

 [image: manning]

 AI Agents in Action

 Micheal Lanham

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 AI Agents in Action

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964

   Email: orders@manning.com

 ©2025 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The authors and publisher have made every effort to ensure that the information in this book was correct at press time. The authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Becky Whitney
 Technical editor: Ross Turner
 Review editor: Kishor Rit
 Production editor: Keri Hales
 Copy editor: Julie McNamee
 Proofreader: Katie Tennant
 Technical proofreader: Ross Turner
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

 ISBN: 9781633436343

 Printed in the United States of America

 dedication

 I dedicate this book to all the readers who embark on this journey with me.
Books are a powerful way for an author to connect with readers on a deeply personal
level, chapter by chapter, page by page. In that shared experience of learning,
exploring, and growing together, I find true meaning. May this book inspire you
and challenge you, and help you see the incredible potential that AI agents hold—
not just for the future but also for today.

 contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Introduction to agents and their world

 1.1 Defining agents

 1.2 Understanding the component systems of an agent

 1.3 Examining the rise of the agent era: Why agents?

 1.4 Peeling back the AI interface

 1.5 Navigating the agent landscape

 2 Harnessing the power of large language models

 2.1 Mastering the OpenAI API

 2.1.1 Connecting to the chat completions model

 2.1.2 Understanding the request and response

 2.2 Exploring open source LLMs with LM Studio

 2.2.1 Installing and running LM Studio

 2.2.2 Serving an LLM locally with LM Studio

 2.3 Prompting LLMs with prompt engineering

 2.3.1 Creating detailed queries

 2.3.2 Adopting personas

 2.3.3 Using delimiters

 2.3.4 Specifying steps

 2.3.5 Providing examples

 2.3.6 Specifying output length

 2.4 Choosing the optimal LLM for your specific needs

 2.5 Exercises

 3 Engaging GPT assistants

 3.1 Exploring GPT assistants through ChatGPT

 3.2 Building a GPT that can do data science

 3.3 Customizing a GPT and adding custom actions

 3.3.1 Creating an assistant to build an assistant

 3.3.2 Connecting the custom action to an assistant

 3.4 Extending an assistant’s knowledge using file uploads

 3.4.1 Building the Calculus Made Easy GPT

 3.4.2 Knowledge search and more with file uploads

 3.5 Publishing your GPT

 3.5.1 Expensive GPT assistants

 3.5.2 Understanding the economics of GPTs

 3.5.3 Releasing the GPT

 3.6 Exercises

 4 Exploring multi-agent systems

 4.1 Introducing multi-agent systems with AutoGen Studio

 4.1.1 Installing and using AutoGen Studio

 4.1.2 Adding skills in AutoGen Studio

 4.2 Exploring AutoGen

 4.2.1 Installing and consuming AutoGen

 4.2.2 Enhancing code output with agent critics

 4.2.3 Understanding the AutoGen cache

 4.3 Group chat with agents and AutoGen

 4.4 Building an agent crew with CrewAI

 4.4.1 Creating a jokester crew of CrewAI agents

 4.4.2 Observing agents working with AgentOps

 4.5 Revisiting coding agents with CrewAI

 4.6 Exercises

 5 Empowering agents with actions

 5.1 Defining agent actions

 5.2 Executing OpenAI functions

 5.2.1 Adding functions to LLM API calls

 5.2.2 Actioning function calls

 5.3 Introducing Semantic Kernel

 5.3.1 Getting started with SK semantic functions

 5.3.2 Semantic functions and context variables

 5.4 Synergizing semantic and native functions

 5.4.1 Creating and registering a semantic skill/plugin

 5.4.2 Applying native functions

 5.4.3 Embedding native functions within semantic functions

 5.5 Semantic Kernel as an interactive service agent

 5.5.1 Building a semantic GPT interface

 5.5.2 Testing semantic services

 5.5.3 Interactive chat with the semantic service layer

 5.6 Thinking semantically when writing semantic services

 5.7 Exercises

 6 Building autonomous assistants

 6.1 Introducing behavior trees

 6.1.1 Understanding behavior tree execution

 6.1.2 Deciding on behavior trees

 6.1.3 Running behavior trees with Python and py_trees

 6.2 Exploring the GPT Assistants Playground

 6.2.1 Installing and running the Playground

 6.2.2 Using and building custom actions

 6.2.3 Installing the assistants database

 6.2.4 Getting an assistant to run code locally

 6.2.5 Investigating the assistant process through logs

 6.3 Introducing agentic behavior trees

 6.3.1 Managing assistants with assistants

 6.3.2 Building a coding challenge ABT

 6.3.3 Conversational AI systems vs. other methods

 6.3.4 Posting YouTube videos to X

 6.3.5 Required X setup

 6.4 Building conversational autonomous multi-agents

 6.5 Building ABTs with back chaining

 6.6 Exercises

 7 Assembling and using an agent platform

 7.1 Introducing Nexus, not just another agent platform

 7.1.1 Running Nexus

 7.1.2 Developing Nexus

 7.2 Introducing Streamlit for chat application development

 7.2.1 Building a Streamlit chat application

 7.2.2 Creating a streaming chat application

 7.3 Developing profiles and personas for agents

 7.4 Powering the agent and understanding the agent engine

 7.5 Giving an agent actions and tools

 7.6 Exercises

 8 Understanding agent memory and knowledge

 8.1 Understanding retrieval in AI applications

 8.2 The basics of retrieval augmented generation (RAG)

 8.3 Delving into semantic search and document indexing

 8.3.1 Applying vector similarity search

 8.3.2 Vector databases and similarity search

 8.3.3 Demystifying document embeddings

 8.3.4 Querying document embeddings from Chroma

 8.4 Constructing RAG with LangChain

 8.4.1 Splitting and loading documents with LangChain

 8.4.2 Splitting documents by token with LangChain

 8.5 Applying RAG to building agent knowledge

 8.6 Implementing memory in agentic systems

 8.6.1 Consuming memory stores in Nexus

 8.6.2 Semantic memory and applications to semantic, episodic, and procedural memory

 8.7 Understanding memory and knowledge compression

 8.8 Exercises

 9 Mastering agent prompts with prompt flow

 9.1 Why we need systematic prompt engineering

 9.2 Understanding agent profiles and personas

 9.3 Setting up your first prompt flow

 9.3.1 Getting started

 9.3.2 Creating profiles with Jinja2 templates

 9.3.3 Deploying a prompt flow API

 9.4 Evaluating profiles: Rubrics and grounding

 9.5 Understanding rubrics and grounding

 9.6 Grounding evaluation with an LLM profile

 9.7 Comparing profiles: Getting the perfect profile

 9.7.1 Parsing the LLM evaluation output

 9.7.2 Running batch processing in prompt flow

 9.7.3 Creating an evaluation flow for grounding

 9.7.4 Exercises

 10 Agent reasoning and evaluation

 10.1 Understanding direct solution prompting

 10.1.1 Question-and-answer prompting

 10.1.2 Implementing few-shot prompting

 10.1.3 Extracting generalities with zero-shot prompting

 10.2 Reasoning in prompt engineering

 10.2.1 Chain of thought prompting

 10.2.2 Zero-shot CoT prompting

 10.2.3 Step by step with prompt chaining

 10.3 Employing evaluation for consistent solutions

 10.3.1 Evaluating self-consistency prompting

 10.3.2 Evaluating tree of thought prompting

 10.4 Exercises

 11 Agent planning and feedback

 11.1 Planning: The essential tool for all agents/assistants

 11.2 Understanding the sequential planning process

 11.3 Building a sequential planner

 11.4 Reviewing a stepwise planner: OpenAI Strawberry

