

 [image: cover]

 PowerShell and WMI

 Richard Siddaway & Foreword by Ed Wilson

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co. 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	[image:]
 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Jeff Bleiel
Technical proofreaders: Aleksandar Nikolic
Copyeditor: Andy Carroll
Proofreader: Melody Dolab
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

Dedication

 To my parents, June and RonWithout your help, support, and encouragementI’d never have been able to do this

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover Illustration

 1. Tools of the trade

 Chapter 1. Solving administrative challenges

 Chapter 2. Using PowerShell

 Chapter 3. WMI in depth

 Chapter 4. Best practices and optimization

 2. WMI in the enterprise

 Chapter 5. System documentation

 Chapter 6. Disk systems

 Chapter 7. Registry administration

 Chapter 8. Filesystem administration

 Chapter 9. Services and processes

 Chapter 10. Printers

 Chapter 11. Configuring network adapters

 Chapter 12. Managing IIS

 Chapter 13. Configuring a server

 Chapter 14. Users and security

 Chapter 15. Logs, jobs, and performance

 Chapter 16. Administering Hyper-V with PowerShell and WMI

 3. The future: PowerShell v3 and WMI

 Chapter 17. WMI over WSMAN

 Chapter 18. Your own WMI cmdlets

 Chapter 19. CIM cmdlets and sessions

 Appendix Afterword This is not the end

 Appendix A. PowerShell reference

 Appendix B. WMI reference

 Appendix C. Best practices

 Appendix D. Useful links

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the author

 About the cover Illustration

 1. Tools of the trade

 Chapter 1. Solving administrative challenges

 1.1. Administrative challenges

 1.1.1. Too many machines

 1.1.2. Too many changes

 1.1.3. Complexity and understanding

 1.2. Automation: the way forward

 1.3. PowerShell overview

 1.3.1. PowerShell scope

 1.3.2. PowerShell and .NET

 1.3.3. Breaking the curve

 1.4. WMI overview

 1.4.1. What is WMI?

 1.4.2. Is WMI really too hard?

 1.5. Automation with WMI and PowerShell

 1.6. Putting PowerShell and WMI to work

 1.6.1. Example 1: Shutting down a data center

 1.6.2. Example 2: Auditing hundreds of machines

 1.7. Summary

 Chapter 2. Using PowerShell

 2.1. PowerShell in a nutshell

 2.2. Cmdlets

 2.2.1. Utility cmdlets

 2.2.2. Where-Object

 2.2.3. Foreach-Object

 2.2.4. Aliases

 2.3. Pipeline

 2.4. .NET for administrators

 2.4.1. Objects

 2.4.2. PowerShell objects

 2.4.3. Creating .NET objects

 2.4.4. Creating your own objects

 2.5. PowerShell scripting language

 2.5.1. Loops

 2.5.2. Branching

 2.5.3. Input and output

 2.6. Finding help

 2.6.1. Get-Help

 2.6.2. Get-Command

 2.6.3. Get-Member

 2.6.4. PowerShell community

 2.7. Code reuse

 2.7.1. Editors

 2.7.2. Scripts

 2.7.3. Functions

 2.7.4. Modules

 2.8. PowerShell remoting

 2.8.1. Remoting by cmdlet

 2.8.2. PowerShell remote sessions

 2.9. PowerShell jobs

 2.10. Summary

 Chapter 3. WMI in depth

 3.1. The structure of WMI

 3.1.1. Providers

 3.1.2. Namespaces

 3.1.3. Classes

 3.2. Methods and properties

 3.2.1. Methods

 3.2.2. Class properties

 3.2.3. System properties

 3.2.4. Key properties

 3.3. Documenting WMI

 3.4. WMI cmdlets and accelerators

 3.4.1. Cmdlets

 3.4.2. Type accelerators

 3.5. Using WQL

 3.5.1. Keywords

 3.5.2. Operators

 3.6. WMI references and associators

 3.7. WMI events

 3.8. Summary

 Chapter 4. Best practices and optimization

 4.1. Security

 4.1.1. Using internet code

 4.1.2. Code security

 4.1.3. Access to code

 4.2. Optimizing PowerShell code

 4.2.1. Data input

 4.2.2. String substitution

 4.3. Calculated fields, types, and formatting

 4.3.1. Calculated fields

 4.3.2. Type files

 4.3.3. Format files

 4.4. Debugging and error handling

 4.4.1. Debugging

 4.4.2. Error handling

 4.4.3. WMI return codes

 4.5. Getting the most from WMI

 4.5.1. Issues with learning to use WMI

 4.5.2. WMI configuration settings

 4.5.3. Authentication

 4.5.4. Data filtering

 4.5.5. Data conversions

 4.6. Summary

 2. WMI in the enterprise

 Chapter 5. System documentation

 5.1. System hardware and configuration

 Technique 1: Get computer system information

