

Praise for the first edition

 A great on ramp to the world of .NET and .NET Core. You’ll learn the why, what, and how of building systems on this new platform.

 —From the foreword by Scott Hanselman, Microsoft

 Covers valuable use cases such as data access, web app development, and deployment to multiple platforms.

 —Viorel Moisei, Gabriels Technology Solutions

 Teaches you to write code that ports across all platforms; also includes tips for porting legacy code to .NET Core.

 —Eddy Vluggen, Cadac

 Covers all the new tools and features of .NET Core. Brain-friendly.

 —Tiklu Ganguly, ITC Infotech

 I highly recommend to all of my colleagues, beginners or experienced.

 —Renil Abdulkader, KPMG LLP

 I’ve never worked with .NET before, but this book makes it easy to pick up . . . and makes it feel as cool as node.js.

 —Daut Morina, Livingdocs AG

 Just what I needed to start using .NET Core.

 —Daniel Vásquez, Raet

 [image:]

 .NET in Action, Second Edition

 Second Edition

 Dustin Metzgar

 Foreword by Scott Hanselman

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Dustin Archibald

 	
 Technical editor:

 	
 Gerald Versluis

 	
 Review editors:

 	
 Adriana Sabo and Dunja Nikitović

 	
 Production editor:

 	
 Kathy Rossland

 	
 Copy editor:

 	
 Keir Simpson

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Ricardo Peres

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439313

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. The basics

 1 Why .NET?

 1.1 What is .NET?

 1.2 Where is .NET used?

 .NET in gaming and 3D graphics

 Popular .NET open source projects

 1.3 When to use .NET

 1.4 What will I learn from this book?

 1.5 What is in the .NET runtime?

 Intermediate language

 JIT compilation

 Garbage collection

 2 Building a console application

 2.1 Creating new applications from templates

 2.2 Building and running

 2.3 Writing code

 2.4 Namespaces and conventions

 2.5 Global using statements

 2.6 Static using statements

 2.7 Handling more command-line arguments

 2.8 C# properties

 Reflection

 Interpolated strings

 Null operators

 Casting objects to types

 3 Creating web ser vices and applications with ASP.NET Core

 3.1 Web services

 Adding a service that responds with a collection of data

 Controlling the response

 3.2 Web applications

 Razor pages

 Code-behind

 Part 2. Data

 4 File and network I/O

 4.1 Reading and writing files

 Building a custom template

 Finding files in folders

 Finding text in a file

 Disposing the StreamReader with using

 Parsing command-line arguments

 4.2 Working with JSON

 Reading JSON documents

 Writing JSON documents

 JSON serialization

 4.3 Making HTTP requests

 4.4 Unblocking programs with asynchronous programming

 5 Using Entity Framework Core with relational databases

 5.1 Storing application data

 5.2 Building your first EF Core application

 Object-creation shorthand

 Cleaning up the compiler warnings

 Creating a relationship

 5.3 Accessing data asynchronously

 5.4 Using EF Core with ASP.NET Core

 Request methods

 5.5 Exposing your API via Swagger/OpenAPI

 Part 3. Testing

 6 Unit-testing fundamentals

 6.1 Writing code that’s easier to test

 6.2 SOLID principles

 S: Single responsibility principle

 O: Open/closed principle

 L: Liskov substitution principle

 I: Interface segregation principle

 D: Dependency inversion principle

 6.3 An example test application: Sodoku

 6.4 Building your first xUnit test project

 6.5 Fact tests

 6.6 Theory tests

 Applying SOLID principles to SudokuSolver

 Testing for exceptions

 Theory testing with MemberData

 7 Substituting dependencies in tests

 7.1 Testing code that relies on the current time

 7.2 Testing code that uses Streams

 Memory stream

 File stream from copied files

 Manifest resource streams

 7.3 Finding easier ways to write large strings

 7.4 Replacing dependencies with fakes

 Considering an example repository design pattern

 Setting up the unit-test class

 Validating faked method calls

 Verifying the number and order of calls

 Throwing exceptions from fakes

 8 Integration testing

 8.1 Applications with many dependencies

 8.2 Testing with an in-memory database

 8.3 Testing HTTP calls

 8.4 Broader integration tests

 8.5 Integration-testing ASP.NET Core APIs

 Part 4. Getting ready for release

 9 Security

 9.1 Securing applications

 9.2 Threat modeling

 9.3 Setting up HTTPS

 9.4 Checking for SQL injection vulnerability

 Adding an interceptor

 Configuring the connection string safely

 9.5 ASP.NET Core Identity

 Setting up Microsoft authentication

 Authenticating with Swagger UI

 9.6 Authorization

 10 Performance and profiling

 10.1 Why test performance?

 10.2 Introduction to BenchmarkDotNet

 10.3 Profiles

 Capturing profiles with BenchmarkDotNet

 Analyzing profiles

 Using PerfView

 Understanding garbage collection

 10.4 Web performance testing

 11 Handling failures

 11.1 Operating in the real world

 11.2 EF Core

 Database transactions

 Retrying on transient faults

 11.3 Polly

 Simulating HTTP errors

 Other Polly capabilities

 12 Building world-ready applications

 12.1 Creating the sample application

 12.2 Getting resource strings

 12.3 Adding resource languages

 12.4 ASP.NET Core’s built-in culture support

 12.5 Internationalization

 Globalization

 Localizability review

 Testing right-to-left languages

 Other considerations for globalization

 13 Working with containers

 13.1 Why use containers?

 13.2 Container landscape

 13.3 Building a container image

 Using .NET 6 and earlier or custom Dockerfile

 Using .NET 7 and later

 13.4 Configuration

 Controlling the .NET environment

 Configuration order

 Hierarchical configuration

 Applying configuration in Docker Desktop

 Mapping configuration to objects

 13.5 Secrets

 Appendix A. .NET history

 Appendix B. Setting up your development environment

 Appendix C. MAUI and Blazor

 Appendix D. The async state machine

 Appendix E. Testing internal members

 Appendix F. xUnit supplement

 index

 front matter

foreword

 Six years have passed since I wrote the foreword for the first edition of what was then .NET Core in Action. You’re holding in your hands (or digitally) the massively revised and improved second edition, now titled .NET in Action. The word Core has gone from the branding, as cross-platform .NET is no longer thought of as a less-than-full version, but today, .NET is recognized as a robust, full-featured, incredibly powerful ecosystem. Today, we’re shipping and enjoying .NET 8, with .NET 9 coming reliably at the end of 2024. The community enjoys long-term support versions, and millions of developers and enterprises trust .NET to run their software every day. Modern .NET is in action every day, and it’s fast, it’s portable, and it’s awesome.

