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How to Use This Book


Barron’s Physics Practice Plus is designed to offer essential review of key topics and loads of online practice to help you excel in physics.


Online Practice


Access more than 400 questions in online quizzes arranged by topic for customized practice! All questions include answer explanations.


What Will You Learn in the Book?


Key review and topics are covered so you can study the essentials needed to succeed.


Learning objectives are listed at the start of each chapter. This list of key ideas will help guide your learning and study plan and allow you to easily return to topics that you want to review again.


Tips are given throughout the book to offer helpful notes, reminders, and strategies to improve your learning.









CHAPTER 1


Conventions and Graphing




Learning Objectives


In this chapter, you will learn how to:




∘Review the fundamental metric units (SI units) and some of the derived metric units (SI units) used in physics


∘Determine the dependent and independent variables of a graph


∘Explain the importance of slope and area to a graph








Fundamental and Derived Units


The fundamental metric units (SI units) in physics cover the basic quantities measured, such as length, mass, and time. The units measure a quantity and are given a unit name and symbol. Table 1.1 lists the fundamental quantities along with the unit names and symbols.


TABLE 1.1 Fundamental Quantities and Units


















	

Quantity (Symbol)




	

Unit Name




	

Symbol









	

Length (l)




	

Meter




	

m









	

Mass (m)




	

Kilogram




	

kg









	

Time (t)




	

Second




	

s









	

Electric current (I)




	

Ampere




	

A









	

Temperature (T)




	

Kelvin




	

K









	

Amount of substance (n)




	

Mole




	

mol












Derived units are combinations of one or more of the fundamental units. Table 1.2 lists common derived units used in physics.


TABLE 1.2 Derived Units


[image: images]


It is important to know which units correctly belong to a specific quantity. An easy way to do this is to write out the principal formula for the quantity and then replace each variable on the right side of the equation with its unit symbol. There may be more than one correct answer including the unit symbol, other derived units, and fundamental units. For example, all of the following are correct ways to express units of energy: J, N • m, and kg • m2/s2.


EXAMPLE 1.1




Derived Units


The unit of force is the newton. What are the fundamental units that make up the newton?


WHAT’S THE TRICK?


Write down the foundational formula for force.


[image: images]


Replace the variable symbols with their matching units. Force is measured in newtons, N. Mass is measured in kilograms, kg. Acceleration is measured in meters per second squared, m/s2.


N = kg • m/s2





Graphing Variables


The graphing techniques of mathematics are used in science to compare dependent and independent variables. In mathematics, you are familiar with the traditional x- and y-coordinate axes. In science, the x-axis represents the independent variable and the y-axis represents the dependent variable. The value of the dependent variable depends upon the independent variable.


Graphs are always titled so that the dependent variable is listed first, and the independent variable is listed second. As an example, a position versus time graph would have position (dependent variable) plotted on the y-axis and time (independent variable) plotted on the x-axis.


Slope and Area


Slope


Slopes are very important in physics. Slope is determined by dividing the rise (y-axis value) by the run (x-axis value). The trick is to look at the units written on the axes of the graph. If you divide these units, you can easily identify the significance of the slope.


EXAMPLE 1.2




Slope of a Graphed Function


[image: ]


(A) What is the value and significance of the slope in the time interval from 0 to 3 seconds?


WHAT’S THE TRICK?


Determining the slope is simply a matter of dividing the rise (y-axis values) by the run (x-axis values). The significance of the slope is determined by examining the resulting units.


[image: ]


The resulting units, meters per second (m/s), are the units of velocity. Therefore, the slope of the position versus time graph is equal to velocity. During the first 3 seconds, the object has a velocity of 5 m/s.


(B) What is the value and significance of the slope in the time interval from 3 to 5 seconds?


WHAT’S THE TRICK?


The slope in the interval between 3 and 5 seconds is zero.


[image: ]


During this time interval, the object has a velocity of zero and the y-axis value (position) is not changing. The object’s position remains constant at a location 15 m from the origin.





Area


The area formed by the boundary between the x-axis and the line of a graph is also very useful. Areas are calculated by multiplying the height (y-axis value) by the base (x-axis value). In problems where the area forms a triangle, the area is found with [image: images] height × base. In cases where the line of the graph is below the x-axis, the area is negative. See Figure 1.1.