 11.5 Applying planning, reasoning, evaluation, and feedback to assistant and agentic systems

 11.5.1 Application of assistant/agentic planning

 11.5.2 Application of assistant/agentic reasoning

 11.5.3 Application of evaluation to agentic systems

 11.5.4 Application of feedback to agentic/assistant applications

 11.6 Exercises

 appendix A Accessing OpenAI large language models

 A.1 Accessing OpenAI accounts and keys

 A.2 Azure OpenAI Studio, keys, and deployments

 appendix B Python development environment

 B.1 Downloading the source code

 B.2 Installing Python

 B.3 Installing VS Code

 B.4 Installing VS Code Python extensions

 B.5 Creating a new Python environment with VS Code

 B.6 Using VS Code Dev Containers (Docker)

 index

 preface

 My journey into the world of intelligent systems began back in the early 1980s. Like many people then, I believed artificial intelligence (AI) was just around the corner. It always seemed like one more innovation and technological leap would lead us to the intelligence we imagined. But that leap never came.

 Perhaps the promise of HAL, from Stanley Kubrick’s 2001: A Space Odyssey, captivated me with the idea of a truly intelligent computer companion. After years of effort, trial, and countless errors, I began to understand that creating AI was far more complex than we humans had imagined. In the early 1990s, I shifted my focus, applying my skills to more tangible goals in other industries.

 Not until the late 1990s, after experiencing a series of challenging and transformative events, did I realize my passion for building intelligent systems. I knew these systems might never reach the superintelligence of HAL, but I was okay with that. I found fulfillment in working with machine learning and data science, creating models that could learn and adapt. For more than 20 years, I thrived in this space, tackling problems that required creativity, precision, and a sense of possibility.

 During that time, I worked on everything from genetic algorithms for predicting unknown inputs to developing generative learning models for horizontal drilling in the oil-and-gas sector. These experiences led me to write, where I shared my knowledge by way of books on various topics—reverse-engineering Pokémon Go, building augmented and virtual reality experiences, designing audio for games, and applying reinforcement learning to create intelligent agents. I spent years knuckles-deep in code, developing agents in Unity ML-Agents and deep reinforcement learning.

 Even then, I never imagined that one day I could simply describe what I wanted to an AI model, and it would make it happen. I never imagined that, in my lifetime, I would be able to collaborate with an AI as naturally as I do today. And I certainly never imagined how fast—and simultaneously how slow—this journey would feel.

 In November 2022, the release of ChatGPT changed everything. It changed the world’s perception of AI, and it changed the way we build intelligent systems. For me, it also altered my perspective on the capabilities of these systems. Suddenly, the idea of agents that could autonomously perform complex tasks wasn’t just a far-off dream but instead a tangible, achievable reality. In some of my earlier books, I had described agentic systems that could undertake specific tasks, but now, those once-theoretical ideas were within reach.

 This book is the culmination of my decades of experience in building intelligent systems, but it’s also a realization of the dreams I once had about what AI could become. AI agents are here, poised to transform how we interact with technology, how we work, and, ultimately, how we live.

 Yet, even now, I see hesitation from organizations when it comes to adopting agentic systems. I believe this hesitation stems not from fear of AI but rather from a lack of understanding and expertise in building these systems. I hope that this book helps to bridge that gap. I want to introduce AI agents as tools that can be accessible to everyone—tools we shouldn’t fear but instead respect, manage responsibly, and learn to work with in harmony.

 acknowledgments

 I want to extend my deepest gratitude to the machine learning and deep learning communities for their tireless dedication and incredible work. Just a few short years ago, many questioned whether the field was headed for another AI winter—a period of stagnation and doubt. But thanks to the persistence, brilliance, and passion of countless individuals, the field not only persevered but also flourished. We’re standing on the threshold of an AI-driven future, and I am endlessly grateful for the contributions of this talented community.

 Writing a book, even with the help of AI, is no small feat. It takes dedication, collaboration, and a tremendous amount of support. I am incredibly thankful to the team of editors and reviewers who made this book possible. I want to express my heartfelt thanks to everyone who took the time to review and provide feedback. In particular, I want to thank Becky Whitney, my content editor, and Ross Turner, my technical editor and chief production and technology officer at OpenSC, for their dedication, as well as the whole production team at Manning for their insight and unwavering support throughout this journey.

 To my partner, Rhonda—your love, patience, and encouragement mean the world to me. You’ve been the cornerstone of my support system, not just for this book but for all the books that have come before. I truly couldn’t have done any of this without you. Thank you for being my rock, my partner, and my inspiration.

 Many of the early ideas for this book grew out of my work at Symend. It was during my time there that I first began developing the concepts and designs for agentic systems that laid the foundation for this book. I am deeply grateful to my colleagues at Symend for their collaboration and contributions, including Peh Teh, Andrew Wright, Ziko Rajabali, Chris Garrett, Kouros, Fatemeh Torabi Asr, Sukh Singh, and Hanif Joshaghani. Your insights and hard work helped bring these ideas to life, and I am honored to have worked alongside such an incredible group of people.

 Finally, I would like to thank all the reviewers: Anandaganesh Balakrishnan, Aryan Jadon, Chau Giang, Dan Sheikh, David Curran, Dibyendu Roy Chowdhury, Divya Bhargavi, Felipe Provezano Coutinho, Gary Pass, John Williams, Jose San Leandro, Laurence Giglio, Manish Jain, Maxim Volgin, Michael Wang, Mike Metzger, Piti Champeethong, Prashant Dwivedi, Radhika Kanubaddhi, Rajat Kant Goel, Ramaa Vissa, Richard Vaughan, Satej Kumar Sahu, Sergio Gtz, Siva Dhandapani, Annamaneni Sriharsha, Sri Ram Macharla, Sumit Bhattacharyya, Tony Holdroyd, Vidal Graupera, Vidhya Vinay, and Vinoth Nageshwaran. Your suggestions helped make this a better book.

 about this book

 AI Agents in Action is about building and working with intelligent agent systems—not just creating autonomous entities but also developing agents that can effectively tackle and solve real-world problems. The book starts with the basics of working with large language models (LLMs) to build assistants, multi-agent systems, and agentic behavioral agents. From there, it explores the key components of agentic systems: retrieval systems for knowledge and memory augmentation, action and tool usage, reasoning, planning, evaluation, and feedback. The book demonstrates how these components empower agents to perform a wide range of complex tasks through practical examples.