 As Dustin called out in the first edition of his book, you’ll be able to use a host of open source libraries to test your code, access databases, build microservices, and go live, either on your own hardware or in the cloud. Cross-platform GUI apps? .NET can make them happen for you. WebAssembly (WASM)? Check. Today, .NET powers games on your Xbox and Steam Deck, runs massive distributed applications in containers or orchestrated with Kubernetes, but also powers Internet of Things (IoT) devices and microcontrollers with technologies such as Wilderness Labs Meadow and .NET nanoFramework. You’d be hard-pressed to find a computer or system that doesn’t run today’s .NET.

 This improved second edition includes a ton of new samples, chapters, and revisions with more than 300 pages of goodness! Dustin is sure to shout out many of the amazing open source libraries that make the .NET community successful. Whether they’re games and graphics, databases and testing utilities, distributed systems, build tools, or workflows, a ton of fantastic projects out there are pushing .NET to the edges and beyond.

 Finally, I want to call out the fact that you could hardly find a better guide to the .NET space than Dustin Metzgar. With more than 20 years of experience shipping software, he not only offers deep expertise on .NET, but also provides an inside look with important historical context as someone who worked on the .NET team at Microsoft. I appreciate Dustin as an open source advocate, community member, technologist, and writer. I hope you enjoy reading, exploring, and learning from this fantastic .NET in Action, Second Edition as much as I did!

 —Scott Hanselman, Vice President, Developer Community, Microsoft

preface

 Software developers learn throughout their entire careers, which is part of the appeal. The more I learn, the more I discover how much I don’t know (the known unknown). The times when I learned most were the times when an unknown became a known unknown, such as when a whole category of development that I’d never heard of was revealed to me. Subjects such as performance profiling and localization never occurred to me when I started, yet they play important roles in professional software development.

 With so much information available through blogs, tweets, Stack Overflow, conferences, and online documentation, you might wonder whether physical books can still be relevant, especially books about a subject like .NET that might be outdated by the time they reach print. Learning a new software environment is like being dropped into an unfamiliar landscape. You can wander around certain parts that interest you and never see the whole area. A book is like a map and travel guide; it can give you a sense of the whole area and introduce places you may not have explored on your own. By the end of the book, you should feel confident in this new area.

 I’ve spent a significant portion of my career on .NET. My introduction to .NET happened in Framework 1.0, thanks to a salesperson who didn’t know (or care) that our product was written in Java when the customer wanted .NET. The project to convert to .NET and implement it at the customer site turned out to be my favorite consulting job. Years later, I was fortunate enough to be hired by Microsoft, where I worked on the .NET Framework and .NET Core. I got to work with many talented developers and write code that’s now used by countless applications. I still use .NET today even after leaving Microsoft, which has further enriched my understanding.

 My goal for this book is to provide an overview of the .NET environment so that you’ll feel confident enough about .NET to write and maintain real-world applications. You’ll get more out of this book if you write the code from the chapters and try the exercises. In this second edition, I’ve endeavored to make a book that’s not only a great learning resource, but also a handy text to keep on your desk for quick reference.

acknowledgments

 Thanks to the editors at Manning who kept the bar high and helped me write the book I wanted to write. Thanks to Dustin Archibald for guiding me through the whole process. Also, thanks to Melissa Ice for making sure that everything was delivered and to Ivan Martinović and Benjamin Berg for fixing all my AsciiDoc mistakes.

 A big thanks goes to Scott Hanselman. Scott is a great developer, blogger, and speaker who has worked for many years to advance and evangelize .NET. I’m honored that he wrote the foreword for this book.

 I’m also grateful to technical editor Gerald Versluis for helping make the manuscript what it is today. Gerald is a senior software engineer at Microsoft, working on .NET MAUI. Since 2009, he’s worked on a variety of projects, ranging from frontend to backend and anything in between that involves C#, .NET, Azure, ASP.NET, and all kinds of other .NET technologies. At some point, he fell in love with cross-platform and mobile development with Xamarin, now .NET MAUI. Since then, he has become an active community member, producing content online and presenting about all things tech at conferences around the world.

 I’d also like to thank Samer Alameer for his help with the localization chapter. He helped me with the Arabic and also taught me some important points about localization.

 Finally, thank you to everyone who bought the early-access version of this book and to all the reviewers who provided invaluable feedback along the way: Adhir Ramjiawan, Andrei Tarutin, Barry L. Wallis, Cesar Aguirre, Chad Miars, Chris H. Shin, Dan Sheikh, Daniel McAlister, Daniel Vásquez, Dmitrii Slabko, Ernesto Cardenas, Georg Piwonka, George Onofrei, Jason Hales, Jonathan Reeves, Joe Cuevas, Krishna Chaitanya Anipindi, Lakshminarayanan Sampath, Luigi Zambetti, Marios Solomou, Michael Williams, Mitchell Fox, Nikos Kanakaris, Oliver Korten, Renato Gentile, Tom Madden, Viktoria Dolzhenko, and Vladislav Bilay. Your suggestions helped make this book better.

about this book

 .NET in Action was written to help you build applications and services in .NET. It takes you through many important aspects of developing high-quality software for release. Concepts and language features are introduced in action, with examples to show their practical application.

Who should read this book

 Whether you’re new to .NET and C# or a seasoned .NET Framework developer, this book has plenty of useful information for you. Although all this information may be available online through documentation, blogs, and the like, this book compiles and organizes everything in a format that’s clear and easy to follow. The book assumes that you have working knowledge of imperative, object-oriented programming languages such as C++ and Java. Although the book isn’t an instructional guide to C#, it explains key concepts of C# to aid the reader. This book also assumes that you have some proficiency with terminals or command lines and text editors.

How this book is organized: A road map

 This book has 13 chapters:

 	
 Chapter 1 introduces .NET—what it is and why you want to learn it.

 	
 Chapter 2 gets you started creating .NET console applications.

 	
 Chapter 3 expands to building web services and applications.

 	
 Chapter 4 acquaints you with input/output (I/O) fundamentals such as files and HTTP requests.

 	
 Chapter 5 introduces Entity Framework Core (EF Core), a popular way to access databases.

 	
 Chapter 6 covers how to unit-test.

 	
 Chapter 7 further enhances your unit-testing prowess by showing you how to use substitutes.

 	
 Chapter 8 expands into integration testing, which is particularly useful for testing web services.

 	
 Chapter 9 helps you secure your .NET applications.

