

 inside front cover

 [image:]

Praise for the First Edition

 “This book does the impossible: it makes math fun and easy!”

 —Sander Rossel, COAS Software Systems

 “Do you want to treat yourself to learning algorithms in the same way that you would read your favorite novel? If so, this is the book you need!”

 —Sankar Ramanathan, IBM Analytics

 “In today’s world, there is no aspect of our lives that isn’t optimized by some algorithm. Let this be the first book you pick up if you want a well-explained introduction to the topic.”

 —Amit Lamba, Tech Overture, LLC

 “Algorithms are not boring! This book was fun and insightful for both my students and me.”

 —Christopher Haupt, Mobirobo, Inc

 [image:]

 Grokking Algorithms

 Second Edition

 Aditya Y. Bhargava

 Foreword by Daniel Zingaro

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Ian Hough

 	
 Technical editor:

 	
 David Eisenstat

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Alisa Larson

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Tony Holdroyd

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Leslie Haimes

 ISBN: 9781633438538

 Dedication

 For my parents, Sangeeta and Yogesh

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 1 introduction to algorithms

 Binary search

 Big O notation

 2 selection sort

 How memory works

 Arrays and linked lists

 Which is used more, arrays or linked lists?

 Selection sort

 Example code listing

 3 recursion

 Recursion

 Base case and recursive case

 The stack

 4 quicksort

 Divide and conquer

 Quicksort

 Big O notation revisited

 5 hash tables

 Hash functions

 Use cases

 Collisions

 Performance

 6 breadth-first search

 Introduction to graphs

 What is a graph?

 Breadth-first search

 Implementing the graph

 Implementing the algorithm

 7 trees

 Your first tree

 A space odyssey: Depth-first search

 Binary trees

 Huffman coding

 8 balanced trees

 A balancing act

 Shorter trees are faster

 AVL trees: A type of balanced tree

 Splay trees

 B-trees

 9 Dijkstra’s algorithm

 Working with Dijkstra’s algorithm

 Terminology

 Trading for a piano

 Negative-weight edges

 Implementation

 10 greedy algorithms

 The classroom scheduling problem

 The knapsack problem

 The set-covering problem

 11 dynamic programming

 The knapsack problem (revisited)

 Knapsack problem FAQ

 Longest common substring

 12 k-nearest neighbors

 Classifying oranges vs. grapefruit

 Building a recommendations system

 Regression

 Introduction to machine learning

 A high-level overview of training an ML model

 13 where to go next

 Linear regression

 Inverted indexes

 The Fourier transform

 Parallel algorithms

 map/reduce

 Bloom filters and HyperLogLog

 HTTPS and the Diffie–Hellman key exchange

 Locality-sensitive hashing

 Min heaps and priority queues

 Linear programming

 Epilogue

 Appendix A. performance of AVL trees

 Appendix B. NP-hard problems

 Appendix C. answers to exercises

 index

 front matter

foreword

 More people than ever need to learn how to program. Sure, some people literally program for their jobs (software engineers or web developers, for example). But many other jobs, not historically requiring programming, have a programming component now or will in the future. Programming also helps people understand the technological world in which they live.

 Unfortunately, the benefits of programming are not equally distributed. In North American computer science (CS) programs, for example, we have a very low participation of women and some ethnic/racial groups. It’s critical that we be able to expand programming and CS to a more diverse group. The solution will involve making progress on a number of fronts, including overcoming bias, training more teachers, and offering more diversified learning experiences. We need to help more people “get in.”

 I’m excited about Bhargava’s book because it offers a new way to get into algorithms, which is a key component of effective programming. Some people will tell you that there’s only one way to learn algorithms: find a dense mathematical book about algorithms, read it, and, like, understand everything. But that privileges the types of people who can learn that way, who have time to learn that way, and who need to learn that way in the first place. It also assumes that we know why someone wants to learn algorithms, which, let’s face it, is not a fair assumption to make.

 To be clear, some of my favorite CS books are exactly those kinds of mathematically oriented algorithms books. Those books work for me. They work for a lot of CS professors. But maybe that’s the problem: it’s too easy to assume that the way we learn is the same way that others learn. What we need are all kinds of learning resources about all kinds of CS topics, each designed for a particular audience.