 Technique 2: Get computer type

 Technique 3: Get domain role

 Technique 4: Get processor information

 Technique 5: Get BIOS information

 Technique 6: Get memory configuration

 5.2. Peripherals

 Technique 7: Get display settings

 Technique 8: Get input devices

 Technique 9: Get ports

 5.3. Power supplies

 Technique 10: Get battery details

 Technique 11: Get battery status

 Technique 12: Test power source

 Technique 13: Get power plans

 5.4. Operating system

 Technique 14: Get operating system version

 Technique 15: Discover hotfixes

 Technique 16: Get boot configuration

 Technique 17: Find recovery configuration

 Technique 18: Test system time

 5.5. Software

 Technique 19: Discover installed software

 5.6. Summary

 Chapter 6. Disk systems

 6.1. Physical disks

 Technique 20: Discover disk controllers

 Technique 21: Physical drive information

 Technique 22: Link partitions to disk drives

 Technique 23: Enumerating disk partitions

 Technique 24: Link partitions to logical disks

 6.2. Logical disks

 Technique 25: Logical disk information

 Technique 26: Root directory data

 Technique 27: Mount points

 6.3. Volumes

 Technique 28: Enumerate volume information

 Technique 29: Using volume change events

 6.4. Managing disks

 Technique 30: Formatting a disk

 Technique 31: Performing Chkdsk

 Technique 32: Analyzing and removing fragmentation

 6.5. CD drives

 Technique 33: Enumerating CD drives

 6.6. Summary

 Chapter 7. Registry administration

 7.1. Accessing the registry

 Technique 34: Test registry size

 Technique 35: Discovering registry data types

 7.2. Reading the registry

 Technique 36: Reading registry keys

 Technique 37: Reading registry values

 Technique 38: Enumerating keys and values

 7.3. Creating and modifying registry keys and values

 Technique 39: Creating registry keys

 Technique 40: Setting registry values

 7.4. Deleting registry keys

 Technique 41: Deleting registry values

 Technique 42: Deleting registry keys

 7.5. Registry access rights

 Technique 43: Reading access rights

 Technique 44: Taking ownership of a registry key

 7.6. Registry events

 Technique 45: Monitoring registry events

 7.7. Summary

 Chapter 8. Filesystem administration

 8.1. Working with files

 Technique: 46 Finding files

 Technique: 47 Performing actions on files

 Technique: 48 Compressing files

 8.2. Folder administration

 Technique: 49 Discovering the files in a folder

 Technique: 50 Discovering folders with specific attributes

 Technique: 51 Decoding the access mask

 8.3. Listing, creating, and modifying shares

 Technique: 52 Listing shares

 Technique: 53 Creating shares

 Technique: 54 Modifying shares

 8.4. Filesystem events

 Technique: 55 Working with filesystem events

 8.5. Page file management

 8.6. Summary

 Chapter 9. Services and processes

 9.1. Services

 Technique 56: Listing services

 Technique 57: Configuring services

 Technique 58: Discovering the service load order

 9.2. Processes

 Technique 59: Listing process owners

 Technique 60: Creating a process

 Technique 61: Terminating a process

 9.3. Process-related events

 Technique 62: Investigating an event

 Technique 63: Monitoring processes

 9.4. Summary

 Chapter 10. Printers

 10.1. Printer configuration

 Technique 64: Discovering printers

 Technique 65: Testing printer capabilities

 Technique 66: Discovering printer ports

 Technique 67: Discovering printer drivers

 10.2. Printer status

 Technique 68: Testing printer status

 Technique 69: Listing print jobs

 10.3. Managing printers

 Technique 70: Setting a default printer

 Technique 71: Printing a test page

 Technique 72: Controlling printers

 Technique 73: Renaming a printer

 10.4. Summary

 Chapter 11. Configuring network adapters

 11.1. Discovering network adapters

 Technique 74: Identifying network adapters

 Technique 75: Discovering adapter configurations

 Technique 76: Listing an adapter’s network protocols

 Technique 77: Listing network connections

 11.2. Configuring network adapters

 Technique 78: Enabling network adapters

 Technique 79: Disabling network adapters

 Technique 80: Renaming network adapters

 11.3. Enabling and setting network addresses