 	
 Chapter 10 looks at how to detect and understand performance issues.

 	
 Chapter 11 shows various ways to recover from failures.

 	
 Chapter 12 covers the internationalization process and shows you how to make applications world-ready.

 	
 Chapter 13 walks you through putting your application in containers and handling configuration.

About the code

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes, code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The source code for the book is located at https://github.com/dmetzgar/dotnet-in-action-code. This GitHub repository contains all the source code from the book. The complete code for the examples in the book is also available for download from the Manning website at https://www.manning.com/books/dotnet-in-action-second-edition. You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/dotnet-in-action-second-edition.

liveBook discussion forum

 Purchase of .NET in Action, Second Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/dotnet-in-action-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest that you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible on the publisher’s website as long as the book is in print.

about the author

 [image:]

 Dustin Metzgar has been developing software professionally since 2003. He has worked in both startups and large enterprises including Microsoft, Uber, and UiPath. He has built many .NET services and applications and is active in the .NET open source community.

about the cover illustration

 The caption for the illustration on the cover of .NET in Action, Second Edition, is “A Turk in a pelise,” taken from a collection published in 1802 by William Miller.

 In those days, it was easy to identify where people lived and what their trade or station in life was by their dress alone. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional cultures centuries ago, brought back to life by pictures from collections such as this one.

Part 1. The basics

 Welcome to the start of your .NET journey! This part establishes the basics of .NET programming.

 In chapter 1, you’ll learn what .NET is, what kinds of applications you can build with it, and the key features of the .NET runtime.

 In chapter 2, you’ll start building console applications and writing code. Chapter 2 also covers some important fundamentals, such as namespaces, classes, records, properties, command-line arguments, packages, and top-level statements. You’ll build a command-line application that turns input strings into ASCII art.

 In chapter 3, you’ll expand on the skills you acquired in chapter 2 and learn to build web services and applications. This chapter creates a solid foundation for the rest of the book because most chapters involve web services.

 This part is essential for newcomers to .NET, and it also has useful information for those who used .NET in the past but haven’t kept up with the latest versions. Let’s get started!

1 Why .NET?

 This chapter covers

 	
What .NET is

 	
Where .NET is used

 	
What is in the .NET runtime

 There has never been a better time to be a .NET developer. .NET runs on almost everything: from embedded devices and sensors to game engines such as Unity and Godot, from mobile devices to all major clouds. The skills you’ll learn from this book apply across the broad .NET ecosystem. This book covers the necessary foundation and gets you building production-ready applications.

 .NET looks a lot different now compared to 2002, when I started working with it professionally. Features were introduced, improved, and sometimes replaced or deprecated but still supported. Microsoft maintained backward compatibility with each version of the .NET Framework to prevent breaking existing applications, which was great for customers but resulted in the accumulation of some baggage over the past 20 years.

 The first edition of this book, .NET Core in Action, explored how Microsoft decided to hit refresh and begin anew. It mixed the best parts of .NET with some new ideas and modern techniques to create .NET Core. The existence of different .NETs, such as Framework and Core, caused some confusion, but it was clear that Core was the future. So Microsoft decided to drop the Core moniker and go with .NET alone when it released .NET 5 (5 being greater than .NET Core 3.0 and .NET Framework 4.8). In .NET 6, 7, 8, and beyond, we’re seeing an evolution of what was once .NET Core. Whether you’re new to .NET or an experienced veteran, now is an exciting time to be a .NET developer.

 What happened to Core, Framework, and Standard?

 In the beginning, there was the .NET Framework. Over time, the .NET Framework struggled to stay competitive, burdened by the weight of backward compatibility. Other languages and frameworks worked on any platform instead of being limited to Windows. To start fresh, the .NET team created a new version called .NET Core that incorporated a lot of new ideas: designing and building in the open, working on any platform, focusing on web performance, and so on.

 To make existing libraries port easily between Framework and Core, Microsoft introduced .NET Standard, which defines only the APIs that a .NET implementation needs to fulfill. If you have some projects that are .NET Framework and others that are .NET Core, .NET 5, or later, those projects can use common libraries that target the .NET Standard. So even though no new iterations of .NET Standard will be released, it’s still a useful tool for incrementally porting applications to the newest versions of .NET.

 Starting with .NET 5, Microsoft tried to simplify by culling Core, Framework, and Standard and having one .NET with some OS-specific targeting capabilities. If you want to develop in .NET, forget about Core and Framework; target the latest long-term support release of .NET. If you need to support older versions of .NET, try targeting .NET Standard, which will give your libraries the broadest reach. Appendix A explores this subject in more detail.

1.1 What is .NET?

 .NET is free, cross-platform, and open source; it’s a runtime, not a programming language. The .NET runtime understands only one language: Common Intermediate Language (CIL). (This language is commonly referred to as IL, but I’ll stick with the term CIL to differentiate it from other intermediate languages.) CIL is a low-level language similar to Assembly. Don’t worry, though; you won’t have to learn CIL because .NET comes with compilers that compile high-level languages to CIL.

 .NET fully supports three languages: C#, F#, and Visual Basic (VB.NET). C# is the most widely used of those languages by a large margin, and all examples in this book are in C#. F# is a functional language like Clojure and Haskell. C# and F# are active projects, but VB.NET is done—Microsoft parlance for continuing support and maintenance but not investing in new features.

 Code written in .NET has access to other .NET code, regardless of the language used. If some part of your C# application is better expressed in F#, you don’t need to convert everything to F# because all the .NET compilers produce CIL. The C#, F#, and VB.NET compilers are packaged with .NET, but any language that compiles to CIL will work with .NET.

 Finally, the .NET community has contributed many other languages. You can even create your own language. Also, the .NET open source community has created compilers for other languages to work in .NET, as shown in the following minitable.

 Table 1.1

 	
 Project name

 	
 Language

 	
 Website

 	
 PeachPie

 	
 PHP

 	
 https://www.peachpie.io

 	
 IronPython

 	
 Python

 	
 https://ironpython.net

 	
 MoonSharp

 	
 Lua

 	
 https://www.moonsharp.org

 	
 Jint

 	
 JavaScript Interpreter

 	
 https://github.com/sebastienros/jint

 I’ve mentioned that .NET is a runtime, but what does that term mean? Think of a runtime as being an interpreter that can read code in a certain format—such as Intermediate Language (IL); think bytecode if you’re familiar with Java—and execute it. The .NET runtime is called the CoreCLR. CLR stands for Common Language Runtime, with Common referring to the fact that every .NET language uses the same runtime. In the original .NET, the runtime was called simply CLR; the Core part was added with .NET Core to distinguish it from the original CLR (part of the .NET Framework), and the name stuck.

