

 [image:]

 Micro Frontends in Action

 Michael Geers

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Tricia Louvar

 	
 Technical development editor:

 	
 Louis Lazaris

 	
 Review editor:

 	
 Ivan Martinović

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Ben Berg

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Mayur Patil

 	
 Typesetter:

 	
 Marija Tudor

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617296871

contents

 preface

 acknowledgment

 about this book

 about the author

 about the cover illustration

 Part 1: Getting started with micro frontends

 1 What are micro frontends?

 1.1 The big picture

 Systems and teams

 The frontend

 Frontend integration

 Shared topics

 1.2 What problems do micro frontends solve?

 Optimize for feature development

 No more frontend monolith

 Be able to keep changing

 The benefits of independence

 1.3 The downsides of micro frontends

 Redundancy

 Consistency

 Heterogeneity

 More frontend code

 1.4 When do micro frontends make sense?

 Good for medium-to-large projects

 Works best on the web

 Productivity versus overhead

 Where micro frontends are not a great fit

 Who uses micro frontends?

 2 My first micro frontends project

 2.1 Introducing The Tractor Store

 Getting started

 Running this book’s example code

 2.2 Page transition via links

 Data ownership

 Contract between the teams

 How to do it

 Dealing with changing URLs

 The benefits

 The drawbacks

 When do links make sense?

 2.3 Composition via iframe

 How to do it

 The benefits

 The drawbacks

 When do iframes make sense?

 2.4 What’s next?

 Part 2: Routing, composition, and communication

 3 Composition with Ajax and server-side routing

 3.1 Composition via Ajax

 How to do it

 Namespacing styles and scripts

 Declarative loading with h-include

 The benefits

 The drawbacks

 When does an Ajax integration make sense?

 Summary

 3.2 Server-side routing via Nginx

 How to do it

 Namespacing resources

 Route configuration methods

 Infrastructure ownership

 When does it make sense?

 4 Server-side composition

 4.1 Composition via Nginx and Server-Side Includes (SSI)

 How to do it

 Better load times

 4.2 Dealing with unreliable fragments

 The flaky fragment

 Integrating the Near You fragment

 Timeouts and fallbacks

 Fallback content

 4.3 Markup assembly performance in depth

 Parallel loading

 Nested fragments

 Deferred loading

 Time to first byte and streaming

 4.4 A quick look into other solutions

 Edge-Side Includes

 Zalando Tailor

 Podium

 Which solution is right for me?

 4.5 The good and bad of server-side composition

 The benefits

 The drawbacks

 When does server-side integration make sense?

 5 Client-side composition

 5.1 Wrapping micro frontends using Web Components

 How to do it

 Wrapping your framework in a Web Component

 5.2 Style isolation using Shadow DOM

 Creating a shadow root

 Scoping styles

 When to use Shadow DOM

 5.3 The good and bad of using Web Components for composition

 The benefits

 The drawbacks

 When does client-side integration make sense?

 6 Communication patterns

 6.1 User interface communication

 Parent to fragment

 Fragment to parent

 Fragment to fragment

 Publish/Subscribe with the Broadcast Channel API

 When UI communication is a good fit

 6.2 Other communication mechanisms

 Global context and authentication

 Managing state

 Frontend-backend communication

 Data replication

 7 Client-side routing and the application shell

 7.1 App shell with flat routing

 What’s an app shell?

 Anatomy of the app shell

 Client-side routing

 Rendering pages

 Contracts between app shell and teams

 7.2 App shell with two-level routing

 Implementing the top-level router

 Implementing team-level routing

 What happens on a URL change?

 App shell APIs

 7.3 A quick look into the single-spa meta-framework

 How single-spa works

 7.4 The challenges of a unified single-page app

 Topics you need to think about

 When does a unified single-page app make sense?

 8 Composition and universal rendering

 8.1 Combining server- and client-side composition

 SSI and Web Components

 Contract between the teams

 Other solutions

 8.2 When does universal composition make sense?

 Universal rendering with pure server-side composition 153 Increased complexity

 Universal unified single-page app?

 9 Which architecture fits my project?

 9.1 Revisiting the terminology

 Routing and page transitions

 Composition techniques

 High-level architectures

 9.2 Comparing complexity

 Heterogeneous architectures

 9.3 Are you building a site or an app?

 The Documents-to-Applications Continuum

 Server, client, or both

 9.4 Picking the right architecture and integration technique

 Strong isolation (legacy, third party)

 Fast first-page load/progressive enhancement

 Instant user feedback

 Soft navigation

 Multiple micro frontends on one page

 Part 3: How to be fast, consistent, and effective

 10 Asset loading

 10.1 Asset referencing strategies

 Direct referencing

 Challenge: Cache-busting and independent deployments

 Referencing via redirect (client)

 Referencing via include (server)

 Challenge: Synchronizing markup and asset versions

 Inlining

 Integrated solutions (Tailor, Podium, ...)

