

 Machine Learning in Action

 Peter Harrington

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 	[image:]

 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	

Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	

Development editor: Jeff Bleiel
Technical proofreaders: Tricia Hoffman, Alex Ott
Copyeditor: Linda Recktenwald
Proofreader: Maureen Spencer
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 Printed in the United States of America

Dedication

 To Joseph and Milo

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Author

 About the Cover Illustration

 1. Classification

 Chapter 1. Machine learning basics

 Chapter 2. Classifying with k-Nearest Neighbors

 Chapter 3. Splitting datasets one feature at a time: decision trees

 Chapter 4. Classifying with probability theory: naïve Bayes

 Chapter 5. Logistic regression

 Chapter 6. Support vector machines

 Chapter 7. Improving classification with the AdaBoost meta-algorithm

 2. Forecasting numeric values with regression

 Chapter 8. Predicting numeric values: regression

 Chapter 9. Tree-based regression

 3. Unsupervised learning

 Chapter 10. Grouping unlabeled items using k-means clustering

 Chapter 11. Association analysis with the Apriori algorithm

 Chapter 12. Efficiently finding frequent itemsets with FP-growth

 4. Additional tools

 Chapter 13. Using principal component analysis to simplify data

 Chapter 14. Simplifying data with the singular value decomposition

 Chapter 15. Big data and MapReduce

 Appendix A. Getting started with Python

 Appendix B. Linear algebra

 Appendix C. Probability refresher

 D. Resources

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Author

 About the Cover Illustration

 1. Classification

 Chapter 1. Machine learning basics

 1.1. What is machine learning?

 1.1.1. Sensors and the data deluge

 1.1.2. Machine learning will be more important in the future

 1.2. Key terminology

 1.3. Key tasks of machine learning

 1.4. How to choose the right algorithm

 1.5. Steps in developing a machine learning application

 1.6. Why Python?

 1.6.1. Executable pseudo-code

 1.6.2. Python is popular

 1.6.3. What Python has that other languages don’t have

 1.6.4. Drawbacks

 1.7. Getting started with the NumPy library

 1.8. Summary

 Chapter 2. Classifying with k-Nearest Neighbors

 2.1. Classifying with distance measurements

 2.1.1. Prepare: importing data with Python

 2.1.2. Putting the kNN classification algorithm into action

 2.1.3. How to test a classifier

 2.2. Example: improving matches from a dating site with kNN

 2.2.1. Prepare: parsing data from a text file

 2.2.2. Analyze: creating scatter plots with Matplotlib

 2.2.3. Prepare: normalizing numeric values

 2.2.4. Test: testing the classifier as a whole program

 2.2.5. Use: putting together a useful system

 2.3. Example: a handwriting recognition system

 2.3.1. Prepare: converting images into test vectors

 2.3.2. Test: kNN on handwritten digits

 2.4. Summary

 Chapter 3. Splitting datasets one feature at a time: decision trees

 3.1. Tree construction

 3.1.1. Information gain

 3.1.2. Splitting the dataset

 3.1.3. Recursively building the tree

 3.2. Plotting trees in Python with Matplotlib annotations

 3.2.1. Matplotlib annotations

 3.2.2. Constructing a tree of annotations

 3.3. Testing and storing the classifier

 3.3.1. Test: using the tree for classification

 3.3.2. Use: persisting the decision tree

 3.4. Example: using decision trees to predict contact lens type

 3.5. Summary

 Chapter 4. Classifying with probability theory: naïve Bayes

 4.1. Classifying with Bayesian decision theory

 4.2. Conditional probability

 4.3. Classifying with conditional probabilities

 4.4. Document classification with naïve Bayes

 4.5. Classifying text with Python

 4.5.1. Prepare: making word vectors from text

 4.5.2. Train: calculating probabilities from word vectors

 4.5.3. Test: modifying the classifier for real-world conditions

 4.5.4. Prepare: the bag-of-words document model

 4.6. Example: classifying spam email with naïve Bayes

 4.6.1. Prepare: tokenizing text

 4.6.2. Test: cross validation with naïve Bayes

 4.7. Example: using naïve Bayes to reveal local attitudes from personal ads

 4.7.1. Collect: importing RSS feeds

 4.7.2. Analyze: displaying locally used words

 4.8. Summary

 Chapter 5. Logistic regression

 5.1. Classification with logistic regression and the sigmoid function: a tractable step function

 5.2. Using optimization to find the best regression coefficients

 5.2.1. Gradient ascent

 5.2.2. Train: using gradient ascent to find the best parameters

 5.2.3. Analyze: plotting the decision boundary

 5.2.4. Train: stochastic gradient ascent

 5.3. Example: estimating horse fatalities from colic

 5.3.1. Prepare: dealing with missing values in the data

 5.3.2. Test: classifying with logistic regression

 5.4. Summary

 Chapter 6. Support vector machines

 6.1. Separating data with the maximum margin

 6.2. Finding the maximum margin

 6.2.1. Framing the optimization problem in terms of our classifier

 6.2.2. Approaching SVMs with our general framework

 6.3. Efficient optimization with the SMO algorithm

 6.3.1. Platt’s SMO algorithm

 6.3.2. Solving small datasets with the simplified SMO

 6.4. Speeding up optimization with the full Platt SMO

 6.5. Using kernels for more complex data

 6.5.1. Mapping data to higher dimensions with kernels

 6.5.2. The radial bias function as a kernel

 6.5.3. Using a kernel for testing

 6.6. Example: revisiting handwriting classification

 6.7. Summary

 Chapter 7. Improving classification with the AdaBoost meta-algorithm

 7.1. Classifiers using multiple samples of the dataset

 7.1.1. Building classifiers from randomly resampled data: bagging

 7.1.2. Boosting

 7.2. Train: improving the classifier by focusing on errors

 7.3. Creating a weak learner with a decision stump

