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Preface


  Like many people working with Express, I started out as an accidental front-end web developer. I was trying to add dynamic content to a website and hacked together some of the worst jQuery code this world has ever seen. After many years, my code became less and less embarrassing as I became more and more competent as a JavaScript web developer.


  A lot of web developers were excited by the prospect of Node.js. Being able to write JavaScript on the server meant that our abilities would grow without having to lift a finger; it seemed, once we learned how to write front-end web applications, we’d know how to write back-end web servers. While we did have to lift a few fingers, this promise turned out to be closer to true than false. We were able to do a comparatively small amount of work to write full-stack web applications, and that was a true blessing.


  Express came on the scene as an easier way to write Node.js web applications, and I was hooked. After using it at work, I started using it at home for my personal projects. I wrote a tutorial called “Understanding Express.js,” which did a run-through of the framework at a conceptual level. This post was picked up on various JavaScript news sites and it’s among the most popular posts on my website. A fantastic fluke!


  The flukes continued when Manning Publications approached me and asked me to write a full book about Express. These words are evidence that I said yes!
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About this Book


  Welcome to Express in Action! This book aims to teach you everything about Express.js, the web framework that makes the powerful Node.js easy to use.


  This book assumes you have intermediate JavaScript knowledge. This includes things like anonymous functions, closures, and callbacks.


  
Roadmap


  This book is divided into three parts.


  Part 1 is an introduction to Express and the shoulders it stands on. You might wonder: what is Express? What is its relationship to Node.js (and what is Node.js)? What can Express do? What can’t it do? All of these questions (and more) will be answered in the first three chapters. Part 1 aims to give you a strong conceptual understanding of the framework.


  Armed with that strong knowledge, you’ll delve into part 2, which covers Express’s features in detail. In Part 1, we mention that Express has a feature called “routing.” In part 2, chapter 5 is dedicated to how routing, which allows you to map different requests to different request handler, really works. You’ll learn the ins and outs of routing and how to use Express with HTTPS. You’ll also explore Express 4’s new routers features, and build a couple of routing-centric applications. Another major feature of Express is its middleware stack (the focus of chapter 4) which is effectively an array of functions. In chapter 6, you use routing and middleware to build a web server that deals purely in JSON. The other big feature of Express is Views (explored in chapter 7). Views allow you to dynamically render HTML.


  With a solid understanding of core Express from part 2, we’ll turn to part 3, which integrates Express with companion tools. As we’ll see, Express can’t do everything on its own—it needs to integrate with other tools in order to be truly useful (chapter 8). We can’t possibly go through all of the possible permutations of Express apps and their companions, but we’ll go through a number of common use cases that you can use to build web applications with the framework. Chapter 9 shows how to make your Express applications as robust as possible by testing; chapter 10 focuses on securing Express applications; chapter 11 shows how to deploy applications into the real world, and chapter 12 shows you how a mature Express application is put together.


  And after that, you’ll close the book. You’ll be able to make your colleagues look like fools, at least when it comes to Express.js.


  
Code conventions


  This book provides copious examples that show how you can make use of each of the topics covered. Source code in listings or in text appears in a fixed-width font like this to separate it from ordinary text. In addition, class and method names, object properties, and other code-related terms and content in text are presented using fixed-width font.


  
Getting the source code


  The code for the examples in this book is available for download from the publisher’s website at www.manning.com/express-in-action and on GitHub at https://github.com/EvanHahn/Express.js-in-Action-code/, where each chapter has a corresponding folder that has runnable versions of most of the code in this book.


  There is also an unofficial repo that ports many of the book’s examples to TypeScript if you prefer that. It is at https://github.com/panacloud/learn-typed-express. It is unofficial, so your mileage may vary, but may be useful if you prefer TypeScript.


  
Author Online


  Purchase of Express in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/express-in-action. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum. It also provides links to the source code for the examples in the book, errata, and other downloads.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the author challenging questions lest his interest strays!


  The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


  
About the author


  Evan Hahn is a software engineer at Braintree where he works on JavaScript. He authors and contributes to a number of open source Node.js packages. He is made of flesh and bone.


  
About the Cover Illustration


  The figure on the cover of Express in Action is captioned “Habit of Lady of Indostan.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.


  Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then and the diversity by region and country, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.


  At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’ pictures.


  


  Part 1. Intro


  Welcome to Express in Action. This is the first of three parts and, like many openers, it introduces the players.


  In chapter 1, I’ll identify the characters. Spoiler alert: they are Node.js and Express. The former is a JavaScript runtime—a place where JavaScript code can run—that’s attractive to a lot of developers. Node.js is powerful, but its APIs can, at times, lack power and leave you writing a lot of boilerplate code; that’s where Express struts onto the scene. It fits snugly into Node.js and makes it easier to write web applications. You’ll learn all this and much more in chapter 1.


  In chapter 2 you’ll learn what it means for Node.js to be a JavaScript runtime, and you’ll be running JavaScript in Node.js. You’ll build a couple of simple modules and then see what it takes to build a website on the platform. You’ll also learn how to include third-party modules from npm, Node.js’s third-party package registry.