 Bhargava’s book is intentionally designed for people who want a nonmathematical introduction to algorithms. What impresses me most here is not what Bhargava chose to include but what he chose not to include. You can’t include everything in a book like this—that would be overwhelming and is not the point.

 Bhargava’s teaching expertise enables him to wring a lot of teaching out of not a lot of pages. In reading the “Dynamic Programming” chapter, for example, I was struck by the care with which Bhargava answers a lot of anticipated reader questions that other algorithm books would not answer.

 I hope that this book helps you learn, whether you’re trying algorithms for the first time or you’ve struggled to find the right resource until now. Happy Grokking!

 —Daniel Zingaro, University of Toronto

preface

 I first got into programming as a hobby. Visual Basic 6 for Dummies taught me the basics, and I kept reading books to learn more. But the subject of algorithms was impenetrable for me. I remember savoring the table of contents of my first algorithms book, thinking “I’m finally going to understand these topics!” But it was dense stuff, and I gave up after a few weeks. It wasn’t until I had my first good algorithms professor that I realized how simple and elegant these ideas were.

 I wrote my first illustrated blog post back in 2012. I’m a visual learner, and I really liked the illustrated style. Since then, I’ve written a few illustrated posts on functional programming, Git, machine learning, and concurrency. By the way, I was a mediocre writer when I started out. Explaining technical concepts is hard. Coming up with good examples takes time, and explaining a difficult concept takes time. So it’s easiest to gloss over the hard stuff. I thought I was doing a pretty good job until after one of my posts got popular, a coworker came up to me and said, “I read your post, and I still don’t understand this.” I still had a lot to learn about writing.

 Somewhere in the middle of writing these blog posts, Manning reached out to me and asked if I wanted to write an illustrated book. Well, it turns out that Manning editors know a lot about explaining technical concepts, and they taught me how to teach. I wrote this book to scratch a particular itch: I wanted to write a book that explained hard technical topics well, and I wanted an easy-to-read algorithms book.

 The first edition of this book came out in 2016. Since then, more than 100,000 people have read this book. I’m delighted to see how many people have connected with the visual learning style.

 With this second edition, my goal remains the same. In this book, I use illustrations and memorable examples to make concepts stick. The book is designed for readers who know how to code and want to learn more about algorithms without any math knowledge required.

 The second edition fills some gaps in the first edition. I heard from a lot of readers that they wanted me to explain trees. There are now two chapters on trees in this book. I have also expanded the section on NP completeness. NP-complete is a very abstract concept, and I wanted an explanation that would make it more concrete. If you feel the same way, I hope the section on NP-complete fills that gap for you.

 My writing has come a long way since that first blog post, and I hope you find this book an easy and informative read.

acknowledgments

 Kudos to Manning for giving me the chance to write this book and letting me have a lot of creative freedom with it. Thanks to publisher Marjan Bace, Mike Stephens for getting me on board, and Ian Hough for being an incredibly responsive and helpful editor. Thanks also to the people on Manning’s production team: Paul Wells, Debbie Holmgren, and all the others behind the scenes. In addition, I want to thank the many people who read the manuscript and offered suggestions: Daniel Zingaro, Ben Vinegar, Alexander Manning, and Maggie Wenger. Thanks to David Eisenstat, my technical reviewer, and Tony Holdroyd, the Manning technical proofreader, for catching my many errors.

 Thanks to the people who helped me reach this point: Bert Bates for teaching me how to write; the folks on the Flashkit game board for teaching me how to code; the many friends who helped by reviewing chapters, giving advice, and letting me try out different explanations, including Ben Vinegar, Karl Puzon, Alex Manning, Esther Chan, Anish Bhatt, Michael Glass, Nikrad Mahdi, Charles Lee, Jared Friedman, Hema Manickavasagam, Hari Raja, Murali Gudipati, Srinivas Varadan, and others, and Gerry Brady for teaching me algorithms. Another big thank you to algorithms academics like CLRS, Knuth, and Strang. I’m truly standing on the shoulders of giants.