[image: ]


FIGURE 1.1 Calculating area


As with slope, you can easily determine the significance of the area. By multiplying the units written on the axes of the graph and then looking at the resulting units, you can quickly determine the significance of the area.


EXAMPLE 1.3




Area of a Graphed Function


[image: ]


What is the value and significance of the area of the graph during the time interval between 0 and 10 seconds?


WHAT’S THE TRICK?


Determine the area, and examine the resulting units.


area = height × base = (10 m/s)(10 s) = 100 m


Meters (m) are the units of displacement. The area under a speed versus time graph is therefore the displacement of the object during that time interval. The object graphed above traveled 100 meters in 10 seconds.





Interpreting Graphs


Consider the graph of velocity versus time in Figure 1.2.


[image: ]


FIGURE 1.2 Velocity versus time graph


The graph tells the story of an object, such as a car, as it moves over a 60-second period of time. At time zero, the object has a velocity of 0 meters per second and is therefore starting from rest. The y-intercept of a speed versus time graph is the initial velocity of the object, v0.


What the object is doing during the 60 seconds can be determined by analyzing the slope and area during the separate time intervals. Determine the significance of the slope by dividing the rise units (y-axis values) by the run units (x-axis values).


[image: images]


The slope units, meters per second squared (m/s2), are the units of acceleration. Thus, the slope of speed versus time is acceleration. Determine the significance of the area between the graphed function and the x-axis by multiplying the units of the y-axis by the units of the x-axis.


[image: images]


Meters (m) are the units of displacement. The area of a velocity versus time graph is displacement.


To analyze the motion mathematically, divide the graph into a series of line segments and evaluate each section. The following chart shows the acceleration and displacement for the time intervals corresponding to the graphed line segments.


[image: images]









CHAPTER 2


Vectors




Learning Objectives


In this chapter, you will learn how to:




∘Identify a mathematical coordinate system that will provide a common frame of reference to orient direction in physics problems


∘Understand the differences and similarities among scalar and vector quantities


∘Resolve vectors into components and add vector quantities








Coordinate System


Problems in physics often involve the motion of objects. Position, displacement, velocity, and acceleration are key numerical quantities needed to describe the motion of an object. Position involves a specific location, while velocity and acceleration act in specific directions. Using the mathematical coordinate system is ideal to visualize both position and direction. The coordinate system provides a common frame of reference in which the quantities describing motion can be easily and consistently compared with one another.


We can place an axis anywhere, and we can orient the axis in any direction of our choosing. If a problem does not specify a starting location or direction, then position the origin at the object’s starting location. In Figure 2.1, a problem involving the motion of a car can be visualized as starting at the origin and moving horizontally along the positive x-axis.


[image: ]


FIGURE 2.1 Horizontal motion


In more complex problems, some quantities cannot be oriented along a common axis. In these problems, direction must be specified in degrees measured counterclockwise (ccw) from the positive x-axis, as shown in Figure 2.2.


[image: ]


FIGURE 2.2 Coordinate system


A coordinate system is a valuable tool that provides a frame of reference when position and direction are critical factors.


Scalars


A scalar is a quantity having only a numerical value. No direction is associated with a scalar. The numerical value describing a scalar is known as its magnitude. Some examples of commonly used scalars are listed in Table 2.1.


TABLE 2.1 Commonly Used Scalars
















	

Quantities Involving




	

Examples of Common Scalars









	

Time




	

Time—t, period—T, and frequency—f









	

Motion




	

Distance—d and speed—v









	

Energy




	

Kinetic energy—K or KE and potential energy—U or PE









	

Mass




	

Mass—m and density—ρ









	

Gases




	

Pressure—P, volume—V, and temperature—T









	

Electricity




	

Charge—q or Q and potential (voltage)—V









	

Circuits




	

Current—I, resistance—R, and capacitance—C












The symbols representing scalars are printed in italics. For example, a mass of 2.0 kilograms will be written as m = 2.0 kg. Scalars can have magnitudes that are positive, negative, or zero. For example, time = 60 seconds, speed = 0 meters per second, and temperature = −10°C.


Vectors


Although scalars possess only magnitude, vectors possess both magnitude and a specific direction. Examples of commonly encountered vectors are listed in Table 2.2.