 Quick summary

 10.2 Bundle granularity

 HTTP/2

 All-in-one bundle

 Team bundles

 Page and fragment bundles

 10.3 On-demand loading

 Proxy micro frontends

 Lazy loading CSS

 11 Performance is key

 11.1 Architecting for performance

 Different teams, different metrics

 Multi-team performance budgets

 Attributing slowdowns

 Performance benefits

 11.2 Reduce, reuse... vendor libraries

 Cost of autonomy

 Pick small

 One global version

 Versioned vendor bundles

 Don’t share business code

 12 User interface and design system

 12.1 Why a design system?

 Purpose and role

 Benefits

 12.2 Central design system versus autonomous teams

 Do I need my own design system?

 Process, not project

 Ensure sustained budget and responsibility

 Get buy-in from the teams

 Development process: Central versus federated

 Development phases

 12.3 Runtime versus build-time integration

 Runtime integration

 Versioned package

 12.4 Pattern library artifacts: Generic versus specific

 Choose your component format

 There will be change

 12.5 What goes into the central pattern library?

 The costs of sharing components

 Central or local?

 Central and local pattern libraries

 13 Teams and boundaries

 13.1 Aligning systems and teams

 Identifying team boundaries

 Team depth

 Cultural change

 13.2 Sharing knowledge

 Community of practice

 Learning and enabling

 Present your work

 13.3 Cross-cutting concerns

 Central infrastructure

 Specialized component team

 Global agreements and conventions

 13.4 Technology diversity

 Toolbox and defaults

 Frontend blueprint

 Don’t fear the copy

 The value of similarity

 14 Migration, local development, and testing

 14.1 Migration

 Proof of concept and building a lighthouse

 Strategy #1: Slice-by-slice

 Strategy #2: Frontend first

 Strategy #3: Greenfield and big bang

 14.2 Local development

 Don’t run another team’s code

 Mocking fragments

 Fragments in isolation

 Pulling other teams micro frontends from staging or production

 14.3 Testing

 index

 front matter

preface

 I’ve been developing applications for the web for over 20 years now. On this journey, I’ve seen a variety of different-sized projects. I’ve built tiny side-projects all by myself, have been part of smaller projects with a couple of people, and have also worked on larger projects that involved more people than can comfortably fit around our kitchen table.

 In 2014, my colleagues at neuland Büro für Informatik and I had the task of rebuilding an e-commerce system for a department store chain. The existing monolithic shop not only suffered from performance issues. The major pain-point was an organizational one: adding new features took a long time and often broke unrelated parts of the system. Increasing the development team made this even worse. Our client not only wanted a cleaner-structured new software, but they also wanted to architect the new system so that multiple teams could work on it independently without stepping on each other’s toes. This parallel feature development was crucial to their plan of digitally expanding their business. We opted for an architecture we called verticalization: the establishment of different cross-functional teams that build and evolve a specific area of the shop from database to user interface. The individual team applications were able to work autonomously and only integrated in the frontend. This frontend integration looked easy on paper, but we had to learn a lot to do it effectively. In later projects, we had the chance to refine our techniques and learn from this experience.

 At the same time, other companies were already building their software this way. However, there was no unique name for this architecture. What search term should I use if I want to learn about the challenges involved in building a web application with multiple autonomous teams? In November 2016, the ThoughtWorks Technology Radar changed this by coining the term micro frontends. The introduction of this name made it possible for the development community to share best practices, techniques, and tools around this architecture.

 The following summer, I was able to dedicate some time to write down our experiences. I distilled the techniques we were using into standalone sample projects and published the content at https://micro-frontends.org. From that point, things took on a life of their own: people from across the internet invited me to speak at their conferences. Magazines asked me to write articles. Developers from the community volunteered to translate the site into different languages.

 To top things off, I was approached by Nicole and Brian from Manning at the beginning of last year. They asked if I could see myself writing a book on this topic. My first thought was, “What a hilarious idea--I’m not a book writer! I don’t even enjoy reading texts. I much prefer listening, writing code, building systems, and solving problems.” But since this seemed like a once-in-a-lifetime opportunity, I gave my reply some thought. I had long consultations with friends and family and some sleepless nights, but in the end, I accepted the challenge. After all, I like explaining things. Doing it in book form, with diagrams (I love good diagrams) and code examples would be a venture where I could learn a lot. In retrospect, I’m happy with this decision--and the final result you are looking at right now.

acknowledgments

 The cover of the book prominently features my name as the author. But this is not a single-person effort. It takes a village to create a book like this. I would like to thank

 	
 Emma, Noah, and Finn for your patience and understanding. In the last year, I spent much less time with you than I’d like.

 	
 Sarah, my wonderful wife, for your repeated encouragement and your fresh perspectives. You jumped in when I did long evenings or worked through weekends. You rock!

 	
 Tricia Louvar, my editor at Manning. You guided me through this journey, aggregated feedback, challenged my decisions, and pointed me to sections that needed more clarity.

 	
 Dennis Reimann, Fabricius Seifert, Marco Pantaleo, and Alexander Knöller for bouncing ideas, reading my drafts, and iterating on graphics.

 	
 The team at Manning who worked with me to plan, develop, review, edit, produce and promote this book. Thanks to Ana Romac, Brian Sawyer, Candace Gillhoolley, Christopher Kaufmann, Ivan Martinović, Lana Klasic, Louis Lazaris, Matko Hrvatin, Mayur Patil, Nicole Butterfield, Radmila Ercegovac, Deirdre Hiam, Ben Berg, and Melody Dolab.

