
 [image: cover]

 Secrets of the JavaScript Ninja, Second Edition

 John Resig Bear Bibeault Josip Maras

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:]Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Dan Maharry
Technical development editor: Gregor Zurowski
Review editor: Ozren Harlovic
Project editor: Tiffany Taylor
Copy editor: Sharon Wilkey
Proofreader: Alyson Brener
Technical proofreaders: Mathias Bynens,
Jon Borgman
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617292859

 Printed in the United States of America

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 ES6 cheat sheet

 Praise for the First Edition

 Author’s Introduction

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Warming up

 Chapter 1. JavaScript is everywhere

 Chapter 2. Building the page at runtime

 2. Understanding functions

 Chapter 3. First-class functions for the novice: definitions and arguments

 Chapter 4. Functions for the journeyman: understanding function invocation

 Chapter 5. Functions for the master: closures and scopes

 Chapter 6. Functions for the future: generators and promises

 3. Digging into objects and fortifying your code

 Chapter 7. Object orientation with prototypes

 Chapter 8. Controlling access to objects

 Chapter 9. Dealing with collections

 Chapter 10. Wrangling regular expressions

 Chapter 11. Code modularization techniques

 4. Browser reconnaissance

 Chapter 12. Working the DOM

 Chapter 13. Surviving events

 Chapter 14. Developing cross-browser strategies

 Appendix A. Additional ES6 features

 Appendix B. Arming with testing and debugging

 Appendix C. Exercise answers

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 ES6 cheat sheet

 Praise for the First Edition

 Author’s Introduction

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Warming up

 Chapter 1. JavaScript is everywhere

 1.1. Understanding the JavaScript language

 1.1.1. How will JavaScript evolve?

 1.1.2. Transpilers give us access to tomorrow’s JavaScript today

 1.2. Understanding the browser

 1.3. Using current best practices

 1.3.1. Debugging

 1.3.2. Testing

 1.3.3. Performance analysis

 1.4. Boosting skill transferability

 1.5. Summary

 Chapter 2. Building the page at runtime

 2.1. The lifecycle overview

 2.2. The page-building phase

 2.2.1. Parsing the HTML and building the DOM

 2.2.2. Executing JavaScript code

 2.3. Event handling

 2.3.1. Event-handling overview

 2.3.2. Registering event handlers

 2.3.3. Handling events

 2.4. Summary

 2.5. Exercises

 2. Understanding functions

 Chapter 3. First-class functions for the novice: definitions and arguments

 3.1. What’s with the functional difference?

 3.1.1. Functions as first-class objects

 3.1.2. Callback functions

 3.2. Fun with functions as objects

 3.2.1. Storing functions

 3.2.2. Self-memoizing functions

 3.3. Defining functions

 3.3.1. Function declarations and function expressions

 3.3.2. Arrow functions

 3.4. Arguments and function parameters

 3.4.1. Rest parameters

 3.4.2. Default parameters

 3.5. Summary

 3.6. Exercises

 Chapter 4. Functions for the journeyman: understanding function invocation

 4.1. Using implicit function parameters

 4.1.1. The arguments parameter

 4.1.2. The this parameter: introducing the function context

 4.2. Invoking functions

 4.2.1. Invocation as a function

 4.2.2. Invocation as a method

 4.2.3. Invocation as a constructor

 4.2.4. Invocation with the apply and call methods

 4.3. Fixing the problem of function contexts

 4.3.1. Using arrow functions to get around function contexts

 4.3.2. Using the bind method

 4.4. Summary

 4.5. Exercises

 Chapter 5. Functions for the master: closures and scopes

 5.1. Understanding closures

 5.2. Putting closures to work

 5.2.1. Mimicking private variables

 5.2.2. Using closures with callbacks

 5.3. Tracking code execution with execution contexts

 5.4. Keeping track of identifiers with lexical environments

 5.4.1. Code nesting

 5.4.2. Code nesting and lexical environments

 5.5. Understanding types of JavaScript variables

 5.5.1. Variable mutability

 5.5.2. Variable definition keywords and lexical environments

 5.5.3. Registering identifiers within lexical environments

 5.6. Exploring how closures work

 5.6.1. Revisiting mimicking private variables with closures

 5.6.2. Private variables caveat

 5.6.3. Revisiting the closures and callbacks example

 5.7. Summary

 5.8. Exercises

 Chapter 6. Functions for the future: generators and promises

 6.1. Making our async code elegant with generators and promises

 6.2. Working with generator functions

 6.2.1. Controlling the generator through the iterator object

 6.2.2. Using generators

 6.2.3. Communicating with a generator

 6.2.4. Exploring generators under the hood

 6.3. Working with promises

 6.3.1. Understanding the problems with simple callbacks

 6.3.2. Diving into promises

 6.3.3. Rejecting promises

 6.3.4. Creating our first real-world promise

 6.3.5. Chaining promises

 6.3.6. Waiting for a number of promises

 6.4. Combining generators and promises

 6.4.1. Looking forward—the async function

 6.5. Summary

 6.6. Exercises

 3. Digging into objects and fortifying your code

 Chapter 7. Object orientation with prototypes

 7.1. Understanding prototypes

 7.2. Object construction and prototypes

 7.2.1. Instance properties

 7.2.2. Side effects of the dynamic nature of JavaScript

 7.2.3. Object typing via constructors

 7.3. Achieving inheritance

 7.3.1. The problem of overriding the constructor property

 7.3.2. The instanceof operator

 7.4. Using JavaScript “classes” in ES6

 7.4.1. Using the class keyword

 7.4.2. Implementing inheritance

 7.5. Summary

 7.6. Exercises

 Chapter 8. Controlling access to objects

 8.1. Controlling access to properties with getters and setters

 8.1.1. Defining getters and setters

 8.1.2. Using getters and setters to validate property values

 8.1.3. Using getters and setters to define computed properties

 8.2. Using proxies to control access

 8.2.1. Using proxies for logging

 8.2.2. Using proxies for measuring performance

 8.2.3. Using proxies to autopopulate properties

 8.2.4. Using proxies to implement negative array indexes

 8.2.5. Performance costs of proxies

 8.3. Summary

 8.4. Exercises

 Chapter 9. Dealing with collections

 9.1. Arrays

 9.1.1. Creating arrays

 9.1.2. Adding and removing items at either end of an array

 9.1.3. Adding and removing items at any array location

 9.1.4. Common operations on arrays

 9.1.5. Reusing built-in array functions

 9.2. Maps

 9.2.1. Don’t use objects as maps

 9.2.2. Creating our first map

 9.2.3. Iterating over maps

 9.3. Sets

 9.3.1. Creating our first set

 9.3.2. Union of sets

 9.3.3. Intersection of sets

 9.3.4. Difference of sets

 9.4. Summary

 9.5. Exercises

 Chapter 10. Wrangling regular expressions

 10.1. Why regular expressions rock

 10.2. A regular expression refresher

