

 [image:]

 Classic Computer Science Problems in Java

 DAVID KOPEC

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Jenny Stout

 	
 Technical development editor:

 	
 Frances Buontempo

 	
 Review editor:

 	
 Aleks Dragosavljević

 	
 Production editor:

 	
 Deirdre Hiam

 	
 Copy editor:

 	
 Andy Carroll

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Jean-François Morin

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617297601

contents

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Introduction

 Who should read this book

 How this book is organized: A roadmap

 About the code

 Other online resources

 1 Small problems

 The Fibonacci sequence

 A first recursive attempt

 Utilizing base cases

 Memoization to the rescue

 Keep it simple, Fibonacci

 Generating Fibonacci numbers with a stream

 Trivial compression

 Unbreakable encryption

 Getting the data in order

 Encrypting and decrypting

 Calculating pi

 The Towers of Hanoi

 Modeling the towers

 Solving The Towers of Hanoi

 Real-world applications

 Exercises

 2 Search problems

 DNA search

 Storing DNA

 Linear search

 Binary search

 A generic example

 Maze solving

 Generating a random maze

 Miscellaneous maze minutiae

 Depth-first search

 Breadth-first search

 A* search

 Missionaries and cannibals

 Representing the problem

 Solving

 Real-world applications

 Exercises

 3 Constraint-satisfaction problems

 Building a constraint-satisfaction problem framework

 The Australian map-coloring problem

 The eight queens problem

 Word search

 SEND+MORE=MONEY

 Circuit board layout

 Real-world applications

 Exercises

 4 Graph problems

 A map as a graph

 Building a graph framework

 Working with Edge and UnweightedGraph

 Finding the shortest path

 Revisiting breadth-first search (BFS)

 Minimizing the cost of building the network

 Working with weights

 Finding the minimum spanning tree

 Finding shortest paths in a weighted graph

 Dijkstra’s algorithm

 Real-world applications

 Exercises

 5 Genetic algorithms

 Biological background

 A generic genetic algorithm

 A naive test

 SEND+MORE=MONEY revisited

 Optimizing list compression

 Challenges for genetic algorithms

 Real-world applications

 Exercises

 6 K-means clustering

 Preliminaries

 The k-means clustering algorithm

 Clustering governors by age and longitude

 Clustering Michael Jackson albums by length

 K-means clustering problems and extensions

 Real-world applications

 Exercises

 7 Fairly simple neural networks

 Biological basis?

 Artificial neural networks

 Neurons

 Layers

 Backpropagation

 The big picture

 Preliminaries

 Dot product

 The activation function

 Building the network

 Implementing neurons

 Implementing layers

 Implementing the network

 Classification problems

 Normalizing data

 The classic iris data set

 Classifying wine

 Speeding up neural networks

 Neural network problems and extensions

 Real-world applications

 Exercises

 8 Adversarial search

 Basic board game components

 Tic-tac-toe

 Managing tic-tac-toe state

 Minimax

 Testing minimax with tic-tac-toe

 Developing a tic-tac-toe AI

 Connect Four

 Connect Four game machinery

 Improving minimax with alpha-beta pruning

 Minimax improvements beyond alpha-beta pruning

 Real-world applications

 Exercises

 9 Miscellaneous problems

 The knapsack problem

 The Traveling Salesman Problem

 The naive approach

 Taking it to the next level

 Phone number mnemonics

 Real-world applications

 Exercises

 10 Interview with Brian Goetz

 appendix A Glossary

 appendix B More resources

 index

front matter

 acknowledgments

 I would like to thank everyone at Manning who helped in the development of the book. I would especially like to thank development editor Jenny Stout for her kindness and for being there when it mattered during the most difficult of circumstances for me out of our three books together; technical development editor Frances Buontempo for her attention to detail; acquisition editor Brian Sawyer for believing in the Classic Computer Science Problems series and always being a voice of reason; copy editor Andy Carroll for catching my errors better than I catch them myself these past few years; Radmila Ercegovac for helping me promote the series throughout the world; and technical reviewer Jean-François Morin for finding ways to make the code more clean and modern. Also, I would like to thank Deirdre Hiam, my project editor; Katie Tennant, my proofreader; and Aleks Dragosavljevic´ my reviewing editor. There are at least a dozen more people at Manning in management, graphics, typesetting, finance, marketing, reviews, and production who worked in various stages of the book’s development that I didn’t get to know as well, but I thank them for their part.

 Thank you, Brian Goetz, for being generous with your time, and for providing an interview that will be sure to delight and inform readers. It was an honor to interview you.

 Thank you, my wife, Rebecca, and my mom, Sylvia, for your unwavering support during an unpleasant year.

 Thank you, all the reviewers: Andres Sacco, Ezra Simeloff, Jan van Nimwegen, Kelum Prabath Senanayake, Kimberly Winston-Jackson, Raffaella Ventaglio, Raushan Jha, Samantha Berk, Simon Tschöke, Víctor Durán, and William Wheeler. Your suggestions helped make this a better book. I appreciate the care and time you put into your reviews.

