

 inside front cover

 [image: IBC_F01_Lock3]

 Praise for the Second Edition

 One of the greatest and most complete books about ASP.NET Core!

 —Delcoigne Vincent, Wavenet

 Fantastic book. The topics are explained clearly and thoroughly. It’s well written and researched. If you want a thorough understanding of ASP.NET Core, this is where you need to start.

 —Luis Moux, EMO

 A comprehensive training and reference for ASP.NET Core with a touch of history of the .NET realm for .NET newcomers as well as .NET seniors.

 —Jean-François Morin, Laval University

 The most comprehensive ASP.NET Core book on the market. It covers just about everything you need to learn to quickly become productive in the often-confusing and fast-changing world of .NET Core.

 —Filip Wojcieszyn, Sonova AG

 One of the best books to learn the ins and outs of ASP.NET Core with confidence.

 —Raushan Jha, Microsoft

 Includes comprehensive information that prepares you to deliver robust and reliable real industry-standard applications.

 —Daniel Vásquez, RWS

 Excellent book with a thorough explanation of basic concepts and lots of tips for best practices. Highly recommended.

 —Ruben Vandeginste, PeopleWare

 Andrew Lock provides excellent insight into how to use ASP.NET Core. He provides clear, in-depth practical examples to solidify concepts described throughout the book. This book is a must have for .NET developers.

 —Foster Haines, Foster’s Website Company

 [image:]

 ASP.NET Core in Action

 Third Edition

 Andrew Lock

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical editor:

 	
 Filip Wojcieszyn

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Kathleen Rossland

 	
 Copy editor:

 	
 Keir Simpson

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Tanya Wilke

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633438620

contents

 front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Getting started with ASP.NET Core

 1.1 What is ASP.NET Core?

 1.2 What types of applications can you build?

 1.3 Choosing ASP.NET Core

 1.4 How does ASP.NET Core work?

 How does an HTTP web request work?

 How does ASP.NET Core process a request?

 1.5 What you’ll learn in this book

 Part 1 Getting started with minimal APIs

 2 Understanding ASP.NET Core

 2.1 Using a web framework

 2.2 Why ASP.NET Core was created

 2.3 Understanding the many paradigms of ASP.NET Core

 2.4 When to choose ASP.NET Core

 If you’re new to .NET development

 If you’re a .NET Framework developer creating a new application

 Converting an existing ASP.NET application to ASP.NET Core

 3 Your first application

 3.1 A brief overview of an ASP.NET Core application

 3.2 Creating your first ASP.NET Core application

 Using a template to get started

 Building the application

 3.3 Running the web application

 3.4 Understanding the project layout

 3.5 The .csproj project file: Declaring your dependencies

 3.6 Program.cs file: Defining your application

 3.7 Adding functionality to your application

 Adding and configuring services

 Defining how requests are handled with middleware and endpoints

 4 Handling requests with the middleware pipeline

 4.1 Defining middleware

 4.2 Combining middleware in a pipeline

 Simple pipeline scenario 1: A holding page

 Simple pipeline scenario 2: Handling static files

 Simple pipeline scenario 3: A minimal API application

 4.3 Handling errors using middleware

 Viewing exceptions in development: DeveloperExceptionPage

 Handling exceptions in production: ExceptionHandlerMiddleware

 5 Creating a JSON API with minimal APIs

 5.1 What is an HTTP API, and when should you use one?

 5.2 Defining minimal API endpoints

 Extracting values from the URL with routing

 Mapping verbs to endpoints

 Defining route handlers with functions

 5.3 Generating responses with IResult

 Returning status codes with Results and TypedResults

 Returning useful errors with Problem Details

 Converting all your responses to Problem Details

 Returning other data types

 5.4 Running common code with endpoint filters

 Adding multiple filters to an endpoint

 Filters or middleware: Which should you choose?

 Generalizing your endpoint filters

 Implementing the IEndpointFilter interface

 5.5 Organizing your APIs with route groups

 6 Mapping URLs to endpoints using routing

 6.1 What is routing?

 6.2 Endpoint routing in ASP.NET Core

 6.3 Exploring the route template syntax

 Working with parameters and literal segments

 Using optional and default values

 Adding additional constraints to route parameters

 Matching arbitrary URLs with the catch-all parameter

 6.4 Generating URLs from route parameters

 Generating URLs for a minimal API endpoint with LinkGenerator

 Generating URLs with IResults

 Controlling your generated URLs with RouteOptions

 7 Model binding and validation in minimal APIs

 7.1 Extracting values from a request with model binding

 7.2 Binding simple types to a request

 7.3 Binding complex types to the JSON body

 7.4 Arrays: Simple types or complex types?

 7.5 Making parameters optional with nullables

 7.6 Binding services and special types

 Injecting well-known types

 Injecting services

 Binding file uploads with IFormFile and IFormFileCollection

 7.7 Custom binding with BindAsync

 7.8 Choosing a binding source

 7.9 Simplifying handlers with AsParameters

 7.10 Handling user input with model validation

 The need for validation

 Using DataAnnotations attributes for validation

 Adding a validation filter to your minimal APIs

 Part 2 Building complete applications

 8 An introduction to dependency injection

 8.1 Understanding the benefits of dependency injection

 8.2 Creating loosely coupled code

 8.3 Using dependency injection in ASP.NET Core

 8.4 Adding ASP.NET Core framework services to the container

 8.5 Using services from the DI container

 9 Registering services with dependency injection

 9.1 Registering custom services with the DI container

 9.2 Registering services using objects and lambdas

 9.3 Registering a service in the container multiple times

 Injecting multiple implementations of an interface

 Injecting a single implementation when multiple services are registered

 Conditionally registering services using TryAdd

 9.4 Understanding lifetimes: When are services created?

 Transient: Everyone is unique

 Scoped: Let’s stick together

 Singleton: There can be only one

 Keeping an eye out for captive dependencies

 9.5 Resolving scoped services outside a request

 10 Configuring an ASP.NET Core application

 10.1 Introducing the ASP.NET Core configuration model

 10.2 Building a configuration object for your app

 Adding a configuration provider in Program.cs

 Using multiple providers to override configuration values

 Storing configuration secrets safely

 Reloading configuration values when they change

 10.3 Using strongly typed settings with the options pattern

 Introducing the IOptions interface

 Reloading strongly typed options with IOptionsSnapshot

 Designing your options classes for automatic binding

 Binding strongly typed settings without the IOptions interface

 10.4 Configuring an application for multiple environments

 Identifying the hosting environment

 Loading environment-specific configuration files

 Setting the hosting environment

 11 Documenting APIs with OpenAPI

 11.1 Adding an OpenAPI description to your app

 11.2 Testing your APIs with Swagger UI

 11.3 Adding metadata to your minimal APIs

 11.4 Generating strongly typed clients with NSwag

 Generating a client using Visual Studio

 Generating a client using the .NET Global tool

 Using a generated client to call your API

 Customizing the generated code

 Refreshing the OpenAPI description

 11.5 Adding descriptions and summaries to your endpoints

 Using fluent methods to add descriptions

 Using attributes to add metadata

 Using XML documentation comments to add metadata

 11.6 Knowing the limitations of OpenAPI

 Not all APIs can be described by OpenAPI

 Generated code is opinionated

 Tooling often lags the specification

 12 Saving data with Entity Framework Core

 12.1 Introducing Entity Framework Core

 What is EF Core?

 Why use an object-relational mapper?

 When should you choose EF Core?

 Mapping a database to your application code

 12.2 Adding EF Core to an application

 Choosing a database provider and installing EF Core

 Building a data model

 Registering a data context

 12.3 Managing changes with migrations

 Creating your first migration

 Adding a second migration

 12.4 Querying data from and saving data to the database

 Creating a record

 Loading a list of records

 Loading a single record

 Updating a model with changes

 12.5 Using EF Core in production applications

 Part 3 Generating HTML with Razor Pages and MVC

 13 Creating a website with Razor Pages

 13.1 Your first Razor Pages application

 Using the Web Application template

 Adding and configuring services

 Generating HTML with Razor Pages

 Handling request logic with page models and handlers

 13.2 Exploring a typical Razor Page

 13.3 Understanding the MVC design pattern

 13.4 Applying the MVC design pattern to Razor Pages

 Directing a request to a Razor Page and building a binding model

 Executing a handler using the application model

 Building HTML using the view model

 Putting it all together: A complete Razor Page request

 14 Mapping URLs to Razor Pages using routing

 14.1 Routing in ASP.NET Core

 14.2 Convention-based routing vs. explicit routing

 14.3 Routing requests to Razor Pages

 14.4 Customizing Razor Page route templates

 Adding a segment to a Razor Page route template

 Replacing a Razor Page route template completely

 14.5 enerating URLs for Razor Pages

 Generating URLs for a Razor Page

 Generating URLs for an MVC controller

 Generating URLs with LinkGenerator

 14.6 Customizing conventions with Razor Pages

 15 Generating responses with page handlers in Razor Pages

 15.1 Razor Pages and page handlers

 15.2 Selecting a page handler to invoke

 15.3 Accepting parameters to page handlers

 15.4 Returning IActionResult responses

 PageResult and RedirectToPageResult

 NotFoundResult and StatusCodeResult

 15.5 Handler status codes with StatusCodePagesMiddleware

 16 Binding and validating requests with Razor Pages

 16.1 Understanding the models in Razor Pages and MVC

 16.2 From request to binding model: Making the request useful

 Binding simple types

 Binding complex types

 Choosing a binding source

 16.3 Validating binding models

 Validation in Razor Pages

 Validating on the server for safety

 Validating on the client for user experience

 16.4 Organizing your binding models in Razor Pages

 17 Rendering HTML using Razor views

 17.1 Views: Rendering the user interface

 17.2 Creating Razor views

 Razor views and code-behind

 Introducing Razor templates

 Passing data to views

 17.3 Creating dynamic web pages with Razor

 Using C# in Razor templates

 Adding loops and conditionals to Razor templates

 Rendering HTML with Raw

 17.4 Layouts, partial views, and _ViewStart

 Using layouts for shared markup

 Overriding parent layouts using sections

 Using partial views to encapsulate markup

 Running code on every view with _ViewStart and _ViewImports

 18 Building forms with Tag Helpers

 18.1 Catering to editors with Tag Helpers

 18.2 Creating forms using Tag Helpers

 The Form Tag Helper

 The Label Tag Helper

 The Input and Textarea Tag Helpers

 The Select Tag Helper

 The Validation Message and Validation Summary Tag Helpers

 18.3 Generating links with the Anchor Tag Helper

 18.4 Cache-busting with the Append Version Tag Helper

 18.5 Using conditional markup with the Environment Tag Helper

 19 Creating a website with MVC controllers

 19.1 Razor Pages vs. MVC in ASP.NET Core

 19.2 Your first MVC web application

 19.3 Comparing an MVC controller with a Razor Page PageModel

 19.4 Selecting a view from an MVC controller

 19.5 Choosing between Razor Pages and MVC controllers

 The benefits of Razor Pages

 When to choose MVC controllers over Razor Pages

 20 Creating an HTTP API using web API controllers

 20.1 Creating your first web API project

 20.2 Applying the MVC design pattern to a web API

 20.3 Attribute routing: Linking action methods to URLs

 Combining route attributes to keep your route templates DRY

 Using token replacement to reduce duplication in attribute routing

 Handling HTTP verbs with attribute routing

 20.4 Using common conventions with [ApiController]

 20.5 Generating a response from a model

 Customizing the default formatters: Adding XML support

 Choosing a response format with content negotiation

 20.6 Choosing between web API controllers and minimal APIs

 21 The MVC and Razor Pages filter pipeline

 21.1 Understanding the MVC filter pipeline

 21.2 The Razor Pages filter pipeline

 21.3 Filters or middleware: Which should you choose?

 21.4 Creating a simple filter

 21.5 Adding filters to your actions and Razor Pages

 21.6 Understanding the order of filter execution

 The default scope execution order

 Overriding the default order of filter execution with IOrderedFilter

 22 Creating custom MVC and Razor Page filters

 22.1 Creating custom filters for your application

 Authorization filters: Protecting your APIs

 Resource filters: Short-circuiting your action methods

 Action filters: Customizing model binding and action results

 Exception filters: Custom exception handling for your action methods

 Result filters: Customizing action results before they execute

 Page filters: Customizing model binding for Razor Pages

 22.2 Understanding pipeline short-circuiting

 22.3 Using dependency injection with filter attributes

 Part 4 Securing and deploying your applications

 23 Authentication: Adding users to your application with Identity

 23.1 Introducing authentication and authorization

 Understanding users and claims in ASP.NET Core

 Authentication in ASP.NET Core: Services and middleware

 23.2 What is ASP.NET Core Identity?

 23.3 Creating a project that uses ASP.NET Core Identity

 Creating the project from a template

 Exploring the template in Solution Explorer

 The ASP.NET Core Identity data model

 Interacting with ASP.NET Core Identity

 23.4 Adding ASP.NET Core Identity to an existing project

 Configuring the ASP.NET Core Identity services

 Updating the EF Core data model to support Identity

 Updating the Razor views to link to the Identity UI

 23.5 Customizing a page in ASP.NET Core Identity’s default UI

 23.6 Managing users: Adding custom data to users

 24 Authorization: Securing your application

 24.1 Introduction to authorization

 24.2 Authorization in ASP.NET Core

 Preventing anonymous users from accessing your application

 Handling unauthorized requests

 24.3 Using policies for claims-based authorization

 24.4 Creating custom policies for authorization

 Requirements and handlers: The building blocks of a policy

 Creating a policy with a custom requirement and handler

 24.5 Controlling access with resource-based authorization

 Manually authorizing requests with IAuthorizationService

 Creating a resource-based AuthorizationHandler

 24.6 Hiding HTML elements from unauthorized users

 25 Authentication and authorization for APIs

 25.1 Authentication for APIs and distributed applications

 Extending authentication to multiple apps

 Centralizing authentication in an identity provider

 OpenID Connect and OAuth 2.

 25.2 Understanding bearer token authentication

 25.3 Adding JWT bearer authentication to minimal APIs

 25.4 Using the user-jwts tool for local JWT testing

 Creating JWTs with the user-jwts tool

 Customizing your JWTs

 Managing your local JWTs

 25.5 Describing your authentication requirements to OpenAPI

 25.6 Applying authorization policies to minimal API endpoints

 26 Monitoring and troubleshooting errors with logging

 26.1 Using logging effectively in a production app

 Highlighting problems using custom log messages

 The ASP.NET Core logging abstractions

 26.2 Adding log messages to your application

 Log level: How important is the log message?

 Log category: Which component created the log?

 Formatting messages and capturing parameter values

 26.3 Controlling where logs are written using logging providers

 26.4 Changing log verbosity with filtering

 26.5 Structured logging: Creating searchable, useful logs

 Adding a structured logging provider to your app

 Using scopes to add properties to your logs

 27 Publishing and deploying your application

 27.1 Understanding the ASP.NET Core hosting model

 Running vs. publishing an ASP.NET Core app

 Choosing a deployment method for your application

 27.2 Publishing your app to IIS

 Configuring IIS for ASP.NET Core

 Preparing and publishing your application to IIS

 27.3 Hosting an application in Linux

 Running an ASP.NET Core app behind a reverse proxy in Linux

 Preparing your app for deployment to Linux

 27.4 Configuring the URLs for your application

 28 Adding HTTPS to an application

 28.1 Why do I need HTTPS?

 28.2 Using the ASP.NET Core HTTPS development certificates

 28.3 Configuring Kestrel with a production HTTPS certificate

 28.4 Enforcing HTTPS for your whole app

 Enforcing HTTPS with HTTP Strict Transport Security headers

 Redirecting from HTTP to HTTPS with HTTPS redirection middleware

 Rejecting HTTP requests in API applications

 29 Improving your application’s security

 29.1 Defending against cross-site scripting (XSS) attacks

 29.2 Protecting from cross-site request forgery (CSRF) attacks

 29.3 Calling your web APIs from other domains using CORS

 Understanding CORS and how it works

 Adding a global CORS policy to your whole app

 Adding CORS to specific endpoints with EnableCors metadata

 Configuring CORS policies

 29.4 Exploring other attack vectors

 Detecting and avoiding open redirect attacks

 Avoiding SQL injection attacks with EF Core and parameterization

 Preventing insecure direct object references

 Protecting your users’ passwords and data

 Part 5 Going further with ASP.NET Core

 30 Building ASP.NET Core apps with the generic host and Startup

 30.1 Separating concerns between two files

 30.2 The Program class: Building a Web Host

 30.3 The Startup class: Configuring your application

 30.4 Creating a custom IHostBuilder

 30.5 Understanding the complexity of the generic host

 30.6 Choosing between the generic host and minimal hosting

 31 Advanced configuration of ASP.NET Core

 31.1 Customizing your middleware pipeline

 Creating simple apps with the Run extension

 Branching middleware pipelines with the Map extension

 Adding to the pipeline with the Use extension

 Building a custom middleware component

 Converting middleware into endpoint routing endpoints

 31.2 Using DI with OptionsBuilder and IConfigureOptions

 31.3 Using a third-party dependency injection container

 32 Building custom MVC and Razor Pages components

 32.1 Creating a custom Razor Tag Helper

 Printing environment information with a custom Tag Helper

 Creating a custom Tag Helper to conditionally hide elements

 Creating a Tag Helper to convert Markdown to HTML

 32.2 View components: Adding logic to partial views

 32.3 Building a custom validation attribute

 32.4 Replacing the validation framework with FluentValidation

 Comparing FluentValidation with DataAnnotations attributes

 Adding FluentValidation to your application

 33 Calling remote APIs with IHttpClientFactory

 33.1 Calling HTTP APIs: The problem with HttpClient

 33.2 Creating HttpClients with IHttpClientFactory

 Using IHttpClientFactory to manage HttpClientHandler lifetime

 Configuring named clients at registration time

 Using typed clients to encapsulate HTTP calls

 33.3 Handling transient HTTP errors with Polly

 33.4 Creating a custom HttpMessageHandler

 34 Building background tasks and ser vices

 34.1 Running background tasks with IHostedService

 Running background tasks on a timer

 Using scoped services in background tasks

 34.2 Creating headless worker services using IHost

 Creating a worker service from a template

 Running worker services in production

 34.3 Coordinating background tasks using Quartz.NET

 Installing Quartz.NET in an ASP.NET Core application

 Configuring a job to run on a schedule with Quartz.NET

 Using clustering to add redundancy to your background tasks

 35 Testing applications with xUnit

 35.1 An introduction to testing in ASP.NET Core

 35.2 Creating your first test project with xUnit

 35.3 Running tests with dotnet test

 35.4 Referencing your app from your test project

 35.5 Adding Fact and Theory unit tests

 35.6 Testing failure conditions

 36 Testing ASP.NET Core applications

 36.1 Unit testing custom middleware

 36.2 Unit testing API controllers and minimal API endpoints

 36.3 Integration testing: Testing your whole app in-memory

 Creating a TestServer using the Test Host package

 Testing your application with WebApplicationFactory

 Replacing dependencies in WebApplicationFactory

 Reducing duplication by creating a custom WebApplicationFactory

 36.4 Isolating the database with an in-memory EF Core provider

 appendix A Preparing your development environment

 appendix B Useful references

 index

front matter

preface

 ASP.NET has a long history; Microsoft released the first version in 2002 as part of the original .NET Framework 1.0. Since then, it’s been through multiple iterations, each version bringing added features and extensibility. Each iteration, however, was built on the same underlying framework provided by System.Web.dll. This library is part of the .NET Framework, so it comes preinstalled in all versions of Windows.

 This brings mixed blessings. On one hand, the ASP.NET 4.X framework today is a reliable, battle-tested platform for building modern applications on Windows. On the other hand, it is limited by this reliance; changes to the underlying System.Web.dll are far-reaching and consequently slow to roll out, and it fundamentally excludes the many developers who are building and deploying to Linux or macOS.

 When I began looking into ASP.NET Core, I was one of those developers. A Windows user at heart, I was issued a Mac by my employer, so I was stuck working in a virtual machine all day. ASP.NET Core promised to change all that, allowing me to develop natively on both my Windows machine and my Mac.