 10.2.1. Regular expressions explained

 10.2.2. Terms and operators

 10.3. Compiling regular expressions

 10.4. Capturing matching segments

 10.4.1. Performing simple captures

 10.4.2. Matching using global expressions

 10.4.3. Referencing captures

 10.4.4. Noncapturing groups

 10.5. Replacing using functions

 10.6. Solving common problems with regular expressions

 10.6.1. Matching newlines

 10.6.2. Matching Unicode

 10.6.3. Matching escaped characters

 10.7. Summary

 10.8. Exercises

 Chapter 11. Code modularization techniques

 11.1. Modularizing code in pre-ES6 JavaScript

 11.1.1. Using objects, closures, and immediate functions to specify modules

 11.1.2. Modularizing JavaScript applications with AMD and CommonJS

 11.2. ES6 modules

 11.2.1. Exporting and importing functionality

 11.3. Summary

 11.4. Exercises

 4. Browser reconnaissance

 Chapter 12. Working the DOM

 12.1. Injecting HTML into the DOM

 12.1.1. Converting HTML to DOM

 12.1.2. Inserting elements into the document

 12.2. Using DOM attributes and properties

 12.3. Styling attribute headaches

 12.3.1. Where are my styles?

 12.3.2. Style property naming

 12.3.3. Fetching computed styles

 12.3.4. Converting pixel values

 12.3.5. Measuring heights and widths

 12.4. Minimizing layout thrashing

 12.5. Summary

 12.6. Exercises

 Chapter 13. Surviving events

 13.1. Diving into the event loop

 13.1.1. An example with only macrotasks

 13.1.2. An example with both macro- and microtasks

 13.2. Taming timers: time-outs and intervals

 13.2.1. Timer execution within the event loop

 13.2.2. Dealing with computationally expensive processing

 13.3. Working with events

 13.3.1. Propagating events through the DOM

 13.3.2. Custom events

 13.4. Summary

 13.5. Exercises

 Chapter 14. Developing cross-browser strategies

 14.1. Cross-browser considerations

 14.2. The five major development concerns

 14.2.1. Browser bugs and differences

 14.2.2. Browser bug fixes

 14.2.3. External code and markup

 14.2.4. Regressions

 14.3. Implementation strategies

 14.3.1. Safe cross-browser fixes

 14.3.2. Feature detection and polyfills

 14.3.3. Untestable browser issues

 14.4. Reducing assumptions

 14.5. Summary

 14.6. Exercises

 Appendix A. Additional ES6 features

 Template literals

 Destructuring

 Enhanced object literals

 Appendix B. Arming with testing and debugging

 Web developer tools

 Firebug

 Firefox Developer Tools

 F12 Developer Tools

 WebKit inspector

 Chrome DevTools

 Debugging code

 Logging

 Breakpoints

 Stepping into a function

 Conditional breakpoints

 Creating tests

 The fundamentals of a testing framework

 The assertion

 Popular testing frameworks

 QUnit

 Jasmine

 Measuring code coverage

 Appendix C. Exercise answers

 Chapter 2. Building the page at runtime

 Chapter 3. First-class functions for the novice: definitions and arguments

 Chapter 4. Functions for the journeyman: understanding function invocation

 Chapter 5. Functions for the master: closures and scopes

 Chapter 6. Functions for the future: generators and promises

 Chapter 7. Object orientation with prototypes

 Chapter 8. Controlling access to objects

 Chapter 9. Dealing with collections

 Chapter 10. Wrangling regular expressions

 Chapter 11. Code modularization techniques

 Chapter 12. Working the DOM

 Chapter 13. Surviving events

 Chapter 14. Developing cross-browser strategies

 Index

 List of Figures

 List of Tables

 List of Listings

ES6 cheat sheet

 Template literals embed expressions into strings: `${ninja}`.

 	

 Block-scoped variables:

 	Use the new let keyword to create block-level variables: let ninja = "Yoshi".

 	Use the new const keyword to create block-level constant variables whose value can’t be reassigned to a completely new value: const ninja = "Yoshi".

 	

 Function parameters:

 	
 Rest parameters create an array from arguments that weren’t matched to parameters:

 function multiMax(first, ...remaining){ /*...*/}multiMax(2, 3, 4, 5); //first: 2;
 remaining: [3, 4, 5]

 	
 Default parameters specify default parameter values that are used if no value is supplied during invocation:

 function do(ninja, action = "skulk"){ return ninja + " " + action;}
do("Fuma"); //"Fuma skulk"

 	

 Spread operators expand an expression where multiple items are needed: [...items, 3, 4, 5].

 	

 Arrow functions let us create functions with less syntactic clutter. They don’t have their own this parameter. Instead, they inherit it from the context in which they were created:

 const values = [0, 3, 2, 5, 7, 4, 8, 1];
values.sort((v1,v2) => v1 - v2); /*OR*/ values.sort((v1,v2) => { return v1 - v2;});
value.forEach(value => console.log(value));

 	

 Generators generate sequences of values on a per-request basis. Once a value is generated, the generator suspends its execution without blocking. Use yield to generate values:

 function *IdGenerator(){
 let id = 0;
 while(true){ yield ++id; }
}

 	

 Promises are placeholders for the result of a computation. A promise is a guarantee that eventually we’ll know the result of some computation. The promise can either succeed or fail, and once it has done so, there will be no more changes:

 	Create a new promise with new Promise((resolve, reject) => {});.

 	Call the resolve function to explicitly resolve a promise. Call the reject function to explicitly reject a promise. A promise is implicitly rejected if an error occurs.

 	The promise object has a then method that returns a promise and takes in two callbacks, a success callback and a failure callback:

 myPromise.then(val => console.log("Success"), err => console.log("Error"));

 	Chain in a catch method to catch promise failures: myPromise.catch(e => alert(e));.

 	

 Classes act as syntactic sugar around JavaScript’s prototypes:

 class Person {
 constructor(name){ this.name = name; }
 dance(){ return true; }
}
class Ninja extends Person {
 constructor(name, level){
 super(name);
 this.level = level;
 }
 static compare(ninja1, ninja2){
 return ninja1.level - ninja2.level;
 }
}

 	

 Proxies control access to other objects. Custom actions can be executed when an object is interacted with (for example, when a property is read or a function is called):

 const p = new Proxy(target, {
 get: (target, key) => { /*Called when property accessed through proxy*/ },
 set: (target, key, value) => { /*Called when property set through proxy*/ }
});

 	

 Maps are mappings between a key and a value:

 	
new Map() creates a new map.

 	Use the set method to add a new mapping, the get method to fetch a mapping, the has method to check whether a mapping exists, and the delete method to remove a mapping.

 	

 Sets are collections of unique items:

 	
new Set() creates a new set.

 	Use the add method to add a new item, the delete method to remove an item, and the size property to check the number of items in a set.

 	

 for...of loops iterate over collections and generators.