 7.4. Implementing the full AdaBoost algorithm

 7.5. Test: classifying with AdaBoost

 7.6. Example: AdaBoost on a difficult dataset

 7.7. Classification imbalance

 7.7.1. Alternative performance metrics: precision, recall, and ROC

 7.7.2. Manipulating the classifier’s decision with a cost function

 7.7.3. Data sampling for dealing with classification imbalance

 7.8. Summary

 2. Forecasting numeric values with regression

 Chapter 8. Predicting numeric values: regression

 8.1. Finding best-fit lines with linear regression

 8.2. Locally weighted linear regression

 8.3. Example: predicting the age of an abalone

 8.4. Shrinking coefficients to understand our data

 8.4.1. Ridge regression

 8.4.2. The lasso

 8.4.3. Forward stagewise regression

 8.5. The bias/variance tradeoff

 8.6. Example: forecasting the price of LEGO sets

 8.6.1. Collect: using the Google shopping API

 8.6.2. Train: building a model

 8.7. Summary

 Chapter 9. Tree-based regression

 9.1. Locally modeling complex data

 9.2. Building trees with continuous and discrete features

 9.3. Using CART for regression

 9.3.1. Building the tree

 9.3.2. Executing the code

 9.4. Tree pruning

 9.4.1. Prepruning

 9.4.2. Postpruning

 9.5. Model trees

 9.6. Example: comparing tree methods to standard regression

 9.7. Using Tkinter to create a GUI in Python

 9.7.1. Building a GUI in Tkinter

 9.7.2. Interfacing Matplotlib and Tkinter

 9.8. Summary

 3. Unsupervised learning

 Chapter 10. Grouping unlabeled items using k-means clustering

 10.1. The k-means clustering algorithm

 10.2. Improving cluster performance with postprocessing

 10.3. Bisecting k-means

 10.4. Example: clustering points on a map

 10.4.1. The Yahoo! PlaceFinder API

 10.4.2. Clustering geographic coordinates

 10.5. Summary

 Chapter 11. Association analysis with the Apriori algorithm

 11.1. Association analysis

 11.2. The Apriori principle

 11.3. Finding frequent itemsets with the Apriori algorithm

 11.3.1. Generating candidate itemsets

 11.3.2. Putting together the full Apriori algorithm

 11.4. Mining association rules from frequent item sets

 11.5. Example: uncovering patterns in congressional voting

 11.5.1. Collect: build a transaction data set of congressional voting records

 11.5.2. Test: association rules from congressional voting records

 11.6. Example: finding similar features in poisonous mushrooms

 11.7. Summary

 Chapter 12. Efficiently finding frequent itemsets with FP-growth

 12.1. FP-trees: an efficient way to encode a dataset

 12.2. Build an FP-tree

 12.2.1. Creating the FP-tree data structure

 12.2.2. Constructing the FP-tree

 12.3. Mining frequent items from an FP-tree

 12.3.1. Extracting conditional pattern bases

 12.3.2. Creating conditional FP-trees

 12.4. Example: finding co-occurring words in a Twitter feed

 12.5. Example: mining a clickstream from a news site

 12.6. Summary

 4. Additional tools

 Chapter 13. Using principal component analysis to simplify data

 13.1. Dimensionality reduction techniques

 13.2. Principal component analysis

 13.2.1. Moving the coordinate axes

 13.2.2. Performing PCA in NumPy

 13.3. Example: using PCA to reduce the dimensionality of semiconductor manufacturing data

 13.4. Summary

 Chapter 14. Simplifying data with the singular value decomposition

 14.1. Applications of the SVD

 14.1.1. Latent semantic indexing

 14.1.2. Recommendation systems

 14.2. Matrix factorization

 14.3. SVD in Python

 14.4. Collaborative filtering–based recommendation engines

 14.4.1. Measuring similarity

 14.4.2. Item-based or user-based similarity?

 14.4.3. Evaluating recommendation engines

 14.5. Example: a restaurant dish recommendation engine

 14.5.1. Recommending untasted dishes

 14.5.2. Improving recommendations with the SVD

 14.5.3. Challenges with building recommendation engines

 14.6. Example: image compression with the SVD

 14.7. Summary

 Chapter 15. Big data and MapReduce

 15.1. MapReduce: a framework for distributed computing

 15.2. Hadoop Streaming

 15.2.1. Distributed mean and variance mapper

 15.2.2. Distributed mean and variance reducer

 15.3. Running Hadoop jobs on Amazon Web Services

 15.3.1. Services available on AWS

 15.3.2. Getting started with Amazon Web Services

 15.3.3. Running a Hadoop job on EMR

 15.4. Machine learning in MapReduce

 15.5. Using mrjob to automate MapReduce in Python

 15.5.1. Using mrjob for seamless integration with EMR

 15.5.2. The anatomy of a MapReduce script in mrjob

 15.6. Example: the Pegasos algorithm for distributed SVMs

 15.6.1. The Pegasos algorithm

 15.6.2. Training: MapReduce support vector machines with mrjob

 15.7. Do you really need MapReduce?

 15.8. Summary

 Appendix A. Getting started with Python

 A.1. Installing Python

 A.1.1. Windows

 A.1.2. Mac OS X

 A.1.3. Linux

 A.2. A quick introduction to Python

 A.2.1. Collection types

 A.2.2. Control structures

 A.2.3. List comprehensions

 A.3. A quick introduction to NumPy

 A.4. Beautiful Soup

 A.5. Mrjob

 A.6. Vote Smart

 A.7. Python-Twitter

 Appendix B. Linear algebra

 B.1. Matrices

 B.2. Matrix inverse

 B.3. Norms

 B.4. Matrix calculus

 Appendix C. Probability refresher

 C.1. Intro to probability

 C.2. Joint probability

 C.3. Basic rules of probability

 D. Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 After college I went to work for Intel in California and mainland China. Originally my plan was to go back to grad school after two years, but time flies when you are having fun, and two years turned into six. I realized I had to go back at that point, and I didn’t want to do night school or online learning, I wanted to sit on campus and soak up everything a university has to offer. The best part of college is not the classes you take or research you do, but the peripheral things: meeting people, going to seminars, joining organizations, dropping in on classes, and learning what you don’t know.