 Thank you, most importantly: the readers who have supported the Classic Computer Science Problems series. If you enjoy this book, leave a review. It really does help.

about this book

liveBook discussion forum

 Purchase of Classic Computer Science Problems in Java includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/classic-computer-science-problems-in-java/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 	
 [image: Kopec_1]

 	
 David Kopec is an assistant professor of Computer Science & Innovation at Champlain College in Burlington, Vermont. He is the author of Classic Computer Science Problems in Python (Manning, 2019), Classic Computer Science Problems in Swift (Manning, 2018), and Dart for Absolute Beginners (Apress, 2014). He is also a software developer and podcaster.

about the cover illustration

 The figure on the cover of Classic Computer Science Problems in Java is captioned “Dame de la Côte de Barbarie dans tout saparure,” or “Full dress of a lady of quality in Barbary, in 1700.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719-1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late eighteenth century, and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations some 200 years ago. Dress codes have changed since then, and the diversity by region and country, so rich at the time, has faded away. It’s now often hard to tell the inhabitants of one continent from another. Perhaps, viewing it optimistically, we’ve traded a cultural and visual diversity for a more varied personal life--or a more varied and interesting intellectual and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Jefferys’ pictures.

Introduction

 Thank you for purchasing Classic Computer Science Problems in Java. Java has been one of the most popular programming languages in the world for around two decades. It is arguably the dominant language in the enterprise space, higher education, and Android app development. In this book I hope to take you beyond using Java as a means to an end. Instead, I hope to bring you to a place where you are thinking about Java as a tool for computational problem solving. The problems in this intermediate book will help seasoned programmers refresh themselves on ideas from their CS education while learning some advanced features of the language. Students using Java in school and self-taught programmers will accelerate their CS education by learning generally applicable problem-solving techniques. This book covers such a diversity of problems that there is truly something for everyone.

 This book is not an introduction to Java. There are numerous excellent books from Manning and other publishers in that vein. Instead, this book assumes that you are already an intermediate or advanced Java programmer. Although this book uses features from a fairly recent version of Java (Java 11), mastery of every facet of the latest version of Java is not assumed. In fact, the book’s content was created with the assumption that it would serve as learning material to help readers achieve such mastery. On the other hand, this book is not appropriate for readers completely new to Java.

 Some say that computers are to computer science as telescopes are to astronomy. If that’s the case, then perhaps a programming language is like a telescope lens. In any event, the term “classic computer science problems” is used here to mean “programming problems typically taught in an undergraduate computer science curriculum.”

 There are certain programming problems that are given to new programmers to solve and that have become commonplace enough to be deemed classic, whether in a classroom setting during the pursuit of a bachelor’s degree (in computer science, software engineering, and the like) or within the confines of an intermediate programming textbook (for example, a first book on artificial intelligence or algorithms). A selection of such problems is what you will find in this book.

 The problems range from the trivial, which can be solved in a few lines of code, to the complex, which require the buildup of systems over multiple chapters. Some problems touch on artificial intelligence, and others simply require common sense. Some problems are practical, and other problems are fanciful.

Who should read this book

 Java is used in pursuits as diverse as mobile app development, enterprise web development, computer science education, finance software, and much more. Java is sometimes criticized for being verbose and lacking some modern features, but it has possibly touched more people’s lives since its inception than any other programming language. There must be a reason for its popularity. Java was originally imagined by its creator, James Gosling, as a better C++: a language that would offer the power of object-oriented programming, while introducing safety features and streamlining some of C++’s more frustrating edges. In this regard Java has succeeded with flying colors, in my opinion.

 Java is a great general-purpose object-oriented language. However, many people get into a rut, whether they be Android developers or enterprise web developers, where most of their time with the language feels like “API mashup.” Instead of working on solving interesting problems, they find their time being spent learning every corner of an SDK or library. This book aims to offer those programmers a respite. And there are also programmers out there who have never received an education in computer science that teaches them all of the powerful problem-solving techniques available to them. If you are one of those programmers who knows Java but does not know CS, this book is for you.

 Other programmers learn Java as a second, third, fourth, or fifth language after a long time working in software development. For them, seeing old problems they’ve already seen in another language will help them accelerate their learning of Java. For them, this book may be a good refresher before a job interview, or it might expose them to some problem-solving techniques they had not previously thought of exploiting in their work. I would encourage them to skim the table of contents to see if there are topics in this book that excite them.

 This book is for both intermediate and experienced programmers. Experienced programmers who want to deepen their knowledge of Java will find comfortably familiar problems from their computer science or programming education. Intermediate programmers will be introduced to these classic problems in the language of their choice: Java. Developers getting ready for coding interviews will likely find this book to be valuable preparation material.