 The runtime has important features such as just-in-time (JIT) compilation and memory management, which we’ll explore in this book. Figure 1.1 shows how CIL, the compilers, and the CoreCLR fit together.

 [image:]

 Figure 1.1 .NET compilers, CIL, and CoreCLR

 In addition to the runtime and some language compilers, .NET has a class library, which is called the Framework Class Library but referred to as CoreFX. .NET veterans may remember that this library used to be called the Base Class Library (BCL), and Microsoft sometimes called it FX internally. CoreFX provides a set of APIs that handle many base-level functions: collections, algorithms, console output, file I/O, network I/O, and so on.

 Besides the .NET class library (CoreFX), some powerful features that come with .NET were built by .NET teams and are supported by Microsoft. This book introduces you to the following key features, as well as to some useful projects created by the open source community:

 	
 Entity Framework Core for access to data stores

 	
 ASP.NET Core for web services and applications

 	
 Testing libraries such as xUnit and FakeItEasy

 	
 Microsoft extensions including logging, localization, dependency injection, and configuration

1.2 Where is .NET used?

 ASP.NET Core is .NET’s web framework and can be hosted in a lightweight, cross-platform server called Kestrel or in the Windows-only Internet Information Services (IIS) host. Kestrel enables ASP.NET Core to run on containers, which makes ASP.NET Core perfect for microservices. Several hosting services available from cloud providers use the container model, IIS, or serverless options.

 .NET is also used in desktop (aka thick client) applications, and users have many options. Traditional Windows Forms applications are available; they’re helpful in maintaining older applications. Windows Presentation Foundation (WPF) has an XML-based approach and is widely used for desktop applications. An ASP.NET Core feature called Blazor enables building .NET WebAssembly modules, which allows .NET to run in the browser. Blazor also has a hybrid model that can run both on the client and server sides.

 You can also write .NET applications for PC, tablet, Xbox, and Hololens with WinUI, which makes it easier to interact with touch, pen, and game controller input as well as a mouse and keyboard. To write iOS, macOS, and Android applications, use Xamarin or the new Multi-Platform App UI (MAUI), which is an evolution of Xamarin. Some open source projects use Blazor to run WinUI applications in the browser, such as Uno Platform and Avalonia UI.

 If you’re interested in small devices, sensors, and microcontrollers, you have many opportunities to use .NET. .NET runs on boards such as the Raspberry Pi and the Hummingboard, for example. The .NET Internet of Things (IoT) community maintains a set of components for device bindings to work with specific hardware—things such as liquid crystal displays (LCDs), temperature sensors, and analog-to-digital converters. If the hardware is too small to run .NET 6 or later, lighter implementations such as the .NET nanoFramework and Meadow work on embedded devices.

1.2.1 .NET in gaming and 3D graphics

 .NET Framework developers may be surprised to learn how often .NET appears in game engines. .NET’s cross-platform support, along with its deep base class library and its use of the well-liked C# language, has made it an attractive option. Unity has been using C# for scripting game objects since its early releases. Before .NET Core, Unity used Mono, which was an unofficial, cross-platform, open source port of the .NET Framework that had enough capability to handle scripting for many years, but Microsoft didn’t support Mono.

 Unity migrated to .NET Core after that product came out. Unity uses .NET for scripting game objects but not for writing its engine code, which is written in native C++. The same goes for Godot and CRYENGINE (two other popular game engines).

 One objection to using .NET and similar runtimes (such as Java) is that they’re managed rather than native. Native code is compiled to work on a specific machine and usually manages memory on its own. Managed code, by contrast, executes in a runtime by using an interpreter. The runtime often provides memory management via garbage collection, which is undesirable in real-time applications because it can create unpredictable pauses while the garbage collector runs. You’ll learn why in chapter 10. But can managed code be used for the entire game engine?

 As it happens, two game engines were written with .NET: Evergine (https://evergine.com) and Stride (https://www.stride3d.net). Evergine is a 3D engine for business and industry that sees use in augmented reality (AR) and virtual reality (VR) projects in areas such as aerospace, architecture, and health care. Stride is a free game engine that handles real-time 3D and VR.

 Another project, Ryujinx, provides further evidence that .NET can handle real-time games. Ryujinx is a Nintendo Switch emulator written entirely in C# that emulates the ARM CPU. The Ryujinx team has even driven some performance improvements in .NET. Check out the project at https://ryujinx.org.

1.2.2 Popular .NET open source projects

 This book introduces many important .NET concepts and reinforces your learning with exercises. Writing code for the exercises helps with the learning process. You may be reading this book because you need to learn or brush up on .NET for a work project, which is great because you get to apply your skills immediately. If you don’t have an immediate work project, you can learn from many open source projects.

 Reading code from other projects is a great way to see how .NET constructs are used. If you’re looking for .NET projects to participate in, the .NET Foundation (https://dotnetfoundation.org) is a good place to start. .NET Foundation projects have common rules about contributor agreements, code of conduct, and licensing. Most but not all projects mentioned in this book are part of the .NET Foundation; all of them are on GitHub.

 ASP.NET Core is .NET’s web framework and a great starting point for building web applications and services. Naturally, many open source projects are for ASP.NET Core applications. If you want more features than those that are built into ASP.NET Core, you have a few open source and commercial options. DotVVM, for example, has built-in components and reduces the number of round trips to the server by implementing most features in Knockout JS. Another option is ASP.NET Boilerplate, a framework that handles common development tasks by convention and provides a lot of templates. If you’re interested in Blazor (the feature that enables .NET in the browser), check out Oqtane or the Ant Design Blazor project.

 If you want a full website that handles just about everything and where you can build your application as a custom component, check out some of the .NET content management systems (CMSes), such as Orchard, Umbraco, Piranha, and DNN (aka DotNetNuke).

 MAUI is a relatively new product for building applications for any platform. Many other options are also worth investigating. Reactive UI, for example, is a framework for building applications that use functional reactive programming. (If you haven’t heard of reactive programming, check out ReactiveX at https://reactivex.io.) Another cross-platform UI framework is Avalonia, which makes the XAML-based UI programming from Windows Presentation Foundation (WPF) work on platforms such as Linux and macOS as well as in the browser (via WebAssembly). Here are a few other interesting projects that you can use or contribute to:

 	
 Graphics—ImageSharp, Silk.NET, and SkiaSharp

 	
 Database—Dapper, LINQ to DB, and Marten

 	
 Testing utilities—xUnit, Verify, BenchmarkDotNet, Moq, FluentAssertions, and FakeItEasy

 	
 Distributed systems—Akka.NET and Orleans

 	
 Workflow—Elsa Workflows and Durable Task Framework

 	
 Build tools—Cake

1.3 When to use .NET

 At one time, .NET was a Windows-only framework, but that hasn’t been the case for years. .NET works in Windows, Linux, and macOS for desktop applications as well as in Android and iOS for phones and tablets. .NET is used in microcontrollers, IoT devices, and games. You can even use .NET in shell scripting via PowerShell. But most jobs in .NET are for web services and applications.