 Sometime in 2008 I was helping set up for a career fair. I began to talk to someone from a large financial institution and they wanted me to interview for a position modeling credit risk (figuring out if someone is going to pay off their loans or not). They asked me how much stochastic calculus I knew. At the time, I wasn’t sure I knew what the word stochastic meant. They were hiring for a geographic location my body couldn’t tolerate, so I decided not to pursue it any further. But this stochastic stuff interested me, so I went to the course catalog and looked for any class being offered with the word “stochastic” in its title. The class I found was “Discrete-time Stochastic Systems.” I started attending the class without registering, doing the homework and taking tests. Eventually I was noticed by the professor and she was kind enough to let me continue, for which I am very grateful. This class was the first time I saw probability applied to an algorithm. I had seen algorithms take an averaged value as input before, but this was different: the variance and mean were internal values in these algorithms. The course was about “time series” data where every piece of data is a regularly spaced sample. I found another course with Machine Learning in the title. In this class the data was not assumed to be uniformly spaced in time, and they covered more algorithms but with less rigor. I later realized that similar methods were also being taught in the economics, electrical engineering, and computer science departments.

 In early 2009, I graduated and moved to Silicon Valley to start work as a software consultant. Over the next two years, I worked with eight companies on a very wide range of technologies and saw two trends emerge which make up the major thesis for this book: first, in order to develop a compelling application you need to do more than just connect data sources; and second, employers want people who understand theory and can also program.

 A large portion of a programmer’s job can be compared to the concept of connecting pipes—except that instead of pipes, programmers connect the flow of data—and monstrous fortunes have been made doing exactly that. Let me give you an example. You could make an application that sells things online—the big picture for this would be allowing people a way to post things and to view what others have posted. To do this you could create a web form that allows users to enter data about what they are selling and then this data would be shipped off to a data store. In order for other users to see what a user is selling, you would have to ship the data out of the data store and display it appropriately. I’m sure people will continue to make money this way; however to make the application really good you need to add a level of intelligence. This intelligence could do things like automatically remove inappropriate postings, detect fraudulent transactions, direct users to things they might like, and forecast site traffic. To accomplish these objectives, you would need to apply machine learning. The end user would not know that there is magic going on behind the scenes; to them your application “just works,” which is the hallmark of a well-built product.

 An organization may choose to hire a group of theoretical people, or “thinkers,” and a set of practical people, “doers.” The thinkers may have spent a lot of time in academia, and their day-to-day job may be pulling ideas from papers and modeling them with very high-level tools or mathematics. The doers interface with the real world by writing the code and dealing with the imperfections of a non-ideal world, such as machines that break down or noisy data. Separating thinkers from doers is a bad idea and successful organizations realize this. (One of the tenets of lean manufacturing is for the thinkers to get their hands dirty with actual doing.) When there is a limited amount of money to be spent on hiring, who will get hired more readily—the thinker or the doer? Probably the doer, but in reality employers want both. Things need to get built, but when applications call for more demanding algorithms it is useful to have someone who can read papers, pull out the idea, implement it in real code, and iterate.

 I didn’t see a book that addressed the problem of bridging the gap between thinkers and doers in the context of machine learning algorithms. The goal of this book is to fill that void, and, along the way, to introduce uses of machine learning algorithms so that the reader can build better applications.

Acknowledgments

 This is by far the easiest part of the book to write...

 First, I would like to thank the folks at Manning. Above all, I would like to thank my editor Troy Mott; if not for his support and enthusiasm, this book never would have happened. I would also like to thank Maureen Spencer who helped polish my prose in the final manuscript; she was a pleasure to work with.

 Next I would like to thank Jennie Si at Arizona State University for letting me sneak into her class on discrete-time stochastic systems without registering. Also Cynthia Rudin at MIT for pointing me to the paper “Top 10 Algorithms in Data Mining,”[1] which inspired the approach I took in this book. For indirect contributions I would like to thank Mark Bauer, Jerry Barkely, Jose Zero, Doug Chang, Wayne Carter, and Tyler Neylon.

 1 Xindong Wu, et al., “Top 10 Algorithms in Data Mining,” Journal of Knowledge and Information Systems 14, no. 1 (December 2007).

 Special thanks to the following peer reviewers who read the manuscript at different stages during its development and provided invaluable feedback: Keith Kim, Franco Lombardo, Patrick Toohey, Josef Lauri, Ryan Riley, Peter Venable, Patrick Goetz, Jeroen Benckhuijsen, Ian McAllister, Orhan Alkan, Joseph Ottinger, Fred Law, Karsten Strøbæk, Brian Lau, Stephen McKamey, Michael Brennan, Kevin Jackson, John Griffin, Sumit Pal, Alex Alves, Justin Tyler Wiley, and John Stevenson.

 My technical proofreaders, Tricia Hoffman and Alex Ott, reviewed the technical content shortly before the manuscript went to press and I would like to thank them both for their comments and feedback. Alex was a cold-blooded killer when it came to reviewing my code! Thank you for making this a better book.

