

 inside front cover

 [image:]

 The three parts of application security

 [image:]

 Application Security Program Handbook

 A guide for software engineers and team leaders

 Derek Fisher

 Foreword by Matt Rose

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Toni Arritola

 	
 Technical development editor:

 	
 Michael Jensen

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Carrie Andrews

 	
 Proofreader:

 	
 Jason Everett

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439818

brief contents

 Part 1. Defining application security

 1 Why we need application security

 2 Defining the problem

 3 Components of application security

 Part 2. Developing the application security program

 4 Releasing secure code

 5 Security belongs to ever yone

 6 Application security as a service

 Part 3. Deliver and measure

 7 Building a roadmap

 8 Measuring success

 9 Continuously improving the program

 Appendix. Answers to exercises

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Defining application security

 1 Why we need application security

 1.1 The role of an application security program

 Software from concept to production

 Where does application security fit?

 1.2 The current state of application security

 1.3 Why building security in is challenging

 Trying to protect at runtime

 Getting output from tools is not enough

 Sifting signal from noise in security tools

 1.4 Shifting right vs. shifting left in development

 Shifting right in the development life cycle

 Shifting right fails

 Shifting left in the development life cycle

 Shifting left fails

 1.5 Is going left better than going right?

 1.6 Application security needs you!

 Democratizing application security

 Users will be users

 1.7 Examples of failing to secure the software

 SolarWinds

 Accellion

 Fake software

 2 Defining the problem

 2.1 The CIA triad

 2.2 Confidentiality

 Data protection policy

 Data at rest

 Applying encryption

 Data in transit

 Encryption prior to transmission

 Data in use

 Not so confidential

 Do I even need this?

 2.3 Availability

 DoS and DDoS

 Accidental outage

 The role of ransomware

 Casino betting offline

 Health organizations are still fair game

 Building in resiliency

 2.4 Integrity

 Integrity starts with access

 The role of version control

 Data validation

 Data replication

 Data checks

 2.5 Authentication and authorization

 Authentication

 Authorization

 2.6 Adversaries

 Script kiddies

 Insider

 Cybercriminal

 Hacktivist and terrorist

 Advanced persistent threat

 Why do we care?

 2.7 Measuring risk

 Remediate, mitigate, accept

 Identify the risk

 Estimating likelihood

 Estimating impact

 Risk severity

 Risk example

 Other methodologies

 3 Components of application security

 3.1 Threat modeling

 Basic threat modeling terminology

 Manual threat modeling

 Starting the manual process

 Threat modeling with linking bank accounts

 What to do with the found threats

 Threat modeling using a tool

 3.2 Security analysis tools

 Static application security testing

 Tools in the development environment

 Dynamic application security testing

 Software composition analysis

 3.3 Penetration testing

 3.4 Run-time protection tools

 3.5 Vulnerability collection and prioritization

 Integrating with defect tracking

 Prioritizing vulnerabilities

 Closing vulnerabilities

 3.6 Bug bounty and vulnerability disclosure program

 Vulnerability disclosure program

 Bug bounty program

 Third-party help with vulnerabilities

 3.7 Putting it together

 Part 2. Developing the application security program

 4 Releasing secure code

 4.1 Security in DevOps

 DevOps pipelines

 4.2 DevOps isn’t the only game in town

 Waterfall

 Agile

 Lean

 DevOps supports security better

 DevSecOps example

 4.3 Application security tooling in the pipeline

 Threat modeling in DevSecOps

 SAST in DevSecOps

 DAST and IAST in DevSecOps

 SCA in DevSecOps

 Run-time protection in DevSecOps

 Security orchestration

 Security education

 4.4 Feedback loop

 5 Security belongs to ever yone

 5.1 Security is everyone’s problem

 Structure of an application security team

 Just hire more application security people

 How to close the gap

 5.2 Security education

 Raising the security IQ

 Microlearning and just-in-time training

 It’s more than just training

 5.3 Standards, requirements, and reference architecture

 Creating and driving standards

 Creating reference architecture

 Bringing requirements into the organization

 5.4 Maturity models

 OWASP SAMM

 Building Security in Maturity Model

 Addressing your security immaturity

 5.5 Decentralized application security

 Security champions program

 Leveraging the decentralized model

 6 Application security as a service

 6.1 Managing risk during development

 Defining and reducing risk

 Define the application risk

 Release-by-risk

 6.2 Enablement instead of gates

 Automate the release-by-risk

 Removing the barriers by adding guardrails

 6.3 Bridging engineering and security through services

 The application security-as-a-service ecosystem

 Services requested through tickets

 Ambient application security

 Part 3. Deliver and measure

 7 Building a roadmap

 7.1 Getting the current security posture

 Going on tour

 What tools exist?

 What vulnerabilities do you have?

 What additional information is available?

 7.2 Understanding the organization’s security goals

 The organization’s goals

 The application security goals

 Aligning the business and security goals

 7.3 Identifying the gaps

 Finding the immediate gaps

 Input into the gap analysis

 What to do with the gap analysis

 7.4 Sample application security roadmap

 Secure engineering education

 Educating the application security team

 Application security tools roadmap

 Aligning engineering and security roadmaps

 Building for the future

 8 Measuring success

 8.1 What to measure

 Measuring the effectiveness of your tools

 Tuning the tools based on feedback

 Measuring the effectiveness of your processes

 Measuring the mean time to remediate

 Optimizing the mean time to remediate

 8.2 Gathering effectiveness with KPIs

 Building the KPIs

 Setting KPI targets

 Driving change based on KPIs

 8.3 Getting feedback

 Getting feedback from conversations

 Getting feedback from surveys

 8.4 Security scorecard

 Preparing for the scorecard

 Weighting the scores for the scorecard

 Creating the scorecard

 9 Continuously improving the program

 9.1 Keeping ahead of the attacker

 MITRE ATT&CK

 Cyber Kill Chain

 9.2 Threat catalogs

 Applying the OWASP Top Ten

 Applying the MITRE CWE Top 25

 9.3 Staying ahead of engineering

 Keeping up with the coding languages

 Keeping up with the technology changes

 When hiring and training aren’t enough

 9.4 Stop chasing the shiny new tool

 Use a capability matrix

 Managing the tool and vendor

 Buy the shiny new tool

 9.5 Preparing for the worst

 Appendix. Answers to exercises

 index

 front matter

foreword

 I am a big fan of analogies as an interesting way to describe technical concepts like application security. I find it a straightforward way to get everyone on the same page and get to that “Aha, I get it” moment. I came up with a brand-new analogy for this book’s foreword: application security is like the game Stratego. Stratego is a board game where the goal is to protect your hypothetical country’s flag from your competitor with different types of defenses and strategies. It is up to you to define and design the proper protections for your flag. There is no right or wrong way to protect your flag, but there are good and not-so-good ways. Just like application security programs that ensure the security of your applications, there are many ways to design them. Some application security program designs are excellent, and some need work. This book by Derek Fisher does a fantastic job of helping you understand what an effective application security program should look like for the modern applications your organization is developing today with aggressive CI/CD pipelines.