 In addition to professional programmers, students enrolled in undergraduate computer science programs who have an interest in Java will likely find this book helpful. It makes no attempt to be a rigorous introduction to data structures and algorithms. This is not a data structures and algorithms textbook. You will not find proofs or extensive use of big-O notation within its pages. Instead, it is positioned as an approachable, hands-on tutorial to the problem-solving techniques that should be the end product of taking data structure, algorithm, and artificial intelligence classes.

 Once again, knowledge of Java’s syntax and semantics is assumed. A reader with zero programming experience will get little out of this book, and a programmer with zero Java experience will almost certainly struggle. In other words, Classic Computer Science Problems in Java is a book for working Java programmers and computer science students.

How this book is organized: A roadmap

 Chapter 1 introduces problem-solving techniques that will likely look familiar to most readers. Things like recursion, memoization, and bit manipulation are essential building blocks of other techniques explored in later chapters.

 This gentle introduction is followed by chapter 2, which focuses on search problems. Search is such a large topic that you could arguably place most problems in the book under its banner. Chapter 2 introduces the most essential search algorithms, including binary search, depth-first search, breadth-first search, and A*. Search algorithms are used throughout the rest of the book.

 In chapter 3, you will build a framework for solving a broad range of problems that can be abstractly defined by variables of limited domains that have constraints between them. This includes such classics as the eight queens problem, the Australian map-coloring problem, and the cryptarithmetic SEND+MORE=MONEY.

 Chapter 4 explores the world of graph algorithms, which to the uninitiated are surprisingly broad in their applicability. In this chapter, you will build a graph data structure and then use it to solve several classic optimization problems.

 Chapter 5 explores genetic algorithms, a technique that is less deterministic than most covered in the book but that sometimes can solve problems traditional algorithms cannot solve in a reasonable amount of time.

 Chapter 6 covers k-means clustering and is perhaps the most algorithmically specific chapter in the book. This clustering technique is simple to implement, easy to understand, and broadly applicable.

 Chapter 7 aims to explain what a neural network is and to give the reader a taste of what a very simple neural network looks like. It does not aim to provide comprehensive coverage of this exciting and evolving field. In this chapter, you will build a neural network from first principles, using no external libraries, so you can really see how a neural network works.

 Chapter 8 is on adversarial search in two-player perfect information games. You will learn a search algorithm known as minimax, which can be used to develop an artificial opponent that can play games like chess, checkers, and Connect Four well.

 Chapter 9 covers interesting (and fun) problems that did not quite fit anywhere else in the book.

 Finally, chapter 10 is an interview with Brian Goetz, the Java Language Architect at Oracle, who guides the development of the language. Brian has some sage advice for readers about programming and computer science.

About the code

 The source code in this book was written to adhere to version 11 of the Java language. It utilizes features of Java that only became available in Java 11, so some of the code will not run on earlier versions of Java. Instead of struggling and trying to make the examples run in an earlier version, please just download the latest version of Java before starting the book. I chose version 11 because it was the most recent LTS (long-term support) version of Java released at the time of writing. All of the code should work on more recent (and future) versions of Java. In fact, a significant amount of the code would work on Java versions going all the way back to Java 8. I know that many programmers are still stuck on Java 8 for various reasons (cough Android), but I wanted to use a more recent version of Java to provide additional value by teaching a couple of the language’s newer features.

 This book uses only the Java standard library, so all of the code in this book should run on any platform where Java is supported (macOS, Windows, GNU/ Linux, and so on). The code in this book was tested against only OpenJDK (the main Java implementation available from http://openjdk.java.net), although it is unlikely any of the code would have a problem running in an alternative implementation of Java.

 This book does not explain how to use Java tools like editors, IDEs, and debuggers. The book’s source code is available online from the GitHub repository: https://github .com/davecom/ClassicComputerScienceProblemsInJava. The source code is organized into folders by chapter. As you read each chapter, you will see the name of a source file in the header of each code listing. You can find that source file in its respective folder in the repository.

 Note that the repository is organized as an Eclipse workspace. Eclipse is a popular free Java IDE that is available for all three major operating systems and is available from eclipse.org. The easiest way to use the source code repository is to open it as an Eclipse workspace after downloading it. You can then expand the src directory, expand the package representing a chapter, right-click (or control-click on a Mac) a file containing a main() method, and select Run As > Java Application from the pop-up menu to run an example problem’s solution. I will not be providing a tutorial on Eclipse because I think it would come across as filler to most intermediate programmers, who should find getting started with it quite straightforward. In addition, I expect many programmers will choose to use this book with alternative Java environments.

 Since it is all just standard Java, you can also run any of the source code from this book in your IDE of choice, be that NetBeans, IntelliJ, or some other environment that you are comfortable with. If you choose to do that, take note that I cannot offer support importing the projects into your chosen environment, although that should be fairly trivial. Most IDEs can import from Eclipse.

 In short, if you are starting from scratch, then the easiest way to get your computer set up with the source code from this book is to do the following:

 	
 Download and install Java 11 or later from openjdk.java.net.

 	
 Download and install Eclipse from eclipse.org.

 	
 Download the book’s source code from the repository at https://github.com/ davecom/ClassicComputerScienceProblemsInJava.