 I was relatively late to the party in many respects, taking an active interest only just before the RC2 release of ASP.NET Core. By this point there had already been eight (!) beta releases, many of which contained significant breaking changes. By not diving in fully until RC2, I was spared the pain of dodgy tooling and changing APIs.

 What I saw at that point really impressed me. ASP.NET Core let developers use their existing knowledge of the .NET Framework, and of ASP.NET MVC applications in particular, while baking in current best practices such as dependency injection, strongly typed configuration, and logging. On top of that, you could build and deploy cross-platform. I was sold.

 This book came about largely due to my approach to learning about ASP.NET Core. Rather than simply reading documentation and blog posts, I decided to try something new and start writing about what I learned. Each week I would dedicate some time to exploring a new aspect of ASP.NET Core, and I’d write a blog post about it. When the possibility of writing a book came about, I jumped at the chance—another excuse to dive further into the framework!

 Since I started this book, a lot has changed, both with the book and ASP.NET Core. The first major release of the framework in June 2016 still had many rough edges, in particular around the tooling experience. With the release of .NET 7 in November 2022, ASP.NET Core has really come into its own, with the APIs and tooling reaching mature levels.

 Updates to the framework in .NET 6 and .NET 7 significantly simplified the getting-started experience for newcomers with the introduction of minimal hosting and minimal APIs, which provide a terser, simpler approach to writing APIs, much closer to the experience in other languages. You can get straight into building your app’s functionality without having to understand architecture first.

 For some experienced ASP.NET Core developers, these changes can feel regressive and unstructured, but if you’re one of them, I encourage you to give them a chance and to build your own structure and patterns. For brevity and clarity of the examples in this book, I often put the whole code for your app in one file, but don’t think that’s how you need to write your real applications. You’re free to create helper methods, classes, and any structure that helps keep your applications maintainable while taking advantage of the performance benefits of minimal APIs.

 This book covers everything you need to get started with ASP.NET Core, whether you’re new to web development or an existing ASP.NET developer. It focuses on the framework itself, so I don’t go into details about client-side frameworks such as Angular and React or technologies like Docker. I also don’t cover all the new features in .NET 7, such as Blazor and gRPC; instead, I provide links where you can find more information.

 In this edition, I have significantly expanded and rearranged many chapters compared with previous editions of the book; some chapters have been split into more manageable sizes. The early chapters feature a lot of new content focusing on minimal APIs and minimal hosting introduced in .NET 6.

 I find it a joy to work with ASP.NET Core apps compared with apps using the previous version of ASP.NET, and I hope that my passion comes through in this book!

acknowledgments

 Although there is only one name on the cover of this book, a plethora of people contributed to both its writing and production. In this section I’d like to thank everyone who encouraged me, contributed, and put up with me for the past year.

 First, and most important, I’d like to thank my girlfriend, Becky. Your continual support and encouragement means the world to me and has kept me going through such a busy time. You’ve taken the brunt of my stress and pressure, and I’m eternally grateful. I love you always.

 I’d also like to thank my whole family for their support, in particular my parents, Jan and Bob, for putting up with my ranting; my sister, Amanda, for your always upbeat chats; and of course, Goose, for diligently ensuring that I take regular breaks for walks and tummy tickles.

 On a professional level, I’d like to thank Manning for giving me this opportunity. Brian Sawyer “discovered” me for the first version of this book and encouraged me to tackle the subsequent versions. Marina Michaels served as my development editor for the third time running and again proved to be alternately meticulous, critical, encouraging, and enthusiastic. The book is undoubtedly better thanks to your involvement.

 Thank you to my review editor, Adriana Sabo, and to all the reviewers: Alen Adanić, Ben McNamara, Bela Istók, Darrin Bishop, Dennis Liabenow, Al Pezewski, Emmanouil Chardalas, Foster Haines, Onofrei George, John Guthrie, Jean-François Morin, Pedro Seromenho, Joe Cuevas, José Antonio Martinez Perez, Joe Suchy, Luis Moux, Milan Šarenac, Milorad Imbra, Nik Rimington, Nitin Ainani, Oliver Korten, Raushan Jha, Richard Young, Rick Beerendonk, Ron Lease, Ruben Vandeginste, Sumit K. Singh, Towhidul Bashar, Daniel Vásquez, and Will Lopez. Your suggestions helped make this a better book.

 My thanks go to the technical editor for this book, Filip Wojcieszyn, who is a founder and maintainer of several popular open-source projects, frequent conference speaker, and a Microsoft MVP. Filip provided invaluable feedback, highlighting my incorrect assumptions and technical biases, and ensuring technical correctness in everything I wrote.

 I also wish to thank Tanya Wilke, who served as technical proofreader. Tanya verified that the code I wrote actually ran and made sense, working through the chapters with formidable efficiency.

 To everyone at Manning who helped get this book published and marketed, a heartfelt thanks. I’d also like to thank all the MEAP readers for their comments, which helped improve the book in numerous ways.

 I would have never been in a position to write this book if not for the excellent content produced by members of the .NET community and those I follow on social media.

 Finally, thanks to all those friends who encouraged and supported me, and showed interest generally. We may not have been able to meet up as much as we’d like, but I look forward to getting together for a drink as soon as it’s possible.

about this book

 This book is about the ASP.NET Core framework, what it is, and how you can use it to build web applications. Although some of this content is already available online, it’s scattered around the internet in disparate documents and blog posts. This book guides you through building your first applications, introducing additional complexity as you cement previous concepts.

 I present each topic using relatively small examples rather than building on a single example application through the book. There are merits to both approaches, but I wanted to ensure that the focus remained on the specific topics being taught, without the mental overhead of navigating an increasingly large project.

 By the end of the book, you should have a solid understanding of how to build apps with ASP.NET Core, its strengths and weaknesses, and how to use its features to build apps securely. I don’t spend a lot of time on application architecture, but I make sure to point out best practices, especially where I cover architecture only superficially for the sake of brevity.

Who should read this book

 This book is for C# developers who are interested in learning a cross-platform web framework. It doesn’t assume that you have any experience building web applications. You may be a mobile or desktop developer, for example, though experience with ASP.NET or another web framework is undoubtedly beneficial.

 I assume that in addition to a working knowledge of C# and .NET, you have some knowledge of common object-oriented practices and a basic understanding of relational databases in general. I assume passing familiarity with HTML and CSS and of JavaScript’s place as a client-side scripting language. You don’t need to know any JavaScript or CSS frameworks for this book, though ASP.NET Core works well with both if that is your forte.

 Web frameworks naturally touch on a wide range of topics, from the database and network to visual design and client-side scripting. I provide as much context as possible, and I include links to sites and books where you can learn more.

How this book is organized

 This book is divided into 5 parts, 36 chapters, and 2 appendices. Ideally, you will read the book cover to cover and then use it as a reference, but I realize that this approach won’t suit everyone. Although I use small sample apps to demonstrate a topic, some chapters build on the work of previous ones, so the content will make more sense when read sequentially.

 I strongly suggest reading the chapters in part 1 in sequence, as each chapter builds on topics introduced in the previous chapters and provides a basis for the rest of the book. Part 2 is also best read sequentially, though most of the chapters are independent if you wish to jump around. Part 3, again, is best read sequentially. You’ll get the best experience by reading the chapters in parts 4 and 5 sequentially, but many of the topics are independent, so you can read them out of order if you prefer. But I recommend only doing so after you’ve covered parts 1 to 3.

 Part 1 provides a general introduction to ASP.NET Core, focusing on building small JSON APIs by using the latest features introduced in .NET 7. After we cover the basics, we look at building minimal API applications that provide the simplest programming model for ASP.NET Core web applications.

 	
 Chapter 1 introduces ASP.NET Core and its place in the web development landscape. It describes the type of applications you can build, some of the reasons to choose ASP.NET Core, and the basics of web requests in an ASP.NET Core application.

 	
 Chapter 2 looks at why you should consider using any web framework, why ASP.NET Core was created, and the different application paradigms you can use with ASP.NET Core. Finally, it looks at the situations when you should and shouldn’t choose ASP.NET Core.

 	
 Chapter 3 walks through all the components of a basic ASP.NET Core minimal API application, discussing their role and how they combine to generate a response to a web request.

 	
 Chapter 4 describes the middleware pipeline, the main application pipeline in ASP.NET Core, which defines how incoming requests are processed and how a response should be generated.

 	
 Chapter 5 shows how to use minimal API endpoints to create a JavaScript Object Notation (JSON) HTTP API that can be called by client-side apps, server-side apps, or mobile devices.

 	
 Chapter 6 describes the ASP.NET Core routing system. Routing is the process of mapping incoming request URLs to a specific handler method, which executes to generate a response.

 	
 Chapter 7 looks at model binding in minimal APIs, the process of mapping form data and URL parameters passed in a request to concrete C# objects.

 Part 2 covers important topics for building fully-featured web applications after you understand the basics:

 	
 Chapter 8 introduces the concept of dependency injection (DI) and describes the DI container built into ASP.NET Core.

 	
 Chapter 9 builds on chapter 8 by describing how to register your own services with the DI container, the patterns you can use, and how to understand the lifetime of services the DI container creates.

 	
 Chapter 10 discusses how to read settings and secrets in ASP.NET Core, and how to map them to strongly typed objects.

 	
 Chapter 11 describes how to document your APIs using the OpenAPI standard and how this helps with testing scenarios and for automatically generating clients to call your APIs.

 	
 Chapter 12 introduces Entity Framework Core (EF Core) for saving data in a relational database.

 Part 3 moves away from minimal APIs and looks at how to build server-rendered page-based HTML applications using Razor Pages and the Model-View-Controller (MVC) architecture:

 	
 Chapter 13 shows how to use Razor Pages to build page-based web sites. Razor Pages are the recommended way to build server-rendered applications in ASP.NET Core and are designed for page-based applications.

 	
 Chapter 14 describes the Razor Pages routing system and how it differs from minimal APIs.

 	
 Chapter 15 looks at page handlers in Razor Pages, which are responsible for choosing how to respond to a request and selecting what response to generate.

 	
 Chapter 16 looks at model binding in Razor Pages, how it differs from minimal APIs, and the importance of validating your models.

 	
 Chapter 17 shows how to generate HTML web pages using the Razor template language.

 	
 Chapter 18 builds on chapter 17 by introducing Tag Helpers, which can greatly reduce the amount of code required to build forms and web pages.

 	
 Chapter 19 introduces MVC controllers as an alternative approach to building both server-rendered HTML applications and API applications.

 	
 Chapter 20 describes how to use MVC controllers to build APIs that can be called by client-side apps as an alternative to minimal APIs.

 	
 Chapter 21 introduces the MVC and Razor Pages filter pipeline, shows how it works, and describes some of the filters built into the framework.

 	
 Chapter 22 builds on chapter 21 by showing how to create custom filters to reduce some of the duplication in your MVC and Razor Pages applications.

 The chapters that make up part 4 cover important cross-cutting aspects of ASP.NET Core development:

 	
 Chapter 23 describes how to add user profiles and authentication to your application by using ASP.NET Core Identity.

 	
 Chapter 24 builds on the previous chapter by introducing authorization for users so you can restrict which pages a signed-in user can access.

 	
 Chapter 25 discusses authentication and authorization for API applications, how this differs from authentication in HTML applications, and how to get started with authentication in ASP.NET Core APIs.

 	
 Chapter 26 shows how to configure logging in your application and how to write log messages to multiple locations.

 	
 Chapter 27 looks at how to publish your app and configure it for a production environment.

 	
 Chapter 28 discusses the reason for adding HTTPS to your application, how to use HTTPS when developing locally and in production, and how to force HTTPS for your whole application.

 	
 Chapter 29 explores some other security considerations you should make when developing your application and how to stay safe with ASP.NET Core.

 Part 5 looks at various topics that help you take your ASP.NET Core applications further, including nonweb applications, custom configuration and components, and testing:

 	
 Chapter 30 discusses an alternative bootstrapping approach for ASP.NET Core apps, using the generic host and a Startup class.

 	
 Chapter 31 describes how to build and use a variety of custom components, such as custom middleware, and how to handle complex configuration requirements.

 	
 Chapter 32 expands on chapter 31, showing how to build custom Razor Page components such as custom Tag Helpers and custom validation attributes.

 	
 Chapter 33 discusses the IHttpClientFactory service and how to use it to create HttpClient instances for calling remote APIs.

 	
 Chapter 34 explores the generic IHost abstraction, which you can use to create Windows Services and Linux daemons. You’ll also learn to run tasks in the background of your applications.

 	
 Chapter 35 shows how to test an ASP.NET Core application with the xUnit testing framework.

 	
 Chapter 36 follows on from chapter 35, showing how to test ASP.NET Core applications specifically. It covers both unit tests and integration tests using the Test Host.

 The two appendices provide supplementary information:

 	
 Appendix A describes how to configure your development environment, whether you’re in Windows, Linux, or macOS.

 	
 Appendix B contains links that I’ve found useful in learning about ASP.NET Core.

About the code

 Source code is provided for all chapters except chapters 1, 2, 21, and 27, which don’t have any code. You can view the source code for each chapter in my GitHub repository at https://github.com/andrewlock/asp-dot-net-core-in-action-3e. A zip file containing all the source code is also available on the publisher’s website at https://www.manning.com/books/asp-net-core-in-action-third-edition. You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/asp-net-core-in-action-third-edition.

 All the code examples in this book use .NET 7 and were built using both Visual Studio and Visual Studio Code. To build and run the examples, you need to install the .NET software development kit (SDK), as described in appendix A.

 This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight changes from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and some listings include line-continuation markers (➥). Additionally, comments in the source code have been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of ASP.NET Core in Action, Third Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/asp-net-core-in-action-third-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest that you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible on the publisher’s website as long as the book is in print.

about the author

 [image: Lock]

 Andrew Lock is a .NET developer and Microsoft MVP. He graduated with an engineering degree from Cambridge University, specializing in software engineering, and went on to obtain a PhD in digital image processing. He has been developing professionally with .NET since 2010, using a wide range of technologies, including WinForms, ASP.NET WebForms, ASP.NET MVC, ASP.NET Webpages, and most recently ASP.NET Core. Andrew has put many ASP.NET Core applications into production since version 1 was released in 2016. He has an active blog at https://andrewlock.net dedicated to ASP.NET Core. This blog has frequently been featured in the community spotlight by the ASP.NET team at Microsoft, on the .NET blog, and in the weekly community standups.

about the cover illustration

 The caption for the illustration on the cover of ASP.NET Core in Action, Third Edition, is “The Captain Pasha. Kapudan pasha, admiral of the Turkish navy,” taken from a collection published in 1802 by William Miller.

 In those days, it was easy to identify where people lived and what their trade or station in life was by their dress alone. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Getting started with ASP.NET Core

 This chapter covers

 	
What is ASP.NET Core?

 	
Things you can build with ASP.NET Core

 	
How ASP.NET Core works

 Choosing to learn and develop with a new framework is a big investment, so it’s important to establish early on whether it’s right for you. In this chapter, I provide some background on ASP.NET Core: what it is, how it works, and why you should consider it for building your web applications.

 By the end of this chapter, you should have a good overview of the benefits of ASP.NET Core, the role of .NET 7, and the basic mechanics of how ASP.NET Core works. So without further ado, let’s dive in!

1.1 What is ASP.NET Core?

 ASP.NET Core is a cross-platform, open-source application framework that you can use to build dynamic web applications quickly. You can use ASP.NET Core to build server-rendered web applications, backend server applications, HTTP APIs that can be consumed by mobile applications, and much more. ASP.NET Core runs on .NET 7, which is the latest version of .NET Core—a high-performance, cross-platform, open-source runtime.

 ASP.NET Core provides structure, helper functions, and a framework for building applications, which saves you from having to write a lot of this code yourself. Then the ASP.NET Core framework code calls in to your handlers, which in turn call methods in your application’s business logic, as shown in figure 1.1. This business logic is the core of your application. You can interact with other services here, such as databases or remote APIs, but your business logic typically doesn’t depend directly on ASP.NET Core.

 [image: CH01_F01_Lock3]

 Figure 1.1 A typical ASP.NET Core application consists of several layers. The ASP.NET Core framework code handles requests from a client, dealing with the complex networking code. Then the framework calls in to handlers (Razor Pages and Web API controllers, for example) that you write using primitives provided by the framework. Finally, these handlers call in to your application’s domain logic—typically, C# classes and objects without any dependencies that are specific to ASP.NET Core.

1.2 What types of applications can you build?

 ASP.NET Core provides a generalized web framework that you can use to build a wide variety of applications. ASP.NET Core includes APIs that support many paradigms:

 	
 Minimal APIs—Simple HTTP APIs that can be consumed by mobile applications or browser-based single-page applications.

 	
 Web APIs—An alternative approach to building HTTP APIs that adds more structure and features than minimal APIs.

 	
 gRPC APIs—Used to build efficient binary APIs for server-to-server communication using the gRPC protocol.

 	
 Razor Pages—Used to build page-based server-rendered applications.

 	
 MVC controllers—Similar to Razor Pages. Model-View-Controller (MVC) controller applications are for server-based applications but without the page-based paradigm.

 	
 Blazor WebAssembly—A browser-based single-page application framework that uses the WebAssembly standard, similar to JavaScript frameworks such as Angular, React, and Vue.

 	
 Blazor Server—Used to build stateful applications, rendered on the server, that send UI events and page updates over WebSockets to provide the feel of a client-side single-page application, but with the ease of development of a server-rendered application.

 All these paradigms are based on the same building blocks of ASP.NET Core, such as the configuration and logging libraries, and then place extra functionality on top. The best paradigm for your application depends on multiple factors, including your API requirements, the details of existing applications you need to interact with, the details of your customers’ browsers and operating environment, and scalability and uptime requirements. You don’t need to choose only one of these paradigms; ASP.NET Core can combine multiple paradigms within a single application.

1.3 Choosing ASP.NET Core

 I hope that now you have a general grasp of what ASP.NET Core is and the type of applications you can build with it. But one question remains: should you use it? Microsoft recommends that all new .NET web development use ASP.NET Core, but switching to or learning a new web stack is a big ask for any developer or company.

 If you’re new to .NET development and are considering ASP.NET Core, welcome! Microsoft is pushing ASP.NET Core as an attractive option for web development beginners, but taking .NET cross-platform means that it’s competing with many other frameworks on their own turf. ASP.NET Core has many selling points compared with other cross-platform web frameworks:

 	
 It’s a modern, high-performance, open-source web framework.

 	
 It uses familiar design patterns and paradigms.

 	
 C# is a great language (but you can use VB.NET or F# if you prefer).

 	
 You can build and run on any platform.

 ASP.NET Core is a reimagining of the ASP.NET framework, built with modern software design principles on top of the new .NET platform. Although it’s new in one sense, .NET (previously called .NET Core) has had widespread production use since 2016 and has drawn significantly from the mature, stable, and reliable .NET Framework, which has been used for more than two decades. You can rest easy knowing that by choosing ASP.NET Core and .NET 7, you’re getting a dependable platform as well as a full-featured web framework.

 One major selling point of ASP.NET Core and .NET 7 is the ability to develop and run on any platform. Whether you’re using a Mac, Windows, or Linux computer, you can run the same ASP.NET Core apps and develop across multiple environments. A wide range of distributions are supported for Linux users: RHEL, Ubuntu, Debian, CentOS, Fedora, and openSUSE, to name a few. ASP.NET Core even runs on the tiny Alpine distribution, for truly compact deployments to containers, so you can be confident that your operating system of choice will be a viable option.

 If you’re already a .NET developer, the choice of whether to invest in ASP.NET Core for new applications was largely a question of timing. Early versions of .NET Core lacked some features that made it hard to adopt, but that problem no longer exists in the latest versions of .NET. Now Microsoft explicitly advises that all new .NET applications should use .NET 7 (or newer).

 Microsoft has pledged to provide bug and security fixes for the older ASP.NET framework, but it won’t provide any more feature updates. .NET Framework isn’t being removed, so your old applications will continue to work, but you shouldn’t use it for new development.