 Technique 81: Enabling DHCP

 Technique 82: Displaying DHCP configuration

 Technique 83: Controlling DHCP leases

 Technique 84: Setting an IP address

 Technique 85: Setting other properties

 11.4. Configuring network services

 Technique 86: Setting DNS servers

 Technique 87: Setting WINS servers

 Technique 88: Displaying the routing table

 11.5. Summary

 Chapter 12. Managing IIS

 12.1. IIS WMI provider

 12.1.1. Packet Privacy authentication

 Technique 89: Displaying web server defaults

 Technique 90: Restarting the web server

 12.2. Websites

 Technique 91: Listing websites

 Technique 92: Creating a website

 Technique 93: Testing website status

 Technique 94: Restarting a website

 12.3. Application pools and applications

 Technique 95: Listing web applications

 Technique 96: Listing application pools

 Technique 97: Recycling an application pool

 12.4. Summary

 Chapter 13. Configuring a server

 13.1. Initial tasks

 Technique 98: Renaming a server

 Technique 99: Joining a computer to a domain

 13.2. Controlling server restarts

 Technique 100: Shutting down a server

 Technique 101: Restarting a server

 13.3. Configuring network adapter settings

 Technique 102: Setting an IP address

 Technique 103: Configuring other settings

 13.4. Activating a server

 Technique 104: Testing license state

 Technique 105: Setting the license key

 Technique 106: Activating a server

 Technique 107: Setting a power plan

 13.5. Summary

 Chapter 14. Users and security

 14.1. User accounts on the local system

 Technique 108: Listing user accounts

 Technique 109: Finding logged on users

 Technique 110: Discovering user information

 14.2. Groups on the local system

 Technique 111: Listing local groups

 Technique 112: Listing group membership

 14.3. Security

 Technique 113: Testing antivirus status

 Technique 113: Testing antivirus status

 Technique 114: Testing antispyware status

 Technique 115: Testing antimalware status

 Technique 116: Testing firewall status

 Technique 117: Listing firewall settings

 14.4. Summary

 Chapter 15. Logs, jobs, and performance

 15.1. Event logs

 Technique 118: Discovering event log sources

 Technique 119: Backing up event logs

 15.2. Scheduled jobs

 Technique 120: Creating a scheduled job

 Technique 121: Discovering scheduled jobs

 Technique 122: Deleting scheduled jobs

 15.3. System performance

 Technique 123: Reading performance counters

 Technique 124: Windows system assessment report

 Technique 125: Stability index data

 15.4. Summary

 Chapter 16. Administering Hyper-V with PowerShell and WMI

 16.1. Creating and configuring virtual machines

 Technique 126: Creating a virtual machine

 Technique 127: Adding extra CPUs

 Technique 129: Adding a virtual disk

 Technique 130: Adding a network adapter

 16.2. Controlling virtual machines

 Technique 131: Starting a virtual machine

 Technique 132: Starting multiple machines

 Technique 133: Stopping virtual machines

 16.3. Managing virtual disks

 Technique 134: Testing virtual disk status

 Technique 135: Examining virtual disk usage

 Technique 138: Compacting virtual disks

 16.4. Summary

 3. The future: PowerShell v3 and WMI

 Chapter 17. WMI over WSMAN

 17.1. Remoting protocols

 17.1.1. PowerShell remoting

 17.1.2. WSMAN

 17.1.3. WSMAN cmdlets

 17.1.4. WSMAN provider

 17.2. Using WSMAN

 17.2.1. WSMAN URIs

 Technique 137: Testing WSMAN

 Technique 138: Retrieving WMI data using WSMAN

 Technique 139: Modifying WMI instances through WSMAN

 Technique 140: Deleting WMI instances through WSMAN

 17.3. Using CredSSP to access remote machines

 17.4. How to choose between WMI, remoting, and WSMAN

 17.5. Summary

 Chapter 18. Your own WMI cmdlets

 18.1. Creating a WMI cmdlet

 Technique 141: Creating a simple cmdlet

 Technique 142: Extending the cmdlet

 18.2. Creating multiple cmdlets

 Technique 143: Creating cmdlets from multiple WMI classes

 Technique 144: Building a super- module

 18.3. Creating format and type files

 Technique 145: Adding a format file

 Technique 146: Adding a type file

 18.4. Using the CIM IDE

 18.5. Summary

 Chapter 19. CIM cmdlets and sessions

 19.1. Using WMI methods