 Thanks also to all the people who bought and read early versions of the manuscript through the MEAP early access program and contributed to the Author Online forum (even the trolls); this book wouldn’t be what it is without them.

 I want to thank my family for their support during the writing of this book. I owe a huge debt of gratitude to my wife for her encouragement and for putting up with all the irregularities in my life during the time I spent working on the manuscript.

 Finally, I would like to thank Silicon Valley for being such a great place for my wife and me to work and where we can share our ideas and passions.

About This Book

 This book sets out to introduce people to important machine learning algorithms. Tools and applications using these algorithms are introduced to give the reader an idea of how they are used in practice today. A wide selection of machine learning books is available, which discuss the mathematics, but discuss little of how to program the algorithms. This book aims to be a bridge from algorithms presented in matrix form to an actual functioning program. With that in mind, please note that this book is heavy on code and light on mathematics.

Audience

 What is all this machine learning stuff and who needs it? In a nutshell, machine learning is making sense of data. So if you have data you want to understand, this book is for you. If you want to get data and make sense of it, then this book is for you too. It helps if you are familiar with a few basic programming concepts, such as recursion and a few data structures, such as trees. It will also help if you have had an introduction to linear algebra and probability, although expertise in these fields is not necessary to benefit from this book. Lastly, the book uses Python, which has been called “executable pseudo code” in the past. It is assumed that you have a basic working knowledge of Python, but do not worry if you are not an expert in Python—it is not difficult to learn.

Top 10 algorithms in data mining

 Data and making data-based decisions are so important that even the content of this book was born out of data—from a paper which was presented at the IEEE International Conference on Data Mining titled, “Top 10 Algorithms in Data Mining” and appeared in the Journal of Knowledge and Information Systems in December, 2007. This paper was the result of the award winners from the KDD conference being asked to come up with the top 10 machine learning algorithms. The general outline of this book follows the algorithms identified in the paper. The astute reader will notice this book has 15 chapters, although there were 10 “important” algorithms. I will explain, but let’s first look at the top 10 algorithms.

 The algorithms listed in that paper are: C4.5 (trees), k-means, support vector machines, Apriori, Expectation Maximization, PageRank, AdaBoost, k-Nearest Neighbors, Naïve Bayes, and CART. Eight of these ten algorithms appear in this book, the notable exceptions being PageRank and Expectation Maximization. PageRank, the algorithm that launched the search engine giant Google, is not included because I felt that it has been explained and examined in many books. There are entire books dedicated to PageRank. Expectation Maximization (EM) was meant to be in the book but sadly it is not. The main problem with EM is that it’s very heavy on the math, and when I reduced it to the simplified version, like the other algorithms in this book, I felt that there was not enough material to warrant a full chapter.

How the book is organized

 The book has 15 chapters, organized into four parts, and four appendixes.

Part 1 Machine learning basics

 The algorithms in this book do not appear in the same order as in the paper mentioned above. The book starts out with an introductory chapter. The next six chapters in part 1 examine the subject of classification, which is the process of labeling items. Chapter 2 introduces the basic machine learning algorithm: k-Nearest Neighbors. Chapter 3 is the first chapter where we look at decision trees. Chapter 4 discusses using probability distributions for classification and the Naïve Bayes algorithm. Chapter 5 introduces Logistic Regression, which is not in the Top 10 list, but introduces the subject of optimization algorithms, which are important. The end of chapter 5 also discusses how to deal with missing values in data. You won’t want to miss chapter 6 as it discusses the powerful Support Vector Machines. Finally we conclude our discussion of classification with chapter 7 by looking at the AdaBoost ensemble method. Chapter 7 includes a section that looks at the classification imbalance problem that arises when the training examples are not evenly distributed.

Part 2 Forecasting numeric values with regression

 This section consists of two chapters which discuss regression or predicting continuous values. Chapter 8 covers regression, shrinkage methods, and locally weighted linear regression. In addition, chapter 8 has a section that deals with the bias-variance tradeoff, which needs to be considered when turning a Machine Learning algorithm. This part of the book concludes with chapter 9, which discusses tree-based regression and the CART algorithm.

Part 3 Unsupervised learning

 The first two parts focused on supervised learning which assumes you have target values, or you know what you are looking for. Part 3 begins a new section called “Unsupervised learning” where you do not know what you are looking for; instead we ask the machine to tell us, “what do these data have in common?” The first algorithm discussed is k-Means clustering. Next we look into association analysis with the Apriori algorithm. Chapter 12 concludes our discussion of unsupervised learning by looking at an improved algorithm for association analysis called FP-Growth.

Part 4 Additional tools

 The book concludes with a look at some additional tools used in machine learning. The first two tools in chapters 13 and 14 are mathematical operations used to remove noise from data. These are principal components analysis and the singular value decomposition. Finally, we discuss a tool used to scale machine learning to massive datasets that cannot be adequately addressed on a single machine.

Examples

 Many examples included in this book demonstrate how you can use the algorithms in the real world. We use the following steps to make sure we have not made any mistakes:

 1. Get concept/algo working with very simple data

 2. Get real-world data in a format usable by our algorithm

 3. Put steps 1 and 2 together to see the results on a real-world dataset

 The reason we can’t just jump into step 3 is basic engineering of complex systems—you want to build things incrementally so you understand when things break, where they break, and why. If you just throw things together, you won’t know if the implementation of the algorithm is incorrect or if the formatting of the data is incorrect. Along the way I include some historical notes which you may find of interest.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered bullets link to explanations that follow the listing.

 Source code for all working examples in this book is available for download from the publisher’s website at www.manning.com/MachineLearninginAction.