 This journey isn’t just about technology; it’s about reimagining how we approach problem solving. I hope this book inspires you to see intelligent agents as partners in innovation, capable of transforming ideas into actions in ways that were once thought impossible. Together, we’ll explore how AI can augment human potential, enabling us to achieve far more than we could alone.

 Who should read this book

 This book is for anyone curious about intelligent agents and how to develop agentic systems—whether you’re building your first helpful assistant or diving deeper into complex multi-agent systems. No prior experience with agents, agentic systems, prompt engineering, or working with LLMs is required. All you need is a basic understanding of Python and familiarity with GitHub repositories. My goal is to make these concepts accessible and engaging, empowering anyone who wants to explore the world of AI agents to do so with confidence.

 Whether you’re a developer, researcher, or hobbyist or are simply intrigued by the possibilities of AI, this book is for you. I hope that in these pages you’ll find inspiration, practical guidance, and a new appreciation for the remarkable potential of intelligent agents. Let this book guide understanding, creating, and unleashing the power of AI agents in action.

 How this book is organized: A road map

 This book has 11 chapters. Chapter 1, “Introduction to agents and their world,” begins by laying a foundation with fundamental definitions of large language models, chat systems, assistants, and autonomous agents. As the book progresses, the discussion shifts to the key components that make up an agent and how these components work together to create truly effective systems. Here is a quick summary of chapters 2 through 11:

 	 Chapter 2, “Harnessing the power of large language models”—We start by exploring how to use commercial LLMs, such as OpenAI. We then examine tools, such as LM Studio, that provide the infrastructure and support for running various open source LLMs, enabling anyone to experiment and innovate.

 	 Chapter 3, “Engaging GPT assistants” —This chapter dives into the capabilities of the GPT Assistants platform from OpenAI. Assistants are foundational agent types, and we explore how to create practical and diverse assistants, from culinary helpers to intern data scientists and even a book learning assistant.

 	 Chapter 4, “Exploring multi-agent systems” —Agentic tools have advanced significantly quickly. Here, we explore two sophisticated multi-agent systems: CrewAI and AutoGen. We demonstrate AutoGen’s ability to develop code autonomously and see how CrewAI can bring together a group of joke researchers to create humor collaboratively.

 	 Chapter 5, “Empowering agents with actions” —Actions are fundamental to any agentic system. This chapter discusses how agents can use tools and functions to execute actions, ranging from database and application programming interface (API) queries to generating images. We focus on enabling agents to take meaningful actions autonomously.

 	 Chapter 6, “Building autonomous assistants” —We explore the behavior tree—a staple in robotics and game systems—as a mechanism to orchestrate multiple coordinated agents. We’ll use behavior trees to tackle challenges such as code competitions and social media content creation.

 	 Chapter 7, “Assembling and using an agent platform” —This chapter introduces Nexus, a sophisticated platform for orchestrating multiple agents and LLMs. We discuss how Nexus facilitates agentic workflows and enables complex interactions between agents, providing an example of a fully functioning multi-agent environment.

 	 Chapter 8, “Understanding agent memory and knowledge” —Retrieval-augmented generation (RAG) has become an essential tool for extending the capabilities of LLM agents. This chapter explores how retrieval mechanisms can serve as both a source of knowledge by processing ingested files, and of memory, allowing agents to recall previous interactions or events.

 	 Chapter 9, “Mastering agent prompts with prompt flow” —Prompt engineering is central to an agent’s success. This chapter introduces prompt flow, a tool from Microsoft that helps automate the testing and evaluation of prompts, enabling more robust and effective agentic behavior.

 	 Chapter 10, “Agent reasoning and evaluation ”—Reasoning is crucial to solving problems intelligently. In this chapter, we explore various reasoning techniques, such as chain of thought (CoT), and show how agents can evaluate reasoning strategies even during inference, improving their capacity to solve problems autonomously.

 	 Chapter 11, “Agent planning and feedback” —Planning is perhaps an agent’s most critical skill in achieving its goals. We discuss how agents can incorporate planning to navigate complex tasks and how feedback loops can be used to refine those plans. The chapter concludes by integrating all the key components—actions, memory and knowledge, reasoning, evaluation, planning, and feedback—into practical examples of agentic systems that solve real-world problems.

 About the code

 The code for this book is spread across several open source projects, many of which are hosted by me or by other organizations in GitHub repositories. Throughout this book, I strive to make the content as accessible as possible, taking a low-code approach to help you focus on core concepts. Many chapters demonstrate how simple prompts can generate meaningful code, showcasing the power of AI-assisted development.

 Additionally, you’ll find a variety of assistant profiles and multi-agent systems that demonstrate how to solve real-world problems using generated code. These examples are meant to inspire, guide, and empower you to explore what is possible with AI agents. I am deeply grateful to the many contributors and the community members who have collaborated on these projects, and I encourage you to explore the repositories, experiment with the code, and adapt it to your own needs. This book is a testament to the power of collaboration and the incredible things we can achieve together.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes, some of the code is typeset in bold to highlight code that has changed from previous steps in the chapter, such as when a feature is added to an existing line of code. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this wasn’t enough, and listings include line-continuation markers (↪). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/ai-agents-in-action. The complete code for the examples in the book is available for download from the Manning website at www.manning.com/books/ai-agents-in-action. In addition, the code developed for this book has been placed in three GitHub repositories that are all publicly accessible:

 	 GPT-Agents (the original book title), at https://github.com/cxbxmxcx/GPT-Agents, holds the code for several examples demonstrated in the chapters.

 	 GPT Assistants Playground, at https://github.com/cxbxmxcx/GPTAssistantsPlayground, is an entire platform and tool dedicated to building OpenAI GPT assistants with a helpful web user interface and plenty of tools to develop autonomous agent systems.