TABLE 2.2 Commonly Used Vectors


















	

Vector Quantity




	

Vector Symbol




	

Component Symbol









	

Displacement




	

[image: images] or [image: images]




	

x or y









	

Velocity




	

[image: images]




	

vx or vy









	

Acceleration




	

[image: images]




	

ax or ay









	

Force




	

[image: images]




	

Fx or Fy









	

Momentum




	

[image: images]




	

px or py









	

Electric field




	

[image: images]




	

Ex or Ey









	

Magnetic field




	

[image: images]




	

Bx or By












Formal vector variables are usually written in italics with a small arrow drawn over the letter, as shown in the middle column in Table 2.2. You may encounter vector quantities, such as force, in any one of these forms: [image: images], F, Fx, Fy, and F. The first, [image: images], is the most accepted and distinctly indicates a vector quantity. It is the format used in this book. The second, F, is an alternate way to indicate a vector quantity. The next two, Fx and Fy, signify vector components that lie along the specific axis indicated by their subscripts. The last, F, appears to be the convention to indicate a scalar quantity. It is typically used when only the magnitude of the vector is needed and the direction is understood.


Distinguishing between vectors and scalars by simply looking at an equation can be confusing. How, then, do you tell scalars and vectors apart? Physics problems may contain clues in the text of the problem to help distinguish vectors from scalars. The mention of a specific direction definitely indicates a vector quantity. However, it is up to you to learn which quantities are vectors and when the use of vector components is necessary. Counting on the use of a specific set of symbol conventions may not be wise.


Vectors do follow certain mathematical conventions that are worth noting. Vector magnitudes can be only positive or zero. However, vectors can have negative direction. Consider the acceleration of gravity, a vector quantity acting in the negative y-direction. The gravity vector includes both magnitude and direction [image: images]. Substituting this exact expression, including the negative y-direction, into an equation is not really workable. Instead the value −10 m/s2 may be substituted into equations. The negative sign in front of the magnitude indicates the negative y-direction. This can be done only if all the vector quantities used in an equation lie along the same axis and it is understood that the signs on all vector quantities represent direction along that axis. This essentially transforms the vector quantities into scalar quantities, allowing normal mathematical operations. As a result, the variable may be shown as a scalar in italics (g = −10 m/s2) rather than in bold print. When a negative sign is associated with a vector quantity, it technically specifies the vector’s direction and assists with proper vector addition.


Vectors are represented graphically as arrows. For displacement vectors, the tail of the arrow is the initial position of the object, xi, and the tip of the arrow is the final position of the object, xf. The length of the arrow represents the vector’s magnitude, and its orientation on the coordinate axis indicates direction. This may give some insight into the reason that some vector quantities are displayed in italics.


Figure 2.3 shows a car moving 200 meters and its associated vector.


[image: ]


FIGURE 2.3 Horizontal displacement


The magnitude of the displacement vector, Δx, is the absolute value of the difference between the final position, xf, and the initial position, xi. Direction can be seen in the diagram.


Δx = xf − xi = 200 − 0 = 200 m, to the right (+x)


For other vectors, such as velocity and force, the quantity described by the vector occurs at the tail of the arrow. The tail of the arrow shows the actual location of the object being acted upon by the vector quantity. The tip of the arrow points in the direction the vector is acting. The length of the arrow represents the magnitude of the vector quantity. The magnitude and direction described by these types of vectors may be instantaneous values capable of changing as the object moves. In addition, the object may not reach the location specified by the tip of the arrow.


These types of vectors are readily seen in projectile motion. In Figure 2.4, a projectile is launched with a speed of 50 meters per second at an angle of 37° above the horizontal.


[image: ]


FIGURE 2.4 Projectile motion


Although only three key velocity vectors are shown in the diagram, they clearly demonstrate how the magnitude and direction of velocity change throughout the flight. During the motion depicted in the diagram, no two instantaneous velocity vectors are completely alike.


Knowing how to recognize vectors quantities like displacement, velocity, acceleration, and force will improve your problem-solving skills. The importance of vector direction cannot be overstated. Including the correct sign representing a vector’s direction is often the key to arriving at the correct solution. The next sections will demonstrate the importance of vector direction as we review basic vector mathematics.