 	
 My folks at neuland Büro für Informatik for giving me the ability to continuously learn on new projects and providing space to create this book. Thank you, Jens and Thomas, and thanks to all the others who encouraged me to do this.

 	
 All book reviewers who read my manuscript in various stages. Your feedback helped me to improve my chapters and adjust the focus. Thanks to Adail Retamal, Alan Bogusiewicz, Barnaby Norman, David Osborne, David Paccoud, Dwight Wilkins, George Onofrei, Ivo Sánchez Checa Crosato, Karthikeyarajan Rajendran, Luca Mezzalira, Luis Miguel Cabezas Granado, Mario-Leander Reimer, Matt Ferderer, Matthew Richmond, Miguel Eduardo Gil Biraud, Mladen Đurić, Potito Coluccelli, Raushan Jha, Richard Vaughan, Ryan Burrows, Tanya Wilke, and Tony Sweets.

 	
 All MEAP readers. Receiving encouragement from good friends is one thing. Seeing that people from all over the world put in real money to get early access felt remarkable. You motivated me to pull through this, even if I’d sometimes rather have spent the evening on the couch.

 	
 Samantha, macOS’s text-to-speech voice, for relentlessly reading back every version of every paragraph I’ve written. Take that, dyslexia! A toast to accessibility.

about this book

 I’ve written Micro Frontends in Action to explain the concepts and motivations for adopting a micro frontends architecture. You’ll learn a series of practical techniques to accomplish frontend integration and communication. Since the landscape is pretty new and use cases can be very different, I decided not to go with one specific micro frontends library, tool, or platform. Instead, you’ll learn the fundamental mechanisms by building directly on existing web standards wherever possible. At the end of the book, we’ll address overarching topics like how to ensure good performance, coherent design, and knowledge sharing in a distributed team structure.

Who should read this book

 This book has the word frontend in its title, and in most chapters, we work at some aspect of the user interface. However, this is not only a book for frontend developers. If your expertise is more on the backend-side, or you are a software architect, you won’t be lost. As long as you have a basic understanding of HTML, CSS, JavaScript, and networking, you’re good to go. You don’t need to be familiar with specific libraries or frontend frameworks to understand the techniques described in this book.

How this book is organized: a roadmap

 This book has three parts and a total of 14 chapters.

 Part 1 explains what micro frontends are and when it’s a good idea to use them:

 	
 Chapter 1 paints the big picture. It explains what micro frontends are and goes through the benefits and drawbacks of this architecture.

 	
 Chapter 2 walks you through your first micro frontends project. We’ll start simply and won’t use fancy techniques--just plain old links and iframes. In this chapter, we create a solid basis to iterate upon.

 Part 2 focuses on frontend integration techniques. It gives answers to the question “How do user interfaces from different teams come together in the browser?” You’ll learn approaches for routing and composition for server- and client-rendered applications:

 	
 Chapter 3 illustrates how to do composition using Ajax calls and implement server-based routing with a shared Nginx web server.

 	
 Chapter 4 dives deep into server-side composition. You’ll learn how to compose markup from different applications via Nginx’s SSI feature. We’ll shine a light on some techniques to ensure proper performance even if something goes wrong. We’ll also discuss some alternative implementations like ESI, Tailor, and Podium.

 	
 Chapter 5 addresses composition for client-rendered applications. You’ll learn how to compose UIs written in different technologies into a single view by leveraging the power of Web Components.

 	
 Chapter 6 covers communication strategies. We focus on in-browser communication between different micro frontends. At the end of the chapter, we also address topics like backend communication and how to share information like a login status across teams.

 	
 Chapter 7 introduces the concept of the application shell. The shell enables you to build a full client-rendered user experience that consists of single-page applications built by different teams. You learn how to develop an application shell from scratch, and we finish by taking a look at the popular single-spa library.

 	
 Chapter 8 describes how you can accomplish universal rendering in a micro frontends architecture. We do this by combining server- and client-side integration techniques you’ve already learned in the preceding chapters.

 	
 Chapter 9 rounds off the second part by putting the learned techniques into context. It provides you with a set of questions and tools to decide which micro frontend architecture is the best one for your project.

 Part 3 explains practices to ensure good end-user performance and a consistent user interface. It guides how to organize your teams to get the most value out of the micro frontends architecture:

 	
 Chapter 10 dives into asset-loading strategies to deliver the required JavaScript and CSS code to the customer’s browser in a performant way without introducing inter-team coupling.

 	
 Chapter 11 describes how techniques like performance budgets can work even if code from multiple teams are active on a single page. We discuss methods to reduce the amount of vendor code like framework runtimes.

 	
 Chapter 12 illustrates how to design systems that can help to deliver a consistent user interface to your customers, even if different teams build it. You’ll learn some organizational patterns that have proven valuable. We compare different ways of integrating a pattern library with the micro frontends and discuss their technical implications.