 	 Nexus, at https://github.com/cxbxmxcx/Nexus, is an example of a web-based agentic tool that can help you create agentic systems and demonstrate various code challenges.

 liveBook discussion forum

 Purchase of AI Agents in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/ai-agents-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It isn’t a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the him challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 [image: figure]

 Micheal Lanham is a distinguished software and technology innovator with more than two decades of experience in the industry. He has an extensive background in developing various software applications across several domains, such as gaming, graphics, web development, desktop engineering, AI, GIS, oil and gas geoscience/geomechanics, and machine learning. Micheal began by pioneering work in integrating neural networks and evolutionary algorithms into game development, which began around the turn of the millennium. He has authored multiple influential books exploring deep learning, game development, and augmented reality, including Evolutionary Deep Learning (Manning, 2023) and Augmented Reality Game Development (Packt Publishing, 2017). He has contributed to the tech community via publications with many significant tech publishers, including Manning. Micheal resides in Calgary, Alberta, Canada, with his large family, whom he enjoys cooking for.

 about the cover illustration

 The figure on the cover of AI Agents in Action is “Clémentinien,” taken from Balthasar Hacquet’s Illustrations de L’Illyrie et la Dalmatie, published in 1815.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Introduction to agents and their world

 This chapter covers

 	Defining the concept of agents

 	Differentiating the components of an agent

 	Analyzing the rise of the agent era: Why agents?

 	Peeling back the AI interface

 	Navigating the agent landscape

 The agent isn’t a new concept in machine learning and artificial intelligence (AI). In reinforcement learning, for instance, the word agent denotes an active decision-making and learning intelligence. In other areas, the word agent aligns more with an automated application or software that does something on your behalf.

1.1 Defining agents

 You can consult any online dictionary to find the definition of an agent. The Merriam-Webster Dictionary defines it this way (www.merriam-webster.com/dictionary/agent):

 	 One that acts or exerts power

 	 Something that produces or can produce an effect

 	 A means or instrument by which a guiding intelligence achieves a result

 The word agent in our journey to build powerful agents in this book uses this dictionary definition. That also means the term assistant will be synonymous with agent. Tools like OpenAI’s GPT Assistants will also fall under the AI agent blanket. OpenAI avoids the word agent because of the history of machine learning, where an agent is self-deciding and autonomous.

 Figure 1.1 shows four cases where a user may interact with a large language model (LLM) directly or through an agent/assistant proxy, an agent/assistant, or an autonomous agent. These four use cases are highlighted in more detail in this list:

 	 Direct user interaction —If you used earlier versions of ChatGPT, you experienced direct interaction with the LLM. There is no proxy agent or other assistant interjecting on your behalf.

 	 Agent/assistant proxy —If you’ve used Dall-E 3 through ChatGPT, then you’ve experienced a proxy agent interaction. In this use case, an LLM interjects your requests and reformulates them in a format better designed for the task. For example, for image generation, ChatGPT better formulates the prompt. A proxy agent is an everyday use case to assist users with unfamiliar tasks or models.

 	 Agent/assistant —If you’ve ever used a ChatGPT plugin or GPT assistant, then you’ve experienced this use case. In this case, the LLM is aware of the plugin or assistant functions and prepares to make calls to this plugin/function. However, before making a call, the LLM requires user approval. If approved, the plugin or function is executed, and the results are returned to the LLM. The LLM then wraps this response in natural language and returns it to the user.

 	 Autonomous agent —In this use case, the agent interprets the user’s request, constructs a plan, and identifies decision points. From this, it executes the steps in the plan and makes the required decisions independently. The agent may request user feedback after certain milestone tasks, but it’s often given free rein to explore and learn if possible. This agent poses the most ethical and safety concerns, which we’ll explore later.

 [image: figure]

Figure 1.1 The differences between the LLM interactions from direct action compared to using proxy agents, agents, and autonomous agents

 Figure 1.1 demonstrates the use cases for a single flow of actions on an LLM using a single agent. For more complex problems, we often break agents into profiles or personas. Each agent profile is given a specific task and executes that task with specialized tools and knowledge.

 Multi-agent systems are agent profiles that work together in various configurations to solve a problem. Figure 1.2 demonstrates an example of a multi-agent system using three agents: a controller or proxy and two profile agents as workers controlled by the proxy. The coder profile on the left writes the code the user requests; on the right is a tester profile designed to write unit tests. These agents work and communicate together until they are happy with the code and then pass it on to the user.

 Figure 1.2 shows one of the possibly infinite agent configurations. (In chapter 4, we’ll explore Microsoft’s open source platform, AutoGen, which supports multiple configurations for employing multi-agent systems.)

 [image: figure]

Figure 1.2 In this example of a multi-agent system, the controller or agent proxy communicates directly with the user. Two agents—a coder and a tester—work in the background to create code and write unit tests to test the code.

 Multi-agent systems can work autonomously but may also function guided entirely by human feedback. The benefits of using multiple agents are like those of a single agent but often magnified. Where a single agent typically specializes in a single task, multi-agent systems can tackle multiple tasks in parallel. Multiple agents can also provide feedback and evaluation, reducing errors when completing assignments.

 As we can see, an AI agent or agent system can be assembled in multiple ways. However, an agent itself can also be assembled using multiple components. In the next section, we’ll cover topics ranging from an agent’s profile to the actions it may perform, as well as memory and planning.

1.2 Understanding the component systems of an agent

 Agents can be complex units composed of multiple component systems. These components are the tools the agent employs to help it complete its goal or assigned tasks and even create new ones. Components may be simple or complex systems, typically split into five categories.

 Figure 1.3 describes the major categories of components a single-agent system may incorporate. Each element will have subtypes that can define the component’s type, structure, and use. At the core of all agents is the profile and persona; extending from that are the systems and functions that enhance the agent.

 [image: figure]

Figure 1.3 The five main components of a single-agent system (image generated through DALL-E 3)

 The agent profile and persona shown in figure 1.4 represent the base description of the agent. The persona—often called the system prompt —guides an agent to complete tasks, learn how to respond, and other nuances. It includes elements such as the background (e.g., coder, writer) and demographics, and it can be generated through methods such as handcrafting, LLM assistance, or data-driven techniques, including evolutionary algorithms.

 [image: figure]

Figure 1.4 An in-depth look at how we’ll explore creating agent profiles

 We’ll explore how to create effective and specific agent profiles/personas through techniques such as rubrics and grounding. In addition, we’ll explain the aspects of human-formulated versus AI-formulated (LLM) profiles, including innovative techniques using data and evolutionary algorithms to build profiles.

 Note  The agent or assistant profile is composed of elements, including the persona. It may be helpful to think of profiles describing the work the agent/ assistant will perform and the tools it needs.

 Figure 1.5 demonstrates the component actions and tool use in the context of agents involving activities directed toward task completion or acquiring information. These actions can be categorized into task completion, exploration, and communication, with varying levels of effect on the agent’s environment and internal states. Actions can be generated manually, through memory recollection, or by following predefined plans, influencing the agent’s behavior and enhancing learning.

 [image: figure]

Figure 1.5 The aspects of agent actions we’ll explore in this book

 Understanding the action target helps us define clear objectives for task completion, exploration, or communication. Recognizing the action effect reveals how actions influence task outcomes, the agent’s environment, and its internal states, contributing to efficient decision making. Lastly, grasping action generation methods equips us with the knowledge to create actions manually, recall them from memory, or follow predefined plans, enhancing our ability to effectively shape agent behavior and learning processes.

