
 [image: cover]

 Express in Action: Writing, building, and testing Node.js applications

 Evan M. Hahn

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Dan Maharry
Technical development editor: Deepak Vohra
Copyeditor: Linda Recktenwald
Proofreader: Elizabeth Martin
Technical proofreader: Matthew Merkes
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617292422

 Printed in the United States of America

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Intro

 Chapter 1. What is Express?

 Chapter 2. The basics of Node.js

 Chapter 3. Foundations of Express

 2. Core

 Chapter 4. Middleware

 Chapter 5. Routing

 Chapter 6. Building APIs

 Chapter 7. Views and templates: Pug and EJS

 3. Express in Context

 Chapter 8. Persisting your data with MongoDB

 Chapter 9. Testing Express applications

 Chapter 10. Security

 Chapter 11. Deployment: assets and Heroku

 Chapter 12. Best practices

 Other helpful modules

 Index

 List of Figures

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Intro

 Chapter 1. What is Express?

 1.1. What is this Node.js business?

 1.2. What is Express?

 1.2.1. The functionality in Node.js

 1.2.2. What Express adds to Node.js

 1.3. Express’s minimal philosophy

 1.4. The core parts of Express

 1.4.1. Middleware

 1.4.2. Routing

 1.4.3. Subapplications

 1.4.4. Conveniences

 1.5. The ecosystem surrounding Express

 1.5.1. Express vs. other web application frameworks

 1.5.2. What Express is used for

 1.5.3. Third-party modules for Node.js and Express

 1.6. The obligatory Hello World

 1.7. Summary

 Chapter 2. The basics of Node.js

 2.1. Installing Node

 2.1.1. Running your first Node script

 2.2. Using modules

 2.2.1. Requiring built-in modules

 2.2.2. Requiring third-party modules with package.json and npm

 2.2.3. Defining your own modules

 2.3. Node: an asynchronous world

 2.4. Building a web server with Node: the http module

 2.5. Summary

 Chapter 3. Foundations of Express

 3.1. Middleware

 3.1.1. Hello World with Express

 3.1.2. How middleware works at a high level

 3.1.3. Middleware code that’s passive

 3.1.4. Middleware code that changes the request and response

 3.1.5. Third-party middleware libraries

 3.2. Routing

 3.3. Extending request and response

 3.4. Views

 3.5. Example: putting it all together in a guestbook

 3.5.1. Getting set up

 3.5.2. The main app code

 3.5.3. Creating the views

 3.5.4. Start it up

 3.6. Summary

 2. Core

 Chapter 4. Middleware

 4.1. Middleware and the middleware stack

 4.2. Example app: a static file server

 4.2.1. Getting set up

 4.2.2. Writing your first middleware function: the logger

 4.2.3. The static file server middleware

 4.2.4. 404 handler middleware

 4.2.5. Switching your logger to an open source one: Morgan

 4.2.6. Switching to Express’s built-in static file middleware

 4.3. Error-handling middleware

 4.4. Other useful middleware

 4.5. Summary

 Chapter 5. Routing

 5.1. What is routing?

 5.1.1. A simple routing example

 5.2. The features of routing

 5.2.1. Grabbing parameters to routes

 5.2.2. Using regular expressions to match routes

 5.2.3. Grabbing query arguments

 5.3. Using routers to split up your app

 5.4. Serving static files

 5.4.1. Static files with middleware

 5.4.2. Routing to static files

 5.5. Using Express with HTTPS

 5.6. Putting it all together: a simple routing demo

 5.6.1. Setting up

 5.6.2. The main app code

 5.6.3. The two views

 5.6.4. The application in action

 5.7. Summary

 Chapter 6. Building APIs

 6.1. A basic JSON API example

 6.2. A simple Express-powered JSON API

 6.3. Create, read, update, delete APIs

 6.3.1. HTTP verbs (also known as HTTP methods)

 6.3.2. CRUD applications with HTTP methods

 6.4. API versioning

 6.5. Setting HTTP status codes

 6.5.1. Setting HTTP status codes

 6.5.2. The 100 range

 6.5.3. The 200 range

 6.5.4. The 300 range

 6.5.5. The 400 range

 6.5.6. The 500 range

 6.6. Summary

 Chapter 7. Views and templates: Pug and EJS

 7.1. Express’s view features