 	
 Chapter 13 focuses on the organization. It answers the questions “How cross-functional should my teams be?” and “How do I identify good system boundaries?” You’ll learn about ways to effectively share knowledge and organize cross-cutting concerns and shared infrastructure components.

 	
 Chapter 14 highlights some migration strategies for moving from a monolithic application to a micro frontends architecture. It also addresses the challenges of local development and testing.

About the code

 All source code in the book is presented in a monospaced typeface like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out key concepts, and numbered bullets are used in the text to provide additional information about the code. Throughout this book, we’ll build an e-commerce application. We start small and expand on it chapter by chapter. Most listings are shortened [...] to avoid repeating code.

 The full source code is available for download from the publisher’s website at https://www.manning.com/books/micro-frontends-in-action and GitHub at https:// github.com/naltatis/micro-frontends-in-action-code. I recommend downloading and running the code on your machine as you move through the chapters. You can also find a hosted version at https://the-tractor.store. There you can interact with all book examples and look at the associated code directly in your browser.

 The applications in this book are built using static files. You don’t need to know a specific backend language like Java, Python, C#, or Ruby. To start the applications we use ad hoc web servers which require Node.js to be installed on your machine. In the chapters that cover server-side routing and composition, we use Nginx. You’ll find the installation instructions in the first chapter that requires it.

Online resources

 Purchase of Micro Frontends in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/book/micro-frontends-in-action. You can also learn more about Manning’s forums and the rules of conduct at https://livebook .manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print

about the author

 Michael Geers is a software developer specializing in building user interfaces. He has written software for the web since he was a teenager. In the last few years, he has worked on various customer projects with verticalized architectures. He shares his experiences on this topic at international conferences, and in a series of magazine articles, and runs the site https://micro-frontends.org.

about the cover illustration

 The figure on the cover of Micro Frontends in Action is captioned “Habitante de la Calabre,” or a Woman from Calabria. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1. Getting started with micro frontends

 Frontend development has evolved a lot over the last decade. The web applications we are building today have to load quickly, run on a broad range of devices, and should react swiftly to user interactions. For a lot of businesses, the web frontend is the prime interaction surface for their users. So it’s natural to put a lot of thought and attention to detail into its development.

 When your project is small, and you’re working with a handful of developers, building a nice web application is a straightforward task. However, if your business has a large web application and wants to improve and add new features continually, a single team will quickly be overwhelmed. This is where the micro frontend architecture comes in. There we slice the application into pieces that multiple teams can work on independently. In chapter 1, you’ll learn the core concepts, understand the reasoning behind this architecture, and know what types of projects can benefit the most from it. In the second chapter, we’ll jump right into the code and build a minimal viable micro frontends project from scratch: The Tractor Store. This e-commerce project functions as the basis for the more advanced techniques you’ll unlock later in the book.

1 What are micro frontends?

 This chapter covers:

 	
Discovering what micro frontends are

 	
Comparing the micro frontends approach to other architectures

 	
Pointing out the importance of scaling frontend development

 	
Recognizing the challenges that this architecture introduces

 I’ve worked as a software developer on many projects over the last 15 years. In this time, I’ve had multiple chances to observe a pattern that repeats itself throughout our industry: working with a handful of people on a new project feels fantastic. Every developer has an overview of all functionality. Features get built quickly. Discussing topics with your coworkers is straightforward. This changes when the project’s scope and the team size increases. Suddenly one developer can’t know every edge of the system anymore. Knowledge silos emerge inside your team. Complexity rises--making a change on one part of the system may have unexpected effects on other parts. Discussions inside the team are more cumbersome. Before, team members made decisions at the coffee machine. Now you need formal meetings to get everyone on the same page. Frederick Brooks described this in the book The Mythical Man-Month back in 1975. At some point, adding new developers to a team does not increase productivity.

 Projects often are divided into multiple pieces to mitigate this effect. It became fashionable to divide the software, and thereby also the team structure, by technology. We introduced horizontal layers with a frontend team and one or more backend teams. Micro frontends describes an alternative approach. It divides the application into vertical slices. Each slice is built from the database to the user interface and run by a dedicated team. The different team frontends integrate in the customer’s browser to form the final page. This approach is related to the microservices architecture. But the main difference is that a service also includes its user interface. This expansion of the service removes the need for a central frontend team. Here are the three main reasons why companies adopt a micro frontends architecture:

 	
 Optimize for feature development --A team includes all skills needed to develop a feature. No coordination between separate frontend and backend teams is required.

 	
 Make frontend upgrades easier --Each team owns its complete stack from frontend to database. Teams can decide to update or switch their frontend technology independently.

 	
 Increase customer focus --Every team ships their features directly to the customer. No pure API teams or operation teams exist.

 In this chapter, you’ll learn what problems micro frontends solve and when it makes sense to use them.

1.1 The big picture

 Figure 1.1 is an overview of all the parts that are important when implementing micro frontends. Micro frontends are not a concrete technology. They’re an alternative organizational and architectural approach. That’s why we see a lot of different elements in this chart--like team structure, integration techniques, and other related topics. We’ll go through the complete figure step by step. We start with the three teams above the dashed line and work our way up. When we reach the magic lamp at the top, we’ll discuss frontend integration. At the bottom of this diagram, you can see the contents of this box zoomed in. It illustrates the three different aspects we need to address to create an integrated application. Our diagram journey ends at the three shared topics at the right.