 Figure 1.6 shows the component knowledge and memory in more detail. Agents use knowledge and memory to annotate context with the most pertinent information while limiting the number of tokens used. Knowledge and memory structures can be unified, where both subsets follow a single structure or hybrid structure involving a mix of different retrieval forms. Knowledge and memory formats can vary widely from language (e.g., PDF documents) to databases (relational, object, or document) and embeddings, simplifying semantic similarity search through vector representations or even simple lists serving as agent memories.

 [image: figure]

Figure 1.6 Exploring the role and use of agent memory and knowledge

 Figure 1.7 shows the reasoning and evaluation component of an agent system. Research and practical applications have shown that LLMs/agents can effectively reason. Reasoning and evaluation systems annotate an agent’s workflow by providing an ability to think through problems and evaluate solutions.

 [image: figure]

Figure 1.7 The reasoning and evaluation component and details

 Figure 1.8 shows the component agent planning/feedback and its role in organizing tasks to achieve higher-level goals. It can be categorized into these two approaches:

 	 Planning without feedback —Autonomous agents make decisions independently.

 	 Planning with feedback —Monitoring and modifying plans is based on various sources of input, including environmental changes and direct human feedback.

 [image: figure]

Figure 1.8 Exploring the role of agent planning and reasoning

 Within planning, agents may employ single-path reasoning, sequential reasoning through each step of a task, or multipath reasoning to explore multiple strategies and save the efficient ones for future use. External planners, which can be code or other agent systems, may also play a role in orchestrating plans.

 Any of our previous agent types—the proxy agent/assistant, agent/assistant, or autonomous agent—may use some or all of these components. Even the planning component has a role outside of the autonomous agent and can effectively empower even the regular agent.

1.3 Examining the rise of the agent era: Why agents?

 AI agents and assistants have quickly moved from the main commodity in AI research to mainstream software development. An ever-growing list of tools and platforms assist in the construction and empowerment of agents. To an outsider, it may all seem like hype intended to inflate the value of some cool but overrated technology.

 During the first few months after ChatGPT’s initial release, a new discipline called prompt engineering was formed: users found that using various techniques and patterns in their prompts allowed them to generate better and more consistent output. However, users also realized that prompt engineering could only go so far.

 Prompt engineering is still an excellent way to interact directly with LLMs such as ChatGPT. Over time, many users discovered that effective prompting required iteration, reflection, and more iteration. The first agent systems, such as AutoGPT, emerged from these discoveries, capturing the community’s attention.

 Figure 1.9 shows the original design of AutoGPT, one of the first autonomous agent systems. The agent is designed to iterate a planned sequence of tasks that it defines by looking at the user’s goal. Through each task iteration of steps, the agent evaluates the goal and determines if the task is complete. If the task isn’t complete, the agent may replan the steps and update the plan based on new knowledge or human feedback.

 [image: figure]

Figure 1.9 The original design of the AutoGPT agent system

 AutoGPT became the first example to demonstrate the power of using task planning and iteration with LLM models. From this and in tandem, other agent systems and frameworks exploded into the community using similar planning and task iteration systems. It’s generally accepted that planning, iteration, and repetition are the best processes for solving complex and multifaceted goals for an LLM.

 However, autonomous agent systems require trust in the agent decision-making process, the guardrails/evaluation system, and the goal definition. Trust is also something that is acquired over time. Our lack of trust stems from our lack of understanding of an autonomous agent’s capabilities.

 Note  Artificial general intelligence (AGI) is a form of intelligence that can learn to accomplish any task a human can. Many practitioners in this new world of AI believe an AGI using autonomous agent systems is an attainable goal.

 For this reason, many of the mainstream and production-ready agent tools aren’t autonomous. However, they still provide a significant benefit in managing and automating tasks using GPTs (LLMs). Therefore, as our goal in this book is to understand all agent forms, many more practical applications will be driven by non-autonomous agents.

 Agents and agent tools are only the top layer of a new software application development paradigm. We’ll look at this new paradigm in the next section.

1.4 Peeling back the AI interface

 The AI agent paradigm is not only a shift in how we work with LLMs but is also perceived as a shift in how we develop software and handle data. Software and data will no longer be interfaced using user interfaces (UIs), application programming interfaces (APIs), and specialized query languages such as SQL. Instead, they will be designed to be interfaced using natural language.

 Figure 1.10 shows a high-level snapshot of what this new architecture may look like and what role AI agents play. Data, software, and applications adapt to support semantic, natural language interfaces. These AI interfaces allow agents to collect data and interact with software applications, even other agents or agent applications. This represents a new shift in how we interact with software and applications.

 [image: figure]

Figure 1.10 A vision of how agents will interact with software systems

 An AI interface is a collection of functions, tools, and data layers that expose data and applications by natural language. In the past, the word semantic has been heavily used to describe these interfaces, and even some tools use the name; however, “semantic” can also have a variety of meanings and uses. Therefore, in this book, we’ll use the term AI interface.

 The construction of AI interfaces will empower agents that need to consume the services, tools, and data. With this empowerment will come increased accuracy in completing tasks and more trustworthy and autonomous applications. While an AI interface may not be appropriate for all software and data, it will dominate many use cases.

1.5 Navigating the agent landscape

 GPT agents represent an entire shift in how consumers and developers approach everything, from finding information to building software and accessing data. Almost daily, a new agent framework, component, or interface pops up on GitHub or in a research paper. This can be overwhelming and intimidating to the new user trying to grasp what agent systems are and how to use them.

 Summary

 	 An agent is an entity that acts or exerts power, produces an effect, or serves as a means for achieving a result. An agent automates interaction with a large language model (LLM) in AI.

 	 An assistant is synonymous with an agent. Both terms encompass tools such as OpenAI’s GPT Assistants.

 	 Autonomous agents can make independent decisions, and their distinction from non-autonomous agents is crucial.

 	 The four main types of LLM interactions include direct user interaction, agent/ assistant proxy, agent/assistant, and autonomous agent.

 	 Multi-agent systems involve agent profiles working together, often controlled by a proxy, to accomplish complex tasks.

 	 The main components of an agent include the profile/persona, actions, knowledge/memory, reasoning/evaluation, and planning/feedback.

 	 Agent profiles and personas guide an agent’s tasks, responses, and other nuances, often including background and demographics.

 	 Actions and tools for agents can be manually generated, recalled from memory, or follow predefined plans.

 	 Agents use knowledge and memory structures to optimize context and minimize token usage via various formats, from documents to embeddings.

 	 Reasoning and evaluation systems enable agents to think through problems and assess solutions using prompting patterns such as zero-shot, one-shot, and few-shot.

 	 Planning/feedback components organize tasks to achieve goals using single-path or multipath reasoning and integrating environmental and human feedback.

 	 The rise of AI agents has introduced a new software development paradigm, shifting from traditional to natural language–based AI interfaces.