 Whether you should use .NET depends on your scenario. Here are a few scenarios in which .NET is an option but not commonly used:

 	
 Data science—Although some strides have been made in using .NET for data science and machine learning, starting with Python is a better idea.

 	
 Hardware drivers—Managed code in hardware drivers could be useful in that the code is safer and easier to write. But using it requires understanding garbage collection, JIT/ahead of time (AOT) compilation, and trimming. A language such as Rust may be a better starting point.

 	
 Games—Game developers using an engine such as Unity or Godot can use C# in their scripts. Books and tutorials that specifically cover C# for these use cases are more targeted than this book. .NET has been used in the past to write entire games, but this book doesn’t explore those frameworks.

 This isn’t to say that you can’t use .NET in these scenarios. Choosing what language or framework to use depends on many factors, such as performance, security, the development team’s comfort level, what support is available, and how big (and welcoming) the community is. .NET has 20 years of hardening and improvements plus millions of active developers; it’s open source, with a large and engaged community. .NET has strong support from Microsoft, even without the support contracts that many companies already have.

 Given the fact that you’re reading this book, you’re at least considering .NET for your application. Try building the examples in the first few chapters to see for yourself how powerful .NET can be, as well as how easy it is to use.

1.4 What will I learn from this book?

 This book aims at two types of developers: those who are familiar with other programming languages and are new to .NET and those who have .NET experience but want to catch up on the latest features.

 If you’re new to programming in general, this book may be difficult to follow. I assume that you have a general idea of the following concepts:

 	
 Software patterns (also called design patterns and software design patterns)—This book uses some basic patterns, such as Singleton, Model-View-Controller (MVC), and method-chaining. Many of these patterns are well known, so the book gives you only a brief introduction to them. Generally, though, knowing what software patterns are is important, as they provide a language for communicating with other software developers.

 	
 Web services and web applications—If you know about URLs, HTTP, requests, responses, and web servers, you should be able to follow the examples.

 	
 Terminal use—A terminal can also be called a command line, command prompt, or shell. The examples in this book provide instructions that are executed in the terminal. If you’re using an IDE such as Visual Studio or Rider, you can use the terminal built into the IDE or translate the commands into UI actions.

 Developers who have used .NET in the past may want to consider skimming the first few chapters. If you haven’t used .NET for a while, here are some relatively new concepts that are covered in the first three chapters:

 	
 Top-level statements

 	
 Records

 	
 Nullable reference types, null coalescing, and other null operators

 	
 Global and implicit usings

 	
 Dotnet watch and hot reload

 As you read this book’s table of contents, you may wonder how everything fits together. Figure 1.2 shows how the topics align. In this chapter, you’re building an understanding of the CoreCLR and the services it offers. On top of that, you’ll learn C# throughout the first few chapters. The class libraries available in CoreFX are essential for understanding what is available in .NET and what has to be pulled in via external packages.

 [image:]

 Figure 1.2 High-level diagram of how the topics covered in the book fit together

 The dashed boxes arranged vertically indicate cross-cutting concerns. Performance, for example, affects everything from understanding how the JIT compiler affects your application to how to use ASP.NET Core more efficiently. Although several areas involve ASP.NET Core, such as security and fault handling, this book focuses on .NET in general; it’s not intended to be a comprehensive reference on ASP.NET Core.

 By the end of this book, you should be able to write and deploy libraries, console applications, web services, and web applications. Your applications will be able to store and manipulate data in databases and through other services. You’ll have intermediate-level understanding of important .NET concepts and features. My goal in this book is to get you quickly to the point where you can develop .NET applications professionally. You can dive deeper into many of the subjects introduced here, and other books from Manning will help you.

1.5 What is in the .NET runtime?

 I mentioned earlier that .NET is managed, which means that it uses a runtime. .NET’s runtime, the CoreCLR, has three important concepts that influence how you write code in .NET: intermediate language, JIT compilation, and garbage collection. We’ll explore these concepts at a high level first and get into details as they become relevant later in the book.

1.5.1 Intermediate language

 The code you write in any language needs to be compiled into some machine-readable form. But what does machine-readable mean? For code to execute on a processor, it needs to use the right set of instructions. The two most popular instruction sets for modern computers are x86 and ARM. Many others are available, especially when you include graphical processing units (GPUs), which are used for games (think shaders), cryptocurrency mining, and data processing. New generations of processors may add new instructions to an instruction set, so it’s important to know the processor’s generation. OSes also impose some requirements on application machine code; an Android executable won’t run in Windows, for example. Often, you’ll need different compilers for different platforms.

 Figure 1.3 shows a simplified matrix of producing machine-readable code for one specific OS and CPU. Typically, macOS/iOS applications use the xCode compiler and choose the CPU architecture to build for. OS versions matter. OSX 10, 11, and 12, for example, have compatibility differences. OS flavors matter too (think RedHat versus Ubuntu versus Debian).

 [image:]

 Figure 1.3 Creating an executable application without a runtime (unmanaged)

 Intermediate language offers an alternative; it’s a language that can be translated quickly into machine code. The compiler is specific to the language, not the OS or processor architecture you’re targeting. If you’re familiar with Assembly language, CIL is similar but has instructions at a slightly higher level of abstraction. Having your code compiled into CIL means that your application’s binaries (the files produced through compilation) can run on any processor or OS with a .NET runtime.

 In figure 1.4, the compiler is specific only to the language. The compiler creates CIL code and puts it in a Dynamic Link Library (DLL) file. The DLL file can be transferred to any machine regardless of OS or processor architecture as long as there is a .NET runtime. The .NET runtime converts the CIL to machine-readable code (typically at runtime, using the JIT compiler introduced in section 1.5.2).

 [image:]

 Figure 1.4 .NET languages compile to CIL in a DLL file that can be run on any machine with a .NET runtime.

 What is a DLL?