 	

 Destructuring extracts data from objects and arrays:

 	
const {name: ninjaName} = ninja;

 	
const [firstNinja] = ["Yoshi"];

 	

 Modules are larger units of organizing code that allow us to divide programs into clusters:

 export class Ninja{}; //Export an item
export default class Ninja{} //Default export
export {ninja};//Export existing variables
export {ninja as samurai}; //Rename an export

import Ninja from "Ninja.js"; //Import a default export
import {ninja} from "Ninja.js"; //Import named exports
import * as Ninja from "Ninja.js"; //Import all named exports
import {ninja as iNinja} from "Ninja.js"; //Import with a new name

 	

Praise for the First Edition

 Finally, from a master, a book that delivers what an aspiring JavaScript developer requires to learn the art of crafting effective cross-browser JavaScript.

 Glenn Stokol, Senior Principal Curriculum Developer, Oracle Corporation

 Consistent with the jQuery motto, “Write less, do more.”

 André Roberge, Université Saint-Anne

 Interesting and original techniques.

 Scott Sauyet, Four Winds Software

 Read this book, and you’ll no longer blindly plug in a snippet of code and marvel at how it works—you’ll understand “why” it works.

 Joe Litton, Collaborative Software Developer, JoeLitton.net

 Will help you raise your JavaScript to the realm of the masters.

 Christopher Haupt, greenstack.com

 The stuff ninjas need to know.

 Chad Davis, author of Struts 2 in Action

 Required reading for any JavaScript Master.

 John J. Ryan III, Princigration LLC

 This book is a must-have for any serious JS coder. Your knowledge of the language will dramatically expand.

 S., Amazon reader

Author’s Introduction

 It’s incredible to think of how much the world of JavaScript has changed since I first started writing Secrets of the JavaScript Ninja back in 2008. The world in which we write JavaScript now, while still being largely centered around the browser, is nearly unrecognizable.

 The popularity of JavaScript as a full-featured, cross-platform language has exploded. Node.js is a formidable platform against which countless production applications are developed. Developers are actually writing applications in one language—JavaScript—that are capable of running in a browser, on a server, and even in a native app on a mobile device.

 It’s more important now, than ever before, that a developer’s knowledge of the JavaScript language be at its absolute peak. Having a fundamental understanding of the language and the ways in which it can be best written will allow you to create applications that can work on virtually any platform, which is a claim that few other languages can legitimately boast.

 Unlike previous eras in the growth of JavaScript, there hasn’t been equal growth in platform incompatibilities. It used to be that you would salivate over the thought of using the most basic new browser features and yet be stymied by outdated browsers that had far too much market share. We’ve entered a harmonious time in which most users are on rapidly updated browsers that compete to be the most standards-compliant platform around. Browser vendors even go out of their way to develop features specifically targeted at developers, hoping to make their lives easier.

 The tools that we have now, provided by browsers and the open source community, are light years ahead of old practices. We have a plethora of testing frameworks to choose from, the ability to do continuous integration testing, generate code-coverage reports, performance-test on real mobile devices around the globe, and even automatically load up virtual browsers on any platform to test from.

 The first edition of the book benefited tremendously from the development insight that Bear Bibeault provided. This edition has received substantial help from Josip Maras to explore the concepts behind ECMAScript 6 and 7, dive into testing best practices, and understand the techniques employed by popular JavaScript frameworks.

 All of this is a long way of saying: how we write JavaScript has changed substantially. Fortunately, this book is here to help you keep on top of the current best practices. Not only that, but it’ll help you improve how you think about your development practices as a whole to ensure that you’ll be ready for writing JavaScript well into the future.

 JOHN RESIG

Acknowledgments

 The number of people involved in writing a book would surprise most people. It took a collaborative effort on the part of many contributors with a variety of talents to bring the volume you are holding (or ebook that you are reading onscreen) to fruition.

 The staff at Manning worked tirelessly with us to make sure this book attained the level of quality we hoped for, and we thank them for their efforts. Without them, this book would not have been possible. The “end credits” for this book include not only our publisher, Marjan Bace, and editor Dan Maharry, but also the following contributors: Ozren Harlovic, Gregor Zurowski, Kevin Sullivan, Janet Vail, Tiffany Taylor, Sharon Wilkey, Alyson Brener, and Gordan Salinovic.

 Enough cannot be said to thank our peer reviewers who helped mold the final form of the book, from catching simple typos to correcting errors in terminology and code, and helping to organize the chapters in the book. Each pass through a review cycle ended up vastly improving the final product. For taking the time to review the book, we’d like to thank Jacob Andresen, Tidjani Belmansour, Francesco Bianchi, Matthew Halverson, Becky Huett, Daniel Lamb, Michael Lund, Kariem Ali Elkoush, Elyse Kolker Gordon, Christopher Haupt, Mike Hatfield, Gerd Klevesaat, Alex Lucas, Arun Noronha, Adam Scheller, David Starkey, and Gregor Zurowski.

 Special thanks go to Mathias Bynens and Jon Borgman, who served as the book’s technical proofreaders. In addition to checking each and every sample of example code in multiple environments, they also offered invaluable contributions to the technical accuracy of the text, located information that was originally missing, and kept abreast of the rapid changes to JavaScript and HTML5 support in the browsers.

John Resig

 I would like to thank my parents for their constant support and encouragement over the years. They provided me with the resources and tools that I needed to spark my initial interest in programming—and they have been encouraging me ever since.

Bear Bibeault

 The cast of characters I’d like to thank for this seventh go-around has a long list of “usual suspects,” including, once again, the membership and staff at coderanch.com (formerly JavaRanch). Without my involvement in CodeRanch, I’d never have gotten the opportunity to begin writing in the first place, and so I sincerely thank Paul Wheaton and Kathy Sierra for starting the whole thing, as well as fellow staffers who gave me encouragement and support, including (but certainly not limited to) Eric Pascarello, Ernest Friedman-Hill, Andrew Monkhouse, Jeanne Boyarsky, Bert Bates, and Max Habibi.

 My husband, Jay, and my dogs, Little Bear and Cozmo, get the usual warm thanks for putting up with the shadowy presence who shared their home and rarely looked up from his keyboard except to curse Word, the browsers, my fat-fingered lack of typing skills, or anything else that attracted my ire while I was working on this project.

 And finally, I’d like to thank my coauthors, John Resig and Josip Maras, without whom this project would not exist.

Josip Maras

 The biggest thanks go to my wife, Josipa, for putting up with all the hours that went into writing this book.

 I would also like to thank Maja Stula, Darko Stipanicev, Ivica Crnkovic, Jan Carlson, and Bert Bates: all of them for guidance and useful advice, and some of them for being lenient on my “day job” assignments as book deadlines were approaching.

 Finally, I would like to thank the rest of my family—Jere, two Marijas, Vitomir, and Zdenka—for always being there for me.

About this Book

 JavaScript is important. That wasn’t always so, but it’s true now. JavaScript has become one of the most important and most widely used programming languages today.

 Web applications are expected to give users a rich user interface experience, and without JavaScript, you might as well just be showing pictures of kittens. More than ever, web developers need to have a sound grasp of the language that brings life to web applications.