Vector Mathematics


Components


Vectors aligned to the x- and y-axes are mathematically advantageous. However, some problems involve diagonal vector quantities. Diagonal vectors act simultaneously in both the x- and y-directions, and they are difficult to manipulate mathematically. Fortunately, diagonal vectors can be resolved into x- and y-component vectors. The x- and y-component vectors form the adjacent and opposite sides of a right triangle where the diagonal vector is its hypotenuse. Aligning the component vectors along the x- and y-axes simplifies vector addition.


The magnitudes of component vectors are determined using right-triangle trigonometry. In Figure 2.5, vector A is a diagonal vector. It has a magnitude of A and a direction of θ.


[image: ]


FIGURE 2.5 Magnitudes of vectors


Vector Ax is the x-component of [image: images] and is adjacent to angle θ. Vector Ay is the y-component of [image: images] and is opposite angle θ. Normally, the magnitude of the components of vector [image: images] would be determined using the following right-triangle trigonometry.


Ax = A cos θ, +x-direction


Ay = A sin θ, +y-direction


EXAMPLE 2.1




Determining Component Vectors


[image: ]


A projectile is launched with an initial velocity of 50 meters per second at an angle of 37° above the horizontal. Determine the x- and y-component vectors of the velocity.


WHAT’S THE TRICK?


Draw the component vectors and identify the adjacent and opposite sides.


[image: ]


Determining the magnitudes of each component requires multiplying the hypotenuse by the correct fraction. The direction of each component can be determined by looking at the diagram.


vx = 4/5 hyp = 4/5 (50) = 40 m/s, +x-direction


vx = 3/5 hyp = 3/5 (50) = 30 m/s, +y-direction





In some problems, the component vectors are known or given and you must determine the vector they describe. Pythagorean theorem and inverse tangent are used to calculate the magnitude and direction of the diagonal vector described by the component vectors.


[image: images]


Adding Vectors


One important aspect of working with vectors is the ability to add two or more vectors together. Only vectors with the same units for magnitude can be added to each other. The result of adding vectors together is known as the vector sum, or resultant.


You can use two visual methods to add vectors. The first is the tip-to-tail method, and the second is the parallelogram method. In some problems, the resultant is known or given and you must determine the magnitude and direction of one of the vectors contributing to the vector sum. The sections below detail examples of each of these scenarios.


Tip-to-Tail Method


Adding vectors tip to tail is advantageous when a vector diagram is not given. Begin by sketching a coordinate axis. Vectors can be added in any order. However, drawing x-direction vectors first, followed by y-direction vectors, is best. Choose the first vector and draw it starting from the origin and pointing in the correct direction. Start drawing the tail of the next vector at the tip of the previous vector. Keep the orientation of the second vector the same as it was given in the problem. Continue this process, adding any remaining vectors to the tip of each subsequent vector. Finally, draw the resultant vector from the origin (tail of the first vector) pointing to the tip of the last vector. You will encounter three common cases of vector addition.




•Vectors pointing in the same direction


•Vectors pointing in opposite directions


•Vectors that are 90° apart





EXAMPLE 2.2




Adding Vectors Pointing in the Same Direction


A person walks 40 meters in the positive x-direction, pauses, and then walks an additional 30 meters in the positive x-direction. Determine the magnitude and direction of the person’s displacement.


WHAT’S THE TRICK?


When vectors point in the same direction, simply add them together. Sketch or visualize the vectors tip to tail. The resultant is equal to the total length of both vectors added together.


[image: ]


Resultant = 40 m + 30 m = 70 m





EXAMPLE 2.3




Adding Vectors Pointing in Opposite Directions


A person walks 40 meters in the positive x-direction, pauses, and then walks an additional 30 meters in the negative x-direction. Determine the magnitude and direction of the person’s displacement.


WHAT’S THE TRICK?


When a vector points in the opposite (negative) direction, you can insert a minus sign in front of the magnitude. Technically, vectors cannot have negative magnitudes. The minus sign actually indicates the vector’s direction, and it represents a vector turned around 180°. Again, sketching or visualizing the vectors tip to tail will help you arrive at the correct resultant. The resultant is drawn from the origin to the tip of the last vector added.