 	
 Open the entire repository as a workspace in Eclipse.

 	
 Right-click a source code file you want to run and select Run As > Java Application.

 There are no examples in this book that produce graphical output or that make use of a graphical user interface (GUI). Why? The goal is to solve the posed problems with solutions that are as concise and readable as possible. Often, doing graphics gets in the way or makes solutions significantly more complex than they need to be to illustrate the technique or algorithm in question.

 Further, by not making use of any GUI framework, all of the code in the book is eminently portable. It can as easily run on an embedded distribution of Java running on a command-line interface under Linux as it can on a desktop running Windows. Also, a conscious decision was made to use only packages from the Java standard library instead of any external libraries, as many advanced Java books do. Why? The goal is to teach problem-solving techniques from first principles, not to “install a solution.” By having to work through every problem from scratch, you will hopefully gain an understanding about how popular libraries work behind the scenes. At a minimum, using only the standard library makes the code in this book more portable and easier to run.

 This is not to say that graphical solutions are not sometimes more illustrative of an algorithm than text-based solutions. It simply is not the focus of this book. It would add another layer of unnecessary complexity.

Other online resources

 This is the third book in a series titled Classic Computer Science Problems published by Manning. The first book was Classic Computer Science Problems in Swift, published in 2018, which was followed by Classic Computer Science Problems in Python, published in 2019. In each book in the series, we aim to provide language-specific insight while teaching through the lens of the same (mostly) computer science problems.

 If you enjoy this book and plan to learn another language covered by the series, you may find going from one book to another an easy way to improve your mastery of that language. For now, the series covers Swift, Python, and Java. I wrote the first three books myself, because I have significant experience in all of those languages, but we are already discussing plans for future books in the series coauthored by people who are experts in other languages. I encourage you to look out for them if you enjoy this book. For more information about the series, visit https://classicproblems.com/.

1 Small problems

 To get started, we will explore some simple problems that can be solved with no more than a few relatively short functions. Although these problems are small, they will still allow us to explore some interesting problem-solving techniques. Think of them as a good warm-up.

1.1 The Fibonacci sequence

 The Fibonacci sequence is a sequence of numbers such that any number, except for the first and second, is the sum of the previous two:

 0, 1, 1, 2, 3, 5, 8, 13, 21...

 The value of the first Fibonacci number in the sequence is 0. The value of the fourth Fibonacci number is 2. It follows that to get the value of any Fibonacci number, n, in the sequence, one can use the formula

 fib(n) = fib(n - 1) + fib(n - 2)

1.1.1 A first recursive attempt

 The preceding formula for computing a number in the Fibonacci sequence (illustrated in figure 1.1) is a form of pseudocode that can be trivially translated into a recursive Java method. (A recursive method is a method that calls itself.) This mechanical translation will serve as our first attempt at writing a method to return a given value of the Fibonacci sequence.

 [image: 1-1]

 Figure 1.1 The height of each stickman is the previous two stickmen’s heights added together.

 Listing 1.1 Fib1.java

 package chapter1;

public class Fib1 {

 // This method will cause a java.lang.StackOverflowError
 private static int fib1(int n) {
 return fib1(n - 1) + fib1(n - 2);
 }

 Let’s try to run this method by calling it with a value.

 Listing 1.2 Fib1.java continued

 public static void main(String[] args) {
 // Don't run this!
 System.out.println(fib1(5));
 }
}

 Uh-oh! If we try to run Fib1.java, we generate an exception:

 Exception in thread "main" java.lang.StackOverflowError

 The issue is that fib1() will run forever without returning a final result. Every call to fib1() results in another two calls of fib1() with no end in sight. We call such a circumstance infinite recursion (see figure 1.2), and it is analogous to an infinite loop.

 [image: 1-2]

 Figure 1.2 The recursive function fib(n) calls itself with the arguments n-1 and n-2.

1.1.2 Utilizing base cases

 Notice that until you run fib1(), there is no indication from your Java environment that there is anything wrong with it. It is the duty of the programmer to avoid infinite recursion, not the compiler. The reason for the infinite recursion is that we never specified a base case. In a recursive function, a base case serves as a stopping point.

 In the case of the Fibonacci sequence, we have natural base cases in the form of the special first two sequence values, 0 and 1. Neither 0 nor 1 is the sum of the previous two numbers in the sequence. Instead, they are the special first two values. Let’s try specifying them as base cases.

 Listing 1.3 Fib2.java

 package chapter1;

public class Fib2 {
 private static int fib2(int n) {
 if (n < 2) { return n; }
 return fib2(n - 1) + fib2(n - 2);
 }

 Note The fib2() version of the Fibonacci method returns 0 as the zeroth number (fib2(0)), rather than the first number, as in our original proposition. In a programming context, this kind of makes sense because we are used to sequences starting with a zeroth element.

 fib2() can be called successfully and will return correct results. Try calling it with some small values.