 And like orange juice and breakfast, JavaScript isn’t just for browsers anymore. The language has long ago knocked down the walls of the browser and is being used on the server thanks to Node.js, on desktop devices and mobiles through platforms such as Apache Cordova, and even on embedded devices with Espruino and Tessel.

 Although this book is primarily focused on JavaScript executed in the browser, the fundamentals of the language presented in this book are applicable across the board. Truly understanding the concepts and learning various tips and tricks will make you a better all-around JavaScript developer.

 With more and more developers using JavaScript in an increasingly JavaScript world, it’s more important than ever to grasp its fundamentals so you can become an expert ninja of the language.

Audience

 If you aren’t at all familiar with JavaScript, this probably shouldn’t be your first book. Even if it is, don’t worry too much; we try to present fundamental JavaScript concepts in a way that should be understandable even for relative beginners. But, to be honest, this book will probably best fit people who already know some JavaScript and who wish to deepen their understanding of JavaScript as a language, as well as the browser as the environment in which JavaScript code is executed.

Roadmap

 This book is organized to take you from an apprentice to a ninja in four parts.

 Part 1 introduces the topic and sets the stage so that you can easily progress through the rest of the book:

 	
Chapter 1 introduces JavaScript the language and its most important features, while suggesting current best practices we should follow when developing applications, including testing and performance analysis.

 	Because our exploration of JavaScript is made in the context of browsers, in chapter 2 we’ll set the stage by introducing the lifecycle of client-side web applications. That will help us understand JavaScript’s role in the process of developing web applications.

 Part 2 focuses on one of the pillars of JavaScript: functions. We’ll study why functions are so important in JavaScript, the different kinds of functions, as well as the nitty-gritty details of defining and invoking functions. We’ll put a special focus on a new type of function—generator functions—which are especially helpful when dealing with asynchronous code:

 	
Chapter 3 begins our foray into the fundamentals of the language, starting, perhaps to your surprise, with a thorough examination of the function as defined by JavaScript. Although you may have expected the object to be the target of our first focus, a solid understanding of the function, and JavaScript as a functional language, begins our transformation from run-of-the-mill JavaScript coders to JavaScript ninjas!

 	We continue this functional thread in chapter 4, by exploring the exact mechanism of invoking functions, as well as the ins and outs of implicit function parameters.

 	Not being done with functions quite yet, in chapter 5 we take our discussion to the next level by studying two closely related concepts: scopes and closures. A key concept in functional programming, closures allow us to exert fine-grained control over the scope of objects that we declare and create in our programs. The control of these scopes is the key factor in writing code worthy of a ninja. Even if you stop reading after this chapter (but we hope you don’t), you’ll be a far better JavaScript developer than when you started.

 	We conclude our exploration of functions in chapter 6, by taking a look at a completely new type of function (generator functions) and a new type of object (promises) that help us deal with asynchronous values. We’ll also show you how to combine generators and promises to achieve elegance when dealing with asynchronous code.

 Part 3 deals with the second pillar of JavaScript: objects. We’ll thoroughly explore object orientation in JavaScript, and we’ll study how to guard access to objects and how to deal with collections and regular expressions:

 	Objects are finally addressed in chapter 7, where we learn exactly how JavaScript’s slightly strange flavor of object orientation works. We’ll also introduce a new addition to JavaScript: classes, which, deep under the hood, may not be exactly what you expect.

 	We’ll continue our exploration of objects in chapter 8, where we’ll study different techniques for guarding access to our objects.

 	In chapter 9, we’ll put a special focus on different types of collections that exist in JavaScript; on arrays, which have been a part of JavaScript since its beginnings; and on maps and sets, which are recent addition to JavaScript.

 	
Chapter 10 focuses on regular expressions, an often-overlooked feature of the language that can do the work of scores of lines of code when used correctly. We’ll learn how to construct and use regular expressions and how to solve some recurring problems elegantly, using regular expressions and the methods that work with them.

 	In chapter 11, we’ll learn different techniques for organizing our code into modules: smaller, relatively loosely coupled segments that improve the structure and organization of our code.

 Finally, part 4 wraps up the book by studying how JavaScript interacts with our web pages and how events are processed by the browser. We’ll finish the book by looking at an important topic, cross-browser development:

 	
Chapter 12 explores how we can dynamically modify our pages through DOM-manipulation APIs, and how we can handle element attributes, properties, and styles, as well as some important performance considerations.

 	
Chapter 13 discusses the importance of JavaScript’s single-threaded execution model and the consequences this model has on the event loop. We’ll also learn how timers and intervals work and how we can use them to improve the perceived performance of our web applications.

 	
Chapter 14 concludes the book by examining the five key development concerns with regard to these cross-browser issues: browser differences, bugs and bug fixes, external code and markup, missing features, and regressions. Strategies such as feature simulation and object detection are discussed at length to help us deal with these cross-browser challenges.

Code conventions

 All source code in listings or in the text is in a fixed-width font like this to separate it from ordinary text. Method and function names, properties, XML elements, and attributes in the text are also presented in this same font.

 In some cases, the original source code has been reformatted to fit on the pages. In general, the original code was written with page-width limitations in mind, but sometimes you may find a slight formatting difference between the code in the book and that provided in the source download. In a few rare cases, where long lines could not be reformatted without changing their meaning, the book listings contain line-continuation markers.

 Code annotations accompany many of the listings; these highlight important concepts.

Code downloads

 Source code for all the working examples in this book (along with some extras that never made it into the text) is available for download from the book’s web page at https://manning.com/books/secrets-of-the-javascript-ninja-second-edition.

 The code examples for this book are organized by chapter, with separate folders for each chapter. The layout is ready to be served by a local web server, such as the Apache HTTP Server. Unzip the downloaded code into a folder of your choice, and make that folder the document root of the application.

 With a few exceptions, most of the examples don’t require the presence of a web server and can be loaded directly into a browser for execution, if you so desire.

Author Online

 The authors and Manning Publications invite you to the book’s forum, run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the authors and other users. To access and subscribe to the forum, point your browser to https://manning.com/books/secrets-of-the-javascript-ninja-second-edition and click the Author Online link. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the authors

 [image:]

 John Resig is a staff engineer at Khan Academy and the creator of the jQuery JavaScript library. In addition to the first edition of Secrets of the JavaScript Ninja, he’s also the author of the book Pro JavaScript Techniques.

 John has developed a comprehensive Japanese woodblock print database and image search engine: Ukiyo-e.org. He’s a board member of the Japanese Art Society of America and is a Visiting Researcher at Ritsumeikan University working on the study of Ukiyo-e.

 John is located in Brooklyn, NY.

 [image:]

 Bear Bibeault has been writing software for well over three decades, starting with a Tic-Tac-Toe program written on a Control Data Cyber supercomputer via a 100-baud teletype. Having two degrees in electrical engineering, Bear should be designing antennas or something like that, but since his first job with Digital Equipment Corporation, he has always been much more fascinated with programming.