 Technique 147: Adding a method

 Technique 148: Adding a method that uses parameters

 19.2. CIM cmdlets

 19.2.1. WMI and CIM objects

 19.2.2. CIM and WMI cmdlets

 19.2.3. Jobs and events

 19.3. CIM sessions

 19.3.1. CIM sessions explained

 Technique 149: Creating a CIM session

 Technique 150: Accessing CIM sessions

 19.3.2. Removing CIM sessions

 19.4. Summary

 Appendix Afterword This is not the end

 Appendix A. PowerShell reference

 A.1. Automatic variables

 A.2. Calculated fields

 A.3. Flow syntax

 A.4. Function template

 A.5. Hash tables

 A.6. Loops

 A.7. Operators

 A.8. PowerShell install folder

 A.9. Size constants

 A.10. Type shortcuts

 Appendix B. WMI reference

 B.1. Useful WMI namespaces

 B.2. Useful classes

 B.3. WQL

 Appendix C. Best practices

 C.1. PowerShell best practices

 C.2. WMI best practices

 Appendix D. Useful links

 D.1. WMI

 D.1.1. Forums for WMI questions

 D.2. Microsoft MSDN .NET

 D.3. PowerShell blogs

 D.3.1. Other PowerShell downloads

 D.4. Code sources

 D.5. Podcasts

 D.6. User groups

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 I am glad that Richard Siddaway decided to sit down and write a book on WMI. I have had the privilege of working with Richard
 over the last several years since becoming the Microsoft Scripting Guy, and I have long been impressed by his technical prowess.
 Whether Richard is speaking at a user group or conference or writing a blog article, it does not take long before the topic
 of WMI crops up. When I am planning a guest series of articles for the Hey Scripting Guy! Blog, Richard is the first person
 I turn to if the subject is WMI. In short, Richard is the perfect person to write this book.

 The book is not just about WMI. Richard begins with an overview of Windows PowerShell technology. In fact, the “Using PowerShell”
 chapter is an excellent overview of Windows PowerShell. In less than 40 pages he hits all the highlights—functions, modules,
 PSDrives, aliases, remoting, and jobs. But it is not simply a fly-by at 30,000 feet; he gets down to the nitty-gritty, boils
 down essential information, and surfaces a number of potential gotchas. Even if you already know Windows PowerShell, this
 chapter is worth a look; if you don’t know Windows PowerShell, you should read this chapter a couple of times so you don’t
 have problems with the remainder of the book.

 WMI can be complicated—I know, I wrote a book on the subject for Microsoft Press a few years ago. Luckily, Richard has devoted
 an entire chapter to discussing not only the basics of WMI, but some of the more advanced concepts as well. I love his WMI
 documentation script in chapter 3. Of course, one of the nice things about WMI is that it is self-describing, which means that it is possible to write scripts
 to discover information about WMI. Well, now you do not need to write those scripts yourself, because Richard has done it
 for you.

 But if the book were all esoteric academic minutiae, it would be of limited practical value to network administrators and
 to consultants in the field who are attempting to use this rather difficult technology to solve real world problems. Luckily,
 Richard lives in the real world and his book quickly begins to produce real value. His section on WMI in the enterprise covers
 system documentation, working with disk subsystems, the registry, and more.

 Windows PowerShell is a powerful, cool technology. WMI is a powerful, cool technology. When you combine the two you have a
 flexible and powerful solution. When Richard Siddaway is the author of the book—you have an unbeatable combination. Buy this
 book! You will thank me later.

 ED WILSON, MCSE, MCSD

 MICROSOFT SCRIPTING GUY
AUTHOR OF

 WINDOWS POWERSHELL 2.0 BEST PRACTICES

Preface

 I am very passionate about using PowerShell to automate the administration of Windows systems. This will become apparent very
 quickly if you talk to me, listen to me at conferences, or read my other books or blogs. WMI has a reputation for being powerful
 but hard to use. PowerShell is the way forward for system administrators, and WMI is that horrible, old technology that no
 one really knows how to use. So why do we need a book on PowerShell and WMI?

