a husband and dad, Peter likes to snowboard and play computer games. If it wasn’t for Desktop Tower Defense,
 Slashdot, and reddit, this book would have been done a month earlier—if not more!

About the Cover Illustration

 The figure on the cover of Flexible Rails is called “Jeune Bourbonnaise” or a young woman from Bourbonnais, a historical region and former province of central France
 in the Massif Central. The illustration is taken from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and travel guides
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other regions
 of the world, as well as to the uniforms and costumes of French soldiers, civil servants, tradesmen, merchants, and peasants.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
 when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other.
 The travel guide brings to life a sense of isolation and distance of that period and of every other historic period except
 our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

Part 1. Getting started

 In this part, we’ll do the necessary setup work to get to the fun stuff in the rest of the book. We’ll install everything,
 do a Flex and Rails version of “Hello World,” and then get user creation and login working in Rails and hook up the Flex UI
 to it.

 This part contains three iterations:

	
Iteration 1: “Why are we here? Where are we going?”—This iteration provides the motivation for the book, an understanding of the history of Flex and Rails and how they fit together,
 and an overview of the book.

 	
Iteration 2: “Hello World”—This iteration contains three separate sets of instructions (Windows or Mac OS X + Flex Builder 3, Windows + Flex SDK, and
 Mac OS X + Flex SDK) for installing everything we need and getting “Hello World” running. You only need to read the section
 that applies to you.

 	
Iteration 3: “Getting started”—In this iteration, we’ll set up MySQL and add account creation and login functionality to our Rails application, using the
 restful_authentication plugin. We’ll then hook up the Flex UI to use the Rails account creation and login functionality. Finally,
 we’ll set up the most minimal of tests. At the end of this iteration, we’ll have a good starting point for any Flex + Rails
 application.

Chapter 1. Why are we here? Where are we going?

 HTML sucks all the joy out of programming for me

 HTML+CSS, that is

 I’m so glad I don’t have to do the design work for our apps

 I’m trying to design a simple form and I’m hating life

 It’s seriously making me want to not work on this anymore

 ...

 html makes it so easy to write forms that look like crap and SO HARD to write forms that look nice that’s so backwards

 Jamis Buck, Signal vs. Noise [Fly on the Wall], July 17, 2007[1]

 1http://www.37signals.com/svn/posts/495-fly-on-the-wall-paying-attention-to-users-mow-the-lawn-vs-cut-the-grass-chowder-html-forms.

 There is a lot of hype these days around Flex and Rails. I’ll try my hand at it for a few paragraphs, too.

 Ruby on Rails, or just Rails for short, has been revolutionizing web application development since its introduction in 2004.
 Nowadays, it seems that a new “Web 2.0” company that uses Rails is spawned every 10 seconds.

 Flex is a sexy framework that lets us write code that feels more like coding a desktop application—except it runs inside the
 Flash player! Because it targets the Flash player, we can build new Rich Internet Applications (RIAs) without worrying about browser compatibility nonsense, JavaScript, CSS, and so on.

	

Note

 The preferred term now seems to be rich Internet applications. I don’t prefer it, though, because rIa isn’t a good-looking acronym. As a curmudgeonly form of protest (I’m an old-school
 Flex developer—I used to code Flex 1.0 while walking uphill both ways in the snow...), I’m going to call them Rich Internet
 Applications in the book. Also, the full capitalization of Rich Internet Applications may be coming back into fashion, in
 response to a Microsoft evangelist having attempted to make RIA stand for “Rich Interactive Applications”—so I’m shouting
 “get off my lawn” in an avant-garde way, I guess.

	

Because Flex 3 targets one platform (Flash 9), we don’t have to worry about platform compatibility issues. The Write Once,
 Run Anywhere (WORA) dream that client-side Java programmers had—before it turned into “write once, debug everywhere”—can finally be realized,
 but with Flex. Flex achieves what previous technologies such as Java applets failed miserably in attempting: applications
 that feel like desktop applications, but which run inside any modern web browser on Windows and Mac.