 	 Understanding the progression and interaction of these tools helps develop agent systems, whether single, multiple, or autonomous.

2 Harnessing the power of large language models

 This chapter covers

 	Understanding the basics of LLMs

 	Connecting to and consuming the OpenAI API

 	Exploring and using open source LLMs with LM Studio

 	Prompting LLMs with prompt engineering

 	Choosing the optimal LLM for your specific needs

 The term large language models (LLMs) has now become a ubiquitous descriptor of a form of AI. These LLMs have been developed using generative pretrained transformers (GPTs). While other architectures also power LLMs, the GPT form is currently the most successful.

 LLMs and GPTs are generative models, which means they are trained to generate rather than predict or classify content. To illustrate this further, consider figure 2.1, which shows the difference between generative and predictive/classification models. Generative models create something from the input, whereas predictive and classifying models classify it.

 [image: figure]

Figure 2.1 The difference between generative and predictive models

 We can further define an LLM by its constituent parts, as shown in figure 2.2. In this diagram, data represents the content used to train the model, and architecture is an attribute of the model itself, such as the number of parameters or size of the model. Models are further trained specifically to the desired use case, including chat, completions, or instruction. Finally, fine-tuning is a feature added to models that refines the input data and model training to better match a particular use case or domain.

 [image: figure]

Figure 2.2 The main elements that describe an LLM

 The transformer architecture of GPTs, which is a specific architecture of LLMs, allows the models to be scaled to billions of parameters in size. This requires these large models to be trained on terabytes of documents to build a foundation. From there, these models will be successively trained using various methods for the desired use case of the model.

 ChatGPT, for example, is trained effectively on the public internet and then fine-tuned using several training strategies. The final fine-tuning training is completed using an advanced form called reinforcement learning with human feedback (RLHF). This produces a model use case called chat completions.

 Chat completions LLMs are designed to improve through iteration and refinement—in other words, chatting. These models have also been benchmarked to be the best in task completion, reasoning, and planning, which makes them ideal for building agents and assistants. Completion models are trained/designed only to provide generated content on input text, so they don’t benefit from iteration.

 For our journey to build powerful agents in this book, we focus on the class of LLMs called chat completions models. That, of course, doesn’t preclude you from trying other model forms for your agents. However, you may have to significantly alter the code samples provided to support other model forms.

 We’ll uncover more details about LLMs and GPTs later in this chapter when we look at running an open source LLM locally. In the next section, we look at how to connect to an LLM using a growing standard from OpenAI.

2.1 Mastering the OpenAI API

 Numerous AI agents and assistant projects use the OpenAI API SDK to connect to an LLM. While not standard, the basic concepts describing a connection now follow the OpenAI pattern. Therefore, we must understand the core concepts of an LLM connection using the OpenAI SDK.

 This chapter will look at connecting to an LLM model using the OpenAI Python SDK/package. We’ll discuss connecting to a GPT-4 model, the model response, counting tokens, and how to define consistent messages. Starting in the following subsection, we’ll examine how to use OpenAI.

2.1.1 Connecting to the chat completions model

 To complete the exercises in this section and subsequent ones, you must set up a Python developer environment and get access to an LLM. Appendix A walks you through setting up an OpenAI account and accessing GPT-4 or other models. Appendix B demonstrates setting up a Python development environment with Visual Studio Code (VS Code), including installing needed extensions. Review these sections if you want to follow along with the scenarios.

 Start by opening the source code chapter_2 folder in VS Code and creating a new Python virtual environment. Again, refer to appendix B if you need assistance.

 Then, install the OpenAI and Python dot environment packages using the command in the following listing. This will install the required packages into the virtual environment.

Listing 2.1 pip installs

 pip install openai python-dotenv

 Next, open the connecting.py file in VS Code, and inspect the code shown in listing 2.2. Be sure to set the model’s name to an appropriate name—for example, gpt-4. At the time of writing, the gpt-4-1106-preview was used to represent GPT-4 Turbo.

Listing 2.2 connecting.py

 import os

from openai import OpenAI

from dotenv import load_dotenv

load_dotenv() #1

api_key = os.getenv('OPENAI_API_KEY')

if not api_key: #2

 raise ValueError("No API key found. Please check your .env file.")

client = OpenAI(api_key=api_key) #3

def ask_chatgpt(user_message):

 response = client.chat.completions.create(#4

 model="gpt-4-1106-preview",

 messages=[{"role": "system",

 "content": "You are a helpful assistant."},

 {"role": "user", "content": user_message}],

 temperature=0.7,

)

 return response.choices[0].message.content #5

user = "What is the capital of France?"

response = ask_chatgpt(user) #6

print(response)

 #1 Loads the secrets stored in the .env file

#2 Checks to see whether the key is set

#3 Creates a client with the key

#4 Uses the create function to generate a response

#5 Returns just the content of the response

#6 Executes the request and returns the response

 A lot is happening here, so let’s break it down by section, starting with the beginning and loading the environment variables. In the chapter_2 folder is another file called .env, which holds environment variables. These variables are set automatically by calling the load_dotenv function.

 You must set your OpenAI API key in the .env file, as shown in the next listing. Again, refer to appendix A to find out how to get a key and find a model name.

Listing 2.3 .env

 OPENAI_API_KEY='your-openai-api-key'

 After setting the key, you can debug the file by pressing the F5 key or selecting Run > Start Debugging from the VS Code menu. This will run the code, and you should see something like “The capital of France is Paris.”

 Remember that the response from a generative model depends on the probability. The model will probably give us a correct and consistent answer in this case.

 You can play with these probabilities by adjusting the temperature of the request. If you want a model to be more consistent, turn the temperature down to 0, but if you want the model to produce more variation, turn the temperature up. We’ll explore setting the temperature further in the next section.

2.1.2 Understanding the request and response

 Digging into the chat completions request and response features can be helpful. We’ll focus on the request first, as shown next. The request encapsulates the intended model, the messages, and the temperature.

Listing 2.4 The chat completions request

 response = client.chat.completions.create(

 model="gpt-4-1106-preview", #1

 messages=[{"role": "system",

"content": "You are a helpful assistant."}, #2

 {"role": "user", "content": user_message}], #3

 temperature=0.7, #4

)

 #1 The model or deployment used to respond to the request

#2 The system role message

#3 The user role message

#4 The temperature or variability of the request

 Within the request, the messages block describes a set of messages and roles used in a request. Messages for a chat completions model can be defined in three roles:

 	 System role —A message that describes the request’s rules and guidelines. It can often be used to describe the role of the LLM in making the request.

 	 User role —Represents and contains the message from the user.

 	 Assistant role —Can be used to capture the message history of previous responses from the LLM. It can also inject a message history when perhaps none existed.

 The message sent in a single request can encapsulate an entire conversation, as shown in the JSON in the following listing.