 7.1.1. A simple view rendering

 7.1.2. A complicated view rendering

 7.1.3. Making all view engines compatible with Express: Consolidate.js

 7.2. Everything you need to know about EJS

 7.2.1. The syntax of EJS

 7.3. Everything you need to know about Pug

 7.3.1. The syntax of Pug

 7.3.2. Layouts in Pug

 7.3.3. Mixins in Pug

 7.4. Summary

 3. Express in Context

 Chapter 8. Persisting your data with MongoDB

 8.1. Why MongoDB?

 8.1.1. How Mongo works

 8.1.2. For you SQL users out there

 8.1.3. Setting up Mongo

 8.2. Talking to Mongo from Node with Mongoose

 8.2.1. Setting up your project

 8.2.2. Creating a user model

 8.2.3. Using your model

 8.3. Authenticating users with Passport

 8.3.1. Setting up Passport

 8.4. Summary

 Chapter 9. Testing Express applications

 9.1. What is testing and why is it important?

 9.1.1. Test-driven development

 9.1.2. Cardinal rule: when in doubt, test

 9.2. Introducing the Mocha testing framework

 9.2.1. How does Node.js testing work?

 9.2.2. Setting up Mocha and the Chai assertion library

 9.2.3. What happens when you run your tests

 9.2.4. Writing your first test with Mocha and Chai

 9.2.5. Adding more tests

 9.2.6. More features of Mocha and Chai

 9.3. Testing Express servers with SuperTest

 9.3.1. Testing a simple API

 9.3.2. Filling in the code for your first tests

 9.3.3. Testing HTML responses

 9.4. Summary

 Chapter 10. Security

 10.1. The security mindset

 10.2. Keeping your code as bug-free as possible

 10.2.1. Enforcing good JavaScript with JSHint

 10.2.2. Halting after errors happen in callbacks

 10.2.3. Perilous parsing of query strings

 10.3. Protecting your users

 10.3.1. Using HTTPS

 10.3.2. Preventing cross-site scripting attacks

 10.3.3. Cross-site request forgery (CSRF) prevention

 10.4. Keeping your dependencies safe

 10.4.1. Auditing the code

 10.4.2. Keeping your dependencies up to date

 10.4.3. Check against the Node Security Project

 10.5. Handling server crashes

 10.6. Various little tricks

 10.6.1. No Express here

 10.6.2. Preventing clickjacking

 10.6.3. Keeping Adobe products out of your site

 10.6.4. Don’t let browsers infer the file type

 10.7. Summary

 Chapter 11. Deployment: assets and Heroku

 11.1. LESS, a more pleasant way to write CSS

 11.1.1. Variables

 11.1.2. Functions

 11.1.3. Mixins

 11.1.4. Nesting

 11.1.5. Includes

 11.1.6. Alternatives to LESS

 11.2. Using Browserify to require modules in the browser

 11.2.1. A simple Browserify example

 11.3. Using Grunt to compile, minify, and more

 11.3.1. Installing Grunt

 11.3.2. Compiling LESS with Grunt

 11.3.3. Using Browserify with Grunt

 11.3.4. Minifying the JavaScript with Grunt

 11.3.5. Using Grunt watch

 11.3.6. Other helpful Grunt tasks

 11.4. Using connect-assets to compile LESS and CoffeeScript

 11.4.1. Getting everything installed

 11.4.2. Setting up the middleware

 11.4.3. Linking to assets from views

 11.4.4. Concatenating scripts with directives

 11.5. Deploying to Heroku

 11.5.1. Getting Heroku set up

 11.5.2. Making a Heroku-ready app

 11.5.3. Deploying your first app

 11.5.4. Running Grunt on Heroku

 11.5.5. Making your server more crash resistant

 11.6. Summary

 Chapter 12. Best practices

 12.1. Simplicity

 12.2. File structure pattern

 12.3. Locking down dependency versions

 12.3.1. The simple way: eschewing optimistic versioning

 12.3.2. The thorough way: npm’s shrinkwrap command

 12.3.3. Upgrading and adding dependencies

 12.4. Localized dependencies

 12.4.1. Invoking commands directly

 12.4.2. Executing commands from npm scripts

 12.5. Summary

 Other helpful modules

 Index

 List of Figures

 List of Listings

Preface

 Like many people working with Express, I started out as an accidental front-end web developer. I was trying to add dynamic content to a website and hacked together some of the worst jQuery code this world has ever seen. After many years, my code became less and less embarrassing as I became more and more competent as a JavaScript web developer.