 The main benefits of ASP.NET Core over the previous ASP.NET framework are

 	
 Cross-platform development and deployment

 	
 Focus on performance as a feature

 	
 A simplified hosting model

 	
 Regular releases with a shorter release cycle

 	
 Open-source

 	
 Modular features

 	
 More application paradigm options

 	
 The option to package .NET with an app when publishing for standalone deployments

 As an existing .NET developer who’s moving to ASP.NET Core, your ability to build and deploy cross-platform opens the door to a whole new avenue of applications, such as taking advantage of cheaper Linux virtual machine hosting in the cloud, using Docker containers for repeatable continuous integration, or writing .NET code on your Mac without needing to run a Windows virtual machine. ASP.NET Core, in combination with .NET 7, makes all this possible.

 That’s not to say that your experience deploying ASP.NET applications to Windows and Internet Information Services (IIS) is wasted. On the contrary, ASP.NET Core uses many of the same concepts as the previous ASP.NET framework, and you can still run your ASP.NET Core applications in IIS, so moving to ASP.NET Core doesn’t mean starting from scratch.

1.4 How does ASP.NET Core work?

 I’ve covered the basics of what ASP.NET Core is, what you can use it for, and why you should consider using it. In this section, you’ll see how an application built with ASP.NET Core works, from a user request for a URL to the display of a page in the browser. To get there, first you’ll see how an HTTP request works for any web server; then you’ll see how ASP.NET Core extends the process to create dynamic web pages.

1.4.1 How does an HTTP web request work?

 As you know now, ASP.NET Core is a framework for building web applications that serve data from a server. One of the most common scenarios for web developers is building a web app that you can view in a web browser. Figure 1.2 shows the high-level process you can expect from any web server.

 [image: CH01_F02_Lock3]

 Figure 1.2 Requesting a web page. The user starts by requesting a web page, which causes an HTTP request to be sent to the server. The server interprets the request, generates the necessary HTML, and sends it back in an HTTP response. Then the browser can display the web page.

 The process begins when a user navigates to a website or types a URL in their browser. The URL or web address consists of a hostname and a path to some resource on the web app. Navigating to the address in the browser sends a request from the user’s computer to the server on which the web app is hosted, using the HTTP protocol.

 Definition The hostname of a website uniquely identifies its location on the internet by mapping via the Domain Name Service (DNS) to an IP address. Examples include microsoft.com, www.google.co.uk, and facebook.com.

 A brief primer on HTTP

 Hypertext Transfer Protocol (HTTP) is the application-level protocol that powers the web. It’s a stateless request-response protocol whereby a client machine sends a request to a server, which sends a response in turn.

 Every HTTP request consists of a verb indicating the type of the request and a path indicating the resource to interact with. A request typically also includes headers, which are key-value pairs, and in some cases a body, such as the contents of a form, when sending data to the server.

 An HTTP response contains a status code, indicating whether the request was successful, and optionally headers and a body.

 For a more detailed look at the HTTP protocol itself, as well as more examples, see section 1.3 (“A quick introduction to HTTP”) of Go Web Programming, by Sau Sheong Chang (Manning, 2016), at http://mng.bz/x4mB. You can also read the raw RFC specification at https://www.rfc-editor.org/rfc/rfc9110.txt if dense text is your thing!

 The request passes through the internet, potentially to the other side of the world, until it finally makes its way to the server associated with the given hostname, on which the web app is running. The request is potentially received and rebroadcast at multiple routers along the way, but only when it reaches the server associated with the hostname is the request processed.

 When the server receives the request, it processes that request and generates an HTTP response. Depending on the request, this response could be a web page, an image, a JavaScript file, a simple acknowledgment, or practically any other file. For this example, I’ll assume that the user has reached the home page of a web app, so the server responds with some HTML. The HTML is added to the HTTP response, which is sent back across the internet to the browser that made the request.

 As soon as the user’s browser begins receiving the HTTP response, it can start displaying content on the screen, but the HTML page may also reference other pages and links on the server. To display the complete web page instead of a static, colorless, raw HTML file, the browser must repeat the request process, fetching every referenced file. HTML, images, Cascading Style Sheets (CSS) for styling, and JavaScript files for extra behavior are all fetched using exactly the same HTTP request process.

 Pretty much all interactions that take place on the internet are a facade over this basic process. A basic web page may require only a few simple requests to render fully, whereas a large modern web page may take hundreds. At this writing, the Amazon .com home page (https://www.amazon.com) makes 410 requests, including requests for 4 CSS files, 12 JavaScript files, and 299 image files!

 Now that you have a feel for the process, let’s see how ASP.NET Core dynamically generates the response on the server.

1.4.2 How does ASP.NET Core process a request?

 When you build a web application with ASP.NET Core, browsers will still be using the same HTTP protocol as before to communicate with your application. ASP.NET Core itself encompasses everything that takes place on the server to handle a request, including verifying that the request is valid, handling login details, and generating HTML.

 As with the generic web page example, the request process starts when a user’s browser sends an HTTP request to the server, as shown in figure 1.3.

 [image: CH01_F03_Lock3]

 Figure 1.3 How an ASP.NET Core application processes a request. A request is received by the ASP.NET Core application, which runs a self-hosted web server. The web server processes the request and passes it to the body of the application, which generates a response and returns it to the web server. The web server sends this response to the browser.

 The request is received from the network by your ASP.NET Core application. Every ASP.NET Core application has a built-in web server—Kestrel, by default—that is responsible for receiving raw requests and constructing an internal representation of the data, an HttpContext object, which the rest of the application can use.

 Your application can use the details stored in HttpContext to generate an appropriate response to the request, which may be to generate some HTML, to return an “access denied” message, or to send an email, all depending on your application’s requirements.

 When the application finishes processing the request, it returns the response to the web server. The ASP.NET Core web server converts the representation to a raw HTTP response and sends it to the network, which forwards it to the user’s browser.

 To the user, this process appears to be the same as for the generic HTTP request shown in figure 1.2: the user sent an HTTP request and received an HTTP response. All the differences are server-side, within your application.

 You’ve seen how requests and responses find their way to and from an ASP.NET Core application, but I haven’t yet touched on how the response is generated. Throughout this book, we’ll look at the components that make up a typical ASP.NET Core application and how they fit together. A lot goes into generating a response in ASP.NET Core, typically within a fraction of a second, but over the course of the book we’ll step through an application slowly, covering each of the components in detail.

1.5 What you’ll learn in this book

 This book takes you on an in-depth tour of the ASP.NET Core framework. To benefit from the book, you should be familiar with C# or a similar object-oriented language. Basic familiarity with web concepts such as HTML and JavaScript will also be beneficial. You’ll learn the following:

 	
 How to build HTTP API applications using minimal APIs

 	
 How to create page-based applications with Razor Pages

 	
 Key ASP.NET Core concepts such as model-binding, validation, and routing

 	
 How to generate HTML for web pages by using Razor syntax and Tag Helpers

 	
 How to use features such as dependency injection, configuration, and logging as your applications grow more complex

 	
 How to protect your application by using security best practices

 Throughout the book we’ll use a variety of examples to learn and explore concepts. The examples are generally small and self-contained so that we can focus on a single feature at a time.

 I’ll be using Visual Studio for most of the examples in this book, but you’ll be able to follow along using your favorite editor or integrated development environment (IDE). Appendix A includes details on setting up your editor or IDE and installing the .NET 7 software development kit (SDK). Even though the examples in this book show Windows tools, everything you see can be achieved equally well on the Linux or Mac platform.

 Tip You can install .NET 7 from https://dotnet.microsoft.com/download. Appendix A contains further details on configuring your development environment to work with ASP.NET Core and .NET 7.

 In chapter 2, we’ll look in greater depth at the types of applications you can create with ASP.NET Core. We’ll also explore its advantages over the older ASP.NET and .NET Framework platforms.

Summary

 	
 ASP.NET Core is a cross-platform, open-source, high-performance web framework.

 	
 ASP.NET Core runs on .NET, previously called .NET Core.

 	
 You can use Razor Pages or MVC controllers to build server-rendered, page-based web applications.

 	
 You can use minimal APIs or web APIs to build RESTful or HTTP APIs.

 	
 You can use gRPC to build highly efficient server-to-server RPC applications.

 	
 You can use Blazor WebAssembly to build client-side applications that run in the browser and Blazor Server to build stateful, server-rendered applications that send UI updates via a WebSocket connection.

 	
 Microsoft recommends ASP.NET Core and .NET 7 or later for all new web development over the legacy ASP.NET and .NET Framework platforms.

 	
 Fetching a web page involves sending an HTTP request and receiving an HTTP response.

 	
 ASP.NET Core allows you to build responses to a given request dynamically.

 	
 An ASP.NET Core application contains a web server, which serves as the entry point for a request.

Part 1 Getting started with minimal APIs

 Web applications are everywhere these days, from social media web apps and news sites to the apps on your phone. Behind the scenes, there’s almost always a server running a web application or an HTTP API. Web applications are expected to be infinitely scalable, deployed to the cloud, and highly performant. Getting started can be overwhelming at the best of times, and doing so with such high expectations can be even more of a challenge.

 The good news for you as a reader is that ASP.NET Core was designed to meet those requirements. Whether you need a simple website, a complex e-commerce web app, or a distributed web of microservices, you can use your knowledge of ASP.NET Core to build lean web apps that fit your needs. ASP.NET Core lets you build and run web apps in Windows, Linux, or macOS. It’s highly modular, so you use only the components you need, keeping your app as compact and performant as possible.

 In part 1 you’ll go from a standing start all the way to building your first API applications. Chapter 2 gives you a high-level overview of ASP.NET Core, which you’ll find especially useful if you’re new to web development in general. You’ll get your first glimpse of a full ASP.NET Core application in chapter 3; we’ll look at each component of the app in turn and see how they work together to generate a response.

 Chapter 4 looks in detail at the middleware pipeline, which defines how incoming web requests are processed and how a response is generated. We’ll look at several standard pieces of middleware and see how they can be combined to create your application’s pipeline.

 Chapters 5 through 7 focus on building ASP.NET Core apps with minimal API endpoints, which are the new simplified approach to building JSON APIs in ASP.NET Core apps. In chapter 5 you’ll learn how to create endpoints that generate JSON, how to use filters to extract common behavior, and how to use route groups to organize your APIs. In chapter 6 you’ll learn about routing, the process of mapping URLs to endpoints. And in chapter 7 you’ll learn about model binding and validation.

 There’s a lot of content in part 1, but by the end you’ll be well on your way to building simple APIs with ASP.NET Core. Inevitably, I’ll gloss over some of the more complex configuration aspects of the framework, but you should get a good understanding of minimal APIs and how you can use them to build simple APIs. In later parts of this book, you’ll learn how to configure your application and add extra features, such as user profiles and database interaction. We’ll also look at how to build other types of applications, such as server-rendered web apps with Razor Pages.

2 Understanding ASP.NET Core

 This chapter covers

 	
Why ASP.NET Core was created

 	
The many application paradigms of ASP.NET Core

 	
Approaches to migrating an existing application to ASP.NET Core

 In this chapter, I provide some background on ASP.NET Core: why web frameworks are useful, why ASP.NET Core was created, and how to choose when to use ASP.NET Core. If you’re new to .NET development, this chapter will help you understand the .NET landscape. If you’re already a .NET developer, I provide guidance on whether now is the right time to consider moving your focus to .NET Core and .NET 7, as well as on the advantages ASP.NET Core can offer over previous versions of ASP.NET.

2.1 Using a web framework

 If you’re new to web development, it can be daunting to move into an area with so many buzzwords and a plethora of ever-changing products. You may be wondering whether all those products are necessary. How hard can it be to return a file from a server?

 Well, it’s perfectly possible to build a static web application without the use of a web framework, but its capabilities will be limited. As soon as you want to provide any kind of security or dynamism, you’ll likely run into difficulties, and the original simplicity that enticed you will fade before your eyes.

 Just as desktop or mobile development frameworks can help you build native applications, ASP.NET Core makes writing web applications faster, easier, and more secure than trying to build everything from scratch. It contains libraries for common things like

 	
 Creating dynamically changing web pages

 	
 Letting users log in to your web app

 	
 Letting users use their Facebook accounts to log in to your web app

 	
 Providing a common structure for building maintainable applications

 	
 Reading configuration files

 	
 Serving image files

 	
 Logging requests made to your web app

 The key to any modern web application is the ability to generate dynamic web pages. A dynamic web page may display different data depending on the current logged-in user, or it could display content submitted by users. Without a dynamic framework, it wouldn’t be possible to log in to websites or to display any sort of personalized data on a page. In short, websites like Amazon, eBay, and Stack Overflow (shown in figure 2.1) wouldn’t be possible. Web frameworks for creating dynamic web pages are almost as old as the web itself, and Microsoft has created several over the years, so why create a new one?

 [image: CH02_F01_Lock3]

 Figure 2.1 The Stack Overflow website (https://stackoverflow.com) is built with ASP.NET and has almost entirely dynamic content.

2.2 Why ASP.NET Core was created

 Microsoft’s development of ASP.NET Core was motivated by the desire to create a web framework with five main goals:

 	
 To be run and developed cross-platform

 	
 To have a modular architecture for easier maintenance

 	
 To be developed completely as open-source software

 	
 To adhere to web standards

 	
 To be applicable to current trends in web development, such as client-side applications and deployment to cloud environments

 To achieve all these goals, Microsoft needed a platform that could provide underlying libraries for creating basic objects such as lists and dictionaries, and for performing tasks such as simple file operations. Up to this point, ASP.NET development had always been focused—and dependent—on the Windows-only .NET Framework. For ASP.NET Core, Microsoft created a lightweight platform that runs on Windows, Linux, and macOS called .NET Core (subsequently .NET), as shown in figure 2.2.

 [image: CH02_F02_Lock3]

 Figure 2.2 The relationships among ASP.NET Core, ASP.NET, .NET Core/.NET 5+, and .NET Framework. ASP.NET Core runs on .NET Core and .NET 5+, so it can run cross-platform. Conversely, ASP.NET runs on .NET Framework only, so it’s tied to the Windows OS.

 Definition .NET 5 was the next version of .NET Core after 3.1, followed by .NET 6 and .NET 7. It represents a unification of .NET Core and other .NET platforms in a single runtime and framework. It was considered to be the future of .NET, which is why Microsoft chose to drop the “Core” from its name. For consistency with Microsoft’s language, I use the term .NET 5+ to refer to .NET 5, .NET 6, and .NET 7, and the term .NET Core to refer to previous versions.

 .NET Core (and its successor, .NET 5+) employs many of the same APIs as .NET Framework but is more modular. It implements a different set of features from those in .NET Framework, with the goal of providing a simpler programming model and modern APIs. It’s a separate platform rather than a fork of .NET Framework, though it uses similar code for many of its APIs.

 Note If you’d like to learn more about the .NET ecosystem, you can read two posts on my blog: “Understanding the .NET ecosystem: The evolution of .NET into .NET 7” (http://mng.bz/Ao0W) and “Understanding the .NET ecosystem: The introduction of .NET Standard” (http://mng.bz/ZqPZ).

 The benefits and limitations of ASP.NET

 ASP.NET Core is the latest evolution of Microsoft’s popular ASP.NET web framework, released in June 2016. Previous versions of ASP.NET had many incremental updates, focusing on high developer productivity and prioritizing backward compatibility. ASP.NET Core bucks that trend by making significant architectural changes that rethink the way the web framework is designed and built.

 ASP.NET Core owes a lot to its ASP.NET heritage, and many features have been carried forward from before, but ASP.NET Core is a new framework. The whole technology stack has been rewritten, including both the web framework and the underlying platform.

 At the heart of the changes is the philosophy that ASP.NET should be able to hold its head high when measured against other modern frameworks, but existing .NET developers should continue to have a sense of familiarity.

 To understand why Microsoft decided to build a new framework, it’s important to understand the benefits and limitations of the legacy ASP.NET web framework.

 The first version of ASP.NET was released in 2002 as part of .NET Framework 1.0. The ASP.NET Web Forms paradigm that it introduced differed significantly from the conventional scripting environments of classic ASP and PHP. ASP.NET Web Forms allowed developers to create web applications rapidly by using a graphical designer and a simple event model that mirrored desktop application-building techniques.

 The ASP.NET framework allowed developers to create new applications quickly, but over time the web development ecosystem changed. It became apparent that ASP.NET Web Forms suffered from many problems, especially in building larger applications. In particular, a lack of testability, a complex stateful model, and limited influence on the generated HTML (making client-side development difficult) led developers to evaluate other options.

 In response, Microsoft released the first version of ASP.NET MVC in 2009, based on the Model-View-Controller (MVC) pattern, a common web pattern used in frameworks such as Ruby on Rails, Django, and Java Spring. This framework allowed developers to separate UI elements from application logic, made testing easier, and provided tighter control of the HTML-generation process.

 ASP.NET MVC has been through four more iterations since its first release, but all these iterations were built on the same underlying framework provided by the System .Web.dll file. This library is part of .NET Framework, so it comes preinstalled with all versions of Windows. It contains all the core code that ASP.NET uses when you build a web application.

 This dependency brings both advantages and disadvantages. On one hand, the ASP.NET framework is a reliable, battle-tested platform that’s fine for building web applications in Windows. It provides a wide range of features that have been in production for many years, and it’s well known by virtually all Windows web developers.

 On the other hand, this reliance is limiting. Changes to the underlying System.Web.dll file are far-reaching and, consequently, slow to roll out, which limits the extent to which ASP.NET is free to evolve and results in release cycles happening only every few years. There’s also an explicit coupling with the Windows web host, Internet Information Services (IIS), which precludes its use on non-Windows platforms.

 More recently, Microsoft declared .NET Framework to be “done.” It won’t be removed or replaced, but it also won’t receive any new features. Consequently, ASP.NET based on System.Web.dll won’t receive new features or updates either.

 In recent years, many web developers have started looking at cross-platform web frameworks that can run on Windows as well as Linux and macOS. Microsoft felt the time had come to create a framework that was no longer tied to its Windows legacy; thus, ASP.NET Core was born.

 With .NET 7, it’s possible to build console applications that run cross-platform. Microsoft created ASP.NET Core to be an additional layer on top of console applications so that converting to a web application involves adding and composing libraries, as shown in figure 2.3.

 [image: CH02_F03_Lock3]

 Figure 2.3 ASP.NET Core application model. The .NET 7 platform provides a base console application model for running command-line apps. Adding a web server library converts this model to an ASP.NET Core web app. You can add other features, such as configuration and logging, using various libraries.

 When you add an ASP.NET Core web server to your .NET 7 app, your console application can run as a web application. ASP.NET Core contains a huge number of APIs, but you’ll rarely need all the features available to you. Some of the features are built in and will appear in virtually every application you create, such as the ones for reading configuration files or performing logging. Other features are provided by separate libraries and built on top of these base capabilities to provide application-specific functionality, such as third-party logins via Facebook or Google.

 Most of the libraries and APIs you’ll use in ASP.NET Core are available on GitHub, in the Microsoft .NET organization repositories at https://github.com/dotnet/aspnetcore. You can find the core APIs there, including the authentication and logging APIs, as well as many peripheral libraries, such as the third-party authentication libraries.

 All ASP.NET Core applications follow a similar design for basic configuration, but in general the framework is flexible, leaving you free to create your own code conventions. These common APIs, the extension libraries that build on them, and the design conventions they promote are covered by the somewhat-nebulous term ASP.NET Core.

2.3 Understanding the many paradigms of ASP.NET Core

 In chapter 1 you learned that ASP.NET Core provides a generalized web framework that can be used to build a wide variety of applications. As you may recall from section 1.2, the main paradigms are

 	
 Minimal APIs—Simple HTTP APIs that can be consumed by mobile applications or browser-based single-page applications (SPAs)

 	
 Web APIs—An alternative approach for building HTTP APIs that adds more structure and features than minimal APIs

 	
 gRPC APIs—Used to build efficient binary APIs for server-to-server communication using the gRPC protocol

 	
 Razor Pages—Used to build page-based server-rendered applications

 	
 MVC controllers—Similar to Razor Pages; used for server-based applications but without the page-based paradigm

 	
 Blazor WebAssembly—A browser-based SPA framework using the WebAssembly standard, similar to JavaScript frameworks such as Angular, React, and Vue

 	
 Blazor Server—Used to build stateful applications, rendered on the server, that send UI events and page updates over WebSockets to provide the feel of a client-side SPA but with the ease of development of a server-rendered application

 All these paradigms use the core functionality of ASP.NET Core and layer the additional functionality on top. Each paradigm is suited to a different style of web application or API, so some may fit better than others, depending on what sort of application you’re building.