 Dad, Mom, Priyanka, and the rest of the family: thank you for your constant support. And a big thank you to my wife Maggie, and my son Yogi. There are many adventures ahead of us, and some of them don’t involve staying inside on a Friday night rewriting paragraphs.

 To all the reviewers—Abhishek Koserwal, Alex Lucas, Andres Sacco, Arun Saha, Becky Huett, Cesar Augusto Orozco Manotas, Christian Sutton, Diógines Goldoni, Dirk Gómez, Ed Bacher, Eder Andres Avila Niño, Frans Oilinki, Ganesh Swaminathan, Giampiero Granatella, Glen Yu, Greg Kreiter, Javid Asgarov, João Ferreira, Jobinesh Purushothaman, Joe Cuevas, Josh McAdams, Krishna Anipindi, Krzysztof Kamyczek, Kyrylo Kalinichenko, Lakshminarayanan AS, Laud Bentil, Matteo Battista, Mikael Byström, Nick Rakochy, Ninoslav Cerkez, Oliver Korten, Ooi Kuan San, Pablo Varela, Patrick Regan, Patrick Wanjau, Philipp Konrad, Piotr Pindel, Rajesh Mohanan, Ranjit Sahai, Rohini Uppuluri, Roman Levchenko, Sambaran Hazra, Seth MacPherson, Shankar Swamy, Srihari Sridharan, Tobias Kopf, Vivek Veerappan, William Jamir Silva, and Xiangbo Mao—your suggestions helped make this a better book.

 Finally, a big thank you to all the readers who took a chance on this book, and the readers who gave me feedback in the book’s forum. You really helped make this book better.

about this book

 Grokking Algorithms is designed to be easy to follow. I avoid big leaps of thought. Any time a new concept is introduced, I explain it right away or tell you when I’ll explain it. Core concepts are reinforced with exercises and multiple explanations so that you can check your assumptions and make sure you’re following along.

 I lead with examples. Instead of writing symbol soup, my goal is to make it easy for you to visualize these concepts. I also think we learn best by being able to recall something we already know, and examples make recall easier. So when you’re trying to remember the difference between arrays and linked lists (explained in chapter 2), you can just think about getting seated for a movie. Also, at the risk of stating the obvious, I’m a visual learner. This book is chock-full of images.

 The contents of the book are carefully curated. There’s no need to write a book that covers every sorting algorithm—that’s why we have Wikipedia and Khan Academy. All the algorithms I’ve included are practical. I’ve found them useful in my job as a software engineer, and they provide a good foundation for more complex topics. Happy reading!

 How to use this book

 The order and contents of this book have been carefully designed. If you’re interested in a topic, feel free to jump ahead. Otherwise, read the chapters in order—they build on each other.

 I strongly recommend executing the code for the examples yourself. I can’t stress this part enough. Just type out my code samples verbatim (or download them from https://www.manning.com/books/grokking-algorithms-second-edition or https://github.com/egonschiele/grokking_algorithms) and execute them. You’ll retain a lot more if you do.

 I also recommend doing the exercises in this book. The exercises are short—usually just a minute or two, sometimes 5 to 10 minutes. They will help you check your thinking, so you’ll know when you’re off track before you’ve gone too far.

 Who should read this book?

 This book is aimed at anyone who knows the basics of coding and wants to understand algorithms. Maybe you already have a coding problem and are trying to find an algorithmic solution. Or maybe you want to understand what algorithms are useful for. Here’s a short, incomplete list of people who will probably find this book useful:

 	
 Hobbyist coders

 	
 Coding boot camp students

 	
 Computer science grads looking for a refresher

 	
 Physics/math/other grads who are interested in programming

 How this book is organized: A roadmap

 The first three chapters of this book lay the foundations:

 	
 Chapter 1—You’ll learn your first practical algorithm: binary search. You also learn to analyze the speed of an algorithm using big O notation. Big O notation is used throughout the book to analyze how slow or fast an algorithm is.

 	
 Chapter 2—You’ll learn about two fundamental data structures: arrays and linked lists. These data structures are used throughout the book, and they’re used to make more advanced data structures like hash tables (chapter 5).

 	
 Chapter 3—You’ll learn about recursion, a handy technique used by many algorithms (such as quicksort, covered in chapter 4).