 Bear has also served stints with companies such as Dragon Systems, Works.com, Spredfast, Logitech, Caringo, and more than a handful of others. Bear even served in the U.S. military, leading and training a platoon of anti-tank infantry soldiers—skills that come in handy during scrum meetings. “That’s Sergeant Bear to you, trainee!”

 Bear is currently a senior front-end developer for a leading provider of object storage software that provides massive storage scalability and content protection.

 In addition to the first edition of this book, Bear is also the author of a number of other Manning books, including jQuery in Action (first, second, and third editions), Ajax in Practice, and Prototype and Scriptaculous in Action; and he has been a technical reviewer for many of the web-focused “Head First” books by O’Reilly Publishing, such as Head First Ajax, Head Rush Ajax, and Head First Servlets and JSP.

 In addition to his day job, Bear also writes books (duh!), runs a small business that creates web applications and offers other media services (but not wedding videography—never, ever wedding videography), and helps out at CodeRanch.com as a “marshal” (uber moderator).

 When not planted in front of a computer, Bear likes to cook big food (which accounts for his jeans size), dabble in photography and video, ride his Yamaha V-Star, and wear tropical print shirts.

 He works and resides in Austin, Texas, a city he loves, except for the completely insane traffic and drivers.

 [image:]

 Josip Maras is a post-doctoral researcher in the faculty of electrical engineering, mechanical engineering, and naval architecture, University of Split, Croatia. He has a PhD in software engineering, with the thesis “Automating Reuse in Web Application Development,” which among other things included implementing a JavaScript interpreter in JavaScript. During his research, he has published more than a dozen scientific conference and journal papers, mostly dealing with program analysis of client-side web applications.

 When not doing research, Josip spends his time teaching web development, systems analysis and design, and Windows development (a couple hundred students over the last six years). He also owns a small software development business.

 In his spare time, Josip enjoys reading, long runs, and, if the weather allows, swimming in the Adriatic.

About the Cover Illustration

 The figure on the cover of Secrets of the JavaScript Ninja, Second Edition is captioned “Noh Actor, Samurai,” from a woodblock print by an unknown Japanese artist of the mid-19th century. Derived from the Japanese word for talent or skill, Noh is a form of classical Japanese musical drama that has been performed since the 14th century. Many characters are masked, with men playing male and female roles. The samurai, a hero figure in Japan for hundreds of years, was often featured in the performances, and in this print the artist renders with great skill the beauty of the costume and the ferocity of the samurai.

 Samurai and ninjas were both warriors excelling in the Japanese art of war, known for their bravery and cunning. Samurai were elite soldiers, well-educated men who knew how to read and write as well as fight, and they were bound by a strict code of honor called Bushido (The Way of the Warrior), which was passed down orally from generation to generation, starting in the 10th century. Recruited from the aristocracy and upper classes, analogous to European knights, samurai went into battle in large formations, wearing elaborate armor and colorful dress meant to impress and intimidate. Ninjas were chosen for their martial arts skills rather than their social standing or education. Dressed in black and with their faces covered, they were sent on missions alone or in small groups to attack the enemy with subterfuge and stealth, using any tactics to assure success; their only code was one of secrecy.

 The cover illustration is from a set of three Japanese prints owned for many years by a Manning editor, and when we were looking for a ninja for the cover of this book, the striking samurai print came to our attention and was selected for its intricate details, vibrant colors, and vivid depiction of a ferocious warrior ready to strike—and win.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on two-hundred-year-old illustrations that depict the rich diversity of traditional costumes from around the world, brought back to life by prints such as this one.

 Part 1. Warming up

 This part of the book will set the stage for your JavaScript ninja training. In chapter 1, we’ll look at the current state of JavaScript and explore some of the environments in which JavaScript code can be executed. We’ll put a special focus on the environment where it all began—the browser—and we’ll discuss some of the best practices when developing JavaScript applications.

 Because our exploration of JavaScript will be done in the context of browsers, in chapter 2 we’ll teach you about the lifecycle of client-side web applications and how executing JavaScript code fits into this lifecycle.

 When you’re finished with this part of the book, you’ll be ready to embark on your training as a JavaScript ninja!

 Chapter 1. JavaScript is everywhere

 This chapter covers

 	The core language features of JavaScript

 	The core items of a JavaScript engine

 	Three best practices in JavaScript development

 Let’s talk about Bob. After spending a few years learning how to create desktop applications in C++, he graduated as a software developer in the early 2000s and then went out into the wide world. At that point, the web had just hit its stride, and everybody wanted to be the next Amazon. So the first thing he did was learn web development.

 He learned some PHP so that he could dynamically generate web pages, which he usually sprinkled with JavaScript in order to achieve complex functionality such as form validation and even dynamic on-page clocks! Fast-forward a couple of years, and smartphones had become a thing, so anticipating a large new market opening up, Bob went ahead and learned Objective-C and Java to develop mobile apps that run on iOS and Android.

 Over the years, Bob has created many successful applications that all have to be maintained and extended. Unfortunately, jumping daily between all these different programming languages and application frameworks has really started to wear down poor Bob.

 Now let’s talk about Ann. Two years ago, Ann graduated with a degree in software development, specializing in web- and cloud-based applications. She has created a few medium-sized web applications based on modern Model–view–controller (MVC) frameworks, along with accompanying mobile applications that run on iOS and Android. She has created a desktop application that runs on Linux, Windows, and OS X, and has even started building a serverless version of that application entirely based in the cloud. And everything she has done has been written in JavaScript.

 That’s extraordinary! What took Bob 10 years and 5 languages to do, Ann has achieved in 2 years and in just one language. Throughout the history of computing, it has been rare for a particular knowledge set to be so easily transferable and useful across so many different domains.

 What started as a humble 10-day project back in 1995 is now one of the most widely used programming languages in the world. JavaScript is quite literally everywhere, thanks to more-powerful JavaScript engines and the introduction of frameworks such as Node, Apache Cordova, Ionic, and Electron, which have taken the language beyond the humble web page. And, like HTML, the language itself is now getting long overdue upgrades intended to make JavaScript even more suitable for modern application development.

 In this book, we’re going to make sure you know all you need to know about JavaScript so that, whether you’re like Ann or like Bob, you can develop all sorts of applications on a green field or a brown field.

Do you know?

 Q1:

 What are Babel and Traceur, and why are they important to today’s JavaScript developers?

 Q2:

 What are the core parts of any web browser’s JavaScript API used by web applications?

1.1. Understanding the JavaScript language

 As they advance through their careers, many JavaScript coders like Bob and Ann reach the point where they’re actively using the vast number of elements that form the language. In many cases, however, those skills may not be taken beyond fundamental levels. Our guess is that this is often because JavaScript, using a C-like syntax, bears a surface resemblance to other widespread C-like languages (such as C# and Java), and thus leaves the impression of familiarity.

 People often feel that if they know C# or Java, they already have a pretty solid understanding of how JavaScript works. But it’s a trap! When compared to other mainstream languages, JavaScript is much more functionally oriented. Some JavaScript concepts differ fundamentally from those of most other languages.