 Traditional page-based, server-side-rendered web applications are the bread and butter of ASP.NET development, both in the previous version of ASP.NET and now in ASP.NET Core. The Razor Pages and MVC controller paradigms provide two slightly different styles for building these types of applications but have many of the same concepts, as you’ll see in part 2. These paradigms can be useful for building rich, dynamic websites, whether they’re e-commerce sites, content management systems (CMSes), or large n-tier applications. Both the open-source CMS Orchard Core1 (figure 2.4) and cloudscribe2 CMS project, for example, are built with ASP.NET Core.

 [image: CH02_F04_Lock3]

 Figure 2.4 The California School Information Services website (https://csis.fcmat.org) is built with Orchard Core and ASP.NET Core.

 In addition to server-rendered applications, ASP.NET core is ideally suited to building a REST or HTTP API server. Whether you’re building a mobile app, a JavaScript SPA using Angular, React, Vue, or some other client-side framework, it’s easy to create an ASP.NET Core application to act as the server-side API by using both the minimal API and web API paradigms built into ASP.NET Core. You’ll learn about minimal APIs in part 1 and about web APIs in chapter 20.

 Definition REST stands for representational state transfer. RESTful applications typically use lightweight and stateless HTTP calls to read, post (create/ update), and delete data.

 ASP.NET Core isn’t restricted to creating RESTful services. It’s easy to create a web service or remote procedure call (RPC)-style service for your application, using gRPC for example, as shown in figure 2.5. In the simplest case, your application might expose only a single endpoint! ASP.NET Core is perfectly designed for building simple services, thanks to its cross-platform support and lightweight design.

 Definition gRPC is a modern open-source, high-performance RPC framework. You can read more at https://grpc.io.

 [image: CH02_F05_Lock3]

 Figure 2.5 ASP.NET Core can act as the server-side application for a variety of clients: it can serve HTML pages for traditional web applications, act as a REST API for client-side SPA applications, or act as an ad hoc RPC service for client applications.

 As well as server-rendered web apps, APIs, and gRPC endpoints, ASP.NET Core includes the Blazor framework, which can be used to build two very different styles of application. Blazor WebAssembly (WASM) apps run directly in your browser, in the same way as traditional JavaScript SPA frameworks such as Angular and React. Your .NET code is compiled to WebAssembly (https://webassembly.org) or executes on a .NET runtime compiled for WASM, and the browser downloads and runs it as it would a JavaScript app. This way you can build highly interactive client-side applications while using C# and all the .NET APIs and libraries you already know.

 By contrast, Blazor Server applications run on the server. Each mouse click or keyboard event is sent to the server via WebSockets. Then the server calculates the changes that should be made to the UI and sends the required changes back to the client, which updates the page in the browser. The result is a “stateful” application that runs server-side but can be used to build highly interactive SPAs. The main downside of Blazor Server is that it requires a constant internet connection.

 Note In this book I focus on building traditional page-based, server-side- rendered web applications and RESTful web APIs. I also show how to create background worker services in chapter 34. For more information on Blazor, I recommend Blazor in Action, by Chris Sainty (Manning, 2022).

 With the ability to call on all these paradigms, you can use ASP.NET Core to build a wide variety of applications, but it’s still worth considering whether ASP.NET Core is right for your specific application. That decision will likely be affected by both your experience with .NET and the application you want to build.

2.4 When to choose ASP.NET Core

 In this section I’ll describe some of the points to consider when deciding whether to use ASP.NET Core and .NET 7 instead of legacy .NET Framework ASP.NET. In most cases the decision will be to use ASP.NET Core, but you should consider some important caveats.

 When choosing a platform, you should consider multiple factors, not all of which are technical. One such factor is the level of support you can expect to receive from its creators. For some organizations, limited support can be one of the main obstacles to adopting open-source software. Luckily, Microsoft has pledged to provide full support for Long Term Support (LTS) versions of .NET and ASP.NET Core for at least three years from the time of their release. And as all development takes place in the open, sometimes you can get answers to your questions from the general community as well as from Microsoft directly.

 Note You can view Microsoft’s official support policy at http://mng.bz/RxXP.

 When deciding whether to use ASP.NET Core, you have two primary dimensions to consider: whether you’re already a .NET developer and whether you’re creating a new application or looking to convert an existing one.

2.4.1 If you’re new to .NET development

 If you’re new to .NET development, you’re joining at a great time! Many of the growing pains associated with a new framework have been worked out, and the result is a stable, high-performance, cross-platform application framework.

 The primary language of .NET development, and of ASP.NET Core in particular, is C#. This language has a huge following, for good reason! As an object-oriented C-based language, it provides a sense of familiarity to those who are used to C, Java, and many other languages. In addition, it has many powerful features, such as Language Integrated Query (LINQ), closures, and asynchronous programming constructs. The C# language is also designed in the open on GitHub, as is Microsoft’s C# compiler, code-named Roslyn (https://github.com/dotnet/roslyn).

 NOTE I use C# throughout this book and will highlight some of the newer features it provides, but I won’t be teaching the language from scratch. If you want to learn C#, I recommend C# in Depth, 4th ed., by Jon Skeet (Manning, 2019), and Code Like a Pro in C#, by Jort Rodenburg (Manning, 2021).

 One big advantage of ASP.NET Core and .NET 7 over .NET Framework is that they enable you to develop and run on any platform. With .NET 7 you can build and run the same application on Mac, Windows, and Linux, and even deploy to the cloud using tiny container deployments.

 Built with containers in mind

 Traditionally, web applications were deployed directly to a server or, more recently, to a virtual machine. Virtual machines allow operating systems to be installed in a layer of virtual hardware, abstracting away the underlying hardware. This approach has several advantages over direct installation, such as easy maintenance, deployment, and recovery. Unfortunately, virtual machines are also heavy, in terms of both file size and resource use.

 This is where containers come in. Containers are far more lightweight and don’t have the overhead of virtual machines. They’re built in a series of layers and don’t require you to boot a new operating system when starting a new one, so they’re quick to start and great for quick provisioning. Containers (Docker in particular) are quickly becoming the go-to platform for building large, scalable systems.

 Containers have never been a particularly attractive option for ASP.NET applications, but with ASP.NET Core, .NET 7, and Docker for Windows, all that is changing. A lightweight ASP.NET Core application running on the cross-platform .NET 7 framework is perfect for thin container deployments. You can learn more about your deployment options in chapter 27.

 In addition to running on each platform, one of the selling points of .NET is your ability to write and compile only once. Your application is compiled to Intermediate Language (IL) code, which is a platform-independent format. If a target system has the .NET 7 runtime installed, you can run compiled IL from any platform. You can develop on a Mac or a Windows machine, for example, and deploy exactly the same files to your production Linux machines. This compile-once, run-anywhere promise has finally been realized with ASP.NET Core and .NET 7.

 Tip You can go one step further and package the .NET runtime with your app in a so-called self-contained deployment (SCD). This way, you can deploy cross-platform, and the target machine doesn’t even need .NET installed. With SCDs, the generated deployment files are customized for the target machine, so you’re no longer deploying the same files everywhere in this case.

 Many of the web frameworks available today use similar well-established design patterns, and ASP.NET Core is no different. Ruby on Rails, for example, is known for its use of the MVC pattern; Node.js is known for the way it processes requests using small discrete modules (called a pipeline); and dependency injection is available in a wide variety of frameworks. If these techniques are familiar to you, you should find it easy to transfer them to ASP.NET Core; if they’re new to you, you can look forward to using industry best practices!

 Note Design patterns are solutions to common software design problems. You’ll encounter a pipeline in chapter 4, dependency injection in chapters 8 and 9, and MVC in chapter 19.

 Whether you’re new to web development generally or only with .NET, ASP.NET Core provides a rich set of features with which you can build applications but doesn’t overwhelm you with concepts, as the legacy ASP.NET framework did. On the other hand, if you’re familiar with .NET, it’s worth considering whether now is the time to take a look at ASP.NET Core.

2.4.2 If you’re a .NET Framework developer creating a new application

 If you’re already a .NET Framework developer, you’ve likely been aware of .NET Core and ASP.NET Core, but perhaps you were wary about jumping in too soon or didn’t want to hit the inevitable “version 1” problems. The good news is that ASP.NET Core and .NET are now mature, stable platforms, and it’s absolutely time to consider using .NET 7 for your new apps.

 As a .NET developer, if you aren’t using any Windows-specific constructs such as the Registry, the ability to build and deploy cross-platform opens the possibility for cheaper Linux hosting in the cloud, or for developing natively in macOS without the need for a virtual machine.

 .NET Core and .NET 7 are inherently cross-platform, but you can still use platform-specific features if you need to. Windows-specific features such as the Registry and Directory Services, for example, can be enabled with a Compatibility Pack that makes these APIs available in .NET 5+. They’re available only when running .NET 5+ in Windows, not Linux or macOS, so you need to take care that such applications run only in a Windows environment or account for the potential missing APIs.

 Tip The Windows Compatibility Pack is designed to help port code from .NET Framework to .NET Core/.NET 5+. See http://mng.bz/2DeX.

 The hosting model for the previous ASP.NET framework was a relatively complex one, relying on Windows IIS to provide the web-server hosting. In a cross-platform environment, this kind of symbiotic relationship isn’t possible, so an alternative hosting model has been adopted—one that separates web applications from the underlying host. This opportunity has led to the development of Kestrel, a fast, cross-platform HTTP server on which ASP.NET Core can run.

 Instead of the previous design, whereby IIS calls into specific points of your application, ASP.NET Core applications are console applications that self-host a web server and handle requests directly, as shown in figure 2.6. This hosting model is conceptually much simpler and allows you to test and debug your applications from the command line, though it doesn’t necessarily remove the need to run IIS (or the equivalent) in production.

 ASP.NET Core and reverse proxies

 You can expose ASP.NET Core applications directly to the internet so that Kestrel receives requests directly from the network. That approach is fully supported. It’s more common, however, to use a reverse proxy between the raw network and your application. In Windows, the reverse-proxy server typically is IIS; in Linux or macOS, it might be NGINX, HAProxy, or Apache. There’s even an ASP.NET Core-based reverse proxy library called YARP (https://microsoft.github.io/reverse-proxy) that you can use to build your own reverse proxy.

 A reverse proxy is software responsible for receiving requests and forwarding them to the appropriate web server. The reverse proxy is exposed directly to the internet, whereas the underlying web server is exposed only to the proxy. This setup has several benefits, primarily security and performance for the web servers.

 You may think that having a reverse proxy and a web server is somewhat redundant. Why not have one or the other? Well, one benefit is the decoupling of your application from the underlying operating system. The same ASP.NET Core web server, Kestrel, can be cross-platform and used behind a variety of proxies without putting any constraints on a particular implementation. Alternatively, if you wrote a new ASP.NET Core web server, you could use it in place of Kestrel without needing to change anything else about your application.

 Another benefit of a reverse proxy is that it can be hardened against potential threats from the public internet. Reverse proxies are often responsible for additional aspects, such as restarting a process that has crashed. Kestrel can remain a simple HTTP server, not having to worry about these extra features, when it’s used behind a reverse proxy. You can think of this approach as being a simple separation of concerns: Kestrel is concerned with generating HTTP responses, whereas the reverse proxy is concerned with handling the connection to the internet.

 [image: CH02_F06_Lock3]

 Figure 2.6 The difference between hosting models in ASP.NET (top) and ASP.NET Core (bottom). In the previous version of ASP.NET, IIS is tightly coupled with the application. The hosting model in ASP.NET Core is simpler; IIS hands off the request to a self-hosted web server in the ASP.NET Core application and receives the response but has no deeper knowledge of the application.

 Note By default, when running in Windows, ASP.NET Core runs inside IIS, as shown in figure 2.6, which can provide better performance than the reverse-proxy version. This is primarily a deployment detail and doesn’t change the way you build ASP.NET Core applications.

 Changing the hosting model to use a built-in HTTP web server has created another opportunity. Performance has been something of a sore point for ASP.NET applications in the past. It’s certainly possible to build high-performing applications—Stack Overflow (https://stackoverflow.com) is a testament to that fact—but the web framework itself isn’t designed with performance as a priority, so it can end up being an obstacle.

 To make the product competitive cross-platform, the ASP.NET team focused on making the Kestrel HTTP server as fast as possible. TechEmpower (https://www.techempower.com/benchmarks) has been running benchmarks on a wide range of web frameworks from various languages for several years now. In round 20 of the plain-text benchmarks, TechEmpower announced that ASP.NET Core with Kestrel was among the 10 fastest of more than 400 frameworks tested!3

 Web servers: Naming things is hard

 One difficult aspect of programming for the web is the confusing array of often-conflicting terminology. If you’ve used IIS, for example, you may have described it as a web server or possibly a web host. Conversely, if you’ve ever built an application with Node.js, you may have also referred to that application as a web server. Or you may have called the physical machine on which your application runs a web server. Similarly, you may have built an application for the internet and called it a website or a web application, probably somewhat arbitrarily based on the level of dynamism it displayed.

 In this book, when I say web server in the context of ASP.NET Core, I’m referring to the HTTP server that runs as part of your ASP.NET Core application. By default, this server is the Kestrel web server, but that’s not a requirement. It’s possible to write a replacement web server for Kestrel if you so desire.

 The web server is responsible for receiving HTTP requests and generating responses. In the previous version of ASP.NET, IIS took this role, but in ASP.NET Core, Kestrel is the web server.

 I’ll use the term web application in this book to describe ASP.NET Core applications, regardless of whether they contain only static content or are dynamic. Either way, these applications are accessed via the web, so that name seems to be the most appropriate.

 Many of the performance improvements made to Kestrel came not from the ASP.NET team members themselves, but from contributors to the open-source project on GitHub (https://github.com/dotnet/aspnetcore). Developing in the open means that you typically see fixes and features make their way to production faster than you would for the previous version of ASP.NET, which was dependent on .NET Framework and Windows and, as such, had long release cycles.

 By contrast, .NET 5+ and hence ASP.NET Core are designed to be released in small increments. Major versions will be released on a predictable cadence, with a new version every year and a new LTS version released every two years (http://mng.bz/1qrg). In addition, bug fixes and minor updates can be released as and when they’re needed. Additional functionality is provided in NuGet packages independent of the underlying .NET 5+ platform.

 Note NuGet is a package manager for .NET that enables you to import libraries into your projects. It’s equivalent to Ruby Gems, npm for JavaScript, or Maven for Java.

 To enable this approach to releases, ASP.NET Core is highly modular, with as little coupling to other features as possible. This modularity lends itself to a pay-for-play approach to dependencies, where you start with a bare-bones application and add only the libraries you require, as opposed to the kitchen-sink approach of previous ASP.NET applications. Even MVC is an optional package! But don’t worry—this approach doesn’t mean that ASP.NET Core is lacking in features, only that you need to opt into them. Some of the key infrastructure improvements include

 	
 Middleware pipeline for defining your application’s behavior

 	
 Built-in support for dependency injection

 	
 Combined UI (MVC) and API (web API) infrastructure

 	
 Highly extensible configuration system

 	
 Standardized, extensible logging system

 	
 Uses asynchronous programming by default for built-in scalability on cloud platforms

 Each of these features was possible in the previous version of ASP.NET but required a fair amount of additional work to set up. With ASP.NET Core, they’re all there, ready and waiting to be connected.

 Microsoft fully supports ASP.NET Core, so if you want to build a new system, there’s no significant reason not to use it. The largest obstacle you’re likely to come across is wanting to use programming models that are no longer supported in ASP.NET Core, such as Web Forms or WCF Server, as I’ll discuss in the next section.

 I hope that this section whetted your appetite to use ASP.NET Core for building new applications. But if you’re an existing ASP.NET developer considering whether to convert an existing ASP.NET application to ASP.NET Core, that’s another question entirely.

2.4.3 Converting an existing ASP.NET application to ASP.NET Core

 By contrast with new applications, an existing application presumably already provides value, so there should always be a tangible benefit to performing what may amount to a significant rewrite in converting from ASP.NET to ASP.NET Core. The advantages of adopting ASP.NET Core are much the same as those for new applications: cross-platform deployment, modular features, and a focus on performance. Whether the benefits are sufficient will depend largely on the particulars of your application, but some characteristics make conversion more difficult:

 	
 Your application uses ASP.NET Web Forms.

 	
 Your application is built with WCF.

 	
 Your application is large, with many advanced MVC features.

 If you have an ASP.NET Web Forms application, attempting to convert it directly to ASP.NET Core isn’t advisable. Web Forms is inextricably tied to System.Web.dll and IIS, so it will likely never be available in ASP.NET Core. Converting an application to ASP.NET Core effectively involves rewriting the application from scratch, not only shifting frameworks, but also potentially shifting design paradigms.

 All is not lost, however. Blazor server provides a stateful, component-based application that’s similar to the Web Forms application model. You may be able to gradually migrate your Web Forms application page by page to an ASP.NET Core Blazor server application.4 Alternatively, you could slowly introduce web API concepts into your Web Forms application, reducing the reliance on legacy Web Forms constructs such as ViewState, with the goal of ultimately moving to an ASP.NET Core web API application.

 Windows Communication Foundation (WCF) is only partially supported in ASP.NET Core. It’s possible to build client-side WCF services using the libraries provided by ASP.NET Core (https://github.com/dotnet/wcf) and to build server-side WCF services by using the Microsoft-supported community-driven project CoreWCF.5 These libraries don’t support all the APIs available in .NET Framework WCF (distributed transactions and some message security formats, for example), so if you absolutely need those APIs, it may be best to avoid ASP.NET Core for now.

 Tip If you like WCF’s contract-based RPC-style of programming but don’t have a hard requirement for WCF itself, consider using gRPC instead. gRPC is a modern RPC framework with many concepts that are similar to WCF, and it’s supported by ASP.NET Core out of the box (http://mng.bz/wv9Q).

 If your existing application is complex and makes extensive use of the previous MVC or web API extensibility points or message handlers, porting your application to ASP.NET Core may be more difficult. ASP.NET Core is built with many features similar to the previous version of ASP.NET MVC, but the underlying architecture is different. Several of the previous features don’t have direct replacements, so they’ll require rethinking.

 The larger the application is, the greater the difficulty you’re likely to have converting your application to ASP.NET Core. Microsoft itself suggests that porting an application from ASP.NET MVC to ASP.NET Core is at least as big a rewrite as porting from ASP.NET Web Forms to ASP.NET MVC. If that suggestion doesn’t scare you, nothing will!

 If an application is rarely used, isn’t part of your core business, or won’t need significant development in the near term, I suggest that you don’t try to convert it to ASP.NET Core. Microsoft will support .NET Framework for the foreseeable future (Windows itself depends on it!), and the payoff in converting these fringe applications is unlikely to be worth the effort.

 So when should you port an application to ASP.NET Core? As I’ve already mentioned, the best opportunity to get started is on small new greenfield projects instead of existing applications. That said, if the existing application in question is small or will need significant future development, porting may be a good option.

 It’s always best to work in small iterations if possible when porting an application, rather than attempt to convert the entire application at the same time. Luckily, Microsoft provides tools for that purpose. A set of System.Web adapters, a .NET-based reverse proxy called YARP (Yet Another Reverse Proxy; http://mng.bz/qr92), and tooling built into Visual Studio can help you implement the strangler fig pattern (http://mng.bz/rW6J). This tooling allows you to migrate your application one page/API at a time, reducing the risk associated with porting an ASP.NET application to ASP.NET Core.

 In this chapter, we walked through some of the historical context of ASP.NET Core, as well as some of the advantages of adopting it. In chapter 3, you’ll create your first application from a template and run it. We’ll walk through each of the main components that make up your application and see how they work together to render a web page.

Summary

 	
 Web frameworks provide a way to build dynamic web applications easily.

 	
 ASP.NET Core is a web framework built with modern software architecture practices and modularization as its focus.

 	
 ASP.NET Core runs on the cross-platform .NET 7 platform. You can access Windows-specific features such as the Windows Registry by using the Windows Compatibility Pack.