 In my experience, big O notation and recursion are challenging topics for beginners. So I’ve slowed down and spent extra time on these sections.

 The rest of the book presents algorithms with broad applications:

 	
 Problem-solving techniques—Covered in chapters 4, 10, and 11. If you come across a problem and aren’t sure how to solve it efficiently, try divide and conquer (chapter 4) or dynamic programming (chapter 11). Or you may realize there’s no efficient solution, and get an approximate answer using a greedy algorithm instead (chapter 10).

 	
 Hash tables—Covered in chapter 5. A hash table is a very useful data structure. It contains sets of key and value pairs, like a person’s name and their email address or a username and the associated password. It’s hard to overstate hash tables’ usefulness. When I want to solve a problem, the two plans of attack I start with are “Can I use a hash table?” and “Can I model this as a graph?”

 	
 Graph and tree algorithms—Covered in chapters 6, 7, 8, and 9. Graphs are a way to model a network: a social network, or a network of roads, or neurons, or any other set of connections. Breadth-first search (chapter 6) and Dijkstra’s algorithm (chapter 9) are ways to find the shortest distance between two points in a network: you can use this approach to calculate the degrees of separation between two people or the shortest route to a destination. Trees are a type of graph. They are used in databases (often B-trees), in your browser (the DOM tree), or in your file system.

 	
 K-nearest neighbors (KNN)—Covered in chapter 12. This is a simple machine-learning algorithm. You can use KNN to build a recommendations system, an OCR engine, a system to predict stock values—anything that involves predicting a value (“We think Adit will rate this movie 4 stars”) or classifying an object (“That letter is a Q”).

 	
 Next steps—Chapter 13 goes over more algorithms that would make good further reading.

 About the code

 All the code examples in this book use Python 3. All code in the book is presented in a fixed-width font like this to separate it from ordinary text. Code annotations accompany some of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/grokking-algorithms-second-edition. The complete code for the examples in the book is available for download from the Manning website at www.manning.com and from https://github.com/egonschiele/grokking_algorithms.

 I believe you learn best when you really enjoy learning—so have fun and run the code samples!

 liveBook discussion forum

 Purchase of Grokking Algorithms includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/grokking-algorithms-second-edition. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

about the author

 [image:]

 Aditya Bhargava is a software engineer. He has a master’s degree in computer science from the University of Chicago. He also runs a popular illustrated tech blog at adit.io.

 About the technical editor

 David Eisenstat is a research software engineer. He holds a PhD in Computer Science from Brown University.

 1 Introduction to algorithms

 In this chapter

 	You get a foundation for the rest of the book.

 	You write your first search algorithm (binary search).

 	You learn how to talk about the running time of an algorithm (big O notation).

 An algorithm is a set of instructions for accomplishing a task. Every piece of code could be called an algorithm, but this book covers the more interesting bits. I chose the algorithms in this book for inclusion because they’re fast, or they solve interesting problems, or both. Here are some highlights:

 	
 Chapter 1 talks about binary search and shows how an algorithm can speed up your code. In one example, the number of steps needed goes from 4 billion down to 32!

 	
 A GPS device uses graph algorithms (as you’ll learn in chapters 6 and 9) to calculate the shortest route to your destination.

 	
 You can use dynamic programming (discussed in chapter 11) to write an AI algorithm that plays checkers.

 In each case, I’ll describe the algorithm and give you an example. Then I’ll talk about the running time of the algorithm in big O notation. Finally, I’ll explore what other types of problems could be solved by the same algorithm.

 What you’ll learn about performance

 The good news is that an implementation of every algorithm in this book is probably available in your favorite language, so you don’t have to write each algorithm yourself! But those implementations are useless if you don’t understand the tradeoffs. In this book, you’ll learn to compare tradeoffs between different algorithms: Should you use merge sort or quicksort? Should you use an array or a list? Just using a different data structure can make a big difference.

 What you’ll learn about solving problems

 You’ll learn techniques for solving problems that might have been out of your grasp until now. For example:

 	
 If you like making video games, you can write an AI system that follows the user around using graph algorithms.

 	
 You’ll learn to make a recommendations system using k-nearest neighbors.