 Listing 1.4 Fib2.java continued

 public static void main(String[] args) {
 System.out.println(fib2(5));
 System.out.println(fib2(10));
 }
}

 Do not try calling fib2(40). It may take a very long time to finish executing! Why? Every call to fib2() results in two more calls to fib2() by way of the recursive calls fib2(n - 1) and fib2(n - 2) (see figure 1.3). In other words, the call tree grows exponentially. For example, a call of fib2(4) results in this entire set of calls:

 fib2(4) -> fib2(3), fib2(2)
fib2(3) -> fib2(2), fib2(1)
fib2(2) -> fib2(1), fib2(0)
fib2(2) -> fib2(1), fib2(0)
fib2(1) -> 1
fib2(1) -> 1
fib2(1) -> 1
fib2(0) -> 0
fib2(0) -> 0

 [image: 1-3]

 Figure 1.3 Every non-base-case call of fib2() results in two more calls of fib2().

 If you count them (and as you will see if you add some print calls), there are 9 calls to fib2() just to compute the 4th element! It gets worse. There are 15 calls required to compute element 5, 177 calls to compute element 10, and 21,891 calls to compute element 20. We can do better.

1.1.3 Memoization to the rescue

 Memoization is a technique in which you store the results of computational tasks when they are completed so that when you need them again, you can look them up instead of needing to compute them a second (or millionth) time (see figure 1.4).1

 [image: 1-4]

 Figure 1.4 The human memoization machine

 Let’s create a new version of the Fibonacci method that utilizes a Java map for memoization purposes.

 Listing 1.5 Fib3.java

 package chapter1;

import java.util.HashMap;
import java.util.Map;

public class Fib3 {

 // Map.of() was introduced in Java 9 but returns
 // an immutable Map
 // This creates a map with 0->0 and 1->1
 // which represent our base cases
 static Map<Integer, Integer> memo = new HashMap<>(Map.of(0, 0, 1, 1));

 private static int fib3(int n) {
 if (!memo.containsKey(n)) {
 // memoization step
 memo.put(n, fib3(n - 1) + fib3(n - 2));
 }
 return memo.get(n);
 }

 You can now safely call fib3(40).

 Listing 1.6 Fib3.java continued

 public static void main(String[] args) {
 System.out.println(fib3(5));
 System.out.println(fib3(40));
 }
}

 A call to fib3(20) will result in just 39 calls of fib3() as opposed to the 21,891 of fib2() resulting from the call fib2(20). memo is prefilled with the earlier base cases of 0 and 1, saving fib3() from the complexity of another if statement.

1.1.4 Keep it simple, Fibonacci

 There is an even more performant option. We can solve Fibonacci with an old-fashioned iterative approach.

 Listing 1.7 Fib4.java

 package chapter1;

public class Fib4 {

 private static int fib4(int n) {
 int last = 0, next = 1; // fib(0), fib(1)
 for (int i = 0; i < n; i++) {
 int oldLast = last;
 last = next;
 next = oldLast + next;
 }
 return last;
 }

 public static void main(String[] args) {
 System.out.println(fib4(20));
 System.out.println(fib4(40));
 }
}

 The gist is, last is being set to the previous value of next, and next is being set to the previous value of last plus the previous value of next. A temporary variable, oldLast, facilitates the exchange.

 With this approach, the body of the for loop will run n - 1 times. In other words, this is the most efficient version yet. Compare 19 runs of the for loop body to 21,891 recursive calls of fib2() for the 20th Fibonacci number. That could make a serious difference in a real-world application!

 In the recursive solutions, we worked backward. In this iterative solution, we work forward. Sometimes recursion is the most intuitive way to solve a problem. For example, the meat of fib1() and fib2() is pretty much a mechanical translation of the original Fibonacci formula. However, naive recursive solutions can also come with significant performance costs. Remember, any problem that can be solved recursively can also be solved iteratively.

1.1.5 Generating Fibonacci numbers with a stream

 So far, we have written methods that output a single value in the Fibonacci sequence. What if we want to output the entire sequence up to some value instead? It is easy to convert fib4() into a Java stream using the generator pattern. When the generator is iterated, each iteration will spew a value from the Fibonacci sequence using a lambda function that returns the next number.

 Listing 1.8 Fib5.java

 package chapter1;

import java.util.stream.IntStream;

public class Fib5 {
 private int last = 0, next = 1; // fib(0), fib(1)

 public IntStream stream() {
 return IntStream.generate(() -> {
 int oldLast = last;
 last = next;
 next = oldLast + next;
 return oldLast;
 });
 }

 public static void main(String[] args) {
 Fib5 fib5 = new Fib5();
 fib5.stream().limit(41).forEachOrdered(System.out::println);
 }
}

 If you run Fib5.java, you will see 41 numbers in the Fibonacci sequence printed. For each number in the sequence, Fib5 runs the generate() lambda once, which manipulates the last and next instance variables that maintain state. The limit() call ensures that the potentially infinite stream stops spewing numbers when it reaches its 41st item.