 In reality, PowerShell and WMI are made for each other. They are both powerful, but put them together and you have low-level
 access to just about every facet of your Windows system. WMI is a first-class citizen in the PowerShell world, with a set
 of cmd-lets to make using WMI easier and to provide the ability to work over WSMAN or DCOM protocols. The great strength of
 the pairing of PowerShell and WMI is that you can work with both local and remote systems. The other point to remember is
 that Microsoft is putting a lot of effort into WMI for the Windows 8 family of products. There are big changes coming regarding
 what you can do with WMI and how you can use it.

 In short, it seemed that now was the time to bring WMI in from the cold and into mainstream administration where it belongs.

 This book is written for system administrators, and it provides a suite of scripts to automate a large range of administration
 tasks. In most cases, these scripts are ready to use in your environment—I use many of them on a regular basis. In the chapters,
 those scripts are explained and the background to the tasks is discussed so you can put the script into context for your environment.
 This isn’t a cookbook or a theoretical book on the PowerShell language—it’s more. It’s a practical guide to taking these two
 technologies and making them do what you need in order to solve the problems you have in your environment.

 Best practices can be an emotive subject, but one of my goals in writing the book has been to supply best practice guidelines
 for using PowerShell and WMI and Windows administration in general. There is no point in automating bad practice—it just makes
 mistakes happen quicker.

 The solutions presented in the book show the way that I solve various problems. Use the scripts to solve your problems, and
 if you find better solutions, please share them with the PowerShell community.

 I’ve gained a number of things during the writing of this book:

	A deeper understanding of PowerShell and WMI

 	Some wonderful opportunities to talk with very knowledgeable people

 	New friends who share my interest in and passion for PowerShell and WMI

I hope you get a sense of that passion and interest from reading this book, and I hope that it both helps you in your role
 as an administrator and inspires you to investigate some of the areas of PowerShell and WMI that I haven’t been able to cover.
 Who knows, we could be talking about it at a PowerShell Deep Dive sometime soon.

 Use the techniques, join the PowerShell community, and most of all, enjoy what you do.

Acknowledgments

 Producing a book like this is never a solo effort. My name may appear on the cover, but a whole team of people was required
 to get this book into your hands. This is my opportunity to thank them for their efforts.

 I have to start with the Microsoft PowerShell and WMI teams. Without their work, there wouldn’t be anything to write about.
 The team members I have met and corresponded with have always tried their best to answer my questions, and without their input
 this book would be a very different animal. So a big thank you to current and former members of these teams, especially Jeffrey
 Snover, Kenneth Hansen, Bruce Payette, Lee Holmes, Jason Shirk, Osama Sajid, Wojtek Kozacynski, Lukasz Anforowicz, and James
 Brundage.

 I would also like to thank the Microsoft Scripting Guy—Ed Wilson—for writing the foreword to this book and for some very stimulating
 and thought-provoking discussions on the subject of PowerShell and WMI.

 The people at Manning continue to be superb. They are a very professional group who understand how to put a good book together
 and how to get the best from their authors. Many thanks to Marjan Bace, Michael Stephens, Sebastian Sterling, Maria Townsley,
 Jeff Bleiel, Andy Carroll, Melody Dolab, Karen Tegtmeyer, Ozren Harlovic, Mary Piergies, Maureen Spencer, and Christina Rudloff.

 There were two reviews of this manuscript during its development. The individual reviewers took the time to read and comment,
 sometimes in great detail, on the contents. Without their contributions this would have been a poorer book. Thanks to Jonathan
 Medd, James Berkenbile, Mike Shepard, Nikander Bruggeman, Margriet Bruggeman, Karsten Strøbæk, Amos Bannister, Adam Bell,
 and Peter Monadjemi.

 Special thanks must go to Aleksandar Nikolic for performing the technical review of the final manuscript and code. My discussion
 in the Frankfurt airport with Ravikanth Chaganti, after the European PowerShell Deep Dive, was especially useful. As usual,
 any and all errors of omission or commission remaining in the book are mine and mine alone.

 During the MEAP process, a forum exists for readers to post comments and ask questions. The comments and questions have all
 been read and incorporated into the book where appropriate. Thank you for taking the time to post.