1.1.1 Systems and teams

 The three boxes with Teams A, B, and C demonstrate the vertically arranged software systems. They form the core of this architecture. Each system is autonomous, which means it can function even when the neighboring systems are down. Every system has its own data store to achieve this. Additionally, it doesn’t rely on synchronous calls to other systems to answer a request.

 [image:]

 Figure 1.1 Here is the big picture overview of the micro frontends approach. The vertically arranged teams at the bottom are the core of this architecture. They each produce features in the form of pages or fragments. You can use techniques like SSI or Web Components to integrate them into an assembled page that reaches the customer.

 One system is owned by one team. This team works on the complete stack of the software from top to bottom. In this book, we will not cover the backend aspects like data replication between these systems. Here, established solutions from the microservices world apply. We’ll focus on organizational challenges and frontend integration.

 Team missions

 Each team has its area of expertise in which it provides value for the customer. In figure 1.2 you see an example for an e-commerce project with three teams.

 [image:]

 Figure 1.2 An e-commerce example with three teams. Each team works on a different part of the e-commerce shop and has its mission statement that clarifies their responsibility.

 Every team should have a descriptive name and a clear user-focused mission. In our projects we align the teams along the customer journey--the stages a customer goes through when buying something.

 Team Inspire’s mission, as the name implies, is to inspire the browsing customer and to present products that might be of interest.

 Team Decide helps in making an informed buying decision by providing excellent product images, a list of relevant specs, comparison tools, and customer reviews.

 Team Checkout takes over when the customer has decided on an item and guides them through the checkout process.

 A clear mission is vital for the team. It provides focus and is the basis for dividing the software system.

 Cross-functional teams

 The most significant difference between micro frontends and other architectures is team structure. On the left side of figure 1.3 you see specialist teams. People are grouped by different skills or technologies. Frontend developers are working on the frontend; experts in handling payment work on a payment service. Business and operations experts also form their own teams. This structure is typical when using a microservices approach.

 [image:]

 Figure 1.3 Team structure of a microservice-style architecture on the left compared with micro frontends teams on the right. Here the teams are formed around a customer need and not based on technologies like frontend and backend.

 It feels natural at first sight, right? Frontend developers like to work with other frontend developers. They can discuss the bugs they are trying to fix or come up with ideas on how to improve a specific part of the code. The same is true for the other teams which specialize in a specific skill. Professionals strive for perfection and have an urge to come up with the best solution in their field. When each team does a great job, the product as a whole will also be great, right?

 This assumption is not necessarily valid. Building interdisciplinary teams is becoming more and more popular. You have a team where frontend and backend engineers, but also operations and business people, work together. Due to their different perspectives, they come up with more creative and effective solutions for the task at hand. These teams might not build the best-in-class operations platform or frontend layer, but they specialize in the team’s mission. For example, they are working on becoming experts in presenting relevant product suggestions or building a seamless checkout experience. Instead of mastering a specific technology, they all focus on providing the best user experience for the area they work on.

 [image:]

 Figure 1.4 This is the middle portion of the big picture as detailed in its entirety in figure 1.1. Each team builds its own user interface as a page or a fragment.

 Cross-functional teams come with the added benefit that all members are directly involved in feature development. In the microservice model, the services or operations teams are not involved directly. They receive their requirements from the layer above and don’t always have the full picture of why these are important. The cross-functional team approach makes it easier for all people to get involved, contribute, and, most importantly, self-identify with the product. Now that we’ve discussed teams and their individual systems, let’s move to the next step.

1.1.2 The frontend

 Now we’re getting to the aspect that makes the micro frontends approach different from other architectures. It’s the way we think about and build features. Teams have end-to-end responsibility for a given functionality. They deliver the associated user interface as a micro frontend. A micro frontend can be a complete page or a fragment that other teams include. Figure 1.4 illustrates this.

 A team generates the HTML, CSS, and JavaScript necessary for a given feature. To make life easier, they might use a JavaScript library or framework to do that. Teams don’t share library and framework code. Each team is free to choose the tool that fits best for their use case. The imaginary frameworks Thunder.js and Wonder.js illustrate that. 1 Teams can upgrade their dependencies on their own. Team B uses Wonder.js v1.3, whereas Team C already switched to v 1.4.

 1.Yes, I’m aware that there probably is a JavaScript framework for all dictionary words registered on npmjs.org, including Thunder and Wonder. But since both projects have over six years of inactivity and single-digit weekly downloads, let’s stick to them. :)

 Page ownership

 Let’s talk about pages. In our example, we have different teams that care about different parts of the shop. If you split up an online shop by page types and try to assign each type to one of the three teams, you might end up with something like figure 1.5.

 [image:]

 Figure 1.5 Each page is owned by one team.

 Because the team structure resembles the customer journey, this page-type mapping works well. The focus of a homepage is indeed an inspiration, and a product detail page is a spot where the customer makes their buying decision.