 	
 .NET 5, .NET 6, and .NET 7 are the next versions of .NET Core after .NET Core 3.1.

 	
 ASP.NET Core is best used for new greenfield projects.

 	
 Legacy technologies such as WCF Server and Web Forms can’t be used directly with ASP.NET Core, but they have analogues and supporting libraries that can help with porting ASP.NET applications to ASP.NET Core.

 	
 You can convert an existing ASP.NET application to ASP.NET Core gradually by using the strangler fig pattern, using tooling and libraries provided by Microsoft.

 	
 ASP.NET Core apps are often protected from the internet by a reverse-proxy server, which forwards requests to the application.

 1. Orchard Core (https://orchardcore.net). Source code at https://github.com/OrchardCMS/OrchardCore.

 2. The cloudscribe project (https://www.cloudscribe.com). Source code at https://github.com/cloudscribe.

 3. As always in web development, technology is in a constant state of flux, so these benchmarks will evolve over time. Although ASP.NET Core may not maintain its top-10 slot, you can be sure that performance is one of the key focal points of the ASP.NET Core team.

 4. There is a community-driven effort to create Blazor versions of common WebForms components (http://mng.bz/PzPP). Also see an e-book for Blazor for Web Forms developers at http://mng.bz/JgDv.

 5. You can find the CoreWCF libraries at https://github.com/corewcf/corewcf and details on upgrading a WCF service to .NET 5+ at http://mng.bz/mVg2.

3 Your first application

 This chapter covers

 	
Creating your first ASP.NET Core web application

 	
Running your application

 	
Understanding the components of your application

 In the previous chapters, I gave you an overview of how ASP.NET Core applications work and when you should use them. Now you should set up a development environment to use for building applications.

 Tip See appendix A for guidance on installing the .NET 7 software development kit (SDK) and choosing an editor/integrated development environment (IDE) for building ASP.NET Core apps.

 In this chapter, you’ll dive right in by creating your first web app. You’ll get to kick the tires and poke around a little to get a feel for how it works. In later chapters, I’ll show you how to go about customizing and building your own applications.

 As you work through this chapter, you should begin to get a grasp of the various components that make up an ASP.NET Core application, as well as an understanding of the general application-building process. Most applications you create will start from a similar template, so it’s a good idea to get familiar with the setup as soon as possible.

 Definition A template provides the basic code required to build an application. You can use a template as the starting point for building your own apps.

 I’ll start by showing you how to create a basic ASP.NET Core application using one of the Visual Studio templates. If you’re using other tooling, such as the .NET command-line interface (CLI), you’ll have similar templates available. I use Visual Studio 2022 and ASP.NET Core 7 with .NET 7 in this chapter, but I also provide tips for working with the .NET CLI.

 Tip You can view the application code for this chapter in the GitHub repository for the book at http://mng.bz/5wj1.

 After you’ve created your application, I’ll show you how to restore all the necessary dependencies, compile your application, and run it to see the output. The application will be simple, containing the bare bones of an ASP.NET Core application that responds with "Hello World!"

 Having run your application, your next step is understanding what’s going on! We’ll take a journey through the ASP.NET Core application, looking at each file in the template in turn. You’ll get a feel for how an ASP.NET Core application is laid out and see what the C# code for the smallest possible app looks like.

 As a final twist, you’ll see how to extend your application to handle requests for static files, as well as how to create a simple API that returns data in standard JavaScript Object Notation (JSON) format.

 At this stage, don’t worry if you find parts of the project confusing or complicated; you’ll be exploring each section in detail as you move through the book. By the end of the chapter, you should have a basic understanding of how ASP.NET Core applications are put together, from when your application is first run to when a response is generated. Before we begin, though, we’ll review how ASP.NET Core applications handle requests.

3.1 A brief overview of an ASP.NET Core application

 In chapter 1, I described how a browser makes an HTTP request to a server and receives a response, which it uses to render HTML on the page. ASP.NET Core allows you to generate that HTML dynamically depending on the particulars of the request, so that (for example) you can display different data depending on the current logged-in user.

 Suppose that you want to create a web app to display information about your company. You could create a simple ASP.NET Core app to achieve this goal; later, you could add dynamic features to your app. Figure 3.1 shows how the application would handle a request for a page in your application.

 [image: CH03_F01_Lock3]

 Figure 3.1 An overview of an ASP.NET Core application. The ASP.NET Core application receives an incoming HTTP request from the browser. Every request passes to the middleware pipeline, which potentially modifies it and then passes it to the endpoint middleware at the end of the pipeline to generate a response. The response passes back through the middleware to the server and finally out to the browser.

 Much of this diagram should be familiar to you from figure 1.3 in chapter 1; the request and response and the ASP.NET Core web server are still there. But you’ll notice that I’ve added a reverse proxy to show a common deployment pattern for ASP.NET Core applications. I’ve also expanded the ASP.NET Core application itself to show the middleware pipeline and the endpoint middleware—the main custom part of your app that goes into generating the response from a request.

 The first port of call after the reverse proxy forwards a request is the ASP.NET Core web server, which is the default cross-platform Kestrel server. Kestrel takes the raw incoming network request and uses it to generate an HttpContext object that the rest of the application can use.

 The HttpContext object

 The HttpContext constructed by the ASP.NET Core web server is used by the application as a sort of storage box for a single request. Anything that’s specific to this particular request and the subsequent response can be associated with it and stored in it, such as properties of the request, request-specific services, data that’s been loaded, or errors that have occurred. The web server fills the initial HttpContext with details of the original HTTP request and other configuration details and then passes it on to the rest of the application.

 Note Kestrel isn’t the only HTTP server available in ASP.NET Core, but it’s the most performant and is cross-platform. I’ll refer only to Kestrel throughout the book. A different web server, IIS HTTP Server, is used when running in-process in Internet Information Services (IIS). The main alternative, HTTP.sys, runs only in Windows and can’t be used with IIS.1

 Kestrel is responsible for receiving the request data and constructing a .NET representation of the request, but it doesn’t attempt to generate a response directly. For that task, Kestrel hands the HttpContext to the middleware pipeline in every ASP.NET Core application. This pipeline is a series of components that process the incoming request to perform common operations such as logging, handling exceptions, and serving static files.

 Note You’ll learn about the middleware pipeline in detail in chapter 4.

 At the end of the middleware pipeline is the endpoint middleware, which is responsible for calling the code that generates the final response. In most applications that code will be a Model-View-Controller (MVC), Razor Pages, or minimal API endpoint.

 Most ASP.NET Core applications follow this basic architecture, and the example in this chapter is no different. First, you’ll see how to create and run your application; then you’ll look at how the code corresponds to the outline in figure 3.1. Without further ado, let’s create an application!

3.2 Creating your first ASP.NET Core application

 In this section you’re going to create a minimal API application that returns "Hello World!" when you call the HTTP API. This application is about the simplest ASP.NET Core application you can create, but it demonstrates many of the fundamental concepts of building and running applications with .NET.

 You can start building applications with ASP.NET Core in many ways, depending on the tools and operating system you’re using. Each set of tools has slightly different templates, but the templates have many similarities. The example used throughout this chapter is based on a Visual Studio 2022 template, but you can easily follow along with templates from the .NET CLI or Visual Studio for Mac.

 NOTE As a reminder, I use Visual Studio 2022 and ASP.NET Core with .NET 7 throughout the book.

 Getting an application up and running locally typically involves four basic steps, which we’ll work through in this chapter:

 	
 Generate—Create the base application from a template to get started.

 	
 Restore—Restore all the packages and dependencies to the local project folder using NuGet.

 	
 Build—Compile the application, and generate all the necessary artifacts.

 	
 Run—Run the compiled application.

 Visual Studio and the .NET CLI include many ASP.NET Core templates for building different types of applications, such as

 	
 Minimal API applications—HTTP API applications that return data in JSON format, which can be consumed by single-page applications (SPAs) and mobile apps. They’re typically used in conjunction with client-side applications such as Angular and React.js or mobile applications.

 	
 Razor Pages web applications—Razor Pages applications generate HTML on the server and are designed to be viewed by users in a web browser directly.

 	
 MVC applications—MVC applications are similar to Razor Pages apps in that they generate HTML on the server and are designed to be viewed by users directly in a web browser. They use traditional MVC controllers instead of Razor Pages.

 	
 Web API applications—Web API applications are similar to minimal API apps, in that they are typically consumed by SPAs and mobile apps. Web API apps provide additional functionality compared to minimal APIs, at the expense of some performance and convenience.

 We’ll look at each of these application types in this book, but in part 1 we focus on minimal APIs, so in section 3.2.1 we start by looking at the simplest ASP.NET Core app you can create.

3.2.1 Using a template to get started

 In this section you’ll use a template to create your first ASP.NET Core minimal API application. Using a template can get you up and running with an application quickly, automatically configuring many of the fundamental pieces. Both Visual Studio and the .NET CLI come with standard templates for building web applications, console applications, and class libraries.

 Tip In .NET, a project is a unit of deployment, which will be compiled into a .dll file or an executable, for example. Each separate app is a separate project. Multiple projects can be built and developed at the same time in a solution.

 To create your first web application, open Visual Studio, and perform the following steps:

 	
 Choose Create a New Project from the splash screen, or choose File > New > Project from the main Visual Studio screen.

 	
 From the list of templates, choose ASP.NET Core Empty; select the C# language template, as shown in figure 3.2; and then choose Next.

 [image: CH03_F02_Lock3]

 Figure 3.2 The Create a New Project dialog box. Select the C# ASP.NET Core Empty template in the list on the right side. When you next create a new project, you can choose a template from the Recent Project Templates list on the left side.

 	
 On the next screen, enter a project name, location, and solution name, and choose Create, as shown in figure 3.3. You might use WebApplication1 as both the project and solution name, for example.

 [image: CH03_F03_Lock3]

 Figure 3.3 The Configure Your New Project dialog box. Enter a project name, location, and solution name, and choose Next.

 	
 On the following screen (figure 3.4), do the following:

 	
 Select .NET 7.0. If this option isn’t available, ensure that you have .NET 7 installed. See appendix A for details on configuring your environment.

 	
 Ensure that Configure for HTTPS is checked.

 	
 Ensure that Enable Docker is not checked.

 	
 Ensure that Do not use top-level statements is not checked. (I explain top-level statements in section 3.6.)

 	
 Choose Create.

 [image: CH03_F04_Lock3]

 Figure 3.4 The Additional Information dialog box follows the Configure Your New Project dialog box and lets you customize the template that will generate your application. For this starter project, you’ll create an empty .NET 7 application that uses top-level statements.

 	
 Wait for Visual Studio to generate the application from the template. When Visual Studio finishes, an introductory page about ASP.NET Core appears; you should see that Visual Studio has created and added some files to your project, as shown in figure 3.5.

 [image: CH03_F05_Lock3]

 Figure 3.5 Visual Studio after creating a new ASP.NET Core application from a template. The Solution Explorer shows your newly created project. The introductory page has helpful links for learning about ASP.NET Core.

 If you’re not using Visual Studio, you can create a similar template by using the .NET CLI. Create a folder to hold your new project. Open a PowerShell or cmd prompt in the folder (Windows) or a terminal session (Linux or macOS), and run the commands in the following listing.

 Listing 3.1 Creating a new minimal API application with the .NET CLI

 dotnet new sln -n WebApplication1 ❶
dotnet new web -o WebApplication1 ❷
dotnet sln add WebApplication1 ❸

 ❶ Creates a solution file called WebApplication1 in the current folder

 ❷ Creates an empty ASP.NET Core project in a subfolder, WebApplication1

 ❸ Adds the new project to the solution file

 Note Visual Studio uses the concept of a solution to work with multiple projects. The example solution consists of a single project, which is listed in the .sln file. If you use a CLI template to create your project, you won’t have a .sln file unless you generate it explicitly by using additional .NET CLI templates (listing 3.1).

 Whether you use Visual Studio or the .NET CLI, now you have the basic files required to build and run your first ASP.NET Core application.

3.2.2 Building the application

 At this point, you have most of the files necessary to run your application, but you’ve got two steps left. First, you need to ensure all the dependencies used by your project are downloaded to your machine, and second, you need to compile your application so that it can be run.

 The first step isn’t strictly necessary, as both Visual Studio and the .NET CLI automatically restore packages when they create your project, but it’s good to know what’s going on. In earlier versions of the .NET CLI, before 2.0, you needed to restore packages manually by using dotnet restore.

 You can compile your application by choosing Build > Build Solution, pressing the shortcut Ctrl-Shift-B, or running dotnet build from the command line. If you build from Visual Studio, the output window shows the progress of the build, and assuming that everything is hunky-dory, Visual Studio compiles your application, ready for running. You can also run the dotnet build console commands from the Package Manager Console in Visual Studio.

 Tip Visual Studio and the .NET CLI tools build your application automatically when you run it if they detect that a file has changed, so you generally won’t need to perform this step explicitly yourself.

 NuGet packages and the .NET CLI

 One of the foundational components of .NET 7 cross-platform development is the .NET CLI, which provides several basic commands for creating, building, and running .NET 7 applications. Visual Studio effectively calls these commands automatically, but you can also invoke them directly from the command line if you’re using a different editor. The most common commands used during development are

 	
 dotnet restore

 	
 dotnet build

 	
 dotnet run

 Each of these commands should be run inside your project folder and will act on that project alone. Except where explicitly noted, this is the case for all .NET CLI commands.

 Most ASP.NET Core applications have dependencies on various external libraries, which are managed through the NuGet package manager. These dependencies are listed in the project, but the files of the libraries themselves aren’t included. Before you can build and run your application, you need to ensure that there are local copies of each dependency on your machine. The first command, dotnet restore, ensures that your application’s NuGet dependencies are downloaded and the files are referenced correctly by your project.

 ASP.NET Core projects list their dependencies in the project’s .csproj file, an XML file that lists each dependency as a PackageReference node. When you run dotnet restore, it uses this file to establish which NuGet packages to download. Any dependencies listed are available for use in your application.

 The restore process typically happens implicitly when you build or run your application, as shown in the following figure, but it can be useful sometimes to run it explicitly, such as in continuous-integration build pipelines.

 [image: CH03_F05_UN01_Lock3]

 The dotnet build command runs dotnet restore implicitly. Similarly, dotnet run runs dotnet build and dotnet restore. If you don’t want to run the previous steps automatically, you can use the --no-restore and --no-build flags, as in dotnet build --no-restore.

 You can compile your application by using dotnet build, which checks for any errors in your application and, if it finds no problems, produces output binaries that can be run with dotnet run.

 Each command contains switches that can modify its behavior. To see the full list of available commands, run

 dotnet --help

 To see the options available for a particular command, such as new, run

 dotnet new --help

3.3 Running the web application

 You’re ready to run your first application, and you have several ways to go about it. In Visual Studio, you can click the green arrow on the toolbar next to WebApplication1 or press the F5 shortcut. Visual Studio will automatically open a web browser window for you with the appropriate URL, and after a second or two, you should see the basic "Hello World!" response, as shown in figure 3.6.

 [image: CH03_F06_Lock3]

 Figure 3.6 The output of your new ASP.NET Core application. The template chooses a random port to use for your application’s URL, which will be opened in the browser automatically when you run from Visual Studio.

 Alternatively, instead of using Visual Studio, you can run the application from the command line with the .NET CLI tools by using dotnet run. Then you can open the URL in a web browser manually, using the address provided on the command line. Depending on whether you created your application with Visual Studio, you may see an http:// or https:// URL.

 Tip The first time you run the application from Visual Studio, you may be prompted to install the development certificate. Doing so ensures that your browser doesn’t display warnings about an invalid certificate.2 See chapter 28 for more about HTTPS certificates.

 This basic application has a single endpoint that returns the plain-text response when you request the path /, as you saw in figure 3.6. There isn’t anything more you can do with this simple app, so let’s look at some code!

3.4 Understanding the project layout

 When you’re new to a framework, creating an application from a template can be a mixed blessing. On one hand, you can get an application up and running quickly, with little input required on your part. Conversely, the number of files can be overwhelming, leaving you scratching your head working out where to start. The basic web application template doesn’t contain a huge number of files and folders, as shown in figure 3.7, but I’ll run through the major ones to get you oriented.

 [image: CH03_F07_Lock3]

 Figure 3.7 Solution Explorer and folder on disk for a new ASP.NET Core application. Solution Explorer also displays the Connected Services and Dependencies nodes, which list NuGet and other dependencies, though the folders themselves don’t exist on disk.

 The first thing to notice is that the main project, WebApplication1, is nested in a top-level directory with the name of the solution, which is also WebApplication1 in this case. Within this top-level folder you’ll also find the solution (.sln) file used by Visual Studio, though this is hidden in Visual Studio’s Solution Explorer view.

 Inside the solution folder you’ll find your project folder, which contains the most important file in your project: WebApplication1.csproj. This file describes how to build your project and lists any additional NuGet packages that it requires. Visual Studio doesn’t show the .csproj file explicitly, but you can edit it if you double-click the project name in Solution Explorer or right-click and choose Properties from the contextual menu. We’ll take a closer look at this project file in the next section.

 Your project folder contains a subfolder called Properties, which contains a single file: launchSettings.json. This file controls how Visual Studio will run and debug the application. Visual Studio shows the file as a special node in Solution Explorer, out of alphabetical order, near the top of your project. You’ve got two more special nodes in the project, Dependencies and Connected Services, but they don’t have corresponding folders on disk. Instead, they show a collection of all the dependencies, such as NuGet packages, and remote services that the project relies on.

 In the root of your project folder, you’ll find two JSON files: appsettings.json and appsettings.Development.json. These files provide configuration settings that are used at runtime to control the behavior of your app.

 Finally, Visual Studio shows one C# file in the project folder: Program.cs. In section 3.6 you’ll see how this file configures and runs your application.

3.5 The .csproj project file: Declaring your dependencies

 The .csproj file is the project file for .NET applications and contains the details required for the .NET tooling to build your project. It defines the type of project being built (web app, console app, or library), which platform the project targets (.NET Core 3.1, .NET 7 and so on), and which NuGet packages the project depends on.

 The project file has been a mainstay of .NET applications, but in ASP.NET Core it has had a facelift to make it easier to read and edit. These changes include

 	
 No GUIDs—Previously, globally unique identifiers (GUIDs) were used for many things, but now they’re rarely used in the project file.

 	
 Implicit file includes—Previously, every file in the project had to be listed in the .csproj file to be included in the build. Now files are compiled automatically.

 	
 No paths to NuGet package .dll files—Previously, you had to include the path to the .dll files contained in NuGet packages in the .csproj, as well as list the dependencies in a packages.config file. Now you can reference the NuGet package directly in your .csproj, and you don’t need to specify the path on disk.

 All these changes combine to make the project file far more compact than you’ll be used to from previous .NET projects. The following listing shows the entire .csproj file for your sample app.

 Listing 3.2 The .csproj project file, showing SDK, target framework, and references

 <Project Sdk="Microsoft.NET.Sdk.Web"> ❶
 <PropertyGroup>
 <TargetFramework>net7.0</TargetFramework> ❷
 <Nullable>enable</Nullable> ❸
 <ImplicitUsings>enable</ImplicitUsings> ❹
 </PropertyGroup>
</Project>

 ❶ The SDK attribute specifies the type of project you’re building.

 ❷ The TargetFramework is the framework you’ll run on—in this case, .NET 7.

 ❸ Enables the C# 8 feature “nullable reference types”

 ❹ Enables the C# 10 feature “implicit using statements”

 For simple applications, you probably won’t need to change the project file much. The Sdk attribute on the Project element includes default settings that describe how to build your project, whereas the TargetFramework element describes the framework your application will run on. For .NET 6.0 projects, this element will have the net6.0 value; if you’re running on .NET 7, this will be net7.0. You can also enable and disable various features of the compiler, such as the C# 8 feature nullable reference types or the C# 10 feature implicit using statements.3

 Tip With the new csproj style, Visual Studio users can double-click a project in Solution Explorer to edit the .csproj file without having to close the project first.

 The most common changes you’ll make to the project file are to add more NuGet packages by using the PackageReference element. By default, your app doesn’t reference any NuGet packages at all.