1.2 Trivial compression

 Saving space (virtual or real) is often important. It is more efficient to use less space, and it can save money. If you are renting an apartment that is bigger than you need for your things and family, you could “downsize” to a smaller place that is less expensive. If you are paying by the byte to store your data on a server, you may want to compress it so that its storage costs you less. Compression is the act of taking data and encoding it (changing its form) in such a way that it takes up less space. Decompression is reversing the process, returning the data to its original form.

 If it is more storage-efficient to compress data, then why is all data not compressed? There is a trade-off between time and space. It takes time to compress a piece of data and to decompress it back into its original form. Therefore, data compression only makes sense in situations where small size is prioritized over fast execution. Think of large files being transmitted over the internet. Compressing them makes sense because it will take longer to transfer the files than it will to decompress them once received. Further, the time taken to compress the files for their storage on the original server only needs to be accounted for once.

 The easiest data compression wins come about when you realize that data storage types use more bits than are strictly required for their contents. For instance, thinking low-level, if a signed integer that will never exceed 32,767 is being stored as a 64-bit long in memory, it is being stored inefficiently. It could instead be stored as a 16-bit short. This would reduce the space consumption for the actual number by 75% (16 bits instead of 64 bits). If millions of such numbers are being stored inefficiently, it can add up to megabytes of wasted space.

 In Java programming, sometimes for the sake of simplicity (which is a legitimate goal, of course), the developer is shielded from thinking in bits. The vast majority of Java code in the wild uses the 32-bit int type for storing integers. There is really nothing wrong with that for the vast majority of applications. However, if you are storing millions of integers, or you need integers of a certain precision, then it may be worth considering what the appropriate type for them is.

 Note If you are a little rusty regarding binary, recall that a bit is a single value that is either a 1 or a 0. A sequence of 1s and 0s is read in base 2 to represent a number. For the purposes of this section, you do not need to do any math in base 2, but you do need to understand that the number of bits that a type stores determines how many different values it can represent. For example, 1 bit can represent two values (0 or 1), 2 bits can represent four values (00, 01, 10, 11), 3 bits can represent eight values, and so on.

 If the number of possible different values that a type can represent is less than the number of values that the bits being used to store it can represent, it can likely be more efficiently stored. Consider the nucleotides that form a gene in DNA. Each nucleotide can only be one of four values: A, C, G, or T. Yet, if the gene is stored as a Java String, which can be thought of as a collection of Unicode characters, each nucleotide will be represented by a character, which generally requires 16 bits of storage in Java (Java uses the UTF-16 encoding by default). In binary, just 2 bits are needed to store a type with four possible values: 00, 01, 10, and 11 are the four different values that can be represented by 2 bits. If A is assigned 00, C is assigned 01, G is assigned 10, and T is assigned 11, the storage required for a string of nucleotides can be reduced by 87.5% (from 16 bits to 2 bits per nucleotide).

 [image: 1-5]

 Figure 1.5 Compressing a String representing a gene into a 2-bit-per-nucleotide bit string

 Instead of storing our nucleotides as a String, we can store them as a bit string (see figure 1.5). A bit string is exactly what it sounds like: an arbitrary-length sequence of 1s and 0s. Fortunately, the Java standard library contains an off-the-shelf construct for working with bit strings of arbitrary length called BitSet. The following code converts a String composed of As, Cs, Gs, and Ts into a string of bits and back again. The string of bits is stored within a BitSet via the compress() method. We will also implement a decompress() method to convert back into a String.

 Listing 1.9 CompressedGene.java

 package chapter1;

import java.util.BitSet;

public class CompressedGene {
 private BitSet bitSet;
 private int length;

 public CompressedGene(String gene) {
 compress(gene);
 }

 A CompressedGene is provided a String of characters representing the nucleotides in a gene, and it internally stores the sequence of nucleotides as a BitSet. The constructor’s main responsibility is to initialize the BitSet construct with the appropriate data. The constructor calls compress() to do the dirty work of actually converting the provided String of nucleotides into a BitSet.

 Next, let’s look at how we can actually perform the compression.

 Listing 1.10 CompressedGene.java continued

 private void compress(String gene) {
 length = gene.length();
 // reserve enough capacity for all of the bits
 bitSet = new BitSet(length * 2);
 // convert to upper case for consistency
 final String upperGene = gene.toUpperCase();
 // convert String to bit representation
 for (int i = 0; i < length; i++) {
 final int firstLocation = 2 * i;
 final int secondLocation = 2 * i + 1;
 switch (upperGene.charAt(i)) {
 case 'A': // 00 are next two bits
 bitSet.set(firstLocation, false);
 bitSet.set(secondLocation, false);
 break;
 case 'C': // 01 are next two bits
 bitSet.set(firstLocation, false);
 bitSet.set(secondLocation, true);
 break;
 case 'G': // 10 are next two bits
 bitSet.set(firstLocation, true);
 bitSet.set(secondLocation, false);
 break;
 case 'T': // 11 are next two bits
 bitSet.set(firstLocation, true);
 bitSet.set(secondLocation, true);
 break;
 default:
 throw new IllegalArgumentException("The provided gene String contains characters other than ACGT");
 }
 }
}

 The compress() method looks at each character in the String of nucleotides sequentially. When it sees an A, it adds 00 to the bit string. When it sees a C, it adds 01, and so on. For the BitSet class, the Boolean values true and false serve as markers for 1 and 0, respectively.