 How could you implement this? Each team could build their own pages, serve them from their application, and make them accessible through a public domain. You could connect these pages via links so that the end-user can navigate between them. Voilà--you are good to go, right? Basically, yes. In the real world, you have requirements that make it more complicated. That’s why I’ve written this book! But now you understand the gist of the micro frontends architecture:

 	
 Teams can work autonomously in their field of expertise.

 	
 Teams can choose the technology stack that fits best for the job at hand.

 	
 The applications are loosely coupled and only integrate in the frontend (e.g., via links).

 Fragments

 The concept of pages is not always sufficient. Typically you have elements that appear on multiple pages, like the header or footer. You do not want every team to re-implement them. This is where fragments come in.

 A page often serves more than one purpose, and might show information or provide functionality that another team is responsible for. In figure 1.6, you see the product page of The Tractor Store. Team Decide owns this page. But not all of the functionality and content can be provided by them.

 The Recommendations block on the right is an inspirational element. Team Inspire knows how to produce those. The Mini Basket at the bottom shows all selected items. Team Checkout implements the basket and knows its current state. The customer can add a new tractor to the basket by clicking the Buy button. Since this action modifies the basket, Team Checkout also provides this button as a fragment.

 [image:]

 Figure 1.6 Teams are responsible for pages and fragments. You can think of fragments as embeddable mini applications that are isolated from the rest of the page.

 A team can decide to include functionality from another team by adding it somewhere on the page. Some fragments might need context information, like a product reference for the Related Products block. Other fragments like the Mini Basket bring their own internal state. But the team that is including the fragment in their code does not have to know about state and implementation details of the fragment.

1.1.3 Frontend integration

 Figure 1.7 shows the upper part of our big-picture diagram. In this part, it all comes together.

 [image:]

 Figure 1.7 The term frontend integration describes a set of techniques you use to assemble the user interfaces (pages and fragments) of the teams into an integrated application. You can group these techniques into three categories: routing, composition, and communication. Depending on your architectural choices, you have different options to solve these categories.

 Frontend integration describes the set of tools and techniques you use to combine the team’s UIs into a coherent application for the end user. The zoomed-in Frontend Integration box at the bottom of the diagram highlights three integration aspects. Let’s go through them one by one.

 Routing and page transitions

 Here we are talking about integration on page level. We need a system to get from a page owned by Team A to a page owned by Team B. The solutions can be straightforward. You can achieve this by merely using an HTML link. If you want to enable client-side navigation, which renders the next page without having to do a reload, it gets more sophisticated. You can implement this by having a shared application shell or using a meta-framework like single-spa. We will look into both options in this book.

 Composition

 The process of getting the fragments and putting them in the right slots is performed here. The team that ships the page typically does not fetch the content of the fragment directly. It inserts a marker or placeholder at the spot in the markup where the fragment should go.

 A separate composition service or technique does the final assembly. There are different ways of achieving this. You can group the solutions into two categories:

 	
 Server-side composition, for example with SSI, ESI, Tailor or Podium

 	
 Client-side composition, for example with iframes, Ajax, or Web Components

 Depending on your requirements, you might pick one or a combination of both.

 Communication

 For interactive applications, you also need a model for communication. In our example, the Mini Basket should update after clicking the Buy button. The Recommendation Strip should update its product when the customer changes the color on the detail page. How does a page trigger the update of an included fragment? This question is also part of frontend integration.

 In part two of this book, you’ll learn about different integration techniques and the benefits and drawbacks they provide. In chapter 9 we’ll round off this part with some guidance to help you make a good decision.

1.1.4 Shared topics

 The micro frontends architecture is all about being able to work in small autonomous teams that have everything they need to create value for the customer. But some shared topics are essential to address when working like this (figure 1.8).

 [image:]

 Figure 1.8 To ensure a good end result and avoid redundant work, it’s important to address topics like web performance, design systems, and knowledge sharing from the start.

 Web performance

 Because we assemble a page from fragments made by multiple teams, we often end up with more code that our user must download. It’s crucial to have an eye on the performance of the page from the beginning. You’ll learn useful metrics and techniques to optimize asset delivery. It’s also possible to avoid redundant framework downloads without compromising team autonomy. In chapters 10 and 11 we dive deeper into the performance aspects.

 Design systems

 To ensure a consistent look and feel for the customer, it is wise to establish a common design system. You can think of the design system as a big box of branded LEGOTM pieces that every team can pick and choose from. But instead of plastic bricks, a design system for the web includes elements like buttons, input fields, typography, or icons. The fact that every team uses the same basic building blocks brings you a considerable way forward design-wise. In chapter 12 you’ll learn different ways of implementing a design system.

 Sharing knowledge

 Autonomy is essential, but you don’t want information silos. It’s not productive when every team builds an error-logging infrastructure on their own. Picking a shared solution or at least adopting the work of other teams helps you to stay focused on your mission. You need to create spaces and rituals that enable information exchange regularly between teams.

1.2 What problems do micro frontends solve?

 Now you have an idea of what micro frontends are. Let’s take a closer look at the organizational and technical benefits of this architecture. We’ll also address the most prevalent challenges you have to solve to be productive with this approach.