  The star of the show, Express, takes center stage in chapter 3. You’ll see how Express sits on top of Node.js, and learn its major features. Express will show you convenience after convenience. We’ll delve deeper into each of these features in subsequent chapters, but by the end of chapter 3, you’ll have all of the core Express knowledge you’ll need.


  I hope you are as excited as I to get started!


  


  Chapter 1. What is Express?


  This chapter covers


  


  
    	Node.js, a JavaScript platform typically used to run JavaScript on servers


    	Express, a framework that sits on top of Node.js’s web server and makes it easier to use


    	Middleware and routing, two features of Express


    	Request handler functions

  


  Before we talk about Express, we need to talk about Node.js.


  For most of its life, the JavaScript programming language has lived inside web browsers. It started as a simple scripting language for modifying small details of web pages but grew into a complex language, with loads of applications and libraries. Many browser vendors like Mozilla and Google began to pump resources into fast JavaScript runtimes, and browsers got much faster JavaScript engines as a result.


  In 2009, Node.js came along. Node.js took V8, Google Chrome’s powerful JavaScript engine, out of the browser and enabled it to run on servers. In the browser, developers had no choice but to pick JavaScript. In addition to Ruby, Python, C#, Java, and other languages, developers could now choose JavaScript when developing server-side applications.


  JavaScript might not be the perfect language for everyone, but Node.js has real benefits. For one, the V8 JavaScript engine is fast, and Node.js encourages an asynchronous coding style, making for faster code while avoiding multithreaded nightmares. JavaScript also had a bevy of useful libraries because of its popularity. But the biggest benefit of Node.js is the ability to share code between browser and server. Developers don’t have to do any kind of context switch when going from client and server. Now they can use the same code and the same coding paradigms between two JavaScript runtimes: the browser and the server.


  Node.js caught on—people thought it was pretty cool. Like browser-based JavaScript, Node.js provides a bevy of low-level features you’d need to build an application. But like browser-based JavaScript, its low-level offerings can be verbose and difficult to use.


  Enter Express, a framework that acts as a light layer atop the Node.js web server, making it more pleasant to develop Node.js web applications.


  Express is philosophically similar to jQuery. People want to add dynamic content to their web pages, but the vanilla browser APIs can be verbose, confusing, and limited in features. Developers often have to write boilerplate code, and a lot of it. jQuery exists to cut down on this boilerplate code by simplifying the APIs of the browser and adding helpful new features. That’s basically it.


  Express is exactly the same. People want to make web applications with Node.js, but the vanilla Node.js APIs can be verbose, confusing, and limited in features. Developers often have to write a lot of boilerplate code. Express exists to cut down on this boilerplate code by simplifying the APIs of Node.js and adding helpful new features. That’s basically it!


  Like jQuery, Express aims to be extensible. It’s hands-off about most parts of your applications’ decisions and is easily extended with third-party libraries. Throughout this book and your Express career, you’ll have to make decisions about your applications’ architectures, and you’ll extend Express with a bevy of powerful third-party modules.


  You probably didn’t pick up this book for the “in short” definition, though. The rest of this chapter (and book, really) will discuss Express in much more depth.


  
    
      
    

    
      
        	
      

    
  


  Note


  This book assumes that you’re proficient in JavaScript but not Node.js.


  
    
      
    

    
      
        	
      

    
  


  
1.1. What is this Node.js business?


  Node.js is not child’s play. When I first started using Node.js, I was confused. What is it?


  Node.js (often shortened to Node) is a JavaScript platform—a way to run JavaScript. Most of the time, JavaScript is run in web browsers, but there’s nothing about the JavaScript language that requires it to be run in a browser. It’s a programming language just like Ruby or Python or C++ or PHP or Java. Sure, there are JavaScript runtimes bundled with all popular web browsers, but that doesn’t mean that it has to be run there. If you were running a Python file called myfile.py, you would run python myfile.py. But you could write your own Python interpreter, call it SnakeWoman, and run snakewoman myfile.py. Its developers did the same with Node.js; instead of typing javascript myfile.js, you type node myfile.js.


  Running JavaScript outside the browser lets you do a lot—anything a regular programming language could do, really—but it’s mostly used for web development.


  Okay, so you can run JavaScript on the server—why would you do this?


  A lot of developers will tell you that Node.js is fast, and that’s true. Node.js isn’t the fastest thing on the market by any means, but it’s fast for two reasons.


  The first is pretty simple: the JavaScript engine is fast. It’s based on the engine used in Google Chrome, which has a famously quick JavaScript engine. It can execute JavaScript like there’s no tomorrow, processing thousands of instructions a second.


  The second reason for its speed lies in its ability to handle concurrency, and it’s a bit less straightforward. Its performance comes from its asynchronous workings.