[image: ]


Resultant = 40 m + (−30 m) = 10 m





EXAMPLE 2.4




Adding Vectors That Are 90° Apart


An object moves 100 meters in the positive x-direction and then moves 100 meters in the positive y-direction. Determine the magnitude and direction of the object’s displacement.


WHAT’S THE TRICK?


Start at the origin and draw the x-direction vector first. Then, add the tail of the y-direction vector to the tip of the first vector. Finally, draw the resultant from the origin pointing toward the tip of the final vector added.


[image: ]


The components and resultant form a 45°-45°-90° triangle. The magnitude of the hypotenuse can be obtained by multiplying a side by the square root of two.


[image: images]


Without a calculator, [image: images] is the mathematically simplified answer.





Parallelogram Method


Sometimes, a vector diagram may be provided that shows the vectors in a tail-to-tail configuration. You can add these vectors by constructing a parallelogram, as shown in the example below.


EXAMPLE 2.5




Adding Vectors Using the Parallelogram Method


[image: ]


A mass, m, is acted upon by two force vectors, [image: images] in the +x-direction and [image: images] in the +y-direction, as shown in the diagram above. Determine the magnitude and direction of the resultant force acting on mass m.


WHAT’S THE TRICK?


Construct a parallelogram. The diagram below on the left shows a dashed line drawn from the tip of [image: images] parallel to [image: images] and a second dashed line drawn from the tip of [image: images] parallel to [image: images]. In the diagram below on the right, the resultant is drawn with its tail starting at the origin and the tip extending to the intersection of the dashed lines. The resultant is the sum of the force vectors ([image: images]).


[image: ]


The dashed lines have the same length as the given vectors. Adding the resultant to the diagram creates two right triangles. Look carefully at the ratio of the sides. Two 3-4-5 triangles have been formed.


[image: images]





Finding a Missing Vector


In some problems, the resultant is known and the problem requires you to find the magnitude and direction of a missing vector. This frequently occurs when clues in the problem lead you to the conclusion that the resultant vector has a magnitude equal to zero. In order for two vectors to add up to zero, the vectors must have equal magnitudes and point in opposite directions.


EXAMPLE 2.6




Deducing the Existence of a Missing Vector


[image: ]


A mass, m, is initially at rest on a horizontal surface. A 10-newton force acting in the positive x-direction is applied to mass m. The mass remains at rest. Why?


WHAT’S THE TRICK?


A force is either a push or a pull. When an object remains stationary, all the pushing forces acting on the object must cancel out each other. Therefore, the sum of all the force vectors is zero. You must conclude that a second force is acting on the mass to cancel the force given in the problem. The only force capable of canceling the given force is a 10-newton force acting in the opposite direction.


[image: ]












CHAPTER 3


Kinematics in One Dimension




Learning Objectives


In this chapter, you will learn how to:




∘Discuss and compare the kinematic quantities


∘Identify signs used for kinematic variables


∘Apply the correct kinematic equation to solve problems


∘Interpret graphical representations of kinematic equations








Table 3.1 lists the variables and their units that are used in a study of kinematics.


TABLE 3.1 Variables and Units Used in Kinematics
















	

Variables Used in Kinematics




	

Units













	

[image: images] = Displacement (distance)


(Also: Δx, y, Δy, h, Δh, or d)




	

m (meters)









	

[image: images] = Initial velocity (speed)




	

m/s (meters per second)









	

[image: images] = Final velocity (speed)




	

m/s (meters per second)









	

[image: images] = Acceleration




	

m/s2 (meters per second squared)









	

t = Elapsed time




	

s (seconds)












Kinematic Quantities


Kinematics involves the mathematical relationship among key quantities describing the motion of an object. These quantities include displacement—[image: images], velocity—[image: images], and acceleration—[image: images]. You should also note the relationships between displacement and distance and between velocity and speed.


Displacement and Distance


Displacement, [image: images], is a vector extending from the initial position of an object to its final position. The variable x is typically used for horizontal motion, while y and h (height) are used for vertical motion.


Displacement differs slightly from distance, d. Distance is a scalar quantity representing the actual path followed by the object. When an object travels in a straight line and does not reverse its direction, then distance and the magnitude of displacement are interchangeable.