	

Note

 Write Once, Run Anywhere was essentially realized on the server side but not on the client side. On the client side, AWT was
 terrible, and Swing doesn’t look like any of the platforms it runs on. SWT is an excellent alternative to Swing, because it
 gives us native widgets. However, SWT can’t be used in an applet yet, so we can’t run it in a web browser. It’s just useful
 for building applications like Eclipse—and like Flex Builder 3, which is built on top of the Eclipse Rich Client Platform
 (RCP).

	

But here’s a little-known secret, which this book is the first book to cover: Flex and Rails work amazingly well together!

 We can use Flex 3 and Rails 2 to build RIAs today that look and feel more like Web 3.0 than many of the “me too [point oh]”
 Web 2.0 sites we see copying each other today. This book will show you how to get started doing exactly this.

 In this iteration, we’ll get an overview of Flex and Rails, their history, and how they can be used together.

	

 Iterations
 In this book, the chapters are called iterations. I’ve done this because we’ll develop an application iteratively throughout the book—it has nothing specific to do with Flex
 or Rails. (That said, both Flex and Rails lend themselves to an iterative style of development.) Each iteration advances the
 state of the application further. You can start following along with the book at the beginning of any iteration, using the
 code from the end of the previous iteration.

 This chapter has no code—it’s just an introduction. I’m calling it “iteration 1” instead of “introduction” as a cunning way
 of getting you to read it, because many people skip introductions and dive right into chapter 1. I love it when a plan comes together!

	

1.1. Overview of the features and strengths of Flex 3 and Rails 2

 Now that you’re all excited, let’s take a deep breath and get an overview of both platforms. This section will present a high-level
 overview of both and then show how they can be combined. Don’t worry if you don’t understand a particular point here; it will
 be explained later.

 1.1.1. Overview of Flex 3

 In Flex 3, we write code in MXML (XML files with a .mxml extension; M for Macromedia) and ActionScript (text files with a .as extension) files and compile them into a SWF file, which runs in
 the Flash player. This SWF is referenced by an HTML file, so that when a user with a modern web browser loads the HTML file,
 it plays the Flash movie (prompting the user to download Flash 9 if it’s not present). The SWF contained in the web page can
 interact with the web page it’s contained in and with the server it was sent from.

 Even if you’ve never created a Flash movie in your life, don’t consider yourself a designer, and wouldn’t recognize the Timeline
 if you tripped over it, you can use Flex to create attractive applications that run in the Flash player. Flex development
 is easily learned by any intermediate-level developer with either web or desktop UI (such as Windows Forms or Java Swing)
 programming experience.

 1.1.2. Overview of Rails 2

 Figure 1.1 shows how Rails provides a standard three-tier architecture (presentation tier, model tier, persistence tier) as well as
 a Model-View-Controller (MVC) architecture. As the diagram shows, Rails takes care of everything between the web server and the database.

 Figure 1.1. Rails provides a standard three-tier architecture (presentation tier, model tier, persistence tier) as well as a Model-View-Controller
 architecture.

 [image:]

 The typical sequence is as follows:

	A user visits a particular URL in their web browser (makes an HTTP request).

 	This request goes over the Internet to the web server in which Rails is running (such as WEBrick, lighttpd, Mongrel, or Apache).

 	That web server passes the request to the routing code in Rails, specifically ActionController::Routing::Routes. These routes are defined in config\routes.rb. The default route turns HTTP requests into method calls on controllers.

 	The controller (such as TasksController) method (such as index) is called. It communicates with various ActiveRecord models (which are persisted to and retrieved from a database of our
 choosing). The controller method then can do one of the following things:

	
Set some instance variables and allow a view template (a specially named .html.erb file, for example) to be used to produce
 HTML, XML, or JavaScript, which is sent to the browser. This is the job of Action View. Together, Action View and Action Controller
 form Action Pack.

 	Bypass the view mechanism and do rendering directly via a call to the render method. This method can produce plain text (render :text => "foo"), XML (render :xml => @task), and so on.

1.1.3. Overview of using Flex 3 and Rails 2 together

 Figure 1.2[2] shows how Flex and Rails can be used together.

 2 The diagram “Fig 7. The complete MVC Architecture for a Thin-Client Web Application” at http://www.uidesign.net/Articles/Papers/UsingMVCPatterninWebInter.html inspired the design of my block diagrams.