  The best real-world analogy I can come up with is baking. Let’s say I’m making muffins. I have to prepare the batter and while I’m doing that, I can’t do anything else. I can’t sit down and read a book, I can’t cook something else, and so on. But once I put the muffins in the oven, I don’t have to stand there looking at the oven until they’re done—I can do something else. Maybe I start preparing more batter. Maybe I read a book. In any case, I don’t have to wait for the muffins to finish baking for me to be able to do something else.


  In Node.js, a browser might request something from your server. You begin responding to this request and another request comes in. Let’s say both requests have to talk to an external database. You can ask the external database about the first request, and while that external database is thinking, you can begin to respond to the second request. Your code isn’t doing two things at once, but when someone else is working on something, you’re not held up waiting.


  Other runtimes don’t have this luxury built in by default. Ruby on Rails, for example, can process only one request at a time. To process more than one at a time, you effectively have to buy more servers. (There are, of course, many asterisks to this claim.)


  Figure 1.1 demonstrates what this might look like.


  Figure 1.1. Comparing asynchronous code (like Node.js) to synchronous code. Note that asynchronous code can complete much faster, even though you’re never executing your code in parallel.


  [image: ]


  I don’t mean to tell you that Node.js is the fastest in the world because of its asynchronous capabilities. Node.js can squeeze a lot of performance out of one CPU core, but it doesn’t excel with multiple cores. Other programming languages truly allow you to actively do two things at once. To reuse the baking example: other programming languages let you buy more ovens so that you can bake more muffins simultaneously. Node.js is beginning to support this functionality but it’s not as first-class in Node.js as it is in other programming languages.


  Personally, I don’t believe that performance is the biggest reason to choose Node.js. Although it’s often faster than other scripting languages like Ruby or Python, I think the biggest reason is that it’s all one programming language.


  Often, when you’re writing a web application, you’ll be using JavaScript. But before Node.js, you’d have to code everything in two different programming languages. You’d have to learn two different technologies, paradigms, and libraries. With Node.js, a back-end developer can jump into front-end code and vice versa. Personally, I think this is the most powerful feature of the runtime.


  Other people seem to agree: some developers have created the MEAN stack, which is an all-JavaScript web application stack consisting of MongoDB (a database controlled by JavaScript), Express, Angular.js (a front-end JavaScript framework), and Node.js. The JavaScript everywhere mentality is a huge benefit of Node.js.


  Large companies such as Wal-Mart, the BBC, LinkedIn, and PayPal are even getting behind Node.js. It’s not child’s play.


  
1.2. What is Express?


  Express is a relatively small framework that sits on top of Node.js’s web server functionality to simplify its APIs and add helpful new features. It makes it easier to organize your application’s functionality with middleware and routing; it adds helpful utilities to Node.js’s HTTP objects; it facilitates the rendering of dynamic HTML views; it defines an easily implemented extensibility standard. This book explores those features in a lot more depth, so all of that lingo will be demystified soon.


  1.2.1. The functionality in Node.js


  When you’re creating a web application (to be more precise, a web server) in Node.js, you write a single JavaScript function for your entire application. This function listens to a web browser’s requests, or the requests from a mobile application consuming your API, or any other client talking to your server. When a request comes in, this function will look at the request and determine how to respond. If you visit the homepage in a web browser, for example, this function could determine that you want the homepage and it will send back some HTML. If you send a message to an API endpoint, this function could determine what you want and respond with JSON (for example).


  Imagine you’re writing a web application that tells users the time and time zone on the server. It will work like this:


  


  
    	If the client requests the homepage, your application will return an HTML page showing the time.


    	If the client requests anything else, your application will return an HTTP 404 “Not Found” error and some accompanying text.

  


  If you were building your application on top of Node.js without Express, a client hitting your server might look like figure 1.2.


  Figure 1.2. The flow of a request through a Node.js web application. Circles are written by you as the developer; squares are out of your domain.


  [image: ]


  The JavaScript function that processes browser requests in your application is called a request handler. There’s nothing too special about this; it’s a JavaScript function that takes the request, figures out what to do, and responds. Node.js’s HTTP server handles the connection between the client and your JavaScript function so that you don’t have to handle tricky network protocols.


  In code, it’s a function that takes two arguments: an object that represents the request and an object that represents the response. In your time/time zone application, the request handler function might check for the URL that the client is requesting. If they’re requesting the homepage, the request handler function should respond with the current time in an HTML page. Otherwise, it should respond with a 404. Every Node.js application is just like this: it’s a single request handler function responding to requests. Conceptually, it’s pretty simple.


  The problem is that the Node.js APIs can get complex. Want to send a single JPEG file? That’ll be about 45 lines of code. Want to create reusable HTML templates? Figure out how to do it yourself. Node.js’s HTTP server is powerful, but it’s missing a lot of features that you might want if you were building a real application.


  Express was born to make it easier to write web applications with Node.js.


  1.2.2. What Express adds to Node.js


  In broad strokes, Express adds two big features to the Node.js HTTP server:


  


  
    	It adds a number of helpful conveniences to Node.js’s HTTP server, abstracting away a lot of its complexity. For example, sending a single JPEG file is fairly complex in raw Node.js (especially if you have performance in mind); Express reduces it to one line.
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