 These differences include the following:

 	
Functions are first-class objects— In JavaScript, functions coexist with, and can be treated like, any other JavaScript object. They can be created through literals, referenced by variables, passed around as function arguments, and even returned as function return values. We devote much of chapter 3 to exploring some of the wonderful benefits that functions as first-class objects bring to our JavaScript code.

 	
Function closures— The concept of function closures is generally poorly understood, but at the same time it fundamentally and irrevocably exemplifies the importance of functions to JavaScript. For now, it’s enough to know that a function is a closure when it actively maintains (“closes over”) the external variables used in its body. Don’t worry for now if you don’t see the many benefits of closures; we’ll make sure all is crystal clear in chapter 5. In addition to closures, we’ll thoroughly explore the many aspects of functions themselves in chapters 3 and 4, as well as identifier scopes in chapter 5.

 	
Scopes— Until recently, JavaScript didn’t have block-level variables (as in other C-like languages); instead, we had to rely only on global variables and function-level variables.

 	
Prototype-based object orientation— Unlike other mainstream programming languages (such as C#, Java, and Ruby), which use class-based object orientation, JavaScript uses prototypes. Often, when developers come to JavaScript from class-based languages (such as Java), they try to use JavaScript as if it were Java, essentially writing Java’s class-based code using the syntax of JavaScript. Then, for some reason, they’re surprised when the results differ from what they expect. This is why we’ll go deep into prototypes, how prototype-based object-orientation works, and how it’s implemented in JavaScript.

 JavaScript consists of a close relationship between objects and prototypes, and functions and closures. Understanding the strong relationships between these concepts can vastly improve your JavaScript programming ability, giving you a strong foundation for any type of application development, regardless of whether your JavaScript code will be executed in a web page, in a desktop app, in a mobile app, or on the server.

 In addition to these fundamental concepts, other JavaScript features can help you write more elegant and more efficient code. Some of these are features that seasoned developers like Bob will recognize from other languages, such as Java and C++. In particular, we focus on the following:

 	
Generators, which are functions that can generate multiple values on a per-request basis and can suspend their execution between requests

 	
Promises, which give us better control over asynchronous code

 	
Proxies, which allow us to control access to certain objects

 	
Advanced array methods, which make array-handling code much more elegant

 	
Maps, which we can use to create dictionary collections; and sets, which allow us to deal with collections of unique items

 	
Regular expressions, which let us simplify what would otherwise be complicated pieces of code

 	
Modules, which we can use to break code into smaller, relatively self-contained pieces that make projects more manageable

 Having a deep understanding of the fundamentals and learning how to use advanced language features to their best advantage can elevate your code to higher levels. Honing your skills to tie these concepts and features together will give you a level of understanding that puts the creation of any type of JavaScript application within your reach.

 1.1.1. How will JavaScript evolve?

 The ECMAScript committee, in charge of standardizing the language, has just finished the ES7/ES2016 version of JavaScript. The ES7 version is a relatively small upgrade to JavaScript (at least, when compared to ES6), because the committee’s goal going forward is to focus on smaller, yearly incremental changes to the language.

 In this book we thoroughly explore ES6 but also focus on ES7 features, such as the new async function, which will help you deal with asynchronous code (discussed in chapter 6).

 	

 Note

 [image:]

 When we cover features of JavaScript defined in ES6/ES2015 or ES7/ES2016, you’ll see these icons alongside a link to information about whether they’re supported by your browser.

 	

 Yearly incremental updates to the language specification are excellent news, but this doesn’t mean that web developers will instantly have access to the new features after the specification has been released. JavaScript code has to be executed by a Java-Script engine, so we’re often left waiting impatiently for updates to our favorite JavaScript engines that incorporate these new and exciting features.

 Unfortunately, although the JavaScript engine developers are trying to keep up and are doing better all the time, there’s always a chance that you’ll run into features that you are dying to use but that are yet to be supported.

 Luckily, you can keep up with the state of feature support in the various browsers via the lists at https://kangax.github.io/compat-table/es6/, http://kangax.github.io/compat-table/es2016plus/, and https://kangax.github.io/compat-table/esnext/.

 1.1.2. Transpilers give us access to tomorrow’s JavaScript today

 Because of the rapid release cycles of browsers, we usually don’t have to wait long for a JavaScript feature to be supported. But what happens if we want to take advantage of all the benefits of the newest JavaScript features but are taken hostage by a harsh reality: The users of our web applications may still be using older browsers?

 One answer to this problem is to use transpilers (“transformation + compiling”), tools that take cutting-edge JavaScript code and transform it into equivalent (or, if that’s not possible, similar) code that works properly in most current browsers.

 Today’s most popular transpilers are Traceur (https://github.com/google/traceur-compiler) and Babel (https://babeljs.io/). Setting them up is easy; just follow one of the tutorials, such as https://github.com/google/traceur-compiler/wiki/Getting-Started or http://babeljs.io/docs/setup/.

 In this book, we put a special focus on running JavaScript code in the browser. To effectively use the browser platform, you have to get your hands dirty and study the inner workings of browsers. Let’s get started!

1.2. Understanding the browser

 These days, JavaScript applications can be executed in many environments. But the environment from which it all began, the environment from which all other environments have taken ideas, and the environment on which we’ll focus, is the browser. The browser provides various concepts and APIs to thoroughly explore; see figure 1.1.

 Figure 1.1. Client-side web applications rely on the infrastructure provided by the browser. We’ll particularly focus on the DOM, events, timers, and browser APIs.

 [image:]

 We’ll concentrate on the following:

 	
The Document Object Model (DOM)— The DOM is a structured representation of the UI of a client-side web application that is, at least initially, built from the HTML code of a web application. To develop great applications, you need to not only have a deep understanding of the core JavaScript mechanics, but also study how the DOM is constructed (chapter 2) and how to write effective code that manipulates the DOM (chapter 12). This will put the creation of advanced, highly dynamic UIs at your fingertips.

 	
Events— A huge majority of JavaScript applications are event-driven applications, meaning that most of the code is executed in the context of a response to a particular event. Examples of events include network events, timers, and user-generated events such as clicks, mouse moves, keyboard presses, and so on. For this reason, we’ll thoroughly explore the mechanisms behind events in chapter 13. We’ll pay special attention to timers, which are frequently a mystery but let us tackle complex coding tasks such as long-running computations and smooth animations.

 	
Browser API— To help us interact with the world, the browser offers an API that allows us to access information about devices, store data locally, or communicate with remote servers. We’ll explore some of these APIs throughout the book.

 Perfecting your JavaScript programming skills and achieving deep understanding of APIs offered by the browser will take you far. But sooner, rather than later, you’ll run face first into the browsers and their various issues and inconsistencies. In a perfect world, all browsers would be bug-free and would support web standards in a consistent fashion; unfortunately, we don’t live in that world.