Author Online

 Purchase of Machine Learning in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/MachineLearninginAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the Author

 Peter Harrington holds Bachelor’s and Master’s degrees in Electrical Engineering. He worked for Intel Corporation for seven years in California and China. Peter holds five U.S. patents and his work has been published in three academic journals. He is currently the chief scientist for Zillabyte Inc. Prior to joining Zillabyte, he was a machine learning software consultant for two years. Peter spends his free time competing in programming competitions and building 3D printers.

About the Cover Illustration

 The figure on the cover of Machine Learning in Action is captioned a “Man from Istria,” which is a large peninsula in the Adriatic Sea, off Croatia. This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist who spent many years studying the botany, geology, and ethnography of many parts of the Austrian Empire, as well as the Veneto, the Julian Alps, and the western Balkans, inhabited in the past by peoples of the Illyrian tribes. Hand drawn illustrations accompany the many scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of the eastern Alpine and northwestern Balkan regions just 200 years ago. This was a time when the dress codes of two villages separated by a few miles identified people uniquely as belonging to one or the other, and when members of a social class or trade could be easily distinguished by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another and today the inhabitants of the picturesque towns and villages in the Slovenian Alps or Balkan coastal towns are not readily distinguishable from the residents of other parts of Europe or America.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on costumes from two centuries ago brought back to life by illustrations such as this one.

 Part 1. Classification

 The first two parts of this book are on supervised learning. Supervised learning asks the machine to learn from our data when we specify a target variable. This reduces the machine’s task to only divining some pattern from the input data to get the target variable.

 We address two cases of the target variable. The first case occurs when the target variable can take only nominal values: true or false; reptile, fish, mammal, amphibian, plant, fungi. The second case of classification occurs when the target variable can take an infinite number of numeric values, such as 0.100, 42.001, 1000.743,.... This case is called regression. We’ll study regression in part 2 of this book. The first part of this book focuses on classification.

 Our study of classification algorithms covers the first seven chapters of this book. Chapter 2 introduces one of the simplest classification algorithms called k-Nearest Neighbors, which uses a distance metric to classify items. Chapter 3 introduces an intuitive yet slightly harder to implement algorithm: decision trees. In chapter 4 we address how we can use probability theory to build a classifier. Next, chapter 5 looks at logistic regression, where we find the best parameters to properly classify our data. In the process of finding these best parameters, we encounter some powerful optimization algorithms. Chapter 6 introduces the powerful support vector machines. Finally, in chapter 7 we see a meta-algorithm, AdaBoost, which is a classifier made up of a collection of classifiers. Chapter 7 concludes part 1 on classification with a section on classification imbalance, which is a real-world problem where you have more data from one class than other classes.

 Chapter 1. Machine learning basics

 	

 This chapter covers

 	
A brief overview of machine learning

 	Key tasks in machine learning

 	Why you need to learn about machine learning

 	Why Python is so great for machine learning

 	

 I was eating dinner with a couple when they asked what I was working on recently. I replied, “Machine learning.” The wife turned to the husband and said, “Honey, what’s machine learning?” The husband replied, “Cyberdyne Systems T-800.” If you aren’t familiar with the Terminator movies, the T-800 is artificial intelligence gone very wrong. My friend was a little bit off. We’re not going to attempt to have conversations with computer programs in this book, nor are we going to ask a computer the meaning of life. With machine learning we can gain insight from a dataset; we’re going to ask the computer to make some sense from data. This is what we mean by learning, not cyborg rote memorization, and not the creation of sentient beings.

 Machine learning is actively being used today, perhaps in many more places than you’d expect. Here’s a hypothetical day and the many times you’ll encounter machine learning: You realize it’s your friend’s birthday and want to send her a card via snail mail. You search for funny cards, and the search engine shows you the 10 most relevant links. You click the second link; the search engine learns from this. Next, you check some email, and without your noticing it, the spam filter catches unsolicited ads for pharmaceuticals and places them in the Spam folder. Next, you head to the store to buy the birthday card. When you’re shopping for the card, you pick up some diapers for your friend’s child. When you get to the checkout and purchase the items, the human operating the cash register hands you a coupon for $1 off a six-pack of beer. The cash register’s software generated this coupon for you because people who buy diapers also tend to buy beer. You send the birthday card to your friend, and a machine at the post office recognizes your handwriting to direct the mail to the proper delivery truck. Next, you go to the loan agent and ask them if you are eligible for loan; they don’t answer but plug some financial information about you into the computer and a decision is made. Finally, you head to the casino for some late-night entertainment, and as you walk in the door, the person walking in behind you gets approached by security seemingly out of nowhere. They tell him, “Sorry, Mr. Thorp, we’re going to have to ask you to leave the casino. Card counters aren’t welcome here.” Figure 1.1 illustrates where some of these applications are being used.

 Figure 1.1. Examples of machine learning in action today, clockwise from top left: face recognition, handwriting digit recognition, spam filtering in email, and product recommendations from Amazon.com

 [image:]

 In all of the previously mentioned scenarios, machine learning was present. Companies are using it to improve business decisions, increase productivity, detect disease, forecast weather, and do many more things. With the exponential growth of technology, we not only need better tools to understand the data we currently have, but we also need to prepare ourselves for the data we will have.

 Are you ready for machine learning? In this chapter you’ll find out what machine learning is, where it’s already being used around you, and how it might help you in the future. Next, we’ll talk about some common approaches to solving problems with machine learning. Last, you’ll find out why Python is so great and why it’s a great language for machine learning. Then we’ll go through a really quick example using a module for Python called NumPy, which allows you to abstract and matrix calculations.