 Every nucleotide is added using two calls of the set() method. In other words, we continually add two new bits to the end of the bit string. The two bits that are added are determined by the type of the nucleotide.

 Finally, we will implement decompression.

 Listing 1.11 CompressedGene.java continued

 public String decompress() {
 if (bitSet == null) {
 return "";
 }
 // create a mutable place for characters with the right capacity
 StringBuilder builder = new StringBuilder(length);
 for (int i = 0; i < (length * 2); i += 2) {
 final int firstBit = (bitSet.get(i) ? 1 : 0);
 final int secondBit = (bitSet.get(i + 1) ? 1 : 0);
 final int lastBits = firstBit << 1 | secondBit;
 switch (lastBits) {
 case 0b00: // 00 is 'A'
 builder.append('A');
 break;
 case 0b01: // 01 is 'C'
 builder.append('C');
 break;
 case 0b10: // 10 is 'G'
 builder.append('G');
 break;
 case 0b11: // 11 is 'T'
 builder.append('T');
 break;
 }
 }
 return builder.toString();
}

 decompress() reads two bits from the bit string at a time, and it uses those two bits to determine which character to add to the end of the String representation of the gene, which is built using a StringBuilder. The two bits are composed together in the variable lastBits. lastBits is made by shifting the first bit back one place, and then ORing (| operator) the result with the second bit. When a value is shifted, using the << operator, the space left behind is replaced with 0s. An OR says, “If either of these bits are a 1, put a 1.” Therefor ORing secondBit with a 0 will always just result in the value of secondBit. Let’s test it out.

 Listing 1.12 CompressedGene.java continued

 public static void main(String[] args) {
 final String original = "TAGGGATTAACCGTTATATATATATAGCCATGGATCGATTATATAGGGATTAACCGTTATATATATATAGCCATGGATCGATTATA";
 CompressedGene compressed = new CompressedGene(original);
 final String decompressed = compressed.decompress();
 System.out.println(decompressed);
 System.out.println("original is the same as decompressed: " + original.equalsIgnoreCase(decompressed));
 }

}

 The main() method does a compression and a decompression. It checks whether the final result is the same as the original String using equalsIgnoreCase().

 Listing 1.13 CompressedGene.java output

 TAGGGATTAACCGTTATATATATATAGCCATGGATCGATTATATAGGGATTAACCGTTATATATATATAGCCATGGATCGATTATA
original is the same as decompressed: true

1.3 Unbreakable encryption

 A one-time pad is a way of encrypting a piece of data by combining it with meaningless random dummy data in such a way that the original cannot be reconstituted without access to both the product and the dummy data. In essence, this leaves the encrypter with a key pair. One key is the product, and the other is the random dummy data. One key on its own is useless; only the combination of both keys can unlock the original data. When performed correctly, a one-time pad is a form of unbreakable encryption. Figure 1.6 shows the process.

 [image: 1-6]

 Figure 1.6 A one-time pad results in two keys that can be separated and then recombined to re-create the original data.

1.3.1 Getting the data in order

 In this example, we will encrypt a String using a one-time pad. One way of thinking about a Java String is as a sequence of UTF-16 characters (with UTF-16 being a Unicode character encoding). Every UTF-16 character is 16 bits (hence the 16) and can be further subdivided into 2 bytes (8 bits each). A String can be converted into an array of bytes, represented as an array of the byte type, through the getBytes() method. Likewise, an array of bytes can be converted back into a String using one of the built-in constructors on the String type. We will need an intermediary form to store the key pair, which will consist of two arrays of byte. That is the purpose of the KeyPair class.

 Listing 1.14 KeyPair.java

 package chapter1;

public final class KeyPair {
 public final byte[] key1;
 public final byte[] key2;
 KeyPair(byte[] key1, byte[] key2) {
 this.key1 = key1;
 this.key2 = key2;
 }
}

 There are three criteria that the dummy data used in a one-time-pad encryption operation must meet for the resulting product to be unbreakable. The dummy data must be the same length as the original data, truly random, and completely secret. The first and third criteria are common sense. If the dummy data repeats because it is too short, there could be an observed pattern. If one of the keys is not truly secret (perhaps it is reused elsewhere or partially revealed), then an attacker has a clue. The second criterion poses a question all its own: can we produce truly random data? The answer for most computers is no.

 In this example we will use the pseudo-random data-generating function nextBytes() from the standard library’s Random class. Our data will not be truly random, in the sense that the Random class is using a pseudo-random number generator behind the scenes, but it will be close enough for our purposes. Let’s generate a random key for use as dummy data.