 DLL stands for Dynamically Linked Library. When you write programs, you almost always make calls into some library to invoke operations. Writing to the console, allocating memory, creating a thread, opening a file, and many other functions are relatively simple operations because of libraries. For some languages, such as C/C++, a link step during the build process links your code to the static libraries it uses. Static linking includes the library in your application, and that library can’t be reused by other applications. If the library is updated, the application has to be rebuilt and redistributed.

 A more flexible approach to linking uses DLLs, which expose a public surface area and can be reused by any application. The use of DLLs reduces the size of an application while allowing .NET to publish minor new versions with bug fixes without requiring each application to rebuild and redistribute. DLLs are usually installed or registered with the OS, so they can be shared‚ but if applications use different versions or DLLs reference other DLLs with different versions, you get into what many developers refer to as DLL hell. The concept of a DLL isn’t exclusive to .NET.

1.5.2 JIT compilation

 Figure 1.4 (section 1.5.1) shows that .NET includes compilers for C#, F#, and Visual Basic. Because these languages have already been compiled, why does the CoreCLR (.NET runtime) include another compiler? A compiler is a program that translates a program in one language into another language. Typically, a compiler is used for translating a high-level language into a low-level language, and that situation is true of the Visual Basic, C#, and F# compilers.

 DEFINITION If a compiler translates one high-level language to another, such as C# to JavaScript, it’s typically called a transpiler. Some compilers also translate a program in a low-level language to a high-level language and are typically called decompilers.

 As noted earlier, CIL is at a higher level than machine code. CIL makes no assumptions about the specifics of processor architecture (registers, instruction sets, cache sizes, and so on) so that it can work on as many platforms as possible. Before .NET code can be executed on a processor, the CIL needs to be compiled further down into machine code. The CoreCLR performs this compilation at runtime so that the CIL DLLs don’t need to be compiled into processor-specific DLLs ahead of time. But compilation can be an expensive process, and compiling an entire application every time it runs could affect startup performance. This task is handled by a smart compiler that compiles only the code that is about to be used. In other words, the CIL is compiled just in time, which is where the CoreCLR’s JIT compiler gets its name.

 NOTE In some cases, you know exactly what processor architecture and OS your application will be running on, such as when you’re building a Docker container. You can avoid the effect of JIT compilation in this case by using an ahead of time (AOT) compiler. You can use AOT to trim unused code to reduce the size of the code you distribute. (But test thoroughly, because AOT sometimes removes too much code.) The biggest advantage of AOT is to have an initial compilation of the code so that it runs immediately without waiting for JIT. Later, you use JIT compilation for optimization after gathering data on how the compiled code works. This book doesn’t go into the use of AOT, but if you’re interested in the subject, take a look at ReadyToRun (http://mng.bz/gv18).

1.5.3 Garbage collection

 Earlier in this chapter, I mentioned that the CoreCLR (the .NET runtime) has a memory-management component. The memory manager uses a technique called garbage collection. Many functional programming languages (such as Lisp and Haskell) also use garbage collection; so do Java and some JavaScript interpreters. The essence of the technique is to keep track of the references to a chunk of memory; when no references remain, the memory can be safely freed and made available for allocation again.

 Garbage collection changes the way you write programs. To see this effect, look at the simple C++ program shown in the following listing.

 Listing 1.1 Creating a dynamic array in C++

 #include <stdio.h>
#include <stdlib.h>

int main() {
 int n = 4, i, *p;
 p = (int*) malloc(n * sizeof(int)); ①

 if(p == NULL) { ②
 printf("\nError! memory not allocated.");
 exit(0);
 }
 printf("\nEnter elements of array : ");

 for(i = 0; i < n; i++) {
 scanf("%d", p + i); ③
 }
 printf("\nSum : %d", sum(p, n));
 free(p); ④
 return 0;
}

int sum(int *arr, int length) { ⑤
 int i, sum = 0;
 for (i = 0; i < length; i++) {
 sum += *(arr + i);
 }
 return sum;
}

 ① Allocates an array to hold n ints

 ② Checks that memory was allocated

 ③ Reads int from input and stores in array

 ④ Frees the array memory

 ⑤ Sums array elements

 In listing 1.1, the array size is hardcoded, but it doesn’t have to be. If the number of elements to store in an array isn’t known until runtime and could be large, it’s better to allocate the array from memory at runtime. But memory allocation can fail, so you have to make sure that it worked and handle it when it doesn’t. When you’re done with the memory, you have to free it explicitly (free(p)) so that other parts of the program can use it.

 The manual method of managing memory is cumbersome and error-prone, but it’s preferred in high-performance scenarios such as gaming and real-time devices. By contrast, .NET handles memory management so you don’t have to explicitly allocate, free, or handle allocation failures. The .NET garbage collector cleans up unused memory for you. Compare the C++ code in listing 1.1 with the C# equivalent shown in the following listing.

 Listing 1.2 Creating a dynamic array in C#

 public class Program
{
 public static void Main()
 {
 int n = 4, i;
 int[] p = new int[n]; ①

 Console.WriteLine("Enter elements of array : ");

 for (i = 0; i < n; i++) {
 p[i] = int.Parse(Console.ReadLine()); ②
 }

 Console.WriteLine("Sum : " + Sum(p)); ③
 }

 private static int Sum(int[] arr)
 {
 int i, sum = 0;
 for (i = 0; i < arr.Length; i++) ④
 {
 sum += arr[i];
 }

 return sum;
 }
}

 ① Allocates an array to hold n ints

 ② Reads from input, converts to int, and stores in array

 ③ Prints sum

 ④ Array length is part of the array.

 Notice that the code doesn’t check for successful memory allocation and doesn’t free any memory explicitly. If memory couldn’t be allocated, the garbage collector would run, try to free memory, and then attempt the allocation again. If the collector is unable to free enough memory, an OutOfMemoryException is thrown, giving the host a chance to determine how to handle the problem. .NET also checks array bounds for you, whereas C++ programmers need to implement this task themselves.

 What is an OutOfMemoryException?

 Some languages, such as Go, communicate errors by function return values. .NET uses exceptions to indicate error conditions. An exception is thrown when an exceptional situation occurs. It’s the job of the calling code to catch the exception and handle it (if it’s the right place to handle the exception). An OutOfMemoryException is thrown when .NET is unable to allocate memory. The program is unrecoverable at this point, but you may still want to catch the OutOfMemoryException to return a specific error code and/or give the host or OS a chance to perform a memory dump, which you can analyze to find the source of the memory leak. Make sure that you don’t execute any code that would allocate memory when handling this exception; that approach would cause an infinite loop.