Listing 2.5 Messages with history

 [

 {

 "role": "system",

 "content": "You are a helpful assistant."

 },

 {

 "role": "user",

 "content": "What is the capital of France?"

 },

 {

 "role": "assistant",

 "content": "The capital of France is Paris."

 },

 {

 "role": "user",

 "content": "What is an interesting fact of Paris."

 }

],

 You can see how this can be applied by opening message_history.py in VS Code and debugging it by pressing F5. After the file runs, be sure to check the output. Then, try to run the sample a few more times to see how the results change.

 The results will change from each run to the next due to the high temperature of .7. Go ahead and reduce the temperature to .0, and run the message_history.py sample a few more times. Keeping the temperature at 0 will show the same or similar results each time.

 Setting a request’s temperature will often depend on your particular use case. Sometimes, you may want to limit the responses’ stochastic nature (randomness). Reducing the temperature to 0 will give consistent results. Likewise, a value of 1.0 will give the most variability in the responses.

 Next, we also want to know what information is being returned for each request. The next listing shows the output format for the response. You can see this output by running the message_history.py file in VS Code.

Listing 2.6 Chat completions response

 {

 "id": "chatcmpl-8WWL23up3IRfK1nrDFQ3EHQfhx0U6",

 "choices": [#1

 {

 "finish_reason": "stop",

 "index": 0,

 "message": {

 "content": "… omitted",

 "role": "assistant", #2

 "function_call": null,

 "tool_calls": null

 },

 "logprobs": null

 }

],

 "created": 1702761496,

 "model": "gpt-4-1106-preview", #3

 "object": "chat.completion",

 "system_fingerprint": "fp_3905aa4f79",

 "usage": {

 "completion_tokens": 78, #4

 "prompt_tokens": 48, #4

 "total_tokens": 126 #4

 }

}

 #1 A model may return more than one response.

#2 Responses returned in the assistant role

#3 Indicates the model used

#4 Counts the number of input (prompt) and output (completion) tokens used

 It can be helpful to track the number of input tokens (those used in prompts) and the output tokens (the number returned through completions). Sometimes, minimizing and reducing the number of tokens can be essential. Having fewer tokens typically means LLM interactions will be cheaper, respond faster, and produce better and more consistent results.

 That covers the basics of connecting to an LLM and returning responses. Throughout this book, we’ll review and expand on how to interact with LLMs. Until then, we’ll explore in the next section how to load and use open source LLMs.

2.2 Exploring open source LLMs with LM Studio

 Commercial LLMs, such as GPT-4 from OpenAI, are an excellent place to start to learn how to use modern AI and build agents. However, commercial agents are an external resource that comes at a cost, reduces data privacy and security, and introduces dependencies. Other external influences can further complicate these factors.

 It’s unsurprising that the race to build comparable open source LLMs is growing more competitive every day. As a result, there are now open source LLMs that may be adequate for numerous tasks and agent systems. There have even been so many advances in tooling in just a year that hosting LLMs locally is now very easy, as we’ll see in the next section.

2.2.1 Installing and running LM Studio

 LM Studio is a free download that supports downloading and hosting LLMs and other models locally for Windows, Mac, and Linux. The software is easy to use and offers several helpful features to get you started quickly. Here is a quick summary of steps to download and set up LM Studio:

 	 Download LM Studio from https://lmstudio.ai/.

 	 After downloading, install the software per your operating system. Be aware that some versions of LM Studio may be in beta and require installation of additional tools or libraries.

 	 Launch the software.

 Figure 2.3 shows the LM Studio window running. From there, you can review the current list of hot models, search for others, and even download. The home page content can be handy for understanding the details and specifications of the top models.

 [image: figure]

Figure 2.3 LM Studio software showing the main home page

 An appealing feature of LM Studio is its ability to analyze your hardware and align it with the requirements of a given model. The software will let you know how well you can run a given model. This can be a great time saver in guiding what models you experiment with.

 Enter some text to search for a model, and click Go. You’ll be taken to the search page interface, as shown in figure 2.4. From this page, you can see all the model variations and other specifications, such as context token size. After you click the Compatibility Guess button, the software will even tell you if the model will run on your system.

 [image: figure]

Figure 2.4 The LM Studio search page

 Click to download any model that will run on your system. You may want to stick with models designed for chat completions, but if your system is limited, work with what you have. In addition, if you’re unsure of which model to use, go ahead and download to try them. LM Studio is a great way to explore and experiment with many models.

OEBPS/Images/cover0001.jpg
Micheal Lanham

/“ MANNING

OEBPS/Images/2-4.png
Search text card on Hugging Face™\

[—r
/
n LM Studio clrrests (88 ouIsudon | €3 Dicord € G
21t tom @ oot || i | [coromb By e {
‘\ 8 ((GGUF) Thestoke/vicuna-130-v1.5-16c-G b Model Card ©
>
159 03 Trebloke/vicomo 138-11.5-16K SOUF Sepimber 27, 2073 2 dys)
+ Shoukd Work '\
o T 026 Themloke/Mizans-Vicuma-10-Uncensored-GR Septmber 27 2023 (2 dys)
\ D vicwa-1mlisiGKesr GG Dosmloades
12 O TheBloke/vicuna-78-v1. -GG ‘September 27, 2023 (82 days ago) /
» S D vinetpdsIeQIKSene 56568 Downosdt
Mode Dourionds - x
il Tt 10204 K Shgt .
i MuggingfacecofTheBlokc st T-rsrctv0.2 GG esohemainmistsTo st 0204 X S : =
Ve 14151662 Kt |
A G

rmanicana 13 15 1502 Kaget

tps1haggingfacecoThetlokevilpa 138 v15 16K GGUS

\ AQY

Shows the The compatibility guesser
downloaded models informs you if a model will run.

OEBPS/Images/2-2.png
The input data represents the
content the model will train on.

This typically consists of terabytes

to petabytes of data. ‘

‘ Fine-tuning ‘

“

Fine-tuning is the process of
making a model more specific
to a particular domain or dataset.

Architecture

Denotes the model architecture. Defines the form of training used to

The architecture defines things ‘\/ train the model. Training will also
such as context, token limits, define the model use case, such as
embedding size, and number of chat completions, completions,
parameters (model size). instruct, or question/answer.

OEBPS/Images/Manning_M_small.png

OEBPS/Images/Lanham2.png

OEBPS/Images/manning_m.jpg

OEBPS/Images/1-7.png
Reasoning and Evaluation

Reasoning enables the agent
. to self-reflect and internally
Reasoning &4~ ' peason out the completion

« Zero-shot prompting of a task or tasks.
* One-shot prompting
« Few-shot prompting
« Chain of thought

« Tree of thought

« Skeleton of tghought vaaIuation ;:!'ovicll:s tf:w ::asis

or an agent’s self-reflection

Evaluation 4~ on working through and upon

* Self-consistency task completion.
« Prompt chaining

OEBPS/Images/1-9.png
Autonomous Al Mechanism

User sets the main
objective goal

]

Goals complete
)

Goals not complete 0

Setting Goals

-

Defining and The agent can be
Sequencing Tasks set to ask for Evaluation
permission for
A every task or for
every x number

of tasks. The agent evaluates if

the goal is complete
after every task
iteration.