 Figure 1.2. How we can use Flex and Rails together

 [image:]

1.2. Flash 9? Are you kidding me?

 The reference to Flash 9 earlier may have set off alarm bells in your head: “Isn’t Flash 9 somewhat new? How many people will
 be able to run my app?” Table 1.1 should put this concern in perspective[3].

 3 This is taken from a much more complete set of tables at http://www.adobe.com/products/player_census/flashplayer/version_penetration.html.

 Table 1.1. Worldwide ubiquity of Adobe Flash Player by version—June 2007

	
 	
 Flash Player 7 (released September 2003)

 	
 Flash Player 8 (released August 2005)

 	
 Flash Player 9 (released June 2006)

	Mature markets
 	99.3%
 	98.5%
 	90.3%

	US/Canada
 	99.4%
 	98.7%
 	90.5%

	Europe
 	99.1%
 	98.2%
 	90.5%

As of June 2007, Flash 9 has over 90% market penetration in “mature markets” (US, Canada, UK, Germany, France, and Japan).
 Furthermore, note that Flash 8 has achieved 98% market penetration in less than two years—which is extremely good.

 Despite how productive Flex 3 and Rails 2 are for development, it will still take you some time to build your killer app. And in that time, our target market is getting larger by the day. (If you haven’t accomplished
 much in a given day, you can still feel good that you grew your target market.)

 Finally, note that most of your early adopters will be, well, early adopter types. These are the TechCrunch reading, Digg/del.icio.us/reddit
 using types. These people will have Flash 9 or won’t mind getting it.

 One more thing: If you work in an enterprise environment, the adoption percentages for different Flash versions among consumers
 today are much less of a concern than if you’re trying to develop a consumer-facing product. As long as your IT department
 allows the Flash player to be installed, you can mandate that users upgrade their Flash Player versions when they first use
 your app. The installation and upgrade process is extremely smooth, which is a major reason why you see Flash used everywhere
 today, whereas Java applets are little more than a historical curiosity.

	

Note

 You might think this is a significant hurdle (and it may be one in your case), but note that AJAX apps have their own security
 issues because of cross-site scripting, and so on—IT departments sometimes have issues with JavaScript as well. At least with
 Flex 3, it’s a binary decision: If our user has or can get Flash 9, you’re good to go. With AJAX, it’s a question of IE 6,
 IE 7, Firefox 1.0, Firefox 1.5, Safari, Opera, JavaScript enabling, ad infinitum (definitely doable, but by no means as simple).

	

Speaking of history, it’s nice to know a bit of the history of Flex and Rails, to see how they have evolved over the last
 few years. This is useful because it helps us understand why no one was thinking about using Flex with Rails in 2004, why
 a few people started thinking about it in 2006, and why many people are thinking of the combination now.

1.3. History

 In 2004, two frameworks were released that have gone on to dominate web and RIA development: Macromedia Flex in March 2004
 and Ruby on Rails in July 2004. The two frameworks initially couldn’t have seemed more different.

 Ruby on Rails was a free, Open Source, web application framework that strongly appealed to web developers who were frustrated
 either with PHP or with J2EE. IDEs were spurned, and a fairly obscure Macintosh-only text editor called TextMate was hailed
 as the greatest achievement of Western civilization. (Emacs and vi were for old people, presumably.) In many blog postings,
 the enterprise was portrayed as something evil to be ignored, changed, or destroyed. XML was to be avoided at all costs: In
 Agile Web Development with Rails (Dave Thomas et al, Pragmatic Bookshelf, 2006), reason #10 of “Dave’s Top 10 Reasons To Like Rails” is “No XML!” The claim
 was often made that we could write an entire web application in Rails in fewer lines of code (LOC) than the amount of code just in the XML configuration files of a web application built with EJBs.

	

Note

 For an example of an article highlighting the reduced LOC, see http://rewrite.rickbradley.com/pages/moving_to_rails/.