 Let’s face it: application security is difficult to do correctly. There are so many different variables associated with a practical application security program. Some examples of these variables include making the right decisions on tooling, methodologies, processes, and staff roles and responsibilities. Once you make these decisions, you need a plan to operationalize the selected variable. For example, if you buy a best-of-breed application security testing tool, it does not mean your applications are now magically secure. The tool needs the correct configuration to look for the critical application security risk that most concerns your organization.

 After being in application security for over 17 years, I was very impressed with the way Derek categorized and explained the multitude of concepts associated with application security. Without a clearly defined purpose and charter, application security programs will not be successful. The simplest way to define an application security program is to find security issues your organization cares about, remedy the problems, and then measure the results. Derek’s approach to explaining application security through a define, develop, and deliver strategy is well thought out and complete.

 One section of the book that I very much enjoyed, and I suggest people read multiple times, is section 1.4, which discusses shifting right versus shifting left in development. This section discusses how there are benefits in application security to shifting security left, but it is not the only way to properly implement an application security program.

 Whether you are a veteran application security professional or a student looking to enter the application security industry, this is a foundational book for all application security principles, definitions, and concepts.

 	
—Matt Rose, chief architect, Bionic former leader at Checkmarx and Fortify

preface

 I spent a lot of time thinking about writing a book about the subject of application security. In my early career in security, it was clear that the resources, outside of OWASP, were few and far between. Today, things are picking up, and the resources are becoming more plentiful. However, there is still not a single resource for what an application security program looks like in an organization. I attempt to do that in this book.

 However, every organization is different—each with its own tools, technology stacks, ways of developing code, and varying size of the security organization. But even with this variability, the methods for tackling security are similar across organizations. Vulnerabilities still need to be found, tracked, and resolved. Training still needs to occur. Code still needs to be written securely. In this book, I wanted to capture the essential parts of application security that can work regardless of the size of the organization and the size of the application security team.

 One of the goals I set out to tackle with this book was to attempt to give a blueprint for an organization that was looking to build an application security team from the ground floor. Again, the resources for this are few and far between, and not generally in one location. My hope is that this book will give someone the help they need to start up an application security program in their organization using the knowledge I’ve garnered throughout the years.

acknowledgments

 First and foremost, I want to point out that we always stand on the shoulders of giants in technology and specifically in security. I did not break much new ground in this book in the sense of novel concepts but instead took the things that I have learned from numerous sources in the industry and developed this book based on my experience of what has and hasn’t worked. So this is a blanket acknowledgment to all those who have been building the security protocols, standards, and technology that have gotten us this far.

 I’d like to also thank all my friends, family, and coworkers for putting up with me talking about writing a book during the year that it’s taken me to do so. There has been more than one occasion when I might have said, “I talk about that in my book,” so I’m sorry for that.

 I want to thank those who have kept me on target with this project and those who have provided valuable feedback to the content. It is often difficult and lonely to impart information that you may think is valuable to readers. It has been refreshing to see that much of what I have covered in this book has some value to those who have read and provided feedback.

 A huge thanks to the staff at Manning who helped see this book through production: Brian Sawyer, Toni Arritola, Michael Jensen, Keri Hales, Carrie Andrews, Jason Everett, and all the rest of the folks behind the scenes.

 I also appreciate Matt Rose taking the time to write the foreword for this book.

 Finally, thank you to all the reviewers: Adonis Butufei, Ahmed Sammoud, Alex Lucas, Aliaksandra Sankova, Andrea Barisone, Bobby Lin, Claudia Maderthaner, Daniel Wanjohi, Fernando Bernardino, George Onofrei, Giampiero Granatella, Grzegorz Bernas, Hugo Cruz, James Jardine, James Woodruff, Jens Gheerardyn, Jeremy Bryan, Jim Amrhein, John Bassil, Juan Guzman, Kosmas Chatzimichalis, Krishna Anipindi, Krzysztof Kamyczek, Lakshminarayanan AS, Malte, Manoj, Matt Borack, Mladen Knežić, Nikolaos Alexiou, Noah Krieger, Oscar Frink, Paul Grebenc, Paul Love, Richard Vaughan, Roman Zhuzha, Ron Lease, Rosalyn Williams, Ryan LaBouve, Sebastian Maldonado, Stanley Anozie, Steve Hill, Stuart Ellis, Teddy Hagos, Tim van Deurzen, Tim Wooldridge, and Valer Bocan. Your suggestions helped make this a better book.

about this book

 When I first set out to write this book, I was thinking about someone who may be asked to set up an application security program from scratch. They could be a consultant, or someone brought into an organization to create a program. As the book idea morphed and I added additional topics, it became clear that this book would have value even to those who are in a mature organization that requires a reexamination of its application security program or concepts on additional approaches.

Who should read this book

 You do not need to be technical to understand the concepts in this book. You do not need to have a robust background in security, either. This book is geared toward those who need to organize an approach to addressing vulnerabilities in developed software. This could be a leader, a program or project manager, a scrum master, an architect, a developer, or a tester. Even those in other disciplines of security will gain value, and maybe appreciation, for what an application security organization does.

 This book will not teach you how to hack your friends, perform penetration tests, or other parlor tricks. It will, however, give you guidance on how best to approach building security into the software development life cycle, which is a far better way to impress people.

How this book is organized: A road map

 This book is divided into three parts with three chapters each, as shown in the following image.

 [image:]

Defining application security

 Part 1 looks at what an application security program is and its purpose in software development.

 	
 Chapter 1 presents the reasons for creating an application security program and why it is important today.

 	
 Chapter 2 identifies the risks, threats, and activities that impact our ability to create and deliver secure software.

 	
 Chapter 3 covers the different components of application security and how they are applied in an organization.

Developing the application security program

 Part 2 focuses on creating the application security program within an organization and the steps to follow.

 	
 Chapter 4 shows how modern software development creates an opportunity for us to integrate security in a way that provides faster feedback to the development teams.

 	
 Chapter 5 walks through a shared responsibility model that should exist between security and the engineering organization.

 	
 Chapter 6 discusses how to make application security functions and tools as a callable service that can be used at all stages of the software development life cycle.

Deliver and measure

 Part 3 covers how to measure the effectiveness of the program and identify areas of improvement:

 	
 Chapter 7 is a guide on how to build security into the software development life cycle.

 	
 Chapter 8 will show what to measure and how to measure the effectiveness of your application security program.

 	
 Chapter 9 covers more future and advanced topics in application security and how to keep your program on track.

 This book should be read in order, as the concepts in the first part are the foundation for the later chapters. If you are already familiar with application security, you may skip this part. However, there are good exercises throughout the book that will get you more familiar with the various concepts in application security and will help reinforce the topics covered in the book.

liveBook discussion forum

 Purchase of Application Security Program Handbook includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/application-security-program-handbook/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 [image:]

 Derek Fisher has over twenty-seven years of technical experience in both hardware and software engineering while working in various companies and industries. Through his work in security as a developer, architect, and leader, he has provided his insights at development organizations attempting to create more secure code. Today, he performs many roles, including security evangelist, architect, mentor, speaker, and instructor, where he attempts to bring more secure development to the organizations he works with.

about the cover illustration

 The figure on the cover of Application Security Program Handbook is “Homme Insulaire de Minorque,” or “Man of Minorca, Balearic Islands, Spain,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. Defining application security

 In the first part of this book, the groundwork will be laid for the purposes of an application security program. This all-important topic is critical to securing software that is developed in an organization.