Velocity and Speed


Velocity and speed are kinematic quantities measuring the rate of change in displacement and distance. A rate is a mathematical relationship showing how one variable changes compared with another. When the word rate appears in a problem, simply divide the quantity mentioned by time. Velocity, [image: images], is a vector describing the rate of displacement, Δ [image: images]. The equation for velocity


[image: ]


solves for the average velocity during a time interval, t. Additional information is needed to determine if velocity is constant or is changing during the time interval.


If velocity is changing, then it has different values at different moments in time. However, instantaneous velocity is the velocity at a specific time, t. If you report that you are driving north at 65 mph, you have given an instantaneous velocity. This is a snapshot, freezing the problem at a specific instant. In kinematics, you will encounter two specific instantaneous velocities. Initial velocity, vi, is at the start of a problem. Final velocity, vf, is at the end of a problem.


Velocity is a vector quantity, so it includes a specific magnitude and a direction. When the magnitude and direction of velocity are both constant, we say that the object is moving at constant velocity. However, when direction is changing, the term speed may be used. Speed is a scalar quantity that calculates the rate of distance, as opposed to displacement. If an object travels in a straight line, then the terms speed and velocity are interchangeable.


Acceleration


Acceleration is the rate of change in velocity.


[image: ]


When acceleration is uniform, its magnitude remains constant. The magnitude of acceleration indicates how quickly velocity is changing. In other words, acceleration is the rate of a rate, which is why students new to physics often have difficulty comprehending it. The effect of acceleration on velocity depends on the orientation of the vector quantities relative to one another, as shown in Table 3.2.


TABLE 3.2 The Effect of Acceleration on Velocity


[image: ]


The possibility of changing direction is often overlooked. A car moving around a circular track at a constant speed is said to have uniform acceleration as opposed to constant acceleration. The phrase “uniform acceleration” indicates that the magnitude of acceleration will remain the same while the direction may be changing. The phrase “constant acceleration,” however, indicates that both magnitude and direction are the same.


Acceleration of Gravity


All objects on Earth are subject to the acceleration of gravity. This acceleration has a known value at Earth’s surface. It is so prevalent in physics problems that it receives its own variable, g. The acceleration of gravity acts downward and has a value of 9.8 m/s2.


Sign Conventions


The kinematic quantities—displacement, velocity, and acceleration—are all vectors. The magnitude of a vector is always positive. However, vectors can point in either a positive or a negative direction. When vectors point in a negative direction, a negative sign is added to the magnitude of the vector for calculation purposes.


The coordinate-axis system is the best tool to use when determining the correct sign on vector quantities. Picture the object at the origin of the coordinate axes at the start of the problem (xi = 0 and yi = 0). The default positive directions are right and upward. Any vector quantities pointing to the left or downward will include a negative sign in calculations. Table 3.3 summarizes the sign conventions for kinematic variables.


TABLE 3.3 Signs Used for Kinematic Variables


















	

Variable and Sign




	

Horizontal Motion




	

Vertical Motion









	

+x




	

Object finishes right of starting point




	

Object finishes above starting point









	

−x




	

Object finishes left of starting point




	

Object finishes below starting point









	

+v




	

Moving right




	

Moving upward









	

−v




	

Moving left




	

Moving downward









	

+a




	

Positive acceleration increases the speed of objects that have a positive velocity. However, when an object has a negative velocity, a positive acceleration acts to decrease speed.




	






	

−a




	

Negative acceleration decreases the speed of objects that have a positive velocity. However, when an object has a negative velocity, a negative acceleration acts to increase speed.




	

In free-fall problems, acceleration is equal to g and always acts downward.












As seen in the table above, the sign on acceleration can have opposing effects depending on the sign of velocity. If acceleration and velocity vectors have the same direction, then speed increases. When acceleration and velocity vectors oppose each other, speed decreases. When solving horizontal-motion problems, the initial motion can always be set as rightward (+vxi). However, vertical motion is subject to the constant downward acceleration of gravity and is more complicated. Upwardly launched objects always solve traditionally. The initial upward vertical velocity is positive (+vyi), and the acceleration of gravity is negative (−g). The opposing acceleration acts to slow objects as they ascend. After reaching maximum height, objects reverse direction (−vy). Now velocity and acceleration have the same direction, causing speed to increase as objects descend. When objects are dropped or thrown downward, the signs on all nonzero kinematic variables are negative. Since all the negative signs cancel, they are often omitted when solving these problems. The solutions appear as though the initial downward motion was set as the positive, resulting in positive downward velocity (+vy), displacement (+Δy), and gravity (+g). Setting the direction of initial motion as positive simplifies the sign on acceleration. If this is done, then positive acceleration increases speed, and negative acceleration decreases speed.