1.1. What is machine learning?

 In all but the most trivial cases, insight or knowledge you’re trying to get out of the raw data won’t be obvious from looking at the data. For example, in detecting spam email, looking for the occurrence of a single word may not be very helpful. But looking at the occurrence of certain words used together, combined with the length of the email and other factors, you could get a much clearer picture of whether the email is spam or not. Machine learning is turning data into information.

 Machine learning lies at the intersection of computer science, engineering, and statistics and often appears in other disciplines. As you’ll see later, it can be applied to many fields from politics to geosciences. It’s a tool that can be applied to many problems. Any field that needs to interpret and act on data can benefit from machine learning techniques.

 Machine learning uses statistics. To most people, statistics is an esoteric subject used for companies to lie about how great their products are. (There’s a great manual on how to do this called How to Lie with Statistics by Darrell Huff. Ironically, this is the best-selling statistics book of all time.) So why do the rest of us need statistics? The practice of engineering is applying science to solve a problem. In engineering we’re used to solving a deterministic problem where our solution solves the problem all the time. If we’re asked to write software to control a vending machine, it had better work all the time, regardless of the money entered or the buttons pressed. There are many problems where the solution isn’t deterministic. That is, we don’t know enough about the problem or don’t have enough computing power to properly model the problem. For these problems we need statistics. For example, the motivation of humans is a problem that is currently too difficult to model.

 In the social sciences, being right 60% of the time is considered successful. If we can predict the way people will behave 60% of the time, we’re doing well. How can this be? Shouldn’t we be right all the time? If we’re not right all the time, doesn’t that mean we’re doing something wrong?

 Let me give you an example to illustrate the problem of not being able to model the problem fully. Do humans not act to maximize their own happiness? Can’t we just predict the outcome of events involving humans based on this assumption? Perhaps, but it’s difficult to define what makes everyone happy, because this may differ greatly from one person to the next. So even if our assumptions are correct about people maximizing their own happiness, the definition of happiness is too complex to model. There are many other examples outside human behavior that we can’t currently model deterministically. For these problems we need to use some tools from statistics.

 1.1.1. Sensors and the data deluge

 We have a tremendous amount of human-created data from the World Wide Web, but recently more nonhuman sources of data have been coming online. The technology behind the sensors isn’t new, but connecting them to the web is new. It’s estimated that shortly after this book’s publication physical sensors will create 20 percent of non-video internet traffic.[1]

 1http://www.gartner.com/it/page.jsp?id=876512, retrieved 7/29/2010 4:36 a.m.

 The following is an example of an abundance of free data, a worthy cause, and the need to sort through the data. In 1989, the Loma Prieta earthquake struck northern California, killing 63 people, injuring 3,757, and leaving thousands homeless. A similarly sized earthquake struck Haiti in 2010, killing more than 230,000 people. Shortly after the Loma Prieta earthquake, a study was published using low-frequency magnetic field measurements claiming to foretell the earthquake.[2] A number of subsequent studies showed that the original study was flawed for various reasons.[3],[4] Suppose we want to redo this study and keep searching for ways to predict earthquakes so we can avoid the horrific consequences and have a better understanding of our planet. What would be the best way to go about this study? We could buy magnetometers with our own money and buy pieces of land to place them on. We could ask the government to help us out and give us money and land on which to place these magnetometers. Who’s going to make sure there’s no tampering with the magnetometers, and how can we get readings from them? There exists another low-cost solution.

 2 Fraser-Smith et al., “Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake,” Geophysical Research Letters 17, no. 9 (August 1990), 1465–68.

 3 W. H. Campbell, “Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earthquake,” Journal of Geophysical Research 114, A05307, doi:10.1029/2008JA013932 (2009).

 4 J. N. Thomas, J. J. Love, and M. J. S. Johnston, “On the reported magnetic precursor of the 1989 Loma Prieta earthquake,” Physics of the Earth and Planetary Interiors 173, no. 3–4 (2009), 207–15.

 Mobile phones or smartphones today ship with three-axis magnetometers. The smartphones also come with operating systems where you can execute your own programs; with a few lines of code you can get readings from the magnetometers hundreds of times a second. Also, the phone already has its own communication system set up; if you can convince people to install and run your program, you could record a large amount of magnetometer data with very little investment. In addition to the magnetometers, smartphones carry a large number of other sensors including yaw-rate gyros, three-axis accelerometers, temperature sensors, and GPS receivers, all of which you could use to support your primary measurements.

 The two trends of mobile computing and sensor-generated data mean that we’ll be getting more and more data in the future.

 1.1.2. Machine learning will be more important in the future

 In the last half of the twentieth century the majority of the workforce in the developed world has moved from manual labor to what is known as knowledge work. The clear definitions of “move this from here to there” and “put a hole in this” are gone. Things are much more ambiguous now; job assignments such as “maximize profits,” “minimize risk,” and “find the best marketing strategy” are all too common. The fire hose of information available to us from the World Wide Web makes the jobs of knowledge workers even harder. Making sense of all the data with our job in mind is becoming a more essential skill, as Hal Varian, chief economist at Google, said:

 I keep saying the sexy job in the next ten years will be statisticians. People think I’m joking, but who would’ve guessed that computer engineers would’ve been the sexy job of the 1990s? The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it—that’s going to be a hugely important skill in the next decades, not only at the professional level but even at the educational level for elementary school kids, for high school kids, for college kids. Because now we really do have essentially free and ubiquitous data. So the complementary scarce factor is the ability to understand that data and extract value from it. I think statisticians are part of it, but it’s just a part. You also want to be able to visualize the data, communicate the data, and utilize it effectively. But I do think those skills—of being able to access, understand, and communicate the insights you get from data analysis—are going to be extremely important. Managers need to be able to access and understand the data themselves.