 In chapter 1, you’ll see how an application security program can be used to reduce the vulnerabilities that develop in an application and where some organizations have fallen short. In chapter 2, you’ll start to learn the tenets of security and how adversaries create risk to an organization’s assets.

 You’ll round out this part with topics related to threat modeling, and the various tools that are used in an application security program. Each of these will identify risks and vulnerabilities that need to be collected and prioritized for remediations. We’ll finish this part with pulling all the pieces together so that you can begin to see what makes up an application security program.

1 Why we need application security

 This chapter covers

 	
The current state of application security

 	
Going right or going left

 	
Breaches caused by insecure applications

 	
The cost of inaction

 Every company uses software to function. Whether it is a Fortune 500 technology company or a sole-proprietor landscaping company, software is integral to businesses large and small. Software provides a means to track employees, customers, inventory, and scheduling. Data moves through a myriad of systems, networks, and software, providing insights to businesses looking to stay competitive. Some of that software is built within the organization or purchased and integrated. It enables organizations to move quickly and stay ahead of their competition. In the United States, software in various industries, including finance, sales, human resources, and supply chains, has seen a steady increase, and the trend is continuing. Over the next decade, software in these industries will see a steady increase in market size. For instance, in 2020, the market size of global business software and service was nearly $390 billion and is expected to have an annual growth of 11% from 2021 to 2028. This expansion is based on the increasing need for automation and processing solutions in nearly every sector of the economy.

 The shift to software-driven organizations can be seen in several prominent examples. Movies were rented at a physical store before 2007, when Netflix began streaming them directly to your television. Books were purchased in a shop before Amazon upended not just the book-buying experience but the overall retail market for any item you can think of. It used to take a phone call to order food; now a mobile app allows you to not only order your food but also track it from the restaurant to your front door. Moreover, software is used in all parts of the supply chain by every organization. Leaders in these organizations can get real-time updates on product as it moves around the world and to their customers’ hands. Software is no longer something organizations find nice to have; it is now critical to any organization’s ability to compete.

 In short, software is eating the world.

 —Marc Andreessen

 Each new piece of software brings new capabilities but also new challenges, especially when that software is available over a network where it is open to a wide audience. More capabilities mean more software. More software means more data. This data is intended to assist an organization and its customers to gain insight into the services the organization offers.

 However, the additional software and data gives more opportunities to bad actors to exploit weaknesses. Data is a lucrative target for attackers and difficult for organizations to protect, especially when the organization collects a large amount of it. By the beginning of 2020, the amount of data created worldwide had reached 44 zettabytes and is expected to reach 463 exabytes per day by 2025 (https://techjury.net/blog/how-much-data-is-created-every-day).

 DEFINITION 1 exabyte is 1018 bytes and 1 zettabyte is 1,000 exabytes or a trillion gigabytes.

 The increasing amount of software available and the volume of data, which every second offers a target-rich environment for malicious actors looking for a way in and access to the data. There is constant background noise of malicious activity that pervades the internet. The moment that any software becomes available online, it is immediately probed and prodded. Some of that activity is from automated tools that will then trigger an alert when it finds software that can be compromised. Some of it is from bad actors waiting for the latest gap in security so they can hunt the internet for applications that are vulnerable to it and create exploitation software. Other activity comes from well-financed bad actors who are simply looking for any weaknesses so that they can gain a foothold in an organization in order to come back later for exploitation. If ever there was a more fitting metaphor for software on the internet, it would be the Wild West of the early United States, when lawlessness was rampant, and sheriffs were often overwhelmed and outgunned by the bad guys.

 Software, data, attackers, oh my! When organizations don’t take software security seriously, they run the risk of jeopardizing not only their client’s data, but also the organization’s future. Most organizations that are not in the software-building industry will often say that they are not a prime target, or that their data is not interesting to an attacker. They would be wrong. Almost all data that is collected and processed by an organization can be used and misused by an attacker. Nothing is too unimportant. And although many large organizations can weather a data breach, smaller companies often cannot while remaining in business.

 It is often said that data is the new oil. Mining, processing, and selling data is a lucrative business both for the organizations that do so openly and the malicious actors who are looking for ways to profit from an organization’s missteps. Building security into the software from the start is the first, and most important, step for organizations to protect their software, their data, and their livelihood.

1.1 The role of an application security program

 Application security is the implementation of security through practices, tools, technology, people, and processes in the development life cycle. The rest of this book will cover how application security is used throughout the development life cycle to ensure that an organization has reduced the risk posed to its software and has done so in a way that does not impede an organization’s ability to deliver that software in a timely manner. It is important to know that there is never a silver bullet to solving security issues. No one tool, process, or person can guarantee an application's security, as attacks are constantly evolving and technology keeps moving. However, ensuring that you have a robust approach to application security, which includes not just the fundamentals of an application security program but also the ability to adapt and evolve on an ongoing basis, is what sets apart a good program from a bad one. This is what we will discover in this book.

 Products start out as an idea that is developed by a client or an organization's leadership team. Evolving that idea from concept, to paper, to minimum viable product, to a production application that is brought to life takes a team of people from multiple disciplines. Most will think first about all the developers, testers, and product people that go into making a successful product, but what about those that make the product secure? The goal is to make a product that does what the customer wants and that is free from defects and security flaws that would otherwise devalue the product and the organization as a whole.

1.1.1 Software from concept to production

 The software development life cycle (SDLC) is defined differently in every organization, but in general, every organization has a similar path from concept to production. Figure 1.1 depicts a standard SDLC, where

 	
 The client or product owner envisions a new feature or enhancement.

 	
 Use cases and requirements are developed. The team determines where to assign the work for an upcoming release.

 	
 The development team then makes decisions on how the requirements will be implemented through technology choices. Development begins, and the code is integrated into a code branch.

 	
 The feature is then moved to a preproduction environment like a test or staging environment where tests can be performed. The product owner will review the results of the test and, if satisfied, agree to have it released to production for the clients to use.

 	
 The feature is released to clients, and the organization manages the feature as a piece of a larger application through client and technical support. Eventually, the feature is decommissioned in favor of a new release.

 [image:]

 Figure 1.1 Phases of an SDLC

 In the first step, the product may already exist, in which case the client would request an enhancement or a new feature. For instance, perhaps there’s a new method of accessing reports within the application, or a new dataset becomes available in the user interface. Otherwise, the product owner may be collecting information from several clients and put in an enhancement request for a new feature. In either of these cases, an organization will gather the client needs in the form of use cases. A simple use case could be written as the following:

 “As an administrator, I want to be able to create weekly reports that show the application usage by users in my organization.”

 This is a simple use case for an application that is based on SaaS (software as a service) and is used by many organizations to provide some service. The details are not important in this case, as every organization is different, regardless of the industry it is in. In most cases, a feature would be developed through multiple use cases.