 Using NuGet libraries in your project

 Even though all apps are unique in some way, they also have common requirements. Most apps need to access a database, for example, or manipulate JSON- or XML-formatted data. Rather than having to reinvent that code in every project, you should use existing reusable libraries.

 NuGet is the library package manager for .NET, where libraries are packaged in NuGet packages and published to https://www.nuget.org. You can use these packages in your project by referencing the unique package name in your .csproj file, making the package’s namespace and classes available in your code files. You can publish (and host) NuGet packages to repositories other than nuget.org; see https://learn.micro soft.com/en-us/nuget for details.

 You can add a NuGet reference to your project by running dotnet add package <packagename> from inside the project folder. This command updates your project file with a <PackageReference> node and restores the NuGet package for your project. To install the popular Newtonsoft.Json library, for example, you would run

 dotnet add package Newtonsoft.Json

 This command adds a reference to the latest version of the library to your project file, as shown next, and makes the Newtonsoft.Json namespace available in your source-code files:

 <Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>net7.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="NewtonSoft.Json" Version="13.0.1" />
 </ItemGroup>
</Project>

 If you’re using Visual Studio, you can manage packages with the NuGet Package Manager by right-clicking the solution name or a project and choosing Manage NuGet Packages from the contextual menu.

 As a point of interest, there’s no officially agreed-on pronunciation for NuGet. Feel free to use the popular “noo-get” or “nugget” style, or if you’re feeling especially posh, try “noo-jay”!

 The simplified project file format is much easier to edit by hand than previous versions, which is great if you’re developing cross-platform. But if you’re using Visual Studio, don’t feel that you have to take this route. You can still use the GUI to add project references, exclude files, manage NuGet packages, and so on. Visual Studio will update the project file itself, as it always has.

 Tip For further details on the changes to the csproj format, see the documentation at http://mng.bz/vnzJ.

 The project file defines everything Visual Studio and the .NET CLI need to build your app—everything, that is, except the code! In the next section we’ll look at the file that defines your whole ASP.NET Core application: the Program.cs file.

3.6 Program.cs file: Defining your application

 All ASP.NET Core applications start life as a .NET Console application. As of .NET 6, that typically means a program written with top-level statements, in which the startup code for your application is written directly in a file instead of inside a static void Main function.

 Top-level statements

 Before C# 9, every .NET program had to include a static void Main function (it could also return int, Task, or Task<int>), typically declared in a class called Program. This function, which must exist, defines the entry point for your program. This code runs when you start your application, as in this example:

 using System;
namespace MyApp
{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

 With top-level statements you can write the body of this method directly in the file, and the compiler generates the Main method for you.

 When combined with C# 10 features such as implicit using statements, this dramatically simplifies the entry-point code of your app to

 Console.WriteLine("Hello World!");

 When you use the explicit Main function you can access the command-line arguments provided when the app was run using the args parameter. With top-level statements the args variable is also available as a string[], even though it’s not declared explicitly. You could echo each argument provided by using

 foreach(string arg in args)
{
 Console.WriteLine(arg);
}

 In .NET 7 all the default templates use top-level statements, and I use them throughout this book. Most of the templates include an option to use the explicit Main function if you prefer (using the --use-program-main option if you’re using the CLI). For more information on top-level statements and their limitations, see http://mng.bz/4DZa. If you decide to switch approaches later, you can always add or remove the Main function manually as required.

 In .NET 7 ASP.NET Core applications the top-level statements build and run a WebApplication instance, as shown in the following listing, which shows the default Program.cs file. The WebApplication is the core of your ASP.NET Core application, containing the application configuration and the Kestrel server that listens for requests and sends responses.

 Listing 3.3 The default Program.cs file that configures and runs a WebApplication

 WebApplicationBuilder builder = WebApplication.CreateBuilder(args); ❶
WebApplication app = builder.Build(); ❷

app.MapGet("/", () => "Hello World!"); ❸

app.Run(); ❹

 ❶ Creates a WebApplicationBuilder using the CreateBuilder method

 ❷ Builds and returns an instance of WebApplication from the WebApplicationBuilder

 ❸ Defines an endpoint for your application, which returns Hello World! when the path “/” is called

 ❹ Runs the WebApplication to start listening for requests and generating responses

 These four lines contain all the initialization code you need to create a web server and start listening for requests. It uses a WebApplicationBuilder, created by the call to CreateBuilder, to define how the WebApplication is configured, before instantiating the WebApplication with a call to Build().

 Note You’ll find this pattern of using a builder object to configure a complex object repeated throughout the ASP.NET Core framework. This technique is useful for allowing users to configure an object, delaying its creation until all configuration has finished. It’s also one of the patterns described in the “Gang of Four” book Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1994).

 In this simple application we don’t make any changes to WebApplicationBuilder before calling Build(), but WebApplicationBuilder configures a lot of things by default, including

 	
 Configuration—Your app loads values from JSON files and environment variables that you can use to control the app’s runtime behavior, such as loading connection strings for a database. You’ll learn more about the configuration system in chapter 10.

 	
 Logging—ASP.NET Core includes an extensible logging system for observability and debugging. I cover the logging system in detail in chapter 26.

 	
 Services—Any classes that your application depends on for providing functionality—both those used by the framework and those specific to your application—must be registered so that they can be instantiated correctly at runtime. The WebApplicationBuilder configures the minimal set of services needed for an ASP.NET Core app. Chapters 8 and 9 look at service configuration in detail.

 	
 Hosting—ASP.NET Core uses the Kestrel web server by default to handle requests.

 After configuring the WebApplicationBuilder you call Build() to create a WebApplication instance. The WebApplication instance is where you define how your application handles and responds to requests, using two building blocks:

 	
 Middleware—These small components execute in sequence when the application receives an HTTP request. They can perform a whole host of functions, such as logging, identifying the current user for a request, serving static files, and handling errors. We’ll look in detail at the middleware pipeline in chapter 4.

 	
 Endpoints—Endpoints define how the response should be generated for a specific request to a URL in your app.

 For the application in listing 3.3, we didn’t add any middleware, but we defined a single endpoint using a call to MapGet:

 app.MapGet("/", () => "Hello World!");

 You use the MapGet function to define how to handle a request that uses the GET HTTP verb. There are other Map* functions for other HTTP verbs, such as MapPost.

 Definition Every HTTP request includes a verb that indicates the type of the request. When you’re browsing a website, the default verb is GET, which fetches a resource from the server so you can view it. The second-most-common verb is POST, which is used to send data to the server, such as when you’re completing a form.

 The first argument passed to MapGet defines which URL path to respond to, and the second argument defines how to generate the response as a delegate that returns a string. In this simple case, the arguments say “When a request is made to the path / using the GET HTTP verb, respond with the plain-text value Hello World!”.

 Definition A path is the remainder of the request URL after the domain has been removed. For a request to www.example.org/accout/manage, the path is /account/manage.

 While you’re configuring the WebApplication and WebApplicationBuilder the application isn’t handling HTTP requests. Only after the call to Run() does the HTTP server start listening for requests. At this point, your application is fully operational and can respond to its first request from a remote browser.

 Note The WebApplication and WebApplicationBuilder classes were introduced in .NET 6. The initialization code in previous versions of ASP.NET Core was more verbose but gave you more control of your application’s behavior. Configuration was typically split between two classes—Program and Startup—and used different configuration types—IHostBuilder and IHost, which have fewer defaults than WebApplication. In chapter 30 I describe some of these differences in more detail and show how to configure your application by using the generic IHost instead of WebApplication.

 So far in this chapter, we’ve looked at the simplest ASP.NET core application you can build: a Hello World minimal API application. For the remainder of this chapter, we’re going to build on this app to introduce some fundamental concepts of ASP.NET Core.

3.7 Adding functionality to your application

 The application setup you’ve seen so far in Program.cs consists of only four lines of code but still shows the overall structure of a typical ASP.NET Core app entry point, which typically consists of six steps:

 	
 Create a WebApplicationBuilder instance.

 	
 Register the required services and configuration with the WebApplicationBuilder.

 	
 Call Build() on the builder instance to create a WebApplication instance.

 	
 Add middleware to the WebApplication to create a pipeline.

 	
 Map the endpoints in your application.

 	
 Call Run() on the WebApplication to start the server and handle requests.

 The basic minimal API app shown previously in listing 3.3 was simple enough that it didn’t need steps 2 and 4, but otherwise it followed this sequence in its Program.cs file. The following listing extends the default application to add more functionality, and in doing so it uses all six steps.

 Listing 3.4 The Program.cs file for a more complex example minimal API

 using Microsoft.AspNetCore.HttpLogging;

WebApplicationBuilder builder = WebApplication.CreateBuilder(args);

builder.Services.AddHttpLogging(opts => ❶
 opts.LoggingFields = HttpLoggingFields.RequestProperties); ❶

builder.Logging.AddFilter(❷
 "Microsoft.AspNetCore.HttpLogging", LogLevel.Information); ❷

WebApplication app = builder.Build();

if (app.Environment.IsDevelopment()) ❸
{
 app.UseHttpLogging(); ❹
}

app.MapGet("/", () => "Hello World!");
app.MapGet("/person", () => new Person("Andrew", "Lock")); ❺

app.Run();

public record Person(string FirstName, string LastName); ❻

 ❶ You can customize features by adding or customizing the services of the application.

 ❷ Ensures that logs added by the HTTP logging middleware are visible in the log output

 ❸ You can add middleware conditionally, depending on the runtime environment.

 ❹ The HTTP logging middleware logs each request to your application in the log output.

 ❺ Creates a new endpoint that returns the C# object serialized as JSON

 ❻ Creates a record type

 The application in listing 3.4 configures two new features:

 	
 When running in the Development environment, details about each request are logged using the HttpLoggingMiddleware.4

 	
 Creates a new endpoint at /person that creates an instance of the C# record called Person and serializes it in the response as JSON.

 When you run the application and send requests via a web browser, you see details about the request displayed in the console, as shown in figure 3.8. If you call the /person endpoint you’ll see the JSON representation of the Person record you created in the endpoint.

 Note You can view the application only on the same computer that’s running it at the moment; your application isn’t exposed to the internet yet. You’ll learn how to publish and deploy your application in chapter 27.

 [image: CH03_F08_Lock3]

 Figure 3.8 Calling the /person endpoint returns a JSON-serialized version of the Person record instance. Details about each request are logged to the console by the HttpLoggingMiddleware.

 Configuring services, logging, middleware, and endpoints is fundamental to building ASP.NET Core applications, so the rest of section 3.7 walks you through each of these concepts to give you a taste of how they’re used. I won’t explain them in detail (we have the rest of the book for that!), but you should keep in mind how they follow on from each other and how they contribute to the application’s configuration as a whole.

3.7.1 Adding and configuring services

 ASP.NET Core uses small modular components for each distinct feature. This approach allows individual features to evolve separately, with only a loose coupling to others, and it’s generally considered to be good design practice. The downside to this approach is that it places the burden on the consumer of a feature to instantiate it correctly. Within your application, these modular components are exposed as one or more services that are used by the application.

 Definition Within the context of ASP.Net Core, service refers to any class that provides functionality to an application. Services could be classes exposed by a library or code you’ve written for your application.

 In an e-commerce app, for example, you might have a TaxCalculator that calculates the tax due on a particular product, taking into account the user’s location in the world. Or you might have a ShippingCostService that calculates the cost of shipping to a user’s location. A third service, OrderTotalCalculator, might use both of these services to work out the total price the user must pay for an order. Each service provides a small piece of independent functionality, but you can combine them to create a complete application. This design methodology scenario is known as the single-responsibility principle.

 Definition The single-responsibility principle (SRP) states that every class should be responsible for only a single piece of functionality; it should need to change only if that required functionality changes. SRP is one of the five main design principles promoted by Robert C. Martin in Agile Software Development, Principles, Patterns, and Practices (Pearson, 2013).

 OrderTotalCalculator needs access to an instance of ShippingCostService and TaxCalculator. A naive approach to this problem is to use the new keyword and create an instance of a service whenever you need it. Unfortunately, this approach tightly couples your code to the specific implementation you’re using and can undo all the good you achieved by modularizing the features in the first place. In some cases, it may break the SRP by making you perform initialization code in addition to using the service you created.

 One solution to this problem is to make it somebody else’s problem. When writing a service, you can declare your dependencies and let another class fill those dependencies for you. Then your service can focus on the functionality for which it was designed instead of trying to work out how to build its dependencies.

 This technique is called dependency injection or the Inversion of Control (IoC) principle, a well-recognized design pattern that is used extensively. Typically, you’ll register the dependencies of your application into a container, which you can use to create any service. You can use the container to create both your own custom application services and the framework services used by ASP.NET Core. You must register each service with the container before using it in your application.

 Note I describe the dependency inversion principle and the IoC container used in ASP.NET Core in detail in chapters 8 and 9.

 In an ASP.NET Core application, this registration is performed by using the Services property of WebApplicationBuilder. Whenever you use a new ASP.NET Core feature in your application, you need to come back to Program.cs and add the necessary services. This task isn’t always as arduous as it sounds, typically requiring only a line or two of code to configure your applications.

 In listing 3.4 we configured an optional service for the HTTP logging middleware by using the line

 builder.Services.AddHttpLogging(opts =>
 opts.LoggingFields = HttpLoggingFields.RequestProperties);

 Calling AddHttpLogging() adds the necessary services for the HTTP logging middleware to the IoC container and customizes the options used by the middleware for what to display. AddHttpLogging isn’t exposed directly on the Services property; it’s an extension method that provides a convenient way to encapsulate all the code required to set up HTTP logging. This pattern of encapsulating setup behind extension methods is common in ASP.NET Core.

 As well as registering framework-related services, the Services property is where you’d register any custom services you have in your application, such as the example TaxCalculator discussed previously. The Services property is an IServiceCollection, which is a list of every known service that your application will need to use. By adding a new service to it, you ensure that whenever a class declares a dependency on your service, the IoC container will know how to provide it.

 As well as configuring services, WebApplicationBuilder is where you customize other cross-cutting concerns, such as logging. In listing 3.4, I showed how you can add a logging filter to ensure that the logs generated by the HttpLoggingMiddleware are written to the console:

 builder.Logging.AddFilter(
 "Microsoft.AspNetCore.HttpLogging", LogLevel.Information);

 This line ensures that logs of severity Information or greater created in the Microsoft .AspNetCore.HttpLogging namespace will be included in the log output.

 Note I show configuring log filters in code here for convenience, but this isn’t the idiomatic approach for configuring filters in ASP.NET Core. Typically, you control which levels are shown by adding values to appsettings.json instead, as shown in the source code accompanying this chapter. You’ll learn more about logging and log filtering in chapter 26.

 After you call Build() on the WebApplicationBuilder instance, you can’t register any more services or change your logging configuration; the services defined for the WebApplication instance are set in stone. The next step is defining how your application responds to HTTP requests.

3.7.2 Defining how requests are handled with middleware and endpoints

 After registering your services with the IoC container on WebApplicationBuilder and doing any further customization, you create a WebApplication instance. You can do three main things with the WebApplication instance:

 	
 Add middleware to the pipeline.

 	
 Map endpoints that generate a response for a request.

 	
 Run the application by calling Run().

 As I described previously, middleware consists of small components that execute in sequence when the application receives an HTTP request. They can perform a host of functions, such as logging, identifying the current user for a request, serving static files, and handling errors. Middleware is typically added to WebApplication by calling Use* extension methods. In listing 3.4, I showed an example of adding the HttpLoggingMiddleware to the middleware pipeline conditionally by calling UseHttpLogging():

 if (app.Environment.IsDevelopment())
{
 app.UseHttpLogging();
}

 We added only a single piece of middleware to the pipeline in this example, but when you’re adding multiple pieces of middleware, the order of the Use* calls is important: the order in which they’re added to the builder is the order in which they’ll execute in the final pipeline. Middleware can use only objects created by previous middleware in the pipeline; it can’t access objects created by later middleware.

 Warning It’s important to consider the order of middleware when adding it to the pipeline, as middleware can use only objects created earlier in the pipeline.

 You should also note that listing 3.4 uses the WebApplication.Environment property (an instance of IWebHostEnvironment) to provide different behavior when you’re in a development environment. The HttpLoggingMiddleware is added to the pipeline only when you’re running in development; when you’re running in production (or, rather, when EnvironmentName is not set to "Development"), the HttpLoggingMiddleware will not be added.

 Note You’ll learn about hosting environments and how to change the current environment in chapter 10.

 The WebApplicationBuilder builds an IWebHostEnvironment object and sets it on the Environment property. IWebHostEnvironment exposes several environment-related properties, such as

 	
 ContentRootPath—Location of the working directory for the app, typically the folder in which the application is running

 	
 WebRootPath—Location of the wwwroot folder that contains static files

 	
 EnvironmentName—Whether the current environment is a development or production environment

 IWebHostEnvironment is already set by the time the WebApplication instance is created. EnvironmentName is typically set externally by using an environment variable when your application starts.

 Listing 3.4 added only a single piece of middleware to the pipeline, but WebApplication automatically adds more middleware, including two of the most important and substantial pieces of middleware in the pipeline: the routing middleware and the endpoint middleware. The routing middleware is added automatically to the start of the pipeline, before any of the additional middleware added in Program.cs (so before the HttpLoggingMiddleware). The endpoint middleware is added to the end of the pipeline, after all the other middleware added in Program.cs.

 NOTE WebApplication adds several more pieces of middleware to the pipeline by default. It automatically adds error-handling middleware when you’re running in the development environment, for example. I discuss some of this autoadded middleware in detail in chapter 4.

 Together, this pair of middleware is responsible for interpreting the request to determine which endpoint to invoke, for reading parameters from the request, and for generating the final response. For each request, the routing middleware uses the request’s URL to determine which endpoint to invoke. Then the rest of the middleware pipeline executes until the request reaches the endpoint middleware, at which point the endpoint middleware executes the endpoint to generate the final response.

 The routing and endpoint middleware work in tandem, using the set of endpoints defined for your application. In listing 3.4 we defined two endpoints:

 app.MapGet("/", () => "Hello World!");
app.MapGet("/person", () => new Person("Andrew", "Lock"));

 You’ve already seen the default "Hello World!" endpoint. When you send a GET request to /, the routing middleware selects the "Hello World!" endpoint. The request continues down the middleware pipeline until it reaches the endpoint middleware, which executes the lambda and returns the string value in the response body.

 The other endpoint defines a lambda to run for GET requests to the /person path, but it returns a C# record instead of a string. When you return a C# object from a minimal API endpoint, the object is serialized to JSON automatically and returned in the response body, as you saw in figure 3.8. In chapter 6 you’ll learn how to customize this response, as well as return other types of responses.

 And there you have it. You’ve finished the tour of your first ASP.NET Core application! Before we move on, let’s take one last look at how our application handles a request. Figure 3.9 shows a request to the /person path being handled by the sample application. You’ve seen everything here already, so the process of handling a request should be familiar. The figure shows how the request passes through the middleware pipeline before being handled by the endpoint middleware. The endpoint executes the lambda method and generates the JSON response, which passes back through the middleware to the ASP.NET Core web server before being sent to the user’s browser.

 [image: CH03_F09_Lock3]

 Figure 3.9 An overview of a request to the /person URL for the extended ASP.NET Core minimal API application. The routing middleware routes the request to the correct lambda method. The endpoint generates a JSON response by executing the method and passes the response back through the middleware pipeline to the browser.

 The trip has been pretty intense, but now you have a good overview of how an entire application is configured and how it handles a request by using minimal APIs. In chapter 4, you’ll take a closer look at the middleware pipeline that exists in all ASP.NET Core applications. You’ll learn how it’s composed, how you can use it to add functionality to your application, and how you can use it to create simple HTTP services.

Summary

 	
 The .csproj file contains the details of how to build your project, including which NuGet packages it depends on. Visual Studio and the .NET CLI use this file to build your application.

 	
 Restoring the NuGet packages for an ASP.NET Core application downloads all your project’s dependencies so that it can be built and run.

 	
 Program.cs is where you define the code that runs when your app starts. You can create a WebApplicationBuilder by using WebApplication.CreateBuilder() and call methods on the builder to create your application.

 	
 All services, both framework and custom application services, must be registered with the WebApplicationBuilder by means of the Services property, to be accessed later in your application.