	

Regarding XML, Ruby 1.8 (which Rails runs on) does have support for XML, but Rails prefers to use YAML for its configuration
 files. (YAML, which stands for YAML Ain’t Markup Language, is a “straightforward machine parsable data serialization format
 designed for human readability and interaction with scripting languages”: www.yaml.org.) The phrase “No XML!” can be rephrased more accurately but less catchily as “No XML configuration files everywhere, and
 no XML needed to define our database schema.”

 Macromedia Flex 1.0 and 1.5 (which both used ActionScript 2.0) were server products that ran in a J2EE application server
 that compiled MXML files and ActionScript files into Flash applications (SWFs). Typically, MXML files were used to lay out
 GUI components, which were developed in either MXML or ActionScript. Flex 1.0 and 1.5 were priced at enterprise levels: about
 $15,000 USD per CPU for the server product.[4] Because the server side of a Flex application was typically J2EE, a lot of XML configuration files were typically needed
 along with XML for the database mapping.

 4 This wasn’t competing with PHP; it was competing with Laszlo, which also was a very expensive product that let you write
 GUI code in XML that got compiled to a SWF.

 MXML files can, and typically do, contain ActionScript in inline <mx:Script> blocks. MXML files are transformed into ActionScript before being compiled into a SWF along with the ActionScript files,
 so the “what should be done in ActionScript and what should be done in MXML” line was always blurry. A large project typically
 has lots of both kinds of files. To summarize, table 1.2 shows what the two frameworks looked like in their early days.

 Table 1.2. Flex 1.0 and Rails 1.0 compared

	
 	
 Flex 1.0

 	
 Rails 1.0

	Cost
 	Expensive!
 	Free

	Code is
 	Proprietary
 	Open source

	XML is
 	Everywhere
 	Considered evil

	IDE
 	Flex Builder (based on Dreamweaver)
 	None

In the more than three years since Rails’ release, a lot has changed. Rails has become one of the most influential frameworks
 in web application development. It seems that every day, some new Web 2.0 app is released that is built on it. This is partly
 due to the marketing prowess of David Heinemeier Hansson (DHH to his followers) and 37signals, but also to a large extent
 due to the productivity advantages in faster development time and reduced lines of code to maintain that Rails provides. Rails
 has also vastly improved its support for XML: ActiveRecord now has a to_xml method that we’ll use a lot in this book.

 In the past three years, Flex has also progressed rapidly for an enterprise-class product, as shown in table 1.3.

 Table 1.3. Flex version history

	
 Date

 	
 Flex version

 	
 ActionScript version

	March 2004
 	1.0
 	2.0

	October 2004
 	1.5
 	2.0

	June 2006
 	2.0
 	3.0

	October 2007
 	3.0 Beta 2
 	3.0

Flex 3 has better performance and download sizes (due to the framework cache) than Flex 2. Furthermore, Flex 2 has vastly better performance (in some case, up to ten times faster) than Flex 1.0 and 1.5, as well as better XML handling and an updated version of ActionScript. Another advantage of
 Flex 2 over Flex 1.0 and 1.5 is cost savings: Whereas Flex 1.0 and 1.5 are expensive server products, Flex 2 and Flex 3 can
 be used in their Flex Framework SDK versions with a command-line compiler without paying Adobe a penny. Flex 3 also features
 a further cost savings for IDE users: Flex Builder 3 Standard Edition is half the price of Flex Builder 2. (Of course, if
 you want the new profiler, you’re still paying a nontrivial sum to get the Professional Edition.)

 In April 2007, Adobe announced the open sourcing of the Flex 3 framework under the Mozilla Public License (MPL). This is huge
 news in the world of RIA development.

	

Note

 Although the Flex framework has been open sourced, the Flash player is not open source. This, of course, prompts the typical
 reaction among the more vocal free software advocates. My position is that the open sourcing of Flex is big news and that the choice of the MPL (as opposed to, say, the GPL) is a huge step by Adobe in ensuring the commercial
 adoption of Flex.

	

That said, even though the Flex framework is free and is being open sourced, if you’re using Windows or Mac you may want to
 buy Flex Builder 3. It will sell[5] for $249 USD (Standard Edition) or $699 USD (Professional Edition, which will include the charting components, profiler,
 and so on).