 Once the client or product owner has the use case defined, this is then reviewed with the development leaders of the product. The architects, lead developers, and operational members of the development team review the use cases and determine the feasibility of the request.

 This brings the use case to the next step in the process, where the functional and nonfunctional requirements are defined. Each use case can have numerous requirements. Following is a functional and nonfunctional example of requirements for the previous use case:

 	
 Functional—Application shall provide the ability to create a report of application usage by users.

 	
 Nonfunctional—Report creation shall be available to only administrators.

 This is not a book on writing requirements, but a simple explanation is that functional requirements describe what the feature should do, and nonfunctional requirements describe how the feature should do it. Most information on requirements describe security as a nonfunctional requirement. However, it is not uncommon to find security features being described as functional requirements, especially when it comes to things like encryption, authentication, and access.

1.1.2 Where does application security fit?

 The product owner will take the defined requirements and decide with the development team what priorities might need to shift and what the delivery dates are for the new feature. There is something missing so far. Where are the people, tools, and processes that bring security into a product? As mentioned, security is typically a nonfunctional requirement. However, those nonfunctional requirements should not be left up to the product owner and the development team to determine on their own. A mature organization brings in the application security team not just to review the use case and requirements but also, define security requirements that should be in place as part of the feature development. If the product team defines their requirements and begins coding before engaging the application security team, they run the risk of creating security issues that are more difficult to resolve once the feature is nearing completion or ready for release. For instance, a development team may know that they need to provide authorization and may decide to develop an internal solution to manage the authorization without looking at a more fitting solution that is used across the organization and is more industry aligned, like OAuth.

 Fitting security in during the initial phases is done by taking industry and organizations standards and best practices and building them in to the process of creating requirements. For instance, using industry guidance on encryption would lead to setting requirements on key management and encryption strength. Or the organization may have standards that require the development to adhere to certain architecture or regulatory requirements like using a specific analysis tool. Additionally, when building these requirements, the team will take inputs from items like threat models and risk assessments to further develop requirements that align to the business requirements so that security can be built into the process as early as possible. We will discuss threat models and risk assessments more in depth in future chapters.

1.2 The current state of application security

 As mentioned, application security is the implementation of security into an organization’s development life cycle. The reality is that application security teams, if they exist in an organization at all, are often external to the engineering teams they work with. They can be found under an enterprise-wide function like the enterprise architecture organization, or under a broader security organization. The last one is the most typical. These application security teams will bring in tools, processes, and people to identify software vulnerabilities that are then backlogged for remediation. These vulnerabilities are found through several opportunities, including the following:

 	
 Through the tools that are provided to engineering by the application security team.

 	
 Through internal or external penetration tests completed by the application security team or an external vendor, respectively.

 	
 Through identified issues from clients, or other external sources like a bug bounty program, or vulnerability disclosure policy. More on these in later chapters.

 If the application security team and the organization are considered mature, these vulnerabilities, when found, will block builds. Most organizations that take this approach will set a threshold or vulnerability type that will trigger a block. For example, a vulnerability with a high or critical rating could block a build. You can see how this can cause issues between the engineering team that is working toward a release of code and is suddenly stopped by tools and processes that have been put in place by an external team. Blocking a build is by far the most preferred method for an application security team that wants to ensure a secure product, but this can become an instant point of contention. In less mature organizations, a process is in place to allow the engineering team to continue with their build and deployment by having the found vulnerability backlogged for future resolution.

 The application security team is in regular competition with feature release. Every new release brings new features. New features bring new defects. New defects bring new security vulnerabilities. As mentioned previously, in some cases these vulnerabilities can break a build and block the release of a feature. However, most organizations will prioritize their feature release over a nebulous vulnerability. I will discuss this more later, but many scanning tools are noisy and produce results that are not easily consumed by developers. Furthermore, not all application security teams are great at translating results from tools and other tests into something that is understandable by engineering without having a meeting or work session to understand. This obviously doesn’t scale well in large organizations.

 The security issues are backlogged with an I-owe-you to address the issue in the future. But every new release brings the potential for more vulnerabilities to the growing backlog and the cycle continues. Most organizations will take a systematic approach to reducing vulnerabilities, such as focusing on only the high and critical ones or ones of a certain type, like SQL injection or cross-site scripting. Other organizations may focus on the riskiest vulnerabilities based on product capability and exposure, like a financial organization processing sensitive account information. Some organizations may even have a “security release,” where their focus is on resolving a large number of security issues in a single release. These different methods help reduce vulnerabilities in burst but don’t address the overall issue.

 Like Jacob Marley from Charles Dickens’s A Christmas Carol, these vulnerabilities become chains that weigh down the development team and will eventually haunt an organization. The continued accumulation of vulnerabilities adds to what is called security debt, where an organization continues to add new vulnerabilities to the old ones that were already existing. This security debt increases the risk level of the product being developed and the organization that is selling it. Eventually one, or several, of those vulnerabilities will lead to an exploitation of the application by a bad actor. This is similar to the concept of technical debt that builds when an organization takes a quick and easy path to getting features to their customers instead of choosing more sustainable design choices.

 Further complicating the job of the application security team is the fact that they are often brought in too late in the development process. Usually, it is once the feature or product has gone through several design and architectural decisions. The code development may have already been well underway, or worse, nearly complete by the time the application security team gets involved. This means that many “one-way” decisions may have already been made, and it is up to the application security team to provide some blessing of the design and code or identify mitigations for discovered threats. This is not the case everywhere, but in a sufficiently large organization, this will happen. If the application security team has had the opportunity to provide guidance, requirements, and security tooling early in the process, potential vulnerabilities can be reduced. Unfortunately, the cases where the application security team is involved early are few and far between, despite it being effective. This leaves the application security team hampered with the decision to be “that person” by blocking a release in order to impose security requirements before production or face consequences from the broader organization for allowing code to be released with known weaknesses. Such is the current picture of application security where there exists a constant struggle between enabling the business and reducing the organization’s overall risk.

1.3 Why building security in is challenging

 There comes a point where we need to stop just pulling people out of the river. We need to go upstream and find out why they’re falling in.

 —Desmond Tutu

 The application security team has at its disposal the most state-of-the-art tools that include technologies like machine learning, artificial intelligence, natural language processing, and automation. However, some of these tools detect issues once the code is written, and most likely checked in and on its way to a production environment near you. I will talk more about the various tools in future chapters, but as mentioned, there are several tools that are commonly found in a modern development pipeline related to security. Static application security testing (SAST) can scan written software looking for commonly found security issues like hardcoded passwords and SQL injection. Dynamic application security testing (DAST) will attempt to perform real-time security testing on a web application while it is running in an environment. Software composition analysis (SCA) tools will look for known security vulnerabilities and license concerns with third-party and open source software that is used to build the overall application. Additionally, there are cloud architecture, container, infrastructure template, and mobile security tools that can produce scan results that will identify vulnerabilities or other weaknesses in the code or deployment of the software.

 Definition OWASP (Open Web Application Security Project) is an open source community of application security professionals who develop standards, tools, and projects to assist organizations with the development of security in their applications.