 A lot of web developers were excited by the prospect of Node.js. Being able to write JavaScript on the server meant that our abilities would grow without having to lift a finger; it seemed, once we learned how to write front-end web applications, we’d know how to write back-end web servers. While we did have to lift a few fingers, this promise turned out to be closer to true than false. We were able to do a comparatively small amount of work to write full-stack web applications, and that was a true blessing.

 Express came on the scene as an easier way to write Node.js web applications, and I was hooked. After using it at work, I started using it at home for my personal projects. I wrote a tutorial called “Understanding Express.js,” which did a run-through of the framework at a conceptual level. This post was picked up on various JavaScript news sites and it’s among the most popular posts on my website. A fantastic fluke!

 The flukes continued when Manning Publications approached me and asked me to write a full book about Express. These words are evidence that I said yes!

Acknowledgments

 There were so many people who helped out with this book.

 I’ll start with folks at Manning Publications:

 Thanks to Nicole Butterfield for approaching me about writing this book—she’s the first person I spoke to at Manning. Mike Stephens and Marjan Bace have been keeping an eye on the book throughout the process and have helped steer it in a good direction. Matt Merkes did the technical proofing and made sure that all the content in here is as accurate as possible. Thanks to Linda Recktenwald for copyediting the whole manuscript and to Mary Piergies and Kevin Sullivan for bringing this book into final production. I’d also like to thank Sean Dennis for being my editor on the first few chapters; he offered a ton of valuable feedback that formed the early stages of this book.

 A slew of reviewers (some anonymous and some not) offered a lot of comments that really shaped the book. Many of them have interacted with me on Manning’s Author Online forum. In alphabetical order, the forum participants include biospringxyz, BobCochran, grovejc, jtlapp, kwils, Magnitus, Misa, pala, RichD, and stlcubsfan, and a few anonymous users. The following reviewers all read the manuscript in its early stages and gave invaluable feedback: Blake Hall, Carlos Rubén Alfaro Díaz, Chang Liu, David Torrubia, Hector Lee, Jeff Smith, John Larsen, Jonathan Sewell, Koray Guclu, Nick McGinness, Nicolas Modrzyk, Paul Shipley, Rich Sturim, Ruben Verborgh, Tim Couger, Trent Whiteley, and William E. Wheeler.

 The last person from Manning I must thank is my fantastic editor, Dan Maharry. His feedback and guidance cannot be overstated. He gave huge, book-wide suggestions that steered the direction of the book. He gave small, sentence-level suggestions that made individual statements clearer. The book is largely what it is today because of Dan’s help.

 I should also thank everyone who created Express. Thanks to TJ Holowaychuk for creating Express, and for Doug Wilson who continues to maintain it with the support of StrongLoop.

 Thanks to Sencha, Pixc, and Braintree for giving me Express-based projects to work on, which gave me a ton of experience.

 Thanks to EchoJS and the JavaScript Weekly newsletter for promoting my original Express.js tutorial. Without that post being sent around the web, I’d never be writing this book!

 Finally, I should thank everyone in my personal life that supported me as I wrote this book. For fear of getting overly sentimental in a technical book (before it’s even started), I’ll just name them: Mom, Dad, Jeremy, Baba, Olivia, and Peaches. I only gloss over your importance because it’s more difficult to quantify and because I’m not an eloquent enough writer.

 This book would be an absolute wreck without all these people. Thank you!

About this Book

 Welcome to Express in Action! This book aims to teach you everything about Express.js, the web framework that makes the powerful Node.js easy to use.

 This book assumes you have intermediate JavaScript knowledge. This includes things like anonymous functions, closures, and callbacks.

Roadmap

 This book is divided into three parts.

 Part 1 is an introduction to Express and the shoulders it stands on. You might wonder: what is Express? What is its relationship to Node.js (and what is Node.js)? What can Express do? What can’t it do? All of these questions (and more) will be answered in the first three chapters. Part 1 aims to give you a strong conceptual understanding of the framework.

 Armed with that strong knowledge, you’ll delve into part 2, which covers Express’s features in detail. In Part 1, we mention that Express has a feature called “routing.” In part 2, chapter 5 is dedicated to how routing, which allows you to map different requests to different request handler, really works. You’ll learn the ins and outs of routing and how to use Express with HTTPS. You’ll also explore Express 4’s new routers features, and build a couple of routing-centric applications. Another major feature of Express is its middleware stack (the focus of chapter 4) which is effectively an array of functions. In chapter 6, you use routing and middleware to build a web server that deals purely in JSON. The other big feature of Express is Views (explored in chapter 7). Views allow you to dynamically render HTML.