 The PowerShell community is very enthusiastic and willing to share. Thank you to those who have helped with example code,
 discussed topics with me, provided solutions to problems, listened to talks (I have been talking a lot about PowerShell and
 WMI over the last year, and will continue to do so), asked questions, and offered speaker slots. The PowerShell MVP community
 and UK PowerShell group deserve a special vote of thanks.

 Final thanks must go to my family, friends, and colleagues who’ve supported me through the writing and production of this
 book.

About this book

 This is a book for system administrators, those who manage administrators, those responsible for auditing systems, and anyone
 else who needs to discover information about Windows-based systems. PowerShell and WMI are powerful individually, but when
 they come together they supply an unrivalled way to access and administer your systems.

 I have attempted to show the breadth of problems that PowerShell and WMI can solve. The depth of these technologies is also
 exposed by the detailed and practical examples. There are areas such as clustering and the System Center family that haven’t
 been touched because of space considerations.

	

 PowerShell versions
 This book was written during the PowerShell v3 development and beta program. Except where otherwise stated, this book deals
 with PowerShell v2. Chapters 18 and 19 require PowerShell v3 as they use functionality only available in that version.

 My development environment is Windows 7 and Windows Server 2008 R2, but I have also tested on Windows Server 2003 and Windows
 Server 2008 where possible.

 Most of the code will also run on PowerShell 1.0, and I will point out where this is not the case and what alternatives are
 available.

	

This book isn’t a pure cookbook of PowerShell-based scripts nor is it a book on Windows administration. It lies between these
 two points and provides insight into how to automate the administration of your Windows systems using PowerShell and WMI.

 You may not choose to read this book from cover to cover, but I urge you to keep it on your desk. I hope you will find yourself
 referring to it on a frequent basis. Once you start automating, the possibilities are only limited by your knowledge, and
 this book’s task is to supply you that knowledge along with appropriate examples so you can apply it to your environment.

 The scripts are presented as techniques with problem, solution, and discussion sections. They should help you solve your particular
 problems. If they don’t, a message on the Author Online forum will reach me, and I may be able to supply some pointers. But
 no promises, because I have a day job as well.

Who should read this book?

 This book is primarily for that overworked, and undervalued, person—the IT administrator. As an administrator, you may well
 find yourself constantly bombarded with new requests, new technologies, and user problems, and you may want to automate some
 of those tasks but not know where to start. Even some simple tools that could discover the configuration of the server that
 your predecessor built but didn’t document would be a help.

 This book won’t solve all of your problems, but it will help you start to automate some of those problem areas. Make sure
 your manager reads chapter 1. They will then see what you are trying to achieve and how using the techniques in this book will make them look good as
 well.

 The sample code in the book is based on real-world examples—I use a lot of scripts based on these techniques in my job. I
 have combined many of the discovery scripts, for example, to create a script that completely documents my servers. Take the
 code, experiment (in a test lab), and discover how you can start automating now.

Roadmap

 PowerShell and WMI is divided into three parts. The book starts with an overview of the PowerShell and WMI technologies in part 1, “Tools of the trade.” This introductory section covers the overall problems you need to solve, provides an overview of PowerShell
 and WMI, and offers some best practices.

 Chapter 1 describes the challenges we face every day as administrators—increasingly complex environments, new applications, fewer staff,
 and tighter deadlines. A quick look at PowerShell and WMI shows how they can be used to solve these problems and recover at
 least some of the time we need to become proactive in our approach.

 Chapter 2 provides an overview of PowerShell. The use of cmdlets at the PowerShell prompt is described, followed by an introduction
 to how PowerShell uses .NET and how we can utilize some of the .NET functionality with PowerShell. Don’t worry, this isn’t
 going to become a developers’ book! PowerShell also has a scripting language that supplies the framework for our code. Simple
 scripts are described, leading up to the advanced functions we’ll be working with throughout the book. This chapter also supplies
 an overview of PowerShell remoting and jobs.

 WMI is the other technology we’ll be using, and it moves to center stage in chapter 3. This is the most theoretical chapter in the book, because we delve into the structure of WMI, discovering how to document
 providers, namespaces, and classes. Examples of using the five WMI cmdlets are presented, together with some of the issues
 that may cause problems (workarounds are also presented). WQL is an SQL subset that can be used to query the WMI repository.
 Using WQL may seem like an old fashioned way of working, but it’s still required in a number of scenarios. A good working
 knowledge of WQL will help in the later chapters of the book. WMI maintains links, known as associators and references between many classes. These links can be used to make administration easier, so we’ll spend some time discovering how to
 use them.