1.2.1 Optimize for feature development

 The number one reason why companies choose to go the micro frontend route is to increase development speed. In a layered architecture, multiple teams are involved in building a new feature. Here is an example: suppose the marketing department has the idea to create a new type of promotion banner. They talk to the content team to extend the existing data structure. The content team talks to the frontend team to discuss changes to their API. Meetings are arranged, and the specification is written. Every team plans its work and schedules it in one of the next sprints. If everything works as planned, the feature is ready when the last team finishes implementing it. If not, more meetings are scheduled to discuss changes.

 Reducing waiting time between teams is micro frontends' primary goal.

 With the micro frontends model, all people involved in creating a feature work in the same team. The amount of work that needs to be done is the same. But communication inside a team is much faster and less formal. Iteration is quicker--no waiting for other teams, no discussion about prioritization.

 [image:]

 Figure 1.9 This diagram shows what it takes to build a new feature. On the left side, you see a layered architecture. Three teams are involved in building it. These teams have to coordinate and potentially wait for each other. With the micro frontends approach (right), one team can build this feature.

 Figure 1.9 illustrates this difference. The micro frontend architecture optimizes for implementing features by moving all necessary people closer together.

1.2.2 No more frontend monolith

 Most architectures today don’t have a concept for scaling frontend development. In figure 1.10 you see three architectures: the monolith, frontend/backend-split, and microservices. They all come with a monolithic frontend. That means the frontend comes from a single codebase that only one team can work on sensibly.

 [image:]

 Figure 1.10 In most architectures, the frontend is a monolithic system.

 With micro frontends, the application, including the frontend, gets split into smaller vertical systems. Each team has its own smaller frontend. Compared to a frontend monolith, building and maintaining a smaller frontend has benefits. A micro frontend

 	
 Is independently deployable

 	
 Isolates the risk of failure to a smaller area

 	
 Is narrower in scope and thereby easier to understand

 	
 Has a smaller codebase that can help when you want to refactor or replace it

 	
 Is more predictable because it does not share state with other systems

 Let’s go into detail on a few of these topics.

1.2.3 Be able to keep changing

 As a software developer, constant learning and the adoption of new technologies is part of the job. But when you work in frontend development, this is especially true. Tools and frameworks are changing fast. Sophisticated frontend development started in 2005, the web 2.0 era, with Ruby on Rails, Prototype.js, and Ajax, which were essential to bringing interactivity to the (at that time) mostly static web.

 But a lot has changed since then. Frontend development transformed from “making the HTML pretty with CSS” to a professional field of engineering. To deliver good work, a web developer nowadays needs to know topics like responsive design, usability, web performance, reusable components, testability, accessibility, security, and the changes in web standards and their browser support. The evolution of frontend tools, libraries, and frameworks enabled us to build higher-quality and more capable web applications to meet the rising expectations of our users. Tools like Webpack, Babel, Angular, React, Vue.js, Stencil, and Svelte play a vital role today, but, likely, we haven’t reached the end of this evolution yet. Being able to adopt a new technology when it makes sense is an essential asset for your teams and your company.

 Legacy

 Dealing with legacy systems is also becoming a more prevalent topic in the frontend. A lot of developer time gets spent on refactoring legacy code and coming up with migration strategies. Big players are investing a considerable amount of work in maintaining their large applications. Here are three examples:

 	
 GitHub did a multi-year migration to remove their dependency on jQuery.2

 2.See “Removing jQuery from GitHub.com frontend,” The GitHub Blog, https://github.blog/2018-09-06-removing -jquery-from-github-frontend/.

 	
 Trivago, a hotel search engine, made an enormous effort with Project Ironman to rework their complex CSS to a modular design system.3

 3.See Christoph Reinartz, “Large Scale CSS Refactoring at trivago,” Medium, http://mng.bz/gynn.

 	
 Etsy is getting rid of their JavaScript legacy baggage to reduce bundle size and increase web performance. The code has grown over the years, and one developer can’t have an overview of the complete system. To identify dead code, they’ve built an in-browser code coverage tool that runs in the customer’s browser and reports back to their servers.4

 4.See “Raiders of the Fast Start: Frontend Perf Archeology, http://mng.bz/5aVD.

 When you are building an application of a specific size and want to stay competitive, it’s essential to be able to move to new technologies when they provide value for your team. This freedom does not mean that it’s wise to rewrite your complete frontend every few years to use the currently trending framework.

 Local decision making

 Being able to introduce and verify a technology in an isolated part of your application without having to come up with a grand migration plan for everything is a valuable asset. The micro frontends approach enables this on a team level. Here is an example: Team Checkout is experiencing a lot of JavaScript runtime errors lately, due to references to undefined variables. Since it’s crucial to have a checkout process that’s as bug-free as possible, the team decides to switch to Elm, which is a statically typed language that compiles to JavaScript. The language is designed to make it impossible to create runtime errors. But it also comes with drawbacks. Developers have to learn the new language and its concepts. The open source ecosystem of available modules or components is still small. But for the use case of Team Checkout, the pros outweigh the cons.