 Exercise 1.1

 Take a look at OWASP’s page on source code analysis tools and review some of the available tools. There are several that are “open source or free.” One of these open source tools is the APIsecurity.io security audit (https://apisecurity.io/tools/audit/). You can use this tool to upload an OpenAPI JSON file to detect possible vulnerabilities. If you do not have your own OpenAPI JSON file to use, you can search for one online, or use a sample like this:

 http://mng.bz/Kxyj

 Look at the results that you get back from APIsecurity.io, and determine whether the issues are true positives or not. Begin to think about how to mitigate the issues that are found.

 When a vulnerability is detected, the tools can open a ticket to the application security team and the engineering team, so long as the integration between security tool and the defect tracking tool is set up. The issue is then triaged with the application security and engineering teams, prioritized, and worked to closure.

1.3.1 Trying to protect at runtime

 Although the aforementioned tools are detection tools, there are protection tools as well that will sit in front of a running application and attempt to block activity that looks malicious. Web application firewalls (WAF) provide protection against attackers looking to take advantage of weaknesses in a running web application. Run-time application security protection (RASP) will provide similar function as the WAF with the exception that RASP generally runs alongside, or even inside, the application. Both mitigation software and denial of service protection will attempt to stop volumetric attacks that send large quantities of malicious traffic that attempt to bring down the application or perform repeated tasks like brute-force activity. Secure gateways will provide similar protection by blocking unauthorized access and activity as well as provide real-time monitoring.

 Again, these protection tools use all the latest and greatest techniques to attempt to provide protection like machine learning and artificial intelligence. Some of these tools are great at blocking unwanted activity by malicious actors but at the same time, some tools run the risk of blocking an organization’s clients from using the software as it was intended if the tool is not properly tuned. A common example of this is when a batch job runs and calls an API or function hundreds or thousands of times in a short period of time. This could look like automated malicious activity to the protection tools and could block the legitimate traffic. To separate the two, the application security team and the engineering organization have to work together to pattern behavior into rulesets that block malicious traffic and allow the good traffic. This can come in the form of allowlists for certain URLs and IPs. There is a steep hill to climb to enable protection tools since many organizations, understandably, will be concerned with performance and possible interruptions of legitimate traffic.

1.3.2 Getting output from tools is not enough

 Like a comfortable blanket, security tools that are layered in during the development process and pipeline can become reassuring to an organization. However, as with most tools, the effectiveness is determined by how well the tool integrates with the organization and how well it protects or provides legitimate results. Organizations that enable one or many of these tools simply to say they use them, or (*cringe*) say that they block the OWASP Top Ten, are not doing themselves or the organization any favors. Sure, during an audit the organization can say that they are using tool X or Y during their development life cycle. Regardless of whether the auditor’s pencil gets to work checking a box, the organization may or may not actually be more secure.

 The reality is that these tools can create a lot of noise for both the engineering team and the application security team. The scanning tools churn out findings that need to be triaged, rated, and assigned. Many are false positives. The blocking tools create false alarms and raise concerns about the impacts on legitimate activity. And many times, there is an overreliance on the security tools to provide protection, especially when there is a vulnerability that is long in the tooth with no plan to remediate. For instance, an organization may rely heavily on a WAF to provide protection for an SQL injection vulnerability found in an application that has been designated as a “sunset” with a multiyear decommission. We’ll talk more about that as we get into vulnerability management.

1.3.3 Sifting signal from noise in security tools

 Like any other tool, the security tools that are used in an organization can be expensive and misconfigured. Further, those tools that are not finely tuned will generate an abundance of false positives—like the ones that are turned on and walked away from. This not only creates additional work on the application security and engineering teams, but also reduces the confidence level in those tools and, by extension, the application security team. When false positives become normal, they become an easy escape route for engineering teams looking to find a way to say that their application is not riddled with vulnerabilities. If the last ten SQL injection issues flagged by a tool were false positive, why would this new one not be? Which brings the application security and engineering teams to a standoff on proving a finding to be a true vulnerability or a false positive. This can be extremely challenging for the application security team, which typically does not have the extensive context that the engineering team has of their own application. It is also a time-consuming process to bring together the appropriate subject matter experts (SME) to pore over the details of the code in relation to the finding.

 With the varying tools and the number of findings from each of them, mature application security teams focus on sifting the signal from the noise and providing quality results to the engineering teams. This raises the confidence level of the findings and establishes a more robust relationship between security and engineering.

 The application security team will work closely with the engineering team and attempt to have as much application context as possible so as to take the burden of proof out of the engineering team’s hands. In other words, the application security team’s goal is to ensure the following:

 	
 Results are true positives that have already been triaged by the application security team.

 	
 The steps to remediate the vulnerability are clearly understood by the engineering team. If possible or applicable, the application security team should provide code samples that show exploitation and resolution.

 	
 There are clear expectations on timeline to resolution based on the criticality of the vulnerability.

 We will dive into this more in future chapters, but for now let’s look at how security can be integrated into the development life cycle.

1.4 Shifting right vs. shifting left in development

 Whereas every organization releases software in their own manner, for most organizations the path from idea to production is relatively the same. Figure 1.2 shows the common pattern to release.

 The phrase shift left is the concept of moving security as close to the beginning of the software development life cycle as possible. In figure 1.2, that means during the initial stages of gathering and building requirements as well as in the development phase. The term has been used frequently in the application security space as a way to describe building practices and tools that can uncover security issues as soon as possible in the development life cycle. Many of them I’ve mentioned previously. Sticklers will tell you that the best way to accomplish this is to ensure that security is there when the developer’s hands are on the keyboard creating that new function. Those sticklers would be right. The time to correct a security vulnerability is when it is being created.

 [image:]

 Figure 1.2 Example of a development pipeline for code deployment

 Shifting left is less visible than shifting right. In the shift right model, tools are placed strategically throughout the development life cycle and production environment to ensure that vulnerabilities are identified and protected against. Penetration tests are executed to identify issues. You can verify that the tools are working, and you can generate reports that show you the effectiveness, or the ineffectiveness, of the tools that you implemented. This relies on a detect and respond paradigm that is very reactive and adds to the backlog of vulnerabilities that I talked about earlier where the critical and high ones are usually prioritized while others go to the backlog. This can also disrupt the DevOps model that looks to move quickly with changes and doesn’t handle broken builds or gates very well.

 Getting to the goal of developers creating more secure code usually means using controls like

 	
 Security training

 	
 Top-level security policies that are used to develop security procedures, processes, and standards

 	
 Tools that are integrated into the development environments and pipeline that offer faster feedback

 	
 Building reusable secure architecture

 However, some of these can be circumvented. Like most training, security education can quickly be forgotten or pushed aside for the sake of speed of delivery of new features. Developers also change roles, jobs, and functions and are often overburdened with deadlines, tickets, requests, fires, and meetings, which favors moving fast as opposed to secure. This leaves even the most well-meaning, security-conscious developer to push security further down in priority, especially when there is a reliance on the protection tools, as described previously, that will detect and alert on security issues. Security quickly becomes someone else’s problem. Additionally, the tools become a business blocker, which opens the opportunity for the product owner to request exceptions when a feature release is at risk due to a found security issue. Architecture is frequently misused or not well socialized across the organization, meaning that not all development teams are aware of frequently changing architectural patterns that offer more security.