 With a solid understanding of core Express from part 2, we’ll turn to part 3, which integrates Express with companion tools. As we’ll see, Express can’t do everything on its own—it needs to integrate with other tools in order to be truly useful (chapter 8). We can’t possibly go through all of the possible permutations of Express apps and their companions, but we’ll go through a number of common use cases that you can use to build web applications with the framework. Chapter 9 shows how to make your Express applications as robust as possible by testing; chapter 10 focuses on securing Express applications; chapter 11 shows how to deploy applications into the real world, and chapter 12 shows you how a mature Express application is put together.

 And after that, you’ll close the book. You’ll be able to make your colleagues look like fools, at least when it comes to Express.js.

Code conventions

 This book provides copious examples that show how you can make use of each of the topics covered. Source code in listings or in text appears in a fixed-width font like this to separate it from ordinary text. In addition, class and method names, object properties, and other code-related terms and content in text are presented using fixed-width font.

Getting the source code

 The code for the examples in this book is available for download from the publisher’s website at www.manning.com/express-in-action and on GitHub at https://github.com/EvanHahn/Express.js-in-Action-code/, where each chapter has a corresponding folder that has runnable versions of most of the code in this book.

 There is also an unofficial repo that ports many of the book’s examples to TypeScript if you prefer that. It is at https://github.com/panacloud/learn-typed-express. It is unofficial, so your mileage may vary, but may be useful if you prefer TypeScript.

Author Online

 Purchase of Express in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/express-in-action. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum. It also provides links to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the author challenging questions lest his interest strays!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the author

 Evan Hahn is a software engineer at Braintree where he works on JavaScript. He authors and contributes to a number of open source Node.js packages. He is made of flesh and bone.

About the Cover Illustration

 The figure on the cover of Express in Action is captioned “Habit of Lady of Indostan.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then and the diversity by region and country, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’ pictures.

 Part 1. Intro

 Welcome to Express in Action. This is the first of three parts and, like many openers, it introduces the players.

 In chapter 1, I’ll identify the characters. Spoiler alert: they are Node.js and Express. The former is a JavaScript runtime—a place where JavaScript code can run—that’s attractive to a lot of developers. Node.js is powerful, but its APIs can, at times, lack power and leave you writing a lot of boilerplate code; that’s where Express struts onto the scene. It fits snugly into Node.js and makes it easier to write web applications. You’ll learn all this and much more in chapter 1.

 In chapter 2 you’ll learn what it means for Node.js to be a JavaScript runtime, and you’ll be running JavaScript in Node.js. You’ll build a couple of simple modules and then see what it takes to build a website on the platform. You’ll also learn how to include third-party modules from npm, Node.js’s third-party package registry.

 The star of the show, Express, takes center stage in chapter 3. You’ll see how Express sits on top of Node.js, and learn its major features. Express will show you convenience after convenience. We’ll delve deeper into each of these features in subsequent chapters, but by the end of chapter 3, you’ll have all of the core Express knowledge you’ll need.

 I hope you are as excited as I to get started!

 Chapter 1. What is Express?

 This chapter covers

 	Node.js, a JavaScript platform typically used to run JavaScript on servers

 	Express, a framework that sits on top of Node.js’s web server and makes it easier to use

 	Middleware and routing, two features of Express

 	Request handler functions

 Before we talk about Express, we need to talk about Node.js.

 For most of its life, the JavaScript programming language has lived inside web browsers. It started as a simple scripting language for modifying small details of web pages but grew into a complex language, with loads of applications and libraries. Many browser vendors like Mozilla and Google began to pump resources into fast JavaScript runtimes, and browsers got much faster JavaScript engines as a result.

 In 2009, Node.js came along. Node.js took V8, Google Chrome’s powerful JavaScript engine, out of the browser and enabled it to run on servers. In the browser, developers had no choice but to pick JavaScript. In addition to Ruby, Python, C#, Java, and other languages, developers could now choose JavaScript when developing server-side applications.

 JavaScript might not be the perfect language for everyone, but Node.js has real benefits. For one, the V8 JavaScript engine is fast, and Node.js encourages an asynchronous coding style, making for faster code while avoiding multithreaded nightmares. JavaScript also had a bevy of useful libraries because of its popularity. But the biggest benefit of Node.js is the ability to share code between browser and server. Developers don’t have to do any kind of context switch when going from client and server. Now they can use the same code and the same coding paradigms between two JavaScript runtimes: the browser and the server.