The most important aspect to determining vector direction is consistency. Which direction you set as positive does not really matter. However, you must consistently apply this decision to every vector throughout the entire problem. When you pick a positive and a negative direction, do not change it during the problem. Make sure every vector uses the sign convention you have chosen.


Kinematic Equations


The kinematic equations relate the kinematic variables in a manner that solves for a variety of situations.


[image: ]


Choosing the Correct Equation


Choosing the correct equation depends on the variables mentioned in each problem. In addition, when an object is initially at rest (vi = 0), the equations simplify into frequently tested, easier versions of the kinematic equations. Table 3.4 will help you identify which equation you should use based on what is given and what is requested in a particular problem. It will also help you identify shortened variations of those equations for objects that are initially at rest.


TABLE 3.4 Choosing Which Kinematic Equation to Use


[image: images]


Note: The constant velocity (a = 0) formula can be derived from [image: images] by substituting zero for acceleration: [image: images]. If velocity is constant, the initial velocity, vi, is the same as the velocity, v, at any instant.


EXAMPLE 3.1




Problem Never Mentions Time


Determine the maximum height reached by a ball thrown upward at 20 meters per second.


WHAT’S THE TRICK?


Complete a variable list, including known constants and hidden values. In vertical-motion problems, y and h are often used in place of displacement, x. In addition, the acceleration of gravity, g, replaces the general acceleration, a. When objects reach “maximum height,” they come to an instantaneous stop (vf = 0 m/s).


[image: ]


Time is not given, and you are not asked to solve for it.


[image: images]





EXAMPLE 3.2




Problem Involves Time and Velocity


A car traveling at 30 meters per second undergoes an acceleration of 5.0 meters per second squared for 3.0 seconds. Determine the final velocity of the car.


WHAT’S THE TRICK?


Complete a variable list. If variables seem to be missing, read the problem again and look for key phrases signaling hidden variables. The problem did not state how the acceleration was affecting the car, so you must assume the simplest scenario. Unless the problem specifies a decrease in speed, assume acceleration is positive and that it acts to increase speed.
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Time is not given, and the problem involves velocity.


[image: images]





EXAMPLE 3.3




Problem Involves Time and Displacement


A ball is dropped from a 45-meter-tall structure. Determine the time the ball takes to hit the ground.


WHAT’S THE TRICK?


Complete a variable list, including known constants and hidden values. A “dropped” object has an initial velocity of zero (vi = 0 m/s). The structure is 45 m tall, and the ball is moving downward toward the ground (y = −45 m). The acceleration is due to gravity, which also acts downward (g = −10 m/s2).
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You need an equation relating displacement and time.


[image: images]


Since vi = 0 m/s, you can simplify the equation.


[image: images]





Kinematic Graphs


The key values to assess are slope, area, and intercepts. To determine if slope or area is important, remember to include units in your calculations. In addition, it may also be important to determine if values are constant or changing. Table 3.5 describes frequently used graphs involving the kinematic formulas and variables.


TABLE 3.5 Graphs and Kinematics


[image: ]


The velocity versus time graph described in Table 3.5 contains the most information, making it the most valuable and most frequently tested kinematic graph.


EXAMPLE 3.4




Analyzing Velocity versus Time Graphs


[image: ]


The motion of an object is shown in the velocity versus time graph above.


(A) Determine the initial velocity of the object.


WHAT’S THE TRICK?


Initial conditions occur at zero time. In graphs with time along the x-axis, initial values are the y-intercept. The initial velocity is 20 m/s.


(B) Determine the displacement during the first second.


WHAT’S THE TRICK?


Displacement is the area under the velocity versus time graph.


[image: ]


displacement = height × base = (20 m/s × 1 s) = 20 m


(C) Determine the acceleration in the time interval between 1 and 4 seconds.


WHAT’S THE TRICK?


Acceleration is the slope of the velocity versus time graph.


[image: ]
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