1.4.1 Shifting right in the development life cycle

 When an organization decides that their security posture will be mostly a shift-right one, they integrate tools into the development life cycle that will detect issues and open tickets to the security or development team (figure 1.3). Most of these tools are used to find issues in production, or late in the development process. These organizations will enable a few protection mechanisms like a WAF and primarily play defense by tracking the incoming vulnerabilities, triaging, and prioritizing them, and assigning them to teams to be resolved.

 [image:]

 Figure 1.3 Security tools that are used in a shift-right approach

 It is well known that resolving defects, in this case security vulnerabilities, costs more in terms of money and time than an issue that is resolved early in the life cycle. The effort and disruption that is required to resolve a defect that is already in a production environment can be multiple tens of times more expensive than resolving it at the requirements phase with each progressive phase of development becoming more expensive. There are also service-level agreements that could be at risk when a vulnerability gets resolved in production if an outage is incurred through resolving the vulnerability. This further exposes the organization to additional costs above and beyond the engineering cost of resolution. Security vulnerabilities have the added impact of potentially leading to a reportable event or even reputational damage should the vulnerability lead to a large-scale breach that exposes client data or takes an application offline.

 However, shifting right does allow the development team to produce features at a rapid pace since security is largely a defensive position when the software is already running in production. This allows for the development team to spend less time resolving issues early, and instead rely on the protection mechanisms in place. The decision to rely on the right-sided tools and processes is one that is made by balancing risk versus reward since failing to deliver a feature on time has its own impacts on the organization’s bottom line.

1.4.2 Shifting right fails

 There is no shortage of stories where security controls were in place but failed to stop a larger breach or exposure. This happens for a myriad of reasons: alarm fatigue, people believing security is someone else’s problem, or too many competing priorities. Those who work in the security industry know that there is always an open port, an insecure version of software, and a place where there is a lack of security controls. And attackers are just as in tune to this as the security workers. Attackers only need to be in the right place at the right time, once. Defenders need to be right every time.

 If you’re a fan of zombie stories, you’ll be familiar with the individual or band of living humans that find themselves inside a building surrounded by the drooling, groaning undead. In most cases there are simply too many surfaces and weaknesses in whatever building they find themselves in. As the horde outside grows, the defenses become weaker and the living inside have fewer and fewer options to keep the zombies out. Working in the cybersecurity field can sometimes feel this way. Every time you shore up a weakness in your defenses, a new one is discovered, and your team is tasked with devising a plan to close the weakness and provide a meaningful defense. Additionally, attackers are not always the mindless zombies pressing your defenses; they are often smart, patient, and know exactly what they want. Good thing the defenders are too.

 Bad actors are finding more ways to attack applications, and to the defenders of those applications, it continues to feel like there are more vulnerabilities than they can manage. More features mean more attack surfaces, which means more opportunities for a bad actor to find a way to steal data, impersonate a user, or perform fraud or other nefarious activity. Furthermore, more integration with internal or external applications and services means that there can be exposures that the organization can’t control.

 Case in point: In 2018, a vulnerability in Facebook led to the compromise of tens of millions of Facebook accounts. The flaw was in a feature that allowed a user to view their profile from the point of view of a different account. No surprise, this feature was called “View As.” Bad actors were able to steal the access tokens of Facebook accounts that allowed them to then log in as the user that the access tokens were associated with. They started with their own connected friends and from there stole the access tokens from their friends’ connections until they had collected several hundred thousand accounts and then several million. They were able to collect personal data, including the usual suspects of name, contact information, places the user checked in, and other private data.

 This example shows the difficulty in providing a secure product that is open to millions of users with a multitude of features—even for a large organization that takes security seriously. The tools that we spoke of previously may have helped identify this issue prior to allowing the code to go out the door or would have detected and blocked it once it was running in production. However, one of the limitations with these tools is their inability to discover business logic, or workflow-related vulnerabilities. Furthermore, it can be challenging to rely on tools to uncover these issues quicker than end users do. This is where having the proper processes, requirements, and testing early in the development life cycle would raise the opportunities to uncover this issue early where the collective effort of tools, testing, and keen security eyes are brought to bear.

1.4.3 Shifting left in the development life cycle

 Where shifting right means that the organization attempts to put as much effort into protecting and detecting security issues later in the life cycle, shifting left is pulling that effort earlier in the life cycle (figure 1.4). This is by far the preferred method of development security because it is less expensive and more effective than resolving issues in production. However, it is more difficult to implement and can be bypassed by the organization rather quickly if the need arises.

 [image:]

 Figure 1.4 Shows the security tools that are used in a shift-left approach

 Imagine building a house. You have an architectural drawing, a bill of materials, and the actual building materials. You get a group of laborers together, and you get to work building the house. It is far more preferable to put the locks on the windows and doors, build the egress window, and install smoke alarms while you’re building the house. Waiting until the house is built, or after the house has been robbed, or burned down, is too late. Yes, you will save time and money during the building process, but you are less secure for it. This example sounds silly when stated, but the reality is that this routinely happens in software development. Sometimes it is because newer security patterns and architecture are discovered after the software is built, but it is commonly due to the lack of building security in at the beginning.

 It is far more practical to layer in security throughout the development process, starting with the design decisions being made and requirements being gathered. When this approach is taken, the organization is taking the necessary steps to build better habits and have longer-lasting impacts. Take into consideration your personal health. Studies have shown that adjusting habits rather than going for a quick-fix diet is not only healthier for you but also provides a more sustainable path to better health. Shifting left builds those healthy security habits that will ensure the organization is on the right footing and can sustain a more secure overall posture.

 A healthy secure development environment starts with making the right architecture and design decisions that take security into consideration. This means picking the right security controls in areas like session management, encryption, authorization, and the like. It also includes leveraging tried-and-true patterns and standards from well-regarded and vetted organizations like OWASP. For instance, the time for picking the right data protection scheme should be determined while architecture decisions around data flow and database technology are being made. Requirements for the encryption strategy should be well documented and provide the appropriate level of protection based on the data classification. Additionally, requirements like field-level encryption with proper encryption key life cycle management are much easier to develop before there is terabytes of data in the database that would require applying encryption to a large dataset. Where this can get complicated is with legacy applications where most organizations cannot provide encryption beyond the disk level due to older technology that may not support more granular, robust, and modern encryption. This is simply due to the fact that the application may never have been designed to work with encrypted data.

 Even the language that is chosen can impact how secure an application will be. There are literally hundreds of development languages that developers can choose from, each with their own strengths and weaknesses for the given use cases. However, many modern languages provide some guardrails that can keep developers from producing insecure code. For instance, it should be no surprise that Java and C++ tend to rise to the top when it comes to vulnerable code. Much of this can be attributed to the power in each of these languages and the ability for developers to shoot themselves in the foot.

 note One of the most common issues with powerful languages like C++ is its ability to manually manage memory. Most modern languages will take this ability away from the developer as a convenience. One specific example with C++ is the ability to call free(), which allows the developer to free a memory address. If this is called twice with the same memory address, this becomes a doubly freeing issue. An attacker is able to leverage the memory leak that is made and inject code, possibly allowing the attacker to have an interactive shell with elevated privileges.