 5http://www.onflex.org/ted/2007/10/flex-3-beta-2-lower-price-flex-builder.php.

	

Note

 Adobe also sells a server-side product called Live Cycle Data Services (formerly Flex Data Services), which has a restricted
 free version for smaller deployments. It won’t be covered in this book.

	

Table 1.4 shows what the two frameworks look like now.

 Table 1.4. Flex 3 and Rails 2 compared

	
 	
 Flex 3.0

 	
 Rails 2.0

	Cost
 	Free
 	Free

	Code is
 	Open Source
 	Open Source

	XML is
 	Everywhere
 	Ambivalent; it’s still avoided in configuration files, but XML output is included by default in RESTful controllers

	IDE
 	Flex Builder 3 ($249 Standard Edition, $699 Professional Edition)
 	Free (Aptana RadRails, Eclipse with the RDT plug-in, NetBeans) and commercial offerings

Flex 3 is much more similar to Flex 2 than Flex 2 is to Flex 1.5. If it wasn’t for the addition of the Adobe Integrated Runtime
 (AIR) which we’ll introduce in iteration 12, Flex 3 probably should have been called Flex 2.5. (The code in this book was
 originally written in Flex 2; it compiled and ran in Flex 3 unchanged.)

 Now that we understand how Flex and Rails have evolved and where they are today, let’s look at what we’ll accomplish in this
 book.

1.4. A preview of the book

 The project we’ll create throughout this book is called pomodo. Why pomodo? Because it’s a stupid, meaningless name, and a prominent feature of Web 2.0 is meaningless names, often with
 missing vowls. (It also features rounded corners and gradient fills,[6] which we will use, too.) Pomodo will be a variation on a To Do list application.

 6 It turns out that Stuart Eccles makes this same joke in his presentation to the London Flash Platform User Group: http://www.lfpug.com/ruby-on-rails-for-the-flex-developer-22062006-stuart-eccles/#more-11.

 What will be different about pomodo? For one, its UI will be in Flex, so we can create a cool-looking To Do list with little
 effort. Second, it will be a Getting Things Done(GTD) style To Do list, meaning that tasks will be organized into projects and will have locations. In addition, pomodo will
 use the concept of a Next Action, which is essentially the next task in each project that has nothing blocking it.

 Why a To Do list application? There are two reasons. First, because of 37signals’ Ta-da List, Basecamp, and Backpack products,
 the Rails community used to seem a bit obsessed with To Do lists: In the early days of Rails, they were often the “one step
 beyond Hello World” application built in many fine tutorials online. Second, and more seriously, since the application is
 a GTD-style To Do list application, it will have enough features to demonstrate a significant subset of Flex and Rails features,
 but still be small enough and with a simple enough domain to be fully understood while learning the frameworks and how they
 interact. I could have created something (say, a cool-looking chess game) that better showed off the eye-candy features of
 Flex. However, I decided this wouldn’t have been as useful: Most of us are (unfortunately) building applications that look
 more like To Do lists than games. Also, since this is a book about how Flex and Rails can be used together, the pure eye-candy
 features are superfluous.

OEBPS/01fig02_alt.jpg
‘Web Browser with Flash Player 9
Client
Web
Page Flex App (SWF)
e §
2l Internet
HTTP request
((ttp:wwa pomodo.comfasksfist) |
Rails
v
ActionController::Routing::Routes Presentation
Tier
N
ActionController ActionView
(Controller) (View)
¢ A A
ActiveRecord Model Tier
(Model)
[[}
MysaL / Persistence
PostgreSQL / Tier
Oracle / DB2/ etc

OEBPS/m.jpg

OEBPS/01fig01_alt.jpg
Web Browser

HTTP request
(http://www.pomodo.com/tasks/list)

roor o3 |

HTML,
XML,
JavaScript

y Rails

ActionController::Routing::Routes

'

ActionController » ActionView
(Controller) (View)
A
ActiveRecord
(Model)
Persistence

MysaL /

PostgreSQL /
Oracle / DB2/ etc

Tier

Client

Internet

Presentation
Tier

Model Tier

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/recognize.jpg

OEBPS/cover.jpg