 .NET memory management isn’t free, though. Garbage collection needs to freeze some code execution so that it can reorganize memory safely. The unpredictability of collection events makes the use of managed languages scary in real-time scenarios. (You wouldn’t want your pacemaker to pause every now and then to free memory, for example.) For most applications, the benefits of using CoreCLR memory management to simplify an application’s code far outweigh the cost. As some developers have found, it’s possible to control memory in .NET to minimize the effect of the garbage collector. Chapter 10 explores the garbage collector in greater depth.

Summary

 	
 .NET supports multiple languages, including C#, VB.NET, F#, and community contributions.

 	
 .NET applications compile to an intermediate language (CIL) that isn’t specific to any processor architecture.

 	
 .NET runs on a wide variety of platforms and in a broad set of use cases.

 	
 Powerful features such as JIT compilation and garbage collection are built into the .NET platform.

2 Building a console application

 This chapter covers

 	
Generating projects with templates

 	
Creating and using namespaces

 	
Importing NuGet packages

 Chapter 1 introduced .NET concepts and the breadth of applications in which it can be used. Now it’s time to put this knowledge into practice and start writing apps. If you’ve programmed with .NET Framework before, you’ll want to read this chapter, as there are many differences between .NET and Framework. .NET Core developers will find a lot of similarities but may be surprised by the top-level statements.

 To install .NET, follow the instructions for your OS at https://dotnet.microsoft.com/download. All you need are a terminal/command line and a text editor. Most of the code in this book will work with .NET 6 or later, with documented exceptions. Choose the version that works best for you. If you’re interested in more information about integrated development environments (IDEs) for .NET, check out appendix B.

 As discussed in chapter 1, .NET works in many types of applications. Three types of applications are used in this book: console applications, web applications, and web services. Most of this book’s examples use console applications and web services. Many of the samples will work in any of the three types, so you can use whatever you feel most comfortable with. We’ll start with console applications.

2.1 Creating new applications from templates

 If you’re using an IDE, your instructions for creating new projects will vary. The .NET SDK comes with several built-in templates for creating applications.

 From a terminal, open a folder in which your .NET projects will go; then execute the command in the following listing, which creates a new console application in the HelloDotnet folder. The code for this application is in the Program.cs file, as shown in listing 2.2.

 Listing 2.1 Command to create web API from template

 dotnet new console --name HelloDotNet

 TIP Run the commands dotnet --help to see a list of commands available in .NET. To get help for a specific command, such as the new command you used to create the console application, add the command, as in dotnet new --help.

 Listing 2.2 Console application Program.cs

 // See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

 NOTE If you’ve used .NET Framework, you may be surprised to find no Program file with a Main method. .NET uses top-level statements that don’t belong to a class. Only one file in a project can have top-level statements, and the file’s name doesn’t matter. You could think of this file as being code that you’d normally put in the Program Main method, but you can also define types.

 The other file in the folder, HelloDotnet.csproj, contains important project settings that we’ll explore in section 2.2.

2.2 Building and running

 From the HelloDotnet folder, execute this command in the terminal: dotnet build. When the build is finished, a new bin folder appears below HelloDotnet. The bin folder contains the binaries from the build, organized in subfolders first by configuration, with the default configuration being Debug, and then by run time, with the run time being net*.0. Go to HelloDotnet/bin/Debug/net8.0 (matching whatever .NET SDK version you’re using) to find the Dynamic Link Library (DLL) and executable for the console application.

 Assemblies

 When this book uses the term assembly, it’s referring to a build artifact that comes from compilation, not the Assembly language. A DLL file contains an assembly, which usually maps one-to-one with a project. The csproj file represents the project and controls how the assembly is built. The HelloDotnet.dll in the net*.0 folder has all the compiled code from the project. I’ll use assembly and DLL interchangeably throughout this book.

 Sometimes, a ref subfolder of the net*.0 folder also has a HelloDotnet.dll file in it. This DLL is different: it represents the public surface area of the project but doesn’t contain the implementation. This book doesn’t use reference assemblies, so you can ignore this folder. For more information about what reference assemblies are and what they’re used for, see http://mng.bz/eoPG.

 You can run the application by executing HelloDotnet from a Windows command prompt, ./HelloDotnet at a Linux/Mac terminal, or .\HelloDotnet if you have a PowerShell console. Note that you execute the command from the build output folder.

 The application can execute because you have the .NET SDK installed on your computer. If you copy the same files to another computer with a .NET SDK installed, the executable will still run regardless of any difference in OS or processor architecture. Some OS-specific builds don’t require an SDK; we’ll explore them in chapter 13.

2.3 Writing code

 If you’ve programmed with .NET Framework or Core, you may be surprised by the simplicity of the Program.cs file. Although it’s nice that all the boilerplate code is gone, you have to wonder what happened to all that code, as will become apparent as you progress through this chapter.

 Let’s try a small example in which we generate some ASCII art based on the parameters passed in from the command line. We’ll use an ASCII art-generator NuGet package called Figgle. First, we’ll add it to the .csproj file, as shown in listing 2.3.

 What’s a NuGet?

 NuGet (pronounced new-get) is .NET’s package manager. Anyone can retrieve from and publish to the public NuGet repository at https://www.nuget.org. Some other places that have public and private repositories use the same protocol, including MyGet and Visual Studio Online. .NET allows the creation and consumption of NuGet packages, which bundle files along with metadata for use in .NET applications.

 Listing 2.3 HelloDotNet.csproj with Figgle package reference

 <Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net8.0</TargetFramework> ①
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 </PropertyGroup>

 <ItemGroup> ②
 <PackageReference Include="Figgle" Version="0.4.0" />
 </ItemGroup>

</Project>

 ① Could be net6.0 or net7.0, depending on SDK

 ② Add the ItemGroup section.

 In this listing, we add an ItemGroup node with a PackageReference. I found the value for the package reference by looking up the Figgle package on NuGet.org (https://www.nuget.org/packages/Figgle). A tab on each package called PackageReference shows the exact XML node you can insert into your project file.

 NOTE Visual Studio and Rider have package managers on each project that make locating and installing packages much easier.

 Replace the code in Program.cs so that you can use the Figgle library to write ASCII art to the console, as shown in the following listing. This code writes a Usage statement if no command-line arguments exist and returns a nonzero exit code; otherwise, it writes the first command-line argument in ASCII art.

 Listing 2.4 Code to write ASCII art

 using Figgle; ①

if (args.Length == 0) ②
{
 Console.WriteLine("Usage: HelloDotnet <text>");
 Environment.Exit(1); ③
}

Console.WriteLine(FiggleFonts.Standard.Render(args[0])); ④

 ① Adds the Figgle namespace

 ② args is an array holding command-line arguments.