 McKinsey Quarterly, January 2009

 With so much of the economic activity dependent on information, you can’t afford to be lost in the data. Machine learning will help you get through all the data and extract some information. We need to go over some vocabulary that commonly appears in machine learning so it’s clear what’s being discussed in this book.

1.2. Key terminology

 Before we jump into the machine learning algorithms, it would be best to explain some terminology. The best way to do so is through an example of a system someone may want to make. We’ll go through an example of building a bird classification system. This sort of system is an interesting topic often associated with machine learning called expert systems. By creating a computer program to recognize birds, we’ve replaced an ornithologist with a computer. The ornithologist is a bird expert, so we’ve created an expert system.

 In table 1.1 are some values for four parts of various birds that we decided to measure. We chose to measure weight, wingspan, whether it has webbed feet, and the color of its back. In reality, you’d want to measure more than this. It’s common practice to measure just about anything you can measure and sort out the important parts later. The four things we’ve measured are called features; these are also called attributes, but we’ll stick with the term features in this book. Each of the rows in table 1.1 is an instance made up of features.

 Table 1.1. Bird species classification based on four features

 	

 	
 Weight (g)

 	
 Wingspan (cm)

 	
 Webbed feet?

 	
 Back color

 	
 Species

 	1

 	1000.1

 	125.0

 	No

 	Brown

 	Buteo jamaicensis

 	2

 	3000.7

 	200.0

 	No

 	Gray

 	Sagittarius serpentarius

 	3

 	3300.0

 	220.3

 	No

 	Gray

 	Sagittarius serpentarius

 	4

 	4100.0

 	136.0

 	Yes

 	Black

 	Gavia immer

 	5

 	3.0

 	11.0

 	No

 	Green

 	Calothorax lucifer

 	6

 	570.0

 	75.0

 	No

 	Black

 	Campephilus principalis

 The first two features in table 1.1 are numeric and can take on decimal values. The third feature (webbed feet) is binary: it can only be 1 or 0. The fourth feature (back color) is an enumeration over the color palette we’re using, and I just chose some very common colors. Say we ask the people doing the measurements to choose one of seven colors; then back color would be just an integer. (I know choosing one color for the back of a bird is a gross oversimplification; please excuse this for the purpose of illustration).

 If you happen to see a Campephilus principalis (Ivory-billed Woodpecker), give me a call ASAP! Don’t tell anyone else you saw it; just call me and keep an eye on the bird until I get there. (There’s a $50,000 reward for anyone who can lead a biologist to a living Ivory-billed Woodpecker.)

 One task in machine learning is classification; I’ll illustrate this using table 1.1 and the fact that information about an Ivory-billed Woodpecker could get us $50,000. We want to identify this bird out of a bunch of other birds, and we want to profit from this. We could set up a bird feeder and then hire an ornithologist (bird expert) to watch it and when they see an Ivory-billed Woodpecker give us a call. This would be expensive, and the person could only be in one place at a time. We could also automate this process: set up many bird feeders with cameras and computers attached to them to identify the birds that come in. We could put a scale on the bird feeder to get the bird’s weight and write some computer vision code to extract the bird’s wingspan, feet type, and back color. For the moment, assume we have all that information. How do we then decide if a bird at our feeder is an Ivory-billed Woodpecker or something else? This task is called classification, and there are many machine learning algorithms that are good at classification. The class in this example is the bird species; more specifically, we can reduce our classes to Ivory-billed Woodpecker or everything else.

 Say we’ve decided on a machine learning algorithm to use for classification. What we need to do next is train the algorithm, or allow it to learn. To train the algorithm we feed it quality data known as a training set. A training set is the set of training examples we’ll use to train our machine learning algorithms. In table 1.1 our training set has six training examples. Each training example has four features and one target variable; this is depicted in figure 1.2. The target variable is what we’ll be trying to predict with our machine learning algorithms. In classification the target variable takes on a nominal value, and in the task of regression its value could be continuous. In a training set the target variable is known. The machine learns by finding some relationship between the features and the target variable. The target variable is the species, and as I mentioned earlier, we can reduce this to take nominal values. In the classification problem the target variables are called classes, and there is assumed to be a finite number of classes.

 Figure 1.2. Features and target variable identified

 [image:]

 	

 Note

 Features or attributes are the individual measurements that, when combined with other features, make up a training example. This is usually columns in a training or test set.

 	

 To test machine learning algorithms what’s usually done is to have a training set of data and a separate dataset, called a test set. Initially the program is fed the training examples; this is when the machine learning takes place. Next, the test set is fed to the program. The target variable for each example from the test set isn’t given to the program, and the program decides which class each example should belong to. The target variable or class that the training example belongs to is then compared to the predicted value, and we can get a sense for how accurate the algorithm is. There are better ways to use all the information in the test set and training set. We’ll discuss them later.

 In our bird classification example, assume we’ve tested the program and it meets our desired level of accuracy. Can we see what the machine has learned? This is called knowledge representation. The answer is it depends. Some algorithms have knowledge representation that’s more readable by humans than others. The knowledge representation may be in the form of a set of rules; it may be a probability distribution or an example from the training set. In some cases we may not be interested in building an expert system but interested only in the knowledge representation that’s acquired from training a machine learning algorithm.

 We’ve covered a lot of key terms of machine learning, but we didn’t cover them all. We’ll introduce more key terms in later chapters as they’re needed. We’ll now address the big picture: what we can do with machine learning.

1.3. Key tasks of machine learning

 In this section we’ll outline the key jobs of machine learning and set a framework that allows us to easily turn a machine learning algorithm into a solid working application.

 The example covered previously was for the task of classification. In classification, our job is to predict what class an instance of data should fall into. Another task in machine learning is regression. Regression is the prediction of a numeric value. Most people have probably seen an example of regression with a best-fit line drawn through some data points to generalize the data points. Classification and regression are examples of supervised learning. This set of problems is known as supervised because we’re telling the algorithm what to predict.