 	
 Some problems aren’t solvable in a timely manner! The part of this book that talks about NP-complete problems shows you how to identify those problems and come up with an algorithm that gives you an approximate answer.

 More generally, by the end of this book, you’ll know some of the most widely applicable algorithms. You can then use your new knowledge to learn about more specific algorithms for AI, databases, and so on. Or you can take on bigger challenges at work.

 What you need to know

 You’ll need to know basic algebra before starting this book. In particular, take this function: f(x) = x × 2. What is f(5)? If you answered 10, you’re set.

 Additionally, this chapter (and this book) will be easier to follow if you’re familiar with one programming language. All the examples in this book are in Python. If you don’t know any programming languages and want to learn one, choose Python—it’s great for beginners. If you know another language, like JavaScript, you’ll be fine.

Binary search

 Suppose you’re searching for a person in the phone book (what an old-fashioned sentence!). Their name starts with K. You could start at the beginning and keep flipping pages until you get to the Ks. But you’re more likely to start at a page in the middle because you know the Ks are going to be near the middle of the phone book.

 [image:]

 Or suppose you’re searching for a word in a dictionary, and it starts with O. Again, you’ll start near the middle.

 Now, suppose you log on to Facebook. When you do, Facebook has to verify that you have an account on the site. So it needs to search for your username in its database. Suppose your username is karlmageddon. Facebook could start from the As and search for your name—but it makes more sense for it to begin somewhere in the middle.

 This is a search problem. And all these cases use the same algorithm to solve the problem: binary search.

 [image:]

 Binary search is an algorithm; its input is a sorted list of elements (I’ll explain later why it needs to be sorted). If an element you’re looking for is in that list, binary search returns the position where it’s located. Otherwise, binary search returns null.

 Here’s an example.

 [image:]

 Looking for companies in a phone book with binary search

 Now here’s an example of how binary search works. I’m thinking of a number between 1 and 100.

 [image:]

 You have to try to guess my number in the fewest tries possible. With every guess, I’ll tell you if your guess is too low, too high, or correct.

 Suppose you start guessing like this: 1, 2, 3, 4, Here’s how it would go.

 [image:]

 [image:]

 A bad approach to number guessing

 This is simple search (maybe stupid search would be a better term). With each guess, you’re eliminating only one number. If my number was 99, it could take you 99 guesses to get there!

 A better way to search

 Here’s a better technique. Start with 50.

 [image:]

 Too low, but you just eliminated half the numbers! Now you know that 1–50 are all too low. Next guess: 75.

 [image:]

 Too high, but again you cut down half the remaining numbers! With binary search, you guess the middle number and eliminate half the remaining numbers every time. Next is 63 (halfway between 50 and 75).

 [image:]

 This is binary search. You just learned your first algorithm! Here’s how many numbers you can eliminate every time.

 [image:]

 Eliminate half the numbers every time with binary search.

 Whatever number I’m thinking of, you can guess in a maximum of seven guesses—because you eliminate so many numbers with every guess!

 Suppose you’re looking for a word in the dictionary. The dictionary has 240,000 words. In the worst case, how many steps do you think each search will take?

 [image:]

 Simple search could take 240,000 steps if the word you’re looking for is the very last one in the book. With each step of binary search, you cut the number of words in half until you’re left with only one word.

 [image:]

 So binary search will take 18 steps—a big difference! In general, for any list of n, binary search will take log2 n steps to run in the worst case, whereas simple search will take n steps.

 Logarithms

 You may not remember what logarithms are, but you probably know what exponentials are. log10

OEBPS/OEBPS/Images/image_1-10.png

OEBPS/OEBPS/Images/image_1-3.png

OEBPS/OEBPS/Images/image_Bhargava.png

OEBPS/OEBPS/Images/image_1-9.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/image_1-8.png

OEBPS/OEBPS/Images/image_1-4.png

OEBPS/OEBPS/Images/image_1-1.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/ifc.png

OEBPS/OEBPS/Images/image_1-51.png

OEBPS/OEBPS/Images/image_1-7.png

OEBPS/OEBPS/Images/image_1-5.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/image_1-11.png

OEBPS/OEBPS/Images/image_1-2.png

OEBPS/OEBPS/Images/image_1-6.png