 Node.js caught on—people thought it was pretty cool. Like browser-based JavaScript, Node.js provides a bevy of low-level features you’d need to build an application. But like browser-based JavaScript, its low-level offerings can be verbose and difficult to use.

 Enter Express, a framework that acts as a light layer atop the Node.js web server, making it more pleasant to develop Node.js web applications.

 Express is philosophically similar to jQuery. People want to add dynamic content to their web pages, but the vanilla browser APIs can be verbose, confusing, and limited in features. Developers often have to write boilerplate code, and a lot of it. jQuery exists to cut down on this boilerplate code by simplifying the APIs of the browser and adding helpful new features. That’s basically it.

 Express is exactly the same. People want to make web applications with Node.js, but the vanilla Node.js APIs can be verbose, confusing, and limited in features. Developers often have to write a lot of boilerplate code. Express exists to cut down on this boilerplate code by simplifying the APIs of Node.js and adding helpful new features. That’s basically it!

 Like jQuery, Express aims to be extensible. It’s hands-off about most parts of your applications’ decisions and is easily extended with third-party libraries. Throughout this book and your Express career, you’ll have to make decisions about your applications’ architectures, and you’ll extend Express with a bevy of powerful third-party modules.

 You probably didn’t pick up this book for the “in short” definition, though. The rest of this chapter (and book, really) will discuss Express in much more depth.

 	

 Note

 This book assumes that you’re proficient in JavaScript but not Node.js.

 	

1.1. What is this Node.js business?

 Node.js is not child’s play. When I first started using Node.js, I was confused. What is it?

 Node.js (often shortened to Node) is a JavaScript platform—a way to run JavaScript. Most of the time, JavaScript is run in web browsers, but there’s nothing about the JavaScript language that requires it to be run in a browser. It’s a programming language just like Ruby or Python or C++ or PHP or Java. Sure, there are JavaScript runtimes bundled with all popular web browsers, but that doesn’t mean that it has to be run there. If you were running a Python file called myfile.py, you would run python myfile.py. But you could write your own Python interpreter, call it SnakeWoman, and run snakewoman myfile.py. Its developers did the same with Node.js; instead of typing javascript myfile.js, you type node myfile.js.

 Running JavaScript outside the browser lets you do a lot—anything a regular programming language could do, really—but it’s mostly used for web development.

 Okay, so you can run JavaScript on the server—why would you do this?

 A lot of developers will tell you that Node.js is fast, and that’s true. Node.js isn’t the fastest thing on the market by any means, but it’s fast for two reasons.

 The first is pretty simple: the JavaScript engine is fast. It’s based on the engine used in Google Chrome, which has a famously quick JavaScript engine. It can execute JavaScript like there’s no tomorrow, processing thousands of instructions a second.

 The second reason for its speed lies in its ability to handle concurrency, and it’s a bit less straightforward. Its performance comes from its asynchronous workings.

 The best real-world analogy I can come up with is baking. Let’s say I’m making muffins. I have to prepare the batter and while I’m doing that, I can’t do anything else. I can’t sit down and read a book, I can’t cook something else, and so on. But once I put the muffins in the oven, I don’t have to stand there looking at the oven until they’re done—I can do something else. Maybe I start preparing more batter. Maybe I read a book. In any case, I don’t have to wait for the muffins to finish baking for me to be able to do something else.

 In Node.js, a browser might request something from your server. You begin responding to this request and another request comes in. Let’s say both requests have to talk to an external database. You can ask the external database about the first request, and while that external database is thinking, you can begin to respond to the second request. Your code isn’t doing two things at once, but when someone else is working on something, you’re not held up waiting.

 Other runtimes don’t have this luxury built in by default. Ruby on Rails, for example, can process only one request at a time. To process more than one at a time, you effectively have to buy more servers. (There are, of course, many asterisks to this claim.)

 Figure 1.1 demonstrates what this might look like.

 Figure 1.1. Comparing asynchronous code (like Node.js) to synchronous code. Note that asynchronous code can complete much faster, even though you’re never executing your code in parallel.

 [image:]

 I don’t mean to tell you that Node.js is the fastest in the world because of its asynchronous capabilities. Node.js can squeeze a lot of performance out of one CPU core, but it doesn’t excel with multiple cores. Other programming languages truly allow you to actively do two things at once. To reuse the baking example: other programming languages let you buy more ovens so that you can bake more muffins simultaneously. Node.js is beginning to support this functionality but it’s not as first-class in Node.js as it is in other programming languages.