The agent
plans out the
sequence of
tasks to "

undertake.

Task Execution

Agent executes
tasks.

The agent could write code to
perform other tasks as needed.

Al Large Language
Models (GPT-4) Internet Other Tools

OEBPS/Images/1-4.png
rofile and Persona

Profile Contents

Persona: Role, i.e., coder or tester <7
ex, age, background

Profile Generation
| Handcrafted: Manually designed by

LLM generated: Directed by human +-
prompts.

Data generated: Constructed from «—.
data personas

Agent persona: We’ll understand how
to clearly define the persona, specifying
their role and characteristics to guide
the agent effectively.

Agent role and demographics: We’ll
see how relevant demographic and role
details can provide agent context, such
as age, gender, or background, for a
more relevant interaction.

Human vs. Al assistance for persona
generation: We’ll highlight the role
of human involvement in persona
generation, whether it’s entirely
human driven or assisted by LLMs
or other agents.

Innovative persona techniques:
Prompts generated through data
or other novel approaches such as
evolutionary algorithms to enhance
agent capabilities.

OEBPS/Images/1-1.png
Agent/assistant acting on Autonomous agent making
decisions on behalf of user

Agent/assistant proxy for
behalf of user

No agent or assistant
direct connection to LLM

v

image generator

bo

A

A
Filter my emails by
importance and notify

Please explain the
definition of agent.

Show an illustration
-

of an agent.

What s the temperature
in Calgary today?

me of the top 5 most
important emails.

v

@-

Large language model

Large language model Large language model Large language model
(ChatGPT) (ChatGPT) (ChatGPT) (ChatGPT)
AJ AJ AJ v
"An image of a female LLM identifies an external LLM identifies an external
function API to call and function API to call and

LLM: The definition
of agent is...

secret agent of Hispanic
descent in a nighttime
urban setting. . .

parameters to connect
to a weather service.

parameters to connect
to an email service.

Image generation model
(DALL-E 3)

v

Asks user if it's okay

to execute the function
on their behalf.

T
User confirms
execution okay.

Executes the function
and returns weather
information.

¥

l

Decision step

Y

LLM reads
and sorts emails by
what it deems to be
important.

LLM reformulates

weather information and
responds to the user.

Notifies the user of
important emails.

OEBPS/Images/1-3.png
Actions and Tool Use Profile and Persona Memory and Knowledge
. ' .

added context to the agent for a
specific request or task

A persona represents the agent’s
main role or function, typically
defined in a system prompt. The
profile describes the entire agent
system

Reasoning and evaluation
ground the agent and empower
it to make better decisions.

OEBPS/Images/1-2.png
User query j]Answer

.
M Controller F====n1 Repeat until the
The controller agent code and tests
1 can execute codeon | | work as expected.
the user’s behalf. M
1 I 1
1 Worker agentsj 1 1 1
interact with 4
L.
I the LLM. | arge Language Model I ’
- = o
Tester 7
4
- -
-

-
™ o o e am = ™

OEBPS/Images/1-10.png
Please create a report of
last year's sales.

‘V

Planning: Agent takes the goal and breaks into tasks.

1. Collect data. =l
2. Annotate data. q @ b
3. Format data, and create report visualizations. 4

4. Present report.

Agent interface layer (natural language)

4. Agent presents the report.

I}

All communication via natural language

GPT data layer GPT functions

GPT tools

—— APIs, (D)
web browsing, 4
Database search, etc. External agents
v
1. Query database using natural 2. Annotate data by calling semantic 3. External agent formats data and
language. functions using natural language. may write code to generate visuals.

-

OEBPS/Images/1-8.png
We’ll look at various planning
strategies with and without
feedback—from basic and
sequential planners to automatic
tool use with reasoning.

Feedback may come from a variety
of sources, such as environmental,
human, and an LLM via various
constructive feedback patterns.

Planning and Feedback

Planning without feedback

(autonomous)

« Basic planning

+ Automatic reasoning with
tool use

+ Sequential planning

Planning with feedback

« Environmental feedback

+ Human feedback

« LLM feedback

- Adaptive constructive
feedback

OEBPS/Images/2-3.png
Run a local model
Chat interface to talk as a service.
directly to a local LLM)

G Check for updates..

n

vicuna == Clear Results [1G0|

Supports any] (Fotcon}\ [MPT | ((starcoder] [Repiit | [GPT-Neo-x | gguf @ model file on Hugging Face

\

A\

~ @ New & Noteworthy \

. Want to help catslog new modls? Open a PR on Github
T et e EUT

D — X 5
|

" Search area

OEBPS/Images/2-1.png
Outputs the most __— sandwich, probability .9

probable next word
given the input
thus far

Input text N

I am hungry and for lunch | want a...

Generative model

\J

soup, probability .75
car, probability .02

Outputs text

v
Predictive/Classification
model

\J
class 1, probability .9 4~__ Outputs the most
class 3, probability .5 probable cl;ass

the phrase is

class 6, probability .1 aligned with

Outputs prediction

OEBPS/Images/1-5.png
Action targets: We’ll learn the importance
of defining action targets, whether for task
completion, exploration, or communication,

to clarify the agent’s objectives. H
Action Target

Action space and impact: We’ll learn the Semantic or native functions

significance of understanding how actions -

affect task completion and their effect on Action Space

the agent’s environment, internal states, Tools, self-knowledge, other agents

and self-knowledge. Action Impact
Environments, new actions, internal

Action generation methods: We’ll see the states, other agents

various ways actions can be generated, such

as manual creation, memory recollection, __~ % Action Generation

or plan following, to illustrate the diversity Manual, memory recollection, plan

of agent behaviors. following

OEBPS/Images/1-6.png
Retrieval structure variety: We’'ll learn
about the diverse memory structures
agents can employ, including unified and
hybrid approaches, enabling flexibility in
information storage.

i . We'
Retrieval Structure Retrieval formats: We’ll explore the

« Unified various data sources for memory, such

« Hybrid as language (e.g., PDF documents),
Re:{rieval — ‘/J databases (relational, object, or

B retace djxument), .and embfddmgs, offering a
e rich pool of information to draw upon.

+ Embeddings

« Lists Semantic similarity: We’ll learn how
Retrieval Operation&~ | embeddings enable semantic similarity
+ Augmentation searches, facilitating efficient retrieval of
« Semantic Extraction relevant data and enh: s
+ Compression decision-making capal