 	
 After your services are configured you call Build() on the WebApplicationBuilder instance to create a WebApplication instance. You use WebApplication to configure your app’s middleware pipeline, to register the endpoints, and to start the server listening for requests.

 	
 Middleware defines how your application responds to requests. The order in which middleware is registered defines the final order of the middleware pipeline for the application.

 	
 The WebApplication instance automatically adds RoutingMiddleware to the start of the middleware pipeline and EndpointMiddleware as the last middleware in the pipeline.

 	
 Endpoints define how a response should be generated for a given request and are typically tied to a request’s path. With minimal APIs, a simple function is used to generate a response.

 	
 You can start the web server and begin accepting HTTP requests by calling Run on the WebApplication instance.

 1. If you want to learn more about Kestrel, IIS HTTP Server, and HTTP.sys, this documentation describes the differences among them: http://mng.bz/6DgD.

 2. You can install the development certificate in Windows and macOS. For instructions on trusting the certificate on Linux, see your distribution’s instructions. Not all browsers (Mozilla Firefox, for example) use the certificate store, so follow your browser’s guidelines for trusting the certificate. If you still have difficulties, see the troubleshooting tips at http://mng.bz/o1pr.

 3. You can read about the new C# features included in .NET 7 and C# 11 at http://mng.bz/nWMg.

 4. You can read in more detail about HTTP logging in the documentation at http://mng.bz/QPmw.

4 Handling requests with the middleware pipeline

 This chapter covers

 	
Understanding middleware

 	
Serving static files using middleware

 	
Adding functionality using middleware

 	
Combining middleware to form a pipeline

 	
Handling exceptions and errors with middleware

 In chapter 3 you had a whistle-stop tour of a complete ASP.NET Core application to see how the components come together to create a web application. In this chapter, we’ll focus on one small subsection: the middleware pipeline.

 In ASP.NET Core, middleware consists of C# classes or functions that handle an HTTP request or response. Middleware is chained together, with the output of one acting as the input to the next to form a pipeline.

 The middleware pipeline is one of the most important parts of configuration for defining how your application behaves and how it responds to requests. Understanding how to build and compose middleware is key to adding functionality to your applications.

 In this chapter you’ll learn what middleware is and how to use it to create a pipeline. You’ll see how you can chain multiple middleware components together, with each component adding a discrete piece of functionality. The examples in this chapter are limited to using existing middleware components, showing how to arrange them in the correct way for your application. In chapter 31 you’ll learn how to build your own middleware components and incorporate them into the pipeline.

 We’ll begin by looking at the concept of middleware, all the things you can achieve with it, and how a middleware component often maps to a cross-cutting concern. These functions of an application cut across multiple different layers. Logging, error handling, and security are classic cross-cutting concerns that are required by many parts of your application. Because all requests pass through the middleware pipeline, it’s the preferred location to configure and handle this functionality.

 In section 4.2 I’ll explain how you can compose individual middleware components into a pipeline. You’ll start out small, with a web app that displays only a holding page. From there, you’ll learn how to build a simple static-file server that returns requested files from a folder on disk.

 Next, you’ll move on to a more complex pipeline containing multiple middleware. In this example you’ll explore the importance of ordering in the middleware pipeline, and you’ll see how requests are handled when your pipeline contains multiple middleware.

 In section 4.3 you’ll learn how you can use middleware to deal with an important aspect of any application: error handling. Errors are a fact of life for all applications, so it’s important that you account for them when building your app.

 You can handle errors in a few ways. Errors are among the classic cross-cutting concerns, and middleware is well placed to provide the required functionality. In section 4.3 I’ll show how you can handle exceptions with middleware provided by Microsoft. In particular, you’ll learn about two different components:

 	
 DeveloperExceptionPageMiddleware—Provides quick error feedback when building an application

 	
 ExceptionHandlerMiddleware—Provides a generic error page in production so that you don’t leak any sensitive details

 You won’t see how to build your own middleware in this chapter; instead, you’ll see that you can go a long way by using the components provided as part of ASP.NET Core. When you understand the middleware pipeline and its behavior, you’ll find it much easier to understand when and why custom middleware is required. With that in mind, let’s dive in!

4.1 Defining middleware

 The word middleware is used in a variety of contexts in software development and IT, but it’s not a particularly descriptive word.

 In ASP.NET Core, middleware is a C# class1 that can handle an HTTP request or response. Middleware can

 	
 Handle an incoming HTTP request by generating an HTTP response

 	
 Process an incoming HTTP request, modify it, and pass it on to another piece of middleware

 	
 Process an outgoing HTTP response, modify it, and pass it on to another piece of middleware or to the ASP.NET Core web server

 You can use middleware in a multitude of ways in your own applications. A piece of logging middleware, for example, might note when a request arrived and then pass it on to another piece of middleware. Meanwhile, a static-file middleware component might spot an incoming request for an image with a specific name, load the image from disk, and send it back to the user without passing it on.

 The most important piece of middleware in most ASP.NET Core applications is the EndpointMiddleware class. This class normally generates all your HTML and JavaScript Object Notation (JSON) responses, and is the focus of most of this book. Like image-resizing middleware, it typically receives a request, generates a response, and then sends it back to the user (figure 4.1).

 [image: CH04_F01_Lock3]

 Figure 4.1 Example of a middleware pipeline. Each middleware component handles the request and passes it on to the next middleware component in the pipeline. After a middleware component generates a response, it passes the response back through the pipeline. When it reaches the ASP.NET Core web server, the response is sent to the user’s browser.

 Definition This arrangement—whereby a piece of middleware can call another piece of middleware, which in turn can call another, and so on—is referred to as a pipeline. You can think of each piece of middleware as being like a section of pipe; when you connect all the sections, a request flows through one piece and into the next.

 One of the most common use cases for middleware is for the cross-cutting concerns of your application. These aspects of your application need to occur for every request, regardless of the specific path in the request or the resource requested, including

 	
 Logging each request

 	
 Adding standard security headers to the response

 	
 Associating a request with the relevant user

 	
 Setting the language for the current request

 In each of these examples, the middleware receives a request, modifies it, and then passes the request on to the next piece of middleware in the pipeline. Subsequent middleware could use the details added by the earlier middleware to handle the request in some way. In figure 4.2, for example, the authentication middleware associates the request with a user. Then the authorization middleware uses this detail to verify whether the user has permission to make that specific request to the application.

 [image: CH04_F02_Lock3]

 Figure 4.2 Example of a middleware component modifying a request for use later in the pipeline. Middleware can also short-circuit the pipeline, returning a response before the request reaches later middleware.

 If the user has permission, the authorization middleware passes the request on to the endpoint middleware to allow it to generate a response. If the user doesn’t have permission, the authorization middleware can short-circuit the pipeline, generating a response directly; it returns the response to the previous middleware, and the endpoint middleware never sees the request. This scenario is an example of the chain-of-responsibility design pattern.

 Definition When a middleware component short-circuits the pipeline and returns a response, it’s called terminal middleware.

 A key point to glean from this example is that the pipeline is bidirectional. The request passes through the pipeline in one direction until a piece of middleware generates a response, at which point the response passes back through the pipeline, passing through each piece of middleware a second time, in reverse order, until it gets back to the first piece of middleware. Finally, the first/last piece of middleware passes the response back to the ASP.NET Core web server.

 The HttpContext object

 I mentioned the HttpContext in chapter 3, and it’s sitting behind the scenes here, too. The ASP.NET Core web server constructs an HttpContext for each request, which the ASP.NET Core application uses as a sort of storage box for a single request. Anything that’s specific to this particular request and the subsequent response can be associated with and stored in it. Examples are properties of the request, request-specific services, data that’s been loaded, or errors that have occurred. The web server fills the initial HttpContext with details of the original HTTP request and other configuration details, and then passes it on to the middleware pipeline and the rest of the application.

 All middleware has access to the HttpContext for a request. It can use this object to determine whether the request contains any user credentials, to identify which page the request is attempting to access, and to fetch any posted data, for example. Then it can use these details to determine how to handle the request.

 When the application finishes processing the request, it updates the HttpContext with an appropriate response and returns it through the middleware pipeline to the web server. Then the ASP.NET Core web server converts the representation to a raw HTTP response and sends it back to the reverse proxy, which forwards it to the user’s browser.

 As you saw in chapter 3, you define the middleware pipeline in code as part of your initial application configuration in Program.cs. You can tailor the middleware pipeline specifically to your needs; simple apps may need only a short pipeline, whereas large apps with a variety of features may use much more middleware. Middleware is the fundamental source of behavior in your application. Ultimately, the middleware pipeline is responsible for responding to any HTTP requests it receives.

 Requests are passed to the middleware pipeline as HttpContext objects. As you saw in chapter 3, the ASP.NET Core web server builds an HttpContext object from an incoming request, which passes up and down the middleware pipeline. When you’re using existing middleware to build a pipeline, this detail is one that you’ll rarely have to deal with. But as you’ll see in the final section of this chapter, its presence behind the scenes provides a route to exerting extra control over your middleware pipeline.

 You can also think of your middleware pipeline as being a series of concentric components, similar to a traditional matryoshka (Russian) doll, as shown in figure 4.3. A request progresses through the pipeline by heading deeper into the stack of middleware until a response is returned. Then the response returns through the middleware, passing through the components in reverse order from the request.

 [image: CH04_F03_Lock3]

 Figure 4.3 You can also think of middleware as being a series of nested components; a request is sent deeper into the middleware, and the response resurfaces from it. Each middleware component can execute logic before passing the response on to the next middleware component and can execute logic after the response has been created, on the way back out of the stack.

 Middleware vs. HTTP modules and HTTP handlers

 In the previous version of ASP.NET, the concept of a middleware pipeline isn’t used. Instead, you have HTTP modules and HTTP handlers.

 An HTTP handler is a process that runs in response to a request and generates the response. The ASP.NET page handler, for example, runs in response to requests for .aspx pages. Alternatively, you could write a custom handler that returns resized images when an image is requested.

 HTTP modules handle the cross-cutting concerns of applications, such as security, logging, and session management. They run in response to the life-cycle events that a request progresses through when it’s received by the server. Examples of events include BeginRequest, AcquireRequestState, and PostAcquireRequestState.

 This approach works, but sometimes it’s tricky to reason about which modules will run at which points. Implementing a module requires relatively detailed understanding of the state of the request at each individual life-cycle event.

 The middleware pipeline makes understanding your application far simpler. The pipeline is defined completely in code, specifying which components should run and in which order. Behind the scenes, the middleware pipeline in ASP.NET Core is simply a chain of method calls, with each middleware function calling the next in the pipeline.

 That’s pretty much all there is to the concept of middleware. In the next section, I’ll discuss ways you can combine middleware components to create an application and how to use middleware to separate the concerns of your application.

4.2 Combining middleware in a pipeline

 Generally speaking, each middleware component has a single primary concern; it handles only one aspect of a request. Logging middleware deals only with logging the request, authentication middleware is concerned only with identifying the current user, and static-file middleware is concerned only with returning static files.

 Each of these concerns is highly focused, which makes the components themselves small and easy to reason about. This approach also gives your app added flexibility. Adding static-file middleware, for example, doesn’t mean you’re forced to have image-resizing behavior or authentication; each of these features is an additional piece of middleware.

 To build a complete application, you compose multiple middleware components into a pipeline, as shown in section 4.1. Each middleware component has access to the original request, as well as any changes made to the HttpContext by middleware earlier in the pipeline. When a response has been generated, each middleware component can inspect and/or modify the response as it passes back through the pipeline before it’s sent to the user. This feature allows you to build complex application behaviors from small, focused components.

 In the rest of this section, you’ll see how to create a middleware pipeline by combining various middleware components. Using standard middleware components, you’ll learn to create a holding page and to serve static files from a folder on disk. Finally, you’ll take a look at a more complex pipeline such as you’d get in a minimal API application with multiple middleware, routing, and endpoints.

4.2.1 Simple pipeline scenario 1: A holding page

 For your first app in this chapter and your first middleware pipeline, you’ll learn how to create an app consisting of a holding page. Adding a holding page can be useful occasionally when you’re setting up your application to ensure that it’s processing requests without errors.

 Tip Remember that you can view the application code for this book in the GitHub repository at http://mng.bz/Y1qN.

 In previous chapters, I mentioned that the ASP.NET Core framework is composed of many small individual libraries. You typically add a piece of middleware by referencing a package in your application’s .csproj project file and configuring the middleware in Program.cs. Microsoft ships many standard middleware components with ASP.NET Core for you to choose among; you can also use third-party components from NuGet and GitHub, or you can build your own custom middleware. You can find the list of built-in middleware at http://mng.bz/Gyxq.

 Note I discuss building custom middleware in chapter 31.

 In this section, you’ll see how to create one of the simplest middleware pipelines, consisting only of WelcomePageMiddleware. WelcomePageMiddleware is designed to provide a sample HTML page quickly when you’re first developing an application, as you can see in figure 4.4. You wouldn’t use it in a production app, as you can’t customize the output, but it’s a single, self-contained middleware component you can use to ensure that your application is running correctly.

 [image: CH04_F04_Lock3]

 Figure 4.4 The Welcome-page middleware response. Every request to the application, at any path, will return the same Welcome-page response.

 Tip WelcomePageMiddleware is included as part of the base ASP.NET Core framework, so you don’t need to add a reference to any additional NuGet packages.

 Even though this application is simple, the same process you’ve seen before occurs when the application receives an HTTP request, as shown in figure 4.5.

 [image: CH04_F05_Lock3]

 Figure 4.5 WelcomePageMiddleware handles a request. The request passes from the reverse proxy to the ASP.NET Core web server and finally to the middleware pipeline, which generates an HTML response.

 The request passes to the ASP.NET Core web server, which builds a representation of the request and passes it to the middleware pipeline. As it’s the first (only!) middleware in the pipeline, WelcomePageMiddleware receives the request and must decide how to handle it. The middleware responds by generating an HTML response, no matter what request it receives. This response passes back to the ASP.NET Core web server, which forwards it to the reverse proxy and then to the user to display in their browser.

 As with all ASP.NET Core applications, you define the middleware pipeline in Program.cs by calling Use* methods on the WebApplication instance. To create your first middleware pipeline, which consists of a single middleware component, you need a single method call. The application doesn’t need any extra configuration or services, so your whole application consists of the four lines in the following listing.

 Listing 4.1 Program.cs for a Welcome-page middleware pipeline

 WebApplicationBuilder builder = WebApplication.CreateBuilder(args); ❶
WebApplication app = builder.Build(); ❶

app.UseWelcomePage(); ❷

app.Run(); ❸

 ❶ Uses the default WebApplication configuration

 ❷ The only custom middleware in the pipeline

 ❸ Runs the application to handle requests

 You build up the middleware pipeline in ASP.NET Core by calling methods on WebApplication (which implements IApplicationBuilder). WebApplication doesn’t define methods like UseWelcomePage itself; instead, these are extension methods.

 Using extension methods allows you to add functionality to the WebApplication class, while keeping the implementation isolated from it. Under the hood, the methods typically call another extension method to add the middleware to the pipeline. Behind the scenes, for example, the UseWelcomePage method adds the WelcomePageMiddleware to the pipeline by calling

 UseMiddleware<WelcomePageMiddleware>();

 This convention of creating an extension method for each piece of middleware and starting the method name with Use is designed to improve discoverability when you add middleware to your application.2 ASP.NET Core includes a lot of middleware as part of the core framework, so you can use IntelliSense in Visual Studio and other integrated development environments (IDEs) to view all the middleware that’s available, as shown in figure 4.6.

 [image: CH04_F06_Lock3]

 Figure 4.6 IntelliSense makes it easy to view all the available middleware to add to your middleware pipeline.

 Calling the UseWelcomePage method adds the WelcomePageMiddleware as the next middleware in the pipeline. Although you’re using only a single middleware component here, it’s important to remember that the order in which you make calls to IApplicationBuilder in Configure defines the order in which the middleware will run in the pipeline.

 Warning When you’re adding middleware to the pipeline, always take care to consider the order in which it will run. A component can access only data created by middleware that comes before it in the pipeline.

 This application is the most basic kind, returning the same response no matter which URL you navigate to, but it shows how easy it is to define your application behavior with middleware. Next, we’ll make things a little more interesting by returning different responses when you make requests to different paths.

4.2.2 Simple pipeline scenario 2: Handling static files

 In this section, I’ll show you how to create one of the simplest middleware pipelines you can use for a full application: a static-file application. Most web applications, including those with dynamic content, serve some pages by using static files. Images, JavaScript, and CSS stylesheets are normally saved to disk during development and are served up when requested from the special wwwroot folder of your project, normally as part of a full HTML page request.

 Definition By default, the wwwroot folder is the only folder in your application that ASP.NET Core will serve files from. It doesn’t serve files from other folders for security reasons. The wwwroot folder in an ASP.NET Core project is typically deployed as is to production, including all the files and folders it contains.

 You can use StaticFileMiddleware to serve static files from the wwwroot folder when requested, as shown in figure 4.7. In this example, an image called moon.jpg exists in the wwwroot folder. When you request the file using the /moon.jpg path, it’s loaded and returned as the response to the request.

 [image: CH04_F07_Lock3]

 Figure 4.7 Serving a static image file using the static-file middleware

 If the user requests a file that doesn’t exist in the wwwroot folder, such as missing.jpg, the static-file middleware won’t serve a file. Instead, a 404 HTTP error code response will be sent to the user’s browser, which displays its default “File Not Found” page, as shown in figure 4.8.

 Note How this page looks depends on your browser. In some browsers, you may see a blank page.

 [image: CH04_F08_Lock3]

 Figure 4.8 Returning a 404 to the browser when a file doesn’t exist. The requested file didn’t exist in the wwwroot folder, so the ASP.NET Core application returned a 404 response. Then the browser (Microsoft Edge, in this case) shows the user a default “File Not Found” error page.

 Building the middleware pipeline for this simple static-file application is easy. The pipeline consists of a single piece of middleware, StaticFileMiddleware, as you can see in the following listing. You don’t need any services, so configuring the middleware pipeline with UseStaticFiles is all that’s required.

 Listing 4.2 Program.cs for a static-file middleware pipeline

 WebApplicationBuilder builder = WebApplication.CreateBuilder(args);
WebApplication app = builder.Build();

app.UseStaticFiles(); ❶

app.Run();

 ❶ Adds the StaticFileMiddleware to the pipeline

 Tip Remember that you can view the application code for this book in the GitHub repository at http://mng.bz/Y1qN.

 When the application receives a request, the ASP.NET Core web server handles it and passes it to the middleware pipeline. StaticFileMiddleware receives the request and determines whether it can handle it. If the requested file exists, the middleware handles the request and returns the file as the response, as shown in figure 4.9.

 [image: CH04_F09_Lock3]

 Figure 4.9 StaticFileMiddleware handles a request for a file. The middleware checks the wwwroot folder to see if whether requested moon.jpg file exists. The file exists, so the middleware retrieves it and returns it as the response to the web server and, ultimately, to the browser.

 If the file doesn’t exist, the request effectively passes through the static-file middleware unchanged. But wait—you added only one piece of middleware, right? Surely you can’t pass the request through to the next middleware component if there isn’t another one.

 ASP.NET Core automatically adds a dummy piece of middleware to the end of the pipeline. This middleware always returns a 404 response if it’s called.

 Tip If no middleware generates a response for a request, the pipeline automatically returns a simple 404 error response to the browser.

 HTTP response status codes

 Every HTTP response contains a status code and, optionally, a reason phrase describing the status code. Status codes are fundamental to the HTTP protocol and are a standardized way of indicating common results. A 200 response, for example, means that the request was successfully answered, whereas a 404 response indicates that the resource requested couldn’t be found. You can see the full list of standardized status codes at https://www.rfc-editor.org/rfc/rfc9110#name-status-codes.

 Status codes are always three digits long and are grouped in five classes, based on the first digit:

 	
 1xx—Information. This code is not often used; it provides a general acknowledgment.

 	
 2xx—Success. The request was successfully handled and processed.

 	
 3xx—Redirection. The browser must follow the provided link to allow the user to log in, for example.

 	
 4xx—Client error. A problem occurred with the request. The request sent invalid data, for example, or the user isn’t authorized to perform the request.