 Personally, I don’t believe that performance is the biggest reason to choose Node.js. Although it’s often faster than other scripting languages like Ruby or Python, I think the biggest reason is that it’s all one programming language.

 Often, when you’re writing a web application, you’ll be using JavaScript. But before Node.js, you’d have to code everything in two different programming languages. You’d have to learn two different technologies, paradigms, and libraries. With Node.js, a back-end developer can jump into front-end code and vice versa. Personally, I think this is the most powerful feature of the runtime.

 Other people seem to agree: some developers have created the MEAN stack, which is an all-JavaScript web application stack consisting of MongoDB (a database controlled by JavaScript), Express, Angular.js (a front-end JavaScript framework), and Node.js. The JavaScript everywhere mentality is a huge benefit of Node.js.

 Large companies such as Wal-Mart, the BBC, LinkedIn, and PayPal are even getting behind Node.js. It’s not child’s play.

1.2. What is Express?

 Express is a relatively small framework that sits on top of Node.js’s web server functionality to simplify its APIs and add helpful new features. It makes it easier to organize your application’s functionality with middleware and routing; it adds helpful utilities to Node.js’s HTTP objects; it facilitates the rendering of dynamic HTML views; it defines an easily implemented extensibility standard. This book explores those features in a lot more depth, so all of that lingo will be demystified soon.

 1.2.1. The functionality in Node.js

 When you’re creating a web application (to be more precise, a web server) in Node.js, you write a single JavaScript function for your entire application. This function listens to a web browser’s requests, or the requests from a mobile application consuming your API, or any other client talking to your server. When a request comes in, this function will look at the request and determine how to respond. If you visit the homepage in a web browser, for example, this function could determine that you want the homepage and it will send back some HTML. If you send a message to an API endpoint, this function could determine what you want and respond with JSON (for example).

 Imagine you’re writing a web application that tells users the time and time zone on the server. It will work like this:

 	If the client requests the homepage, your application will return an HTML page showing the time.

 	If the client requests anything else, your application will return an HTTP 404 “Not Found” error and some accompanying text.

 If you were building your application on top of Node.js without Express, a client hitting your server might look like figure 1.2.

 Figure 1.2. The flow of a request through a Node.js web application. Circles are written by you as the developer; squares are out of your domain.

 [image:]

 The JavaScript function that processes browser requests in your application is called a request handler. There’s nothing too special about this; it’s a JavaScript function that takes the request, figures out what to do, and responds. Node.js’s HTTP server handles the connection between the client and your JavaScript function so that you don’t have to handle tricky network protocols.

 In code, it’s a function that takes two arguments: an object that represents the request and an object that represents the response. In your time/time zone application, the request handler function might check for the URL that the client is requesting. If they’re requesting the homepage, the request handler function should respond with the current time in an HTML page. Otherwise, it should respond with a 404. Every Node.js application is just like this: it’s a single request handler function responding to requests. Conceptually, it’s pretty simple.

 The problem is that the Node.js APIs can get complex. Want to send a single JPEG file? That’ll be about 45 lines of code. Want to create reusable HTML templates? Figure out how to do it yourself. Node.js’s HTTP server is powerful, but it’s missing a lot of features that you might want if you were building a real application.

 Express was born to make it easier to write web applications with Node.js.

 1.2.2. What Express adds to Node.js

 In broad strokes, Express adds two big features to the Node.js HTTP server:

 	It adds a number of helpful conveniences to Node.js’s HTTP server, abstracting away a lot of its complexity. For example, sending a single JPEG file is fairly complex in raw Node.js (especially if you have performance in mind); Express reduces it to one line.

OEBPS/OEBPS/Images/01fig02_alt.jpg
CLIENT
browser,
mobile app,
etc.

© Client @ HTTP server
requests hands request to
something your function
REQUEST
> NODE'S HANDLER
HTTP FUNCTION
e SERVER | Written
[« ard © Your function By
server sends hands response

response

to HTTP server

OEBPS/OEBPS/Images/common02.jpg

OEBPS/OEBPS/Images/01fig01.jpg
A synchronous world

Task #1 Task #2 Task #3

An asynchronous world

Task #1

Task #2

Task #3

An external resource

Your code (database, oven, etc.)

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/common01.jpg

OEBPS/OEBPS/Images/cover.jpg
| | FTYTn

INACTIC

Writing, building, and teting
Nodejs applications

Evan M. Hahn