 The opposite of supervised learning is a set of tasks known as unsupervised learning. In unsupervised learning, there’s no label or target value given for the data. A task where we group similar items together is known as clustering. In unsupervised learning, we may also want to find statistical values that describe the data. This is known as density estimation. Another task of unsupervised learning may be reducing the data from many features to a small number so that we can properly visualize it in two or three dimensions. Table 1.2 lists some common tasks in machine learning with algorithms used to solve these tasks.

 Table 1.2. Common algorithms used to perform classification, regression, clustering, and density estimation tasks

 	
 Supervised learning tasks

 	k-Nearest Neighbors

 	Linear

 	Naive Bayes

 	Locally weighted linear

 	Support vector machines

 	Ridge

 	Decision trees

 	Lasso

 	Unsupervised learning tasks

 	k-Means

 	Expectation maximization

 	DBSCAN

 	Parzen window

 If you noticed in table 1.2 that multiple techniques are used for completing the same task, you may be asking yourself, “If these do the same thing, why are there four different methods? Why can’t I just choose one method and master it?” I’ll answer that question in the next section.

1.4. How to choose the right algorithm

 With all the different algorithms in table 1.2, how can you choose which one to use? First, you need to consider your goal. What are you trying to get out of this? (Do you want a probability that it might rain tomorrow, or do you want to find groups of voters with similar interests?) What data do you have or can you collect? Those are the big questions. Let’s talk about your goal.

 If you’re trying to predict or forecast a target value, then you need to look into supervised learning. If not, then unsupervised learning is the place you want to be. If you’ve chosen supervised learning, what’s your target value? Is it a discrete value like Yes/No, 1/2/3, A/B/C, or Red/Yellow/Black? If so, then you want to look into classification. If the target value can take on a number of values, say any value from 0.00 to 100.00, or -999 to 999, or +∞ to -∞, then you need to look into regression.

 If you’re not trying to predict a target value, then you need to look into unsupervised learning. Are you trying to fit your data into some discrete groups? If so and that’s all you need, you should look into clustering. Do you need to have some numerical estimate of how strong the fit is into each group? If you answer yes, then you probably should look into a density estimation algorithm.

 The rules I’ve given here should point you in the right direction but are not unbreakable laws. In chapter 9 I’ll show you how you can use classification techniques for regression, blurring the distinction I made within supervised learning. The second thing you need to consider is your data.

 You should spend some time getting to know your data, and the more you know about it, the better you’ll be able to build a successful application. Things to know about your data are these: Are the features nominal or continuous? Are there missing values in the features? If there are missing values, why are there missing values? Are there outliers in the data? Are you looking for a needle in a haystack, something that happens very infrequently? All of these features about your data can help you narrow the algorithm selection process.

 With the algorithm narrowed, there’s no single answer to what the best algorithm is or what will give you the best results. You’re going to have to try different algorithms and see how they perform. There are other machine learning techniques that you can use to improve the performance of a machine learning algorithm. The relative performance of two algorithms may change after you process the input data. We’ll discuss these in more detail later, but the point is that finding the best algorithm is an iterative process of trial and error.

 Many of the algorithms are different, but there are some common steps you need to take with all of these algorithms when building a machine learning application. I’ll explain these steps in the next section.

1.5. Steps in developing a machine learning application

 Our approach to understanding and developing an application using machine learning in this book will follow a procedure similar to this:

 	
Collect data. You could collect the samples by scraping a website and extracting data, or you could get information from an RSS feed or an API. You could have a device collect wind speed measurements and send them to you, or blood glucose levels, or anything you can measure. The number of options is endless. To save some time and effort, you could use publicly available data.

 	
Prepare the input data. Once you have this data, you need to make sure it’s in a useable format. The format we’ll be using in this book is the Python list. We’ll talk about Python more in a little bit, and lists are reviewed in appendix A. The benefit of having this standard format is that you can mix and match algorithms and data sources. You may need to do some algorithm-specific formatting here. Some algorithms need features in a special format, some algorithms can deal with target variables and features as strings, and some need them to be integers. We’ll get to this later, but the algorithm-specific formatting is usually trivial compared to collecting data.

 	
Analyze the input data. This is looking at the data from the previous task. This could be as simple as looking at the data you’ve parsed in a text editor to make sure steps 1 and 2 are actually working and you don’t have a bunch of empty values. You can also look at the data to see if you can recognize any patterns or if there’s anything obvious, such as a few data points that are vastly different from the rest of the set. Plotting data in one, two, or three dimensions can also help. But most of the time you’ll have more than three features, and you can’t easily plot the data across all features at one time. You could, however, use some advanced methods we’ll talk about later to distill multiple dimensions down to two or three so you can visualize the data.

 	If you’re working with a production system and you know what the data should look like, or you trust its source, you can skip this step. This step takes human involvement, and for an automated system you don’t want human involvement. The value of this step is that it makes you understand you don’t have garbage coming in.

OEBPS/OEBPS/Images/01fig02_alt.jpg
1

Weight Wingspan Webbed feet? Back color Species

1000.1 1250 No Brown Buteo jamaicensis.

3000.7 2000 No Gray Sagittarius serpentarius
b

Features.

OEBPS/OEBPS/Images/m.jpg

OEBPS/OEBPS/Images/01fig01.jpg
Today's Recommendations F

Here's a daily sample of items recomm
for you. Click here to see all
recommendati

7 morev
Starred *
Chats ®
Al Mail
Spam (106)
Trash
B Receipts
8 Work

Manage labels

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/inf.jpg

OEBPS/cover.jpeg