 The quality of browsers has improved greatly as of late, but they all still have some bugs, missing APIs, and browser-specific quirks that we need to deal with. Developing a comprehensive strategy for tackling these browser issues, and becoming intimately familiar with their differences and quirks, can be almost as important as proficiency in JavaScript itself.

 When we’re writing browser applications or JavaScript libraries to be used in them, choosing which browsers to support is an important consideration. We’d like to support them all, but limitations on development and testing resources dictate otherwise. For this reason, we’ll thoroughly explore strategies for cross-browser development in chapter 14.

 Developing effective, cross-browser code can depend significantly on the skill and experience of the developers. This book is intended to boost that skill level, so let’s get to it by looking at current best practices.

1.3. Using current best practices

 Mastery of the JavaScript language and a grasp of cross-browser coding issues are important parts of becoming an expert web application developer, but they’re not the complete picture. To enter the big leagues, you also need to exhibit the traits that scores of previous developers have proven are beneficial to the development of quality code. These traits are known as best practices, and in addition to mastery of the language, they include such elements as

 	Debugging skills

 	Testing

 	Performance analysis

 It’s vitally important to adhere to these practices when coding, and we’ll use them throughout the book. Let’s examine some of them next.

 1.3.1. Debugging

 Debugging JavaScript used to mean using alert to verify the value of variables. Fortunately, the ability to debug JavaScript code has dramatically improved, in no small part because of the popularity of the Firebug developer extension for Firefox. Similar tools have been developed for all major browsers:

 	
Firebug— The popular developer extension for Firefox that got the ball rolling (http://getfirebug.com/)

 	
Chrome DevTools— Developed by the Chrome team and used in Chrome and Opera

 	
Firefox Developer Tools— A tool included in Firefox, built by the Firefox team

 	
F12 Developer Tools— Included in Internet Explorer and Microsoft Edge

 	
WebKit Inspector— Used by Safari

 As you can see, every major browser offers developer tools that we can use to debug our web applications. The days of using JavaScript alerts for debugging are long gone!

 All of these tools are based on similar ideas, which were mostly introduced by Firebug, so they offer similar functionality: exploring the DOM, debugging JavaScript, editing CSS styles, tracking network events, and so on. Any of them will do a fine job; use the one offered by your browser of choice, or in the browser in which you’re investigating bugs.

 In addition, you can use some of them, such as Chrome Dev Tools, to debug other kinds of applications, like Node.js apps. (We’ll introduce you to some debugging techniques in appendix B.)

 1.3.2. Testing

 Throughout this book, we’ll apply testing techniques to ensure that the example code operates as intended and to serve as examples of how to test code in general. The primary tool we’ll use for testing is an assert function, whose purpose is to assert that a premise is either true or false. By specifying assertions, we can check whether the code is behaving as expected.

 The general form of this function is as follows:

 assert(condition, message);

 The first parameter is a condition that should be true, and the second is a message that will be displayed if it’s not.

 Consider this, for example:

 assert(a === 1, "Disaster! a is not 1!");

 If the value of variable a isn’t equal to 1, the assertion fails, and the somewhat overly dramatic message is displayed.

 	

 Note

 The assert function isn’t a standard feature of the language, so we’ll implement it ourselves in appendix B.

 	

 1.3.3. Performance analysis

 Another important practice is performance analysis. The JavaScript engines have made astounding strides in the performance of JavaScript, but that’s no excuse for writing sloppy and inefficient code.

 We’ll use code such as the following later in this book to collect performance information:

 [image:]

 Here, we bracket the execution of the code to be measured with two calls to the time and timeEnd methods of the built-in console object.

 Before the operation begins executing, the call to console.time starts a timer with a name (in this case, My operation). Then we run the code in the for loop a certain number of times (in this case, maxCount times). Because a single operation of the code happens much too quickly to measure reliably, we need to perform the code many times to get a measurable value. Frequently, this count can be in the tens of thousands, or even millions, depending on the nature of the code being measured. A little trial and error lets us choose a reasonable value.

 When the operation ends, we call the console.timeEnd method with the same name. This causes the browser to output the time that elapsed since the timer was started.

 These best-practice techniques, along with others you’ll learn along the way, will greatly enhance your JavaScript development. Developing applications with the restricted resources that a browser provides, coupled with the increasingly complex world of browser capability and compatibility, requires a robust and complete set of skills.

1.4. Boosting skill transferability

 When Bob was first learning web development, each browser had its own way of interpreting script and UI styles, preaching that their way was the best way and making every developer grind their teeth in frustration. Fortunately, the browser wars ended with HTML, CSS, the DOM API, and JavaScript all being standardized, and developer focus turning toward effective cross-browser JavaScript applications. Indeed, this focus on treating websites as applications led to many ideas, tools, and techniques crossing over from desktop applications to web applications. And now, that knowledge and tools transfer has happened again as ideas, tools, and techniques that originated in client-side web development have also permeated other application domains.

 Achieving a deep understanding of fundamental JavaScript principles with the knowledge of core APIs can therefore make you a more versatile developer. By using the browsers and Node.js (an environment derived from the browser), you can develop almost any type of application imaginable:

 	
Desktop applications, by using, for example, NW.js (http://nwjs.io/) or Electron (http://electron.atom.io/). These technologies usually wrap the browser so that we can build desktop UIs with standard HTML, CSS, and JavaScript (that way, we can rely on our core JavaScript and browser knowledge), with additional support that makes it possible to interact with the filesystem. We can build truly platform-independent desktop applications that have the same look and feel on Windows, Mac, and Linux.

 	
Mobile apps with frameworks, such as Apache Cordova (https://cordova.apache.org/). Similar to desktop apps built with web technologies, frameworks for mobile apps use a wrapped browser but with additional platform-specific APIs that let us interact with the mobile platform.

 	
Server-side applications and applications for embedded devices with Node.js, an environment derived from the browser that uses many of the same underlying principles as the browser. For example, Node.js executes JavaScript code and relies on events.

 Ann doesn’t know how lucky she is (although Bob has a pretty good idea). It doesn’t matter whether she needs to build a standard desktop application, a mobile application, a server-side application, or even an embedded application—all these types of applications share some of the same underlying principles of standard client-side web applications. By understanding how the core mechanics of JavaScript work, and by understanding the core APIs provided by browsers (such as events, which also have a lot in common with mechanisms provided by Node.js), she can boost her development skills across the board. As can you. In the process, you’ll become a more versatile developer and gain the knowledge and understanding to tackle a wide variety of problems. You’ll even be able to build your own serverless applications based in the cloud by using JavaScript APIs for services such as AWS Lambda to deploy, maintain, and control your application’s cloud components.

1.5. Summary

 	Client-side web applications are among the most popular today, and the concepts, tools, and techniques once used only for their development have permeated other application domains. Understanding the foundations of client-side web applications will help you develop applications for a wide variety of domains.

 	To improve your development skills, you have to gain a deep understanding of the core mechanics of JavaScript, as well as the infrastructure provided by the browsers.

 	This book focuses on core JavaScript mechanisms such as functions, function closures, and prototypes, as well as on new JavaScript features such as generators, promises, proxies, maps, sets, and modules.