 ③ Ends the program with an exit code of 1

 ④ Converts first argument to ASCII art

 Now try running this code from your project folder by executing dotnet run "Hello, .NET" from the terminal. The following listing shows what you should see.

 Listing 2.5 Output from the ASCII art HelloDotnet

 > dotnet run "Hello, .NET!"
 _ _ _ _ _ _ _____ _____
			___			___	\		____	_ _
	_		/ _ \		/ _ \	\|	_			
_	__/		(_)	_		\		___		
_		_	___	_	_	___() (_)_	_	_____		_
 |/

2.4 Namespaces and conventions

 .NET 6 and later use a minimal style that eliminates a lot of boilerplate code. The Program.cs file has no Main method. By convention, the code file is assumed to consist of top-level statements. If you’ve done shell scripting or JavaScript, this file should look familiar.

 NOTE The top-level statements don’t have to be in a file called Program.cs. Try renaming Program.cs, and the application will still work. But if you add another .cs file and put some top-level statements in it, such as Console.WriteLine, you’ll get a build error. Only one file can contain top-level statements.

 Because Program.cs contains top-level code, it isn’t part of a namespace. Namespaces are used to organize .NET types. Figgle, for example, is a namespace that contains the classes for generating the ASCII art. We include the use of the Figgle namespace with the code using Figgle;. The package and assembly (DLL) are also named Figgle, but the namespace doesn’t have to match either of them. Let’s move the code that creates the ASCII art to its own class. Create a new file named AsciiArt.cs with the code shown in the following listing.

 Listing 2.6 AsciiArt class using Figgle library to write text and type name

 using Figgle;

namespace HelloDotnet; ①

public static class AsciiArt ②
{
 public static void Write(string text)
 {
 Console.WriteLine(FiggleFonts.Standard.Render(text));
 Console.WriteLine("Brought to you by "
 + typeof(AsciiArt).FullName); ③
 }
}

 ① Puts AsciiArt in the HelloDotNet namespace

 ② Marks classes with only static members as static

 ③ Writes the type name with namespace

 Then modify Program.cs to call the new class, as shown in the following listing.

 Listing 2.7 Calling AsciiArt class from Program

 using HelloDotnet; ①

if (args.Length == 0)
{
 Console.WriteLine("Usage: HelloDotnet <text>");
 Environment.Exit(1);
}

AsciiArt.Write(args[0]); ②

 ① Adds the HelloDotNet namespace

 ② Calls AsciiArt instead of Figgle

 Execute the program as before. You should see a line below the ASCII art that says Brought to you by HelloDotnet.AsciiArt. The FullName property separates the namespace and type name with a dot/period (.). Namespace names can also contain dots, which is a way to create a hierarchy of namespaces.

 To illustrate how namespace hierarchies work, consider the Regex class that’s part of CoreFX (the .NET base class library), used for applying regular expressions. Regex is part of the System.Text.RegularExpressions namespace. The dots in the namespace indicate the hierarchy. Figure 2.1 shows how this hierarchy works.

 [image:]

 Figure 2.1 Namespace hierarchy of System.Text.RegularExpressions.Regex

 The System namespace is at the top level and has many children, such as System.IO and System.Collections. System.Text focuses on handling text and has some types of its own, such as StringBuilder. The Regex class is a type that’s part of the System.Text .RegularExpressions namespace.

 What is a type?

 Types in .NET are similar to those in other languages, such as Java and Go. A type can be a class, struct, enum, value type (such as int or float), record, and so on. .NET has a Common Type System (CTS) that allows the use of types in any .NET language.

 .NET has two kinds of types: reference and value. These categories are determined by how the type’s data is stored. A reference type stores a reference to its data, and a value type contains its data directly. If you’re familiar with pointers, references are similar but not the same. (For more information, see section 10.3.4.) In C#, anything can be treated like an object (the base of all reference types) because C# automatically performs boxing and unboxing, which are the processes of wrapping and unwrapping a value type in an object, respectively. An example is Console.WriteLine ("Count", count), where count is of type int. This statement is valid even though WriteLine expects an object as the second parameter. C# boxes the value type count automatically. Still, understanding the difference between value and reference types is important because these types behave differently when they’re passed as method parameters or copied to other variables.

 Keep in mind that C# is a strongly typed language: every expression that evaluates to a value, every variable, and every constant has a specific type. One exception to this rule is the dynamic type, which bypasses static type checking. This book doesn’t explore dynamic types but covers some complex types such as generic, implicit, anonymous, and nullable.

 A using statement indicates that we want to use that namespace in our code. By using a namespace, we get access to the types in that namespace without having to fully qualify them—that is, without having to write the namespace and type name. So we can write Regex instead of System.Text.RegularExpressions.Regex. Also, we can have multiple types with the same name in different namespaces. If I have my own namespace with a type called Regex, and I need to use it in the same code as the CoreFX Regex type, the compiler will get confused if I have both namespaces added with using statements. In that case, I must fully qualify which Regex I want to use.

 The types that you write need to be put in a namespace. As of .NET 6, which uses C# 10, namespace declarations can be made at file level. In listing 2.6, you created a class called AsciiArt and declared it as part of the HelloDotNet namespace with the statement namespace HelloDotNet;. Before C# 10, namespaces declarations could be written only as code blocks with brackets around them and all the types in the file placed inside. C# 10 is backward-compatible, so you still have the option of using this form of namespace declaration. File-level namespaces save one level of indentation—a small but welcome improvement.

 The namespace can be declared before or after the using statements. Be aware that the placement has meaning. Compare the following two listings.

 Listing 2.8 namespace after using

 using System.Text.RegularExpressions; ①

namespace System.Text;

public static class Bar
{
 public static readonly Regex Letters = new Regex(@"[a-z]+");
}

 ① Full namespace is needed.

 Listing 2.9 namespace before using

 namespace System.Text;

using RegularExpressions; ①

public static class Bar
{
 public static readonly Regex Letters = new Regex(@"[a-z]+");
}

 ① Namespace is relative to System.Text.

 In both listings, we’re adding a new static class called Bar to the System.Text namespace. Bar uses the Regex class in its code. In listing 2.8, the namespace Bar is declared after the using statement, so the using statement has to be the full namespace of Regex. In listing 2.9, the namespace System.Text is declared first, which means that the usings declared after the namespace can be relative to the namespace that the code is in. If no RegularExpressions namespace is at the top level, .NET will look for the System.Text.RegularExpressions namespace (figure 2.2).