 Additionally, these languages are widely used in billions of devices across the globe. An increased footprint means more opportunity to find security issues, as depicted in figure 1.5. Other languages such as Python, Ruby, and Go show fewer overall vulnerabilities but there are also fewer lines of code written in these languages.

 [image:]

 Figure 1.5 Application with high-severity flaws by language 2020

 As much as language and design choices have an impact in the shift-left strategy, so, too, does testing. Unit, QA, integration, and system test can all be used to identify security issues early in the life cycle and allow time for the development team to correct an issue before it goes out to a production environment. This does assume that the appropriate security tests have been created, ideally automated, and are alerting the team when an issue is found. It further assumes that the findings do not disappear into the security vulnerability abyss of a backlog.

 We will talk more about shifting left in the coming chapters, including items like threat modeling, measuring risk, creating abuse cases, using development tools, raising awareness and more. Make no mistake, shifting left is the most cost-effective and sustainable method of bringing application security to an organization near you.

1.4.4 Shifting left fails

 Often, one or two members of a development team are designated as the “security person” (we won’t call them champions; that comes later) for the team, with whom much of the security-related work is dumped. This person becomes responsible for being at the meetings where security decisions are being made, they perform code reviews on security-related changes, they have to make decisions for the team, and they are generally responsible for correcting or setting a direction on vulnerability management. By the way, this person also has a day job that is usually as a developer or architect for the team. They may not even want the role of the “security person,” but they may have been voluntold. This has a huge impact not just on that individual but also on the team as a whole. This person is quickly overwhelmed without much opportunity for rest or objection.

 This is generally where things like vulnerability management falls apart. A new vulnerability is discovered in one of the security tools, or in a penetration test. The vulnerability is placed in the defect-tracking tool and assigned to the security person, who then puts aside the regular development work that they were possibly working on to triage the security issue and attempt to resolve it. Meanwhile, several other vulnerabilities have been identified, building the security debt we talked about earlier. This is usually when the product owner, scrum master, or development manager comes in asking why a development deliverable is behind.

 This type of failure has been seen several times in the past. One of the recent high-profile cases was with the Equifax breach that led to the exposure of over 143 million Americans’ personal and financial information. Equifax is one of the big three credit bureaus in the United States providing consumer credit reporting to Americans. In March of 2017, a vulnerability was found in Apache Struts, a framework for developing web applications. A patch was released, and most organizations set out patching their software. This is generally easier said than done, as some framework upgrades may need additional development changes and testing. In worst cases, an application may need to be re-architected or have major development work completed. By May of 2017, two months after Apache released a patch, attackers had gained access to the Equifax database and began to steal information. Equifax became aware of the breach in July. There were several failures in the security organization that led to the exposure of personally identifiable information (PII). Although the issue was internally identified, the email notifications for the known issue went to an old distribution list and therefore were never picked up by the appropriate team. Additionally, the databases were not segmented from the remaining network, allowing the attackers to pivot to other servers, where they found unencrypted credentials allowing them to escalate the attack.

 It’s easy for us to sit back and pick apart the lack of patching and other security controls in this case. However, two months from initial disclosure to exploit is a short window for many organizations. Some of these same organizations may have technology running that hasn’t been patched in a much longer time frame. More importantly, the time to exploit these days is much shorter, where attackers are able to gather enough information to reverse-engineer patches and build exploits in days or even hours. But the security person in the development team has the responsibility to jockey with the rest of the features that are slotted for a release and ensure that the application is protected. Given that the Apache Struts vulnerability was only two months old when it was exploited, there were most likely older and more critical vulnerabilities that were already on the team’s plate, ensconcing this Struts vulnerability in the annals of security history. This also highlights the earlier fact that every company is a software company. Equifax is not a technology company by trade but yet they find themselves in the software business due to being powered by layers of software that enable them and their customers.

1.5 Is going left better than going right?

 As I mentioned, shifting security to the left will result in better outcomes for an organization. It allows the development teams to build a culture of security that is more sustainable and able to manage the “when” not “if” of security vulnerabilities that are sure to be introduced. No software in any organization can be written to be 100% secure for all time. There will be vulnerabilities. The organization needs to have the culture, processes, people, and technology in place to manage this.

 There is no wrong or right (no pun intended) way of approaching application security. The people, process, and technology related to application security is needed throughout the life cycle regardless of the stage and its purpose. To put it into context, let me describe two different organizations and their approaches to application security.

 The first organization, called Acme Services, has decided to engage the application security team prior to release to perform simple scanning and penetration testing to determine whether there are any vulnerabilities introduced into the product during development. This is the shift-right approach that has been described previously. The second company, Superior Products, knows that bringing in security earlier is not just easier, but is also more cost-effective than waiting until later. They requested that the application security team be engaged earlier. Even better, they have a security champion, Dashing Danielle, on their team who can provide guidance throughout the development process.

 Superior Products has a mature application security team that keeps their finger on the pulse of the security industry. They’ve integrated a security champions team across the organization and maintain open communication with that team to ensure that they are kept informed of changes in the industry. With this information and structure, they are able to perform threat intelligence that informs decisions on new requirements and technology. In many cases, this allows them to implement security features ahead of client requests to do so. Acme Services is often caught off guard by requests for stricter security and privacy from their clients because they have decided to take the approach of implementing security later in the process.

 Superior Products employs Dashing Danielle to review the use cases that come in from product ownership. She is able to perform a quick threat model on the feature to determine the open security concerns that impact the feature. Based on a risk assessment that she has done previously with the product and the application security team, she knows that the application and the information in the report is considered sensitive information for the organization. This means that she will want to create security requirements that maintain the confidentiality of the information that is contained with the data and ensure that access is limited to a small audience of users within the appropriate organization.

 Dashing Danielle is able to raise these questions about the access to the reports during the review of the user stories and requirements based on the information she has. After she speaks with the application security team on what she feels are concerns with the new feature, she presents the following requirements that help protect the data in the generated reports as well as maintain access control:

 	
 Security requirement—Application shall ensure that access to the report is limited to authenticated users of the organization that the report belongs to.

 	
 Security requirement—Application shall log information related to the admin accounts that create and change the reports.

 The development team agrees that these are important requirements and are capable of making them a reality without impacting the release time frame for the product feature. Dashing Danielle supports the development team in whiteboarding the workflow so that the requirements are clear and understood by the development team. Figure 1.6 shows how Dashing Danielle is able to take the product requirements along with her understanding of security to create security requirements.

 [image:]

 Figure 1.6 Superior Products’ path to more secure code

 Over at Acme Services, one of the developers raises some concerns about whether unauthenticated users could access the report. This is quickly dismissed since the product owner promised this feature in a short time window, and the development team doesn’t know whether the data in the reports is actually considered sensitive. Everyone shrugs and moves on.

 This is a pretty clear distinction of where application security works and where it doesn’t. It may seem like this story is far-fetched, but please understand that this type of story is typical. Picking up this book means that you want to be more like Superior Products.