 	
 5xx—Server error. A problem on the server caused the request to fail.

 These status codes typically drive the behavior of a user’s browser. The browser will handle a 301 response automatically, for example, by redirecting to the provided new link and making a second request, all without the user’s interaction.

 Error codes are in the 4xx and 5xx classes. Common codes include a 404 response when a file couldn’t be found, a 400 error when a client sends invalid data (such as an invalid email address), and a 500 error when an error occurs on the server. HTTP responses for error codes may include a response body, which is content to display when the client receives the response.

 This basic ASP.NET Core application makes it easy to see the behavior of the ASP.NET Core middleware pipeline and the static-file middleware in particular, but it’s unlikely that your applications will be this simple. It’s more likely that static files will form one part of your middleware pipeline. In the next section you’ll see how to combine multiple middleware components as we look at a simple minimal API application.

4.2.3 Simple pipeline scenario 3: A minimal API application

 By this point, you should have a decent grasp of the middleware pipeline, insofar as you understand that it defines your application’s behavior. In this section you’ll see how to combine several standard middleware components to form a pipeline. As before, you do this in Program.cs by adding middleware to the WebApplication object.

 You’ll begin by creating a basic middleware pipeline that you’d find in a typical ASP.NET Core minimal APIs template and then extend it by adding middleware. Figure 4.10 shows the output you see when you navigate to the home page of the application—identical to the sample application in chapter 3.

 [image: CH04_F10_Lock3]

 Figure 4.10 A simple minimal API application. The application uses only four pieces of middleware: routing middleware to choose the endpoint to run, endpoint middleware to generate the response from a Razor Page, static-file middleware to serve image files, and exception-handler middleware to capture any errors.

 Creating this application requires only four pieces of middleware: routing middleware to choose a minimal API endpoint to execute, endpoint middleware to generate the response, static-file middleware to serve any image files from the wwwroot folder, and exception-handler middleware to handle any errors that might occur. Even though this example is still a Hello World! example, this architecture is much closer to a realistic example. The following listing shows an example of such an application.

 Listing 4.3 A basic middleware pipeline for a minimal APIs application

 WebApplicationBuilder builder = WebApplication.CreateBuilder(args);
WebApplication app = builder.Build();

UseDeveloperExceptionPage(); ❶
app.UseStaticFiles(); ❷
app.UseRouting(); ❸

app.MapGet("/", () => "Hello World!"); ❹

app.Run();

 ❶ This call isn’t strictly necessary, as it’s already added by WebApplication by default.

 ❷ Adds the StaticFileMiddleware to the pipeline

 ❸ Adds the RoutingMiddleware to the pipeline

 ❹ Defines an endpoint for the application

 The addition of middleware to WebApplication to form the pipeline should be familiar to you now, but several points are worth noting in this example:

 	
 Middleware is added with Use*() methods.

 	
 MapGet defines an endpoint, not middleware. It defines the endpoints that the routing and endpoint middleware can use.

 	
 WebApplication automatically adds some middleware to the pipeline, such as the EndpointMiddleware.

 	
 The order of the Use*() method calls is important and defines the order of the middleware pipeline.

 First, all the methods for adding middleware start with Use. As I mentioned earlier, this is thanks to the convention of using extension methods to extend the functionality of WebApplication; prefixing the methods with Use should make them easier to discover.

 Second, it’s important to understand that the MapGet method does not add middleware to the pipeline; it defines an endpoint in your application. These endpoints are used by the routing and endpoint middleware. You’ll learn more about endpoints and routing in chapter 5.

 Tip You can define the endpoints for your app by using MapGet() anywhere in Program.cs before the call to app.Run(), but the calls are typically placed after the middleware pipeline definition.

 In chapter 3, I mentioned that WebApplication automatically adds middleware to your app. You can see this process in action in listing 4.3 automatically adding the EndpointMiddleware to the end of the middleware pipeline. WebApplication also automatically adds the developer exception page middleware to the start of the middleware pipeline when you’re running in development. As a result, you can omit the call to UseDeveloperExceptionPage() from listing 4.3, and your middleware pipeline will be essentially the same.

 WebApplication and autoadded middleware

 WebApplication and WebApplicationBuilder were introduced in .NET 6 to try to reduce the amount of boilerplate code required for a Hello World! ASP.NET Core application. As part of this initiative, Microsoft chose to have WebApplication automatically add various middleware to the pipeline. This decision alleviates some of the common getting-started pain points of middleware ordering by ensuring that, for example, UseRouting() is always called before UseAuthorization().

 Everything has trade-offs, of course, and for WebApplication the trade-off is that it’s harder to understand exactly what’s in your middleware pipeline without having deep knowledge of the framework code itself.

 Luckily, you don’t need to worry about the middleware that WebApplication adds for the most part. If you’re new to ASP.NET Core, generally you can accept that WebApplication will add the middleware only when it’s necessary and safe to do so.

 Nevertheless, in some cases it may pay to know exactly what’s in your pipeline, especially if you’re familiar with ASP.NET Core. In .NET 7, WebApplication automatically adds some or all of the following middleware to the start of the middleware pipeline:

 	
 HostFilteringMiddleware—This middleware is security-related. You can read more about why it’s useful and how to configure it at http://mng.bz/zXxa.

 	
 ForwardedHeadersMiddleware—This middleware controls how forwarded headers are handled. You can read more about it in chapter 27.

 	
 DeveloperExceptionPageMiddleware—As already discussed, this middleware is added when you run in a development environment.

 	
 RoutingMiddleware—If you add any endpoints to your application, UseRouting() runs before you add any custom middleware to your application.

 	
 AuthenticationMiddleware—If you configure authentication, this middleware authenticates a user for the request. Chapter 23 discusses authentication in detail.

 	
 AuthorizationMiddleware—The authorization middleware runs after authentication and determines whether a user is permitted to execute an endpoint. If the user doesn’t have permission, the request is short-circuited. I discuss authorization in detail in chapter 24.

 	
 EndpointMiddleware—This middleware pairs with the RoutingMiddleware to execute an endpoint. Unlike the other middleware described here, the EndpointMiddleware is added to the end of the middleware pipeline, after any other middleware you configure in Program.cs.

 Depending on your Program.cs configuration, WebApplication may not add all this middleware. Also, if you don’t want some of this automatic middleware to be at the start of your middleware pipeline, generally you can override the location. In listing 4.3, for example, we override the automatic RoutingMiddleware location by calling UseRouting() explicitly, ensuring that routing occurs exactly where we need it.

 Another important point about listing 4.3 is that the order in which you add the middleware to the WebApplication object is the order in which the middleware is added to the pipeline. The order of the calls in listing 4.3 creates a pipeline similar to that shown in figure 4.11.

 [image: CH04_F11_Lock3]

 Figure 4.11 The middleware pipeline for the example application in listing 4.3. The order in which you add the middleware to WebApplication defines the order of the middleware in the pipeline.

 The ASP.NET Core web server passes the incoming request to the developer exception page middleware first. This exception-handler middleware ignores the request initially; its purpose is to catch any exceptions thrown by later middleware in the pipeline, as you’ll see in section 4.3. It’s important for this middleware to be placed early in the pipeline so that it can catch errors produced by later middleware.

 The developer exception page middleware passes the request on to the static-file middleware. The static-file handler generates a response if the request corresponds to a file; otherwise, it passes the request on to the routing middleware. The routing middleware selects a minimal API endpoint based on the endpoints defined and the request URL, and the endpoint middleware executes the selected minimal API endpoint. If no endpoint can handle the requested URL, the automatic dummy middleware returns a 404 response.

 In chapter 3, I mentioned that WebApplication adds the RoutingMiddleware to the start of the middleware pipeline automatically. So you may be wondering why I explicitly added it to the pipeline in listing 4.3 using UseRouting().

 The answer, again, is related to the order of the middleware. Adding an explicit call to UseRouting() tells WebApplication not to add the RoutingMiddleware automatically before the middleware defined in Program.cs. This allows us to “move” the RoutingMiddleware to be placed after the StaticFileMiddleware. Although this step isn’t strictly necessary in this case, it’s good practice. The StaticFileMiddleware doesn’t use routing, so it’s preferable to let this middleware check whether the incoming request is for a static file; if so, it can short-circuit the pipeline and avoid the unnecessary call to the RoutingMiddleware.

 Note In versions 1.x and 2.x of ASP.NET Core, the routing and endpoint middleware were combined in a single Model-View-Controller (MVC) middleware component. Splitting the responsibilities for routing from execution makes it possible to insert middleware between the routing and endpoint middleware. I discuss routing further in chapters 6 and 14.

 The impact of ordering is most obvious when you have two pieces of middleware that are listening for the same path. The endpoint middleware in the example pipeline currently responds to a request to the home page of the application (with the / path) by returning the string "Hello World!", as shown in figure 4.10. Figure 4.12 shows what happens if you reintroduce a piece of middleware that you saw previously, WelcomePageMiddleware, and configure it to respond to the / path as well.

 [image: CH04_F12_Lock3]

 Figure 4.12 The Welcome-page middleware response. The Welcome-page middleware comes before the endpoint middleware, so a request to the home page returns the Welcome-page middleware instead of the minimal API response.

 As you saw in section 4.2.1, WelcomePageMiddleware is designed to return a fixed HTML response, so you wouldn’t use it in a production app, but it illustrates the point nicely. In the following listing, it’s added to the start of the middleware pipeline and configured to respond only to the "/" path.

 Listing 4.4 Adding WelcomePageMiddleware to the pipeline

 WebApplicationBuilder builder = WebApplication.CreateBuilder(args);
WebApplication app = builder.Build();

app.UseWelcomePage("/"); ❶
app.UseDeveloperExceptionPage();
app.UseStaticFiles();
app.UseRouting(); ❷

app.MapGet("/", () => "Hello World!"); ❷

app.Run();

 ❶ WelcomePageMiddleware handles all requests to the “/” path and returns a sample HTML response.

 ❷ Requests to “/” will never reach the endpoint middleware, so this endpoint won’t be called.

 Even though you know that the endpoint middleware can also handle the "/" path, WelcomePageMiddleware is earlier in the pipeline, so it returns a response when it receives the request to "/", short-circuiting the pipeline, as shown in figure 4.13. None of the other middleware in the pipeline runs for the request, so none has an opportunity to generate a response.

 [image: CH04_F13_Lock3]

 Figure 4.13 Overview of the application handling a request to the "/" path. The Welcome-page middleware is first in the middleware pipeline, so it receives the request before any other middleware. It generates an HTML response, short-circuiting the pipeline. No other middleware runs for the request.

 As WebApplication automatically adds EndpointMiddleware to the end of the middleware pipeline, the WelcomePageMiddleware will always be ahead of it, so it always generates a response before the endpoint can execute in this example.

 Tip You should always consider the order of middleware when adding it to WebApplication. Middleware added earlier in the pipeline will run (and potentially return a response) before middleware added later.

 All the examples shown so far try to handle an incoming request and generate a response, but it’s important to remember that the middleware pipeline is bidirectional. Each middleware component gets an opportunity to handle both the incoming request and the outgoing response. The order of middleware is most important for those components that create or modify the outgoing response.

 In listing 4.3, I included DeveloperExceptionPageMiddleware at the start of the application’s middleware pipeline, but it didn’t seem to do anything. Error-handling middleware characteristically ignores the incoming request as it arrives in the pipeline; instead, it inspects the outgoing response, modifying it only when an error has occurred. In the next section, I discuss the types of error-handling middleware that are available to use with your application and when to use them.

4.3 Handling errors using middleware

 Errors are a fact of life when you’re developing applications. Even if you write perfect code, as soon as you release and deploy your application, users will find a way to break it, by accident or intentionally! The important thing is that your application handles these errors gracefully, providing a suitable response to the user and not causing your whole application to fail.

 The design philosophy for ASP.NET Core is that every feature is opt-in. So because error handling is a feature, you need to enable it explicitly in your application. Many types of errors could occur in your application, and you have many ways to handle them, but in this section I focus on a single type of error: exceptions.

 Exceptions typically occur whenever you find an unexpected circumstance. A typical (and highly frustrating) exception you’ll no doubt have experienced before is NullReferenceException, which is thrown when you attempt to access a variable that hasn’t been initialized.3 If an exception occurs in a middleware component, it propagates up the pipeline, as shown in figure 4.14. If the pipeline doesn’t handle the exception, the web server returns a 500 status code to the user.

 [image: CH04_F14_Lock3]

 Figure 4.14 An exception in the endpoint middleware propagates through the pipeline. If the exception isn’t caught by middleware earlier in the pipeline, a 500 “Server error” status code is sent to the user’s browser.

 In some situations, an error won’t cause an exception. Instead, middleware might generate an error status code. One such case occurs when a requested path isn’t handled. In that situation, the pipeline returns a 404 error.

 For APIs, which typically are consumed by apps (as opposed to end users), that result probably is fine. But for apps that typically generate HTML, such as Razor Pages apps, returning a 404 typically results in a generic, unfriendly page being shown to the user, as you saw in figure 4.8. Although this behavior is correct, it doesn’t provide a great experience for users of these types of applications.

 Error-handling middleware attempts to address these problems by modifying the response before the app returns it to the user. Typically, error-handling middleware returns either details on the error that occurred or a generic but friendly HTML page to the user. You’ll learn how to handle this use case in chapter 13 when you learn about generating responses with Razor Pages.

 The remainder of this section looks at the two main types of exception-handling middleware that’s available for use in your application. Both are available as part of the base ASP.NET Core framework, so you don’t need to reference any additional NuGet packages to use them.

4.3.1 Viewing exceptions in development: DeveloperExceptionPage

 When you’re developing an application, you typically want access to as much information as possible when an error occurs somewhere in your app. For that reason, Microsoft provides DeveloperExceptionPageMiddleware, which you can add to your middleware pipeline by using

 app.UseDeveloperExceptionPage();

 Note As shown previously, WebApplication automatically adds this middleware to your middleware pipeline when you’re running in the Development environment, so you don’t need to add it explicitly. You’ll learn more about environments in chapter 10.

 When an exception is thrown and propagates up the pipeline to this middleware, it’s captured. Then the middleware generates a friendly HTML page, which it returns with a 500 status code, as shown in figure 4.15. This page contains a variety of details about the request and the exception, including the exception stack trace; the source code at the line the exception occurred; and details on the request, such as any cookies or headers that were sent.

 [image: CH04_F15_Lock3]

 Figure 4.15 The developer exception page shows details about the exception when it occurs during the process of a request. The location in the code that caused the exception, the source code line itself, and the stack trace are all shown by default. You can also click the Query, Cookies, Headers, and Routing buttons to reveal further details about the request that caused the exception.

 Having these details available when an error occurs is invaluable for debugging a problem, but they also represent a security risk if used incorrectly. You should never return more details about your application to users than absolutely necessary, so you should use DeveloperExceptionPage only when developing your application. The clue is in the name!

 Warning Never use the developer exception page when running in production. Doing so is a security risk, as it could publicly reveal details about your application’s code, making you an easy target for attackers. WebApplication uses the correct behavior by default and adds the middleware only when running in development.

 If the developer exception page isn’t appropriate for production use, what should you use instead? Luckily, you can use another type of general-purpose error-handling middleware in production: ExceptionHandlerMiddleware.

4.3.2 Handling exceptions in production: ExceptionHandlerMiddleware

 The developer exception page is handy when you’re developing your applications, but you shouldn’t use it in production, as it can leak information about your app to potential attackers. You still want to catch errors, though; otherwise, users will see unfriendly error pages or blank pages, depending on the browser they’re using.

 You can solve this problem by using ExceptionHandlerMiddleware. If an error occurs in your application, the user will see a custom error response that’s consistent with the rest of the application but provides only necessary details about the error. For a minimal API application, that response could be JSON or plain text, as shown in figure 4.16.

 [image: CH04_F16_Lock3]

 Figure 4.16 Using the ExceptionHandlerMiddleware, you can return a generic error message when an exception occurs, ensuring that you don’t leak any sensitive details about your application in production.

 For Razor Pages apps, you can create a custom error response, such as the one shown in figure 4.17. You maintain the look and feel of the application by using the same header, displaying the currently logged-in user, and displaying an appropriate message to the user instead of full details on the exception.

 [image: CH04_F17_Lock3]

 Figure 4.17 A custom error page created by ExceptionHandlerMiddleware. The custom error page can have the same look and feel as the rest of the application by reusing elements such as the header and footer. More important, you can easily control the error details displayed to users.

 Given the differing requirements for error handlers in development and production, most ASP.NET Core apps add their error-handler middleware conditionally, based on the hosting environment. WebApplication automatically adds the developer exception page when running in the development hosting environment, so you typically add ExceptionHandlerMiddleware when you’re not in the development environment, as shown in the following listing.

 Listing 4.5 Adding exception-handler middleware when in production

 WebApplicationBuilder builder = WebApplication.CreateBuilder(args);
WebApplication app = builder.Build(); ❶

if (!app.Environment.IsDevelopment()) ❷
{
 app.UseExceptionHandler("/error"); ❸
}

// additional middleware configuration
app.MapGet("/error", () => "Sorry, an error occurred"); ❹

 ❶ In development, WebApplication automatically adds the developer exception page middleware.

 ❷ Configures a different pipeline when not running in development

 ❸ The ExceptionHandlerMiddleware won’t leak sensitive details when running in production.

 ❹ This error endpoint will be executed when an exception is handled.

 As well as demonstrating how to add ExceptionHandlerMiddleware to your middleware pipeline, this listing shows that it’s perfectly acceptable to configure different middleware pipelines depending on the environment when the application starts. You could also vary your pipeline based on other values, such as settings loaded from configuration.

OEBPS/OEBPS/Images/CH04_F02_Lock3.png

OEBPS/OEBPS/Images/CH04_F17_Lock3.png

OEBPS/OEBPS/Images/CH04_F09_Lock3.png

OEBPS/OEBPS/Images/CH03_F03_Lock3.png

OEBPS/OEBPS/Images/CH01_F01_Lock3.png

OEBPS/OEBPS/Images/CH04_F10_Lock3.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/Lock.png

OEBPS/OEBPS/Images/CH03_F06_Lock3.png

OEBPS/OEBPS/Images/CH02_F03_Lock3.png

OEBPS/OEBPS/Images/CH04_F05_Lock3.png

OEBPS/OEBPS/Images/CH04_F13_Lock3.png

OEBPS/OEBPS/Images/CH03_F09_Lock3.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH02_F06_Lock3.png

OEBPS/OEBPS/Images/CH03_F02_Lock3.png

OEBPS/OEBPS/Images/CH04_F08_Lock3.png

OEBPS/OEBPS/Images/CH03_F05_UN01_Lock3.png

OEBPS/OEBPS/Images/CH01_F03_Lock3.png

OEBPS/OEBPS/Images/CH04_F14_Lock3.png

OEBPS/OEBPS/Images/CH04_F01_Lock3.png

OEBPS/OEBPS/Images/CH03_F05_Lock3.png

OEBPS/OEBPS/Images/CH03_F01_Lock3.png

OEBPS/OEBPS/Images/CH04_F04_Lock3.png

OEBPS/OEBPS/Images/CH02_F02_Lock3.png

OEBPS/OEBPS/Images/CH04_F15_Lock3.png

OEBPS/OEBPS/Images/CH03_F08_Lock3.png

OEBPS/OEBPS/Images/CH04_F07_Lock3.png

OEBPS/OEBPS/Images/CH01_F02_Lock3.png

OEBPS/OEBPS/Images/CH03_F04_Lock3.png

OEBPS/OEBPS/Images/CH04_F11_Lock3.png

OEBPS/OEBPS/Images/CH02_F05_Lock3.png

OEBPS/OEBPS/Images/CH04_F16_Lock3.png

OEBPS/OEBPS/Images/IFC.png

OEBPS/OEBPS/Images/CH03_F07_Lock3.png

OEBPS/OEBPS/Images/CH02_F01_Lock3.png

OEBPS/OEBPS/Images/CH04_F03_Lock3.png

OEBPS/OEBPS/Images/CH02_F04_Lock3.png

OEBPS/OEBPS/Images/CH04_F12_Lock3.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH04_F06_Lock3.png