 With the micro frontends approach, teams are in full control of their technology stack (micro architecture). This autonomy enables them to make the decision and switch horses. They don’t have to coordinate with other teams. The only thing they have to ensure is that they stay compatible with the previously agreed upon inter-team conventions (macro architecture). (See figure 1.11.) These might include adhering to namespaces and supporting the chosen frontend integration technique. You’ll learn more about these conventions through the course of the book.

 [image:]

 Figure 1.11 Teams can decide about their internal architecture (micro architecture) on their own as long as they stay in the boundaries of the agreed upon macro architecture.

 Doing such a switch for a large application with a monolithic codebase would be a big deal with lots of meetings and opinions. The risks are much higher, and the described trade-offs might not be the same in different parts of the application. The process of making a decision at this scale is often so painful, unproductive, and tiresome that most developers shy away from bringing it up in the first place. The micro frontends approach makes it easier to evolve your application over time in the areas where it makes sense.

1.2.4 The benefits of independence

 Autonomy is one of the critical benefits of microservices and also of micro frontends. It comes in handy when teams decide to make more significant changes as described in the previous section. But even when you are working in a homogeneous environment where everyone is using the same tech stack, it has its advantages.

 Self-contained

 Pages and fragments are self-contained. That means they bring their own markup, styles, and scripts, and should not have shared runtime dependencies. This isolation makes it possible for a team to deploy a new feature in a fragment without having to consult with other teams first. An update may also come with an upgraded version of the JavaScript framework they are using. Because the fragment is isolated, this is not a big deal. (See figure 1.12.)

 At first sight, it sounds wasteful that every team brings their own assets. This is particularly true when all teams are using the same stack. But this mode of working enables teams to move much faster and deliver features more quickly.

 [image:]

 Figure 1.12 Fragments are self-contained and upgradeable independently of the page they are embedded in.

 Technical overhead

 Backend microservices introduce overhead. You need more computing resources to, for example, run different Java applications in their own virtual machine or container. But the fact that the backend services are themselves much smaller than a monolith also comes with advantages. You can run a service on smaller and cheaper hardware. You can scale specific services by running multiple instances of it and don’t have to multiply the complete monolith. You can always solve this with money and buy more or larger server instances.

 This scaling does not apply to the frontend code. The bandwidth and resources of your customer’s devices are limited. However, the overhead does not scale linearly with the number of teams. It heavily depends on how teams build their applications. In chapter 11, we will explore metrics to qualify and learn techniques to mitigate these effects. But it’s safe to say that the team isolation comes with an extra cost.

 So, why do we do this at all? Why don’t we build a large React application where every team is responsible for different parts of it? One team only works on the components of the product page; the other team builds the checkout pages. One source code repository, one React application.

 Shared nothing

 The reasoning behind this is the realization that communication between teams is expensive--really expensive. When you want to change a piece that others rely on, be it just a utility library, you have to inform everyone, wait for their feedback, and maybe discuss other options. The more people you have, the more cumbersome this gets.

 The goal is to share as little as possible to enable faster feature development. Every shared piece of code or infrastructure has the potential for creating a non-trivial amount of management overhead. This approach is also called shared nothing architecture. The nothing sounds a bit harsh, and in reality, it’s not that black and white. But in general, micro frontend projects have a strong tendency to accept redundancy in favor of more autonomy and higher iteration speeds. We’ll touch on this principle at various points in this book.

1.3 The downsides of micro frontends

 As stated earlier, the micro frontends approach is all about equipping autonomous teams with everything they need to create meaningful features for the customer. This autonomy is powerful but does not come for free.

1.3.1 Redundancy

 Everyone who studies computer science is trained to minimize redundancy in the systems they create, be it the normalization of data in a relational database or the extraction of similar pieces of code into a shared function. The goal is to increase efficiency and consistency. Our eyes and minds have learned to find redundant code and come up with a solution to eliminate it.

 Having multiple teams side by side that build and run their own stack introduces a lot of redundancy. Every team needs to set up and maintain its own application server, build process and continuous integration pipeline, and might ship redundant JavaScript/CSS code to the browser. Here are two examples where this is an issue:

 	
 A critical bug in a popular library can’t be fixed in one central place. All teams that use it must install and deploy the fix themselves.

 	
 When one team has put in the work to make their build process twice as fast, the other teams don’t automatically benefit from this change. This team has to share this information with the others. The other teams have to implement the same optimization on their own.

OEBPS/Images/CH01_F06_Geers.png

OEBPS/Images/CH01_F12_Geers.png

OEBPS/Images/CH01_F01_Geers.png

OEBPS/Images/cover.jpeg

OEBPS/Images/CH01_F02_Geers.png

OEBPS/Images/CH01_F04_Geers.png

OEBPS/Images/CH01_F10_Geers.png

OEBPS/Images/CH01_F09_Geers.png

OEBPS/Images/CH01_F11_Geers.png

OEBPS/Images/CH01_F05_Geers.png

OEBPS/Images/CH01_F07_Geers.png

OEBPS/Images/Manning_M_small.png

OEBPS/Images/Manning_copyright.png

OEBPS/Images/CH01_F08_Geers.png

OEBPS/Images/CH01_F03_Geers.png