1.6 Application security needs you!

 It takes a village to do anything worthwhile. Security is no different. Generally, security teams are a slim percentage of the overall organization and rely mostly on automation and the goodwill of the engineering organization that it works with in order to scale to meet the demands. There is no “correct” size of the application security team, but size is not indicative of effectiveness. The variance in the size of application security to engineers varies from organization to organization.

 Definition Building Security in Maturity Model (BSIMM) is a study on the posture of software security initiatives and programs by quantifying the application security practices of different organizations across industries, sizes, and geographies. I will cover BSIMM more in-depth in chapter 5.

 The BSIMM study defines the software security group (SSG) as the team that is focused on software security within an organization. They found that an SSG group can be as large as 160 or as small as 1 with the average size of the team being 13.9 people. This of course depends on the size of the organization and the amount of coverage that the software security group needs to manage. And it’s no surprise that application security continues to be a smaller part of the overall engineering organization when you see the total spend for security relative to the overall IT budget. In most cases this is around 5% to 6%, based on a Gartner study in 2019 (http://mng.bz/Ayeo). Application security is yet a smaller portion of that security budget since much of the funding goes to perimeter defense, as well as to detection and response capabilities.

 Exercise 1.2

 Take a look at BSIMM’s website for SSDL Touchpoints:

 http://mng.bz/95v7

 Based on what I’ve described about shifting left and shifting right, these touchpoints are all part of the shift-left model. If you were in an organization with a limited budget, where do you think the best place to put your and your team’s focus in order to build security into the development life cycle? Think about the implications of the architecture analysis. This takes resources to be on the ground level. Security testing can scale but can be expensive and take time to implement.

1.6.1 Democratizing application security

 Application security is less about a dedicated team and more about building the habits, culture, and infrastructure to support secure development. An application security team, regardless of size, relies heavily on others within the development organization to socialize and promote security within the broader organization. It is not possible for an application security team that is relatively small to be able to be integrated with every development team and be a part of every design decision. Without this borrowing of resources from the development organization, application security would rarely be integrated. It is critical for the advancement of application security to be able to find allies, build trust, and democratize security with the overall engineering organization. Throughout this book I will outline the methods used to achieve that advancement; however, to be clear, application security requires a culture of security and requires buy-in at all levels.

 Note It is important to remember that there are teams within the organization that are dedicated to security, whether formally part of the security organization, or security champions who are dispersed across the engineering teams. However, the organization will still require help from those who are not formally part of security. This means that resolving vulnerabilities, ensuring that security is designed into the application, and ensuring that architecture includes security best practices and that the formal security team is brought in at appropriate times rests on the engineering teams.

 The critical part here is the helpers. Some organizations call them champions, evangelists, or coaches. The theme is the same regardless of what they are called. We will talk more about a champions program in future chapters; however, the basic principle is that these champions are the connection between the engineering organization and the application security program. They are there to represent the interests of the application security program and to ensure that security standards, designs, and architecture are properly implemented in the areas that they represent. The champion is usually a senior or well-seasoned engineering resource within an application or business unit and comes from within the engineering organization. It is important for the champion to be there because they want to, and not because they have to since a successful champion will be one who appreciates security.

 These champions help the application security team advance security by being present where the application security team cannot be. Many decisions get made at the stand-ups, in the hallways, or in impromptu conversations between developers. Having eyes and ears that are closer to where the code is developed helps ensure that security is considered in every part of the software development life cycle.

 One condition of a successful democratization of application security is to ensure that these champions are well versed in the organization’s security culture; know where to find information related to requirements, standards, and architecture; and can ultimately feel comfortable speaking for the application security team. There may even be a formal training and assessment program before a champion can assume the role. To ensure these champions have the information that they need to be successful, the application security team needs to publicize their documentation and guidance and review and gain consensus on new items with the champions on a regular basis. This can be done in a formal, reoccurring forum, or through electronic forums. It depends on the organization’s culture and the most practical way of reaching an audience.

OEBPS/OEBPS/Images/CH01_F01_Fisher3.png
Client request

&O

Use cases
requirements
design

Build the
artifact

Test the
feature

Develop the

Production
features

Phases of an SDLC

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/fisher_au_photo_new.png

OEBPS/cover.jpeg
A quide for software engineers and team leaders

Derek Fisher

Foreword by Matt Rose

/ll MANNING

OEBPS/OEBPS/Images/CH01_F06_Fisher3.png
Superior Products uses inputs from threat
intelligence and industry standards to derive
their internal processes helping them deliver
more secure code.

Threat intelligence
industry standards

Threat model
risk assessment

Organization n
standards Y,

security champions
Ly chames <>

Dashing Danielle

0000

Client requirements IHVMVHVM\

More secure
application

Security
requirements

Development team

OEBPS/OEBPS/Images/IFC_F01_Fisher3.png
Deliver and measure

Build a roadmap

Measure success

Continue
improvement

Secure code

Democratize
security

Service-oriented
application security

Define application security

‘ Develop the application security program

Why application Build the Application security
security problem ‘components

|
-

OEBPS/OEBPS/Images/CH01_F05_Fisher3.png
Percentage of high-severity flaws found by language
70%

60%

50%

40%

30%

20%

- .

. B

Category 1

WCH = NET u Java = Python

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F02_Fisher3.png
Common stages of code development from client requirements to production release

Client needs

©)
[

Client needs
a feature

Product owner | Development team QA Product release
: ‘Architectural | [Open source ’
reuraments || docons || atecmlogy ||| S5 | AR | oo o o
design used
Functionall]
" Code Tool chain for ' Client
nonfunctional Code testing
Toquirements ||| | development || integrations management
Slotting of Code Code
work Code debug || jyieqration acceptance

— D — —— —— —

Application Security Application security foundations | [QA Operational security
security requirements
Threat Threat Standards | | 52nning for Threat
intelligen ‘modelin end 0ss ASTRAST intelligent WA
elligence eling requirements eligence
Industry Risk IDE S“"“)’:'"g Penetration Client RASE
research assessment integration vulnerabilities test support
Security Secure code || Security Vulnerability
requirements review training Abuse cases ||| anagement

OEBPS/OEBPS/Images/CH01_F04_Fisher3.png
Client needs

©)
[

Client needs
a feature

Product owner Development team QA
‘Architectural | [Open source
Client decisions & || & technology Code test
requirements deployment
design used
Functionall
Code || Tool chain for
nonfunctional ; Code testing
oquirements ||| | development || integrations
stoting of ||| o gepug || Coce Code
work integration acceptance

D — — —)

Application Security Application security foundations | [QA
security requirements
Threat Threat Standards || g onning for
intelligence modelin end 0ss IASTDAST
9 9 requirements
Industry Risk IDE s“,';’:'"g Penetration
research assessment integration vulnerabilities test
Security Secure code || Security
requirements review training Abuselcases

organization places more
emphasis on bringing
security tools earlier in
the life cycle in order to
catch issues before they
g to production.

OEBPS/OEBPS/Images/CH01_F03_Fisher3.png
Product release

Production Product
deployment | | decommission

Client
management

—) e—)

Operational security

ozt WAF
intelligence

Client support RASP
Vuinerabilty

management

When shifting right, tools are
used to detect issues later in
the development life cycle.