 	JavaScript can be executed in a large number of environments, but the environment where it all began, and the environment we’ll concentrate on, is the browser.

 	In addition to JavaScript, we’ll explore browser internals such as the DOM (a structured representation of the web page UI) and events, because client-side web applications are event-driven applications.

 	We’ll do this exploration with best practices in mind: debugging, testing, and performance analysis.

 Chapter 2. Building the page at runtime

 This chapter covers

 	Steps in the lifecycle of a web application

 	Processing HTML code to produce a web page

 	Order of executing JavaScript code

 	Achieving interactivity with events

 	The event loop

 Our exploration of JavaScript is performed in the context of client-side web applications and the browser as the engine that executes JavaScript code. In order to have a strong base from which to continue exploring JavaScript as a language and the browser as a platform, first we have to understand the complete web application lifecycle, and especially how our JavaScript code fits into this lifecycle.

 In this chapter, we’ll thoroughly explore the lifecycle of client-side web applications from the moment the page is requested, through various interactions performed by the user, all the way until the page is closed down. First we’ll explore how the page is built by processing the HTML code. Then we’ll focus on the execution of JavaScript code, which adds much-needed dynamicity to our pages. And finally we’ll look into how events are handled in order to develop interactive applications that respond to users’ actions.

 During this process, we’ll explore some fundamental web application concepts such as the DOM (a structured representation of a web page) and the event loop (determines how events are handled by applications). Let’s dive in!

Do you know?

 Q1:

 Does the browser always build the page exactly according to the given HTML?

 Q2:

 How many events can a web application handle at once?

 Q3:

 Why must browsers use an event queue to process events?

2.1. The lifecycle overview

 The lifecycle of a typical client-side web application begins with the user typing a URL into the browser’s address bar or clicking a link. Let’s say we want to look up a term and go to Google’s homepage. We type in the URL www.google.com, as shown at upper left in figure 2.1.

 Figure 2.1. The lifecycle of a client-side web application starts with the user specifying a website address (or clicking a link) and ends when the user leaves the web page. It’s composed of two steps: page building and event handling.

 [image:]

 On behalf of the user, the browser formulates a request that is sent to a server [image:], which processes the request [image:] and formulates a response that is usually composed of HTML, CSS, and JavaScript code. The moment the browser receives this response [image:] is when our client-side web application truly starts coming to life.

 Because client-side web applications are Graphical User Interface (GUI) applications, their lifecycle follows similar phases as other GUI applications (think standard desktop applications or mobile applications) and is carried out in the following two steps:

 	
Page building— Set up the user interface.

 	
Event handling— Enter a loop [image:] waiting for events to occur [image:], and start invoking event handlers.

 The lifecycle of the application ends when the user closes or leaves the web page [image:].

 Now let’s look at an example web application with a simple UI that reacts to user actions: Every time a user moves a mouse or clicks the page, a message is displayed. We’ll use this application throughout the chapter.

 Listing 2.1. Small web application with a GUI reacting to events

 [image:]

 [image:]

 Listing 2.1 first defines two CSS rules, #first and #second, that specify the text color for the elements with the IDs first and second (so that we can easily distinguish between them). We continue by defining a list element with the id first:

 <ul id="first">

 Then we define an addMessage function that, when invoked, creates a new list item element, sets its text content, and appends it to an existing element:

 function addMessage(element, message){
 var messageElement = document.createElement("li");
 messageElement.textContent = message;
 element.appendChild(messageElement);
}

 We follow this by using the built-in getElementById method to fetch an element with the ID first from the document, and adding a message to it that notifies us that the page is loading:

 var first = document.getElementById("first");
addMessage(first, "Page loading");

 Next we define another list element, now with the attribute ID second:

 <ul id="second">

 Finally we attach two event handlers to the body of the web page. We start with the mousemove event handler, which is executed every time the user moves the mouse, and adds a message "Event: mousemove" to the second list element by calling the addMessage function:

 document.body.addEventListener("mousemove", function() {
 var second = document.getElementById("second");
 addMessage(second, "Event: mousemove");
});

 We also register a click event handler, which, whenever the user clicks the page, logs a message "Event: click"

OEBPS/OEBPS/Images/006fig01.jpg
*:s‘s 1

OEBPS/OEBPS/Images/01fig01_alt.jpg
Browser infrastructure Node.js infrastructure

eBo

Browser API Node API

& # 0|40

Events Timers Events Timers

OEBPS/OEBPS/Images/xixfig02.jpg

OEBPS/OEBPS/Images/0xxfig01.jpg

OEBPS/OEBPS/Images/common02.jpg

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/xixfig01.jpg
o]

OEBPS/OEBPS/Images/common01.jpg

OEBPS/OEBPS/Images/010fig01_alt.jpg
console.time("My operation®

i < Starts the timer

for(var n = 0; n < maxCount; n++){ Performs
/*perform the operation to be measured+/ the operation
b

multiple times

console.timeEnd ("My operation"); < Stops the timer

OEBPS/OEBPS/Images/num-02.jpg

OEBPS/OEBPS/Images/02fig01_alt.jpg
User actions Browser actions Server actions

@ Enters URL
(or clicks link) @ Generates a

| I \ request and sends

B R o,

‘ﬂ' @ Performs actions
or gets a resource:

@ Processes HTML, sends response
CSS, and JavaScript, o cient
and builds resulting
page

Page building

|

Wt; @ Monitors event queue,
@ % processing any events
b S5 oneatatime

@ Interacts with
page elements

|

@ Closes web app—»-

Event handing

App lifecycle ends

OEBPS/OEBPS/Images/cover.jpg
£
AN~
‘.(; .\4 -

OEBPS/OEBPS/Images/num-04.jpg

OEBPS/OEBPS/Images/num-03.jpg

OEBPS/OEBPS/Images/num-06.jpg

OEBPS/OEBPS/Images/num-05.jpg

OEBPS/OEBPS/Images/ch02ex01-0.jpg
RALRESLRI SO
chtml>
<head>
<titlesWeb app lifecyclec/titles
<styles
#tirst { color: green:}
#second { color: red:}
</styles
</head>
<body>
<ul ida*firsti>

<script>
function addMessage (element, message) {

var messageElement = document.createElement ("1i%);
messageElement . textContent = message;

element . appendChild (nessageElement

3

Defines a function
that adds a message
to an element

OEBPS/OEBPS/Images/num-07.jpg

OEBPS/OEBPS/Images/ch02ex01-1.jpg
var first - document.getElementByld(*first®);
addvessage (first, "Page loading");

</scripts
<ul 1d-"secondse/ul> Attaches mousemove

event handler to body
<script>

docunent . body .addEventListener ("mousemove", function() {
var second = document.getElementById ("second") ;
adamessage (second, "Event: mousemove") ;

b

Attaches click event

document .body. addEventListener ("click®, function(){ handler to body

var second = document .getElementById ("second") ;
addvessage (second, "Event: click");
b
</script>
</body>
</html>.