 Listing 1.15 UnbreakableEncryption.java

 package chapter1;

import java.util.Random;

public class UnbreakableEncryption {
 // Generate *length* random bytes
 private static byte[] randomKey(int length) {
 byte[] dummy = new byte[length];
 Random random = new Random();
 random.nextBytes(dummy);
 return dummy;
 }

 This method creates a byte array filled with length random bytes. Ultimately, the bytes will serve as the “dummy” key in our key pair.

1.3.2 Encrypting and decrypting

 How will the dummy data be combined with the original data that we want to encrypt? The XOR operation will serve this purpose. XOR is a logical bitwise (operates at the bit level) operation that returns true when one of its operands is true but returns false when both are true or neither is true. As you may have guessed, XOR stands for exclusive or.

 In Java, the XOR operator is ^. In the context of the bits of binary numbers, XOR returns 1 for 0 ^ 1 and 1 ^ 0, but 0 for 0 ^ 0 and 1 ^ 1. If the bits of two numbers are combined using XOR, a helpful property is that the product can be recombined with either of the operands to produce the other operand:

 C = A ^ B
A = C ^ B
B = C ^ A

 This key insight forms the basis of one-time-pad encryption. To form our product, we will simply XOR bytes from our original String with the randomly generated bytes of the same length (as produced by randomKey()). Our returned key pair will be the dummy key and the product key, as depicted in figure 1.6.

 Listing 1.16 UnbreakableEncryption.java continued

 public static KeyPair encrypt(String original) {
 byte[] originalBytes = original.getBytes();
 byte[] dummyKey = randomKey(originalBytes.length);
 byte[] encryptedKey = new byte[originalBytes.length];
 for (int i = 0; i < originalBytes.length; i++) {
 // XOR every byte
 encryptedKey[i] = (byte) (originalBytes[i] ^ dummyKey[i]);
 }
 return new KeyPair(dummyKey, encryptedKey);
}

 Decryption is simply a matter of recombining the key pair we generated with encrypt(). This is achieved once again by doing an XOR operation between each and every bit in the two keys. The ultimate output must be converted back to a String. This is accomplished using a constructor from the String class that takes a byte array as its lone argument.

 Listing 1.17 UnbreakableEncryption.java continued

 public static String decrypt(KeyPair kp) {
 byte[] decrypted = new byte[kp.key1.length];
 for (int i = 0; i < kp.key1.length; i++) {
 // XOR every byte
 decrypted[i] = (byte) (kp.key1[i] ^ kp.key2[i]);
 }
 return new String(decrypted);
}

 If our one-time-pad encryption truly works, we should be able to encrypt and decrypt the same Unicode string without issue.

 Listing 1.18 UnbreakableEncryption.java continued

 public static void main(String[] args) {
 KeyPair kp = encrypt("One Time Pad!");
 String result = decrypt(kp);
 System.out.println(result);
 }
}

 If your console outputs One Time Pad! then everything worked. Try it out with your own sentences.

1.4 Calculating pi

 The mathematically significant number pi (π or 3.14159...) can be derived using many formulas. One of the simplest is the Leibniz formula. It posits that the convergence of the following infinite series is equal to pi:

 π = 4/1 - 4/3 + 4/5 - 4/7 + 4/9 - 4/11...

 You will notice that the infinite series’ numerator remains 4 while the denominator increases by 2, and the operation on the terms alternates between addition and subtraction.

 We can model the series in a straightforward way by translating pieces of the formula into variables in a function. The numerator can be a constant 4. The denominator can be a variable that begins at 1 and is incremented by 2. The operation can be represented as either -1 or 1 based on whether we are adding or subtracting. Finally, the variable pi is used in listing 1.19 to collect the sum of the series as the for loop proceeds.

 Listing 1.19 PiCalculator.java

 package chapter1;

public class PiCalculator {

 public static double calculatePi(int nTerms) {
 final double numerator = 4.0;
 double denominator = 1.0;
 double operation = 1.0;
 double pi = 0.0;
 for (int i = 0; i < nTerms; i++) {
 pi += operation * (numerator / denominator);
 denominator += 2.0;
 operation *= -1.0;
 }
 return pi;
 }

 public static void main(String[] args) {
 System.out.println(calculatePi(1000000));
 }
}

 Tip Java doubles are 64-bit floating-point numbers, and they offer more precision than the 32-bit type float.

 This function is an example of how rote conversion between formula and programmatic code can be both simple and effective in modeling or simulating an interesting concept. Rote conversion is a useful tool, but we must keep in mind that it is not necessarily the most efficient solution. Certainly, the Leibniz formula for pi can be implemented with more efficient or compact code.

OEBPS/OEBPS/Images/1-4.png

OEBPS/OEBPS/Images/1-6.png

OEBPS/OEBPS/Images/1-2.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/1-1.png

OEBPS/cover1.jpeg

OEBPS/OEBPS/Images/1-5.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/1-3.png

OEBPS/OEBPS/Images/Kopec_1.png