 Part 1 closes with chapter 4. This chapter covers a number of topics that will help you get the most out of PowerShell and WMI. It starts with finding
 code examples and ensuring that they’re safe to use. This leads into the topic of securing the PowerShell environment, including
 the digital signing of scripts. The section on optimizing PowerShell looks at data input and output, format files, simple
 debugging techniques, and error handling. WMI best practices, including the configuration of WMI-related settings, authentication
 within WMI, data filtering, and conversions bring the chapter to a close.

 The bulk of the book is taken up by part 2, “WMI in the Enterprise.” A number of the chapters in this section discuss using WMI events. By using events, you can perform
 actions such as these:

	Monitor for a USB pen drive being plugged in, and copy data to the drive

 	Monitor changes to specific registry keys and values

 	Monitor the filesystem for additions, deletions, or modification of the files in a given folder

 	Monitor processes to block specific applications or to ensure that an application is restarted if it fails

WMI has traditionally been viewed as a method of gathering information about your system’s configuration. Chapter 5 demonstrates how this can be achieved using PowerShell and WMI. Techniques for discovering system configuration information,
 including hardware, operating system, and installed software are presented.

 This theme continues into chapter 6, where you’ll discover how to investigate the storage systems installed in your servers. The WMI classes that enable you
 to work with, and discover information about, disk controllers, physical and logical disks, volumes, and mount points will
 be utilized and explained. Administering disks in terms of formatting and defragmenting disks will also be discussed.

 In chapter 7, our attention turns to the registry. The usual warnings regarding registry modifications having the potential to destabilize
 your system still apply. Techniques to discover the registry size, administer registry keys and values, and work with security
 settings will be discussed.

 The other major data store that administrators work with on a regular basis is the filesystem—this is the subject of chapter 8. WMI can’t be used to create filesystem objects, but it can be used to search for files and folders on local and remote machines.
 This becomes especially useful when we want to discover files or folders with special attributes, such as being hidden. Techniques
 to compress (and uncompress) files and folders are presented before we move on to examining the security settings on filesystems.
 The chapter closes with a look at file shares, with code that can be used to automate their whole lifecycle.

 A server isn’t just a collection of hardware. In many cases, our main interest in a system is the applications that are running
 on that system. These are investigated in chapter 9, when we turn our attention to services and processes. The service health of a system (whether the correct services are running)
 and service load order are investigated. The whole process lifecycle from creation through administration to destruction can
 be managed with the PowerShell and WMI techniques presented in this chapter.

 The one subject that’s guaranteed to upset every administrator at some time in their career is printing. Chapter 10 discusses printers. It starts by showing how to discover printer configuration and status, followed by a look at printer
 drivers. The chapter then examines how to manage printers and print jobs. The final part of the chapter discusses troubleshooting
 printers and shows how to perform tests, such as sending a test page to the printer.

 Networking is the subject of chapter 11. Discovering the physical configuration of the network adapters, their IP addressing configuration, and the protocols in
 use forms the first part of the chapter. This is followed by sections on managing the physical adapters, configuring IP addresses,
 and related information. The chapter closes by examining how to discover the IPv4 routing table.

 IIS is a common component of the Windows infrastructure. The IIS WMI provider is the subject of chapter 12. The chapter demonstrates how to administer the web server configuration, the website lifecycle, application pools, and web
 applications. The IIS WMI provider requires us to use a number of specialized techniques, which are explained in detail.

 Configuring new servers is the subject of chapter 13. We’ll look at how to rename a server and perform the domain join operation. Network configuration using the techniques from
 chapter 11, setting the license key, and activating the operating system are all discussed. The final part of the chapter explains how
 to configure power plans.

 Security should always be an important consideration, and in chapter 14 we’ll consider the users who have access to our systems, together with a number of other security-related issues. After you’ve
 discovered how to work with the local users and groups on the system, we’ll examine the antimalware status. The chapter closes
 with techniques for working with the firewall state and settings.

 Windows is an event-driven operating system. In chapter 15, techniques for working with the event logs are presented. WMI can only work with the classic event logs, but we can discover
 event log sources and back up the event logs. Simple scheduled jobs and performance counters are discussed. In later versions
 of Windows, system assessments and a stability index can be produced, and these can be accessed by PowerShell and WMI. Accessing
 this information is an easy way to determine whether a particular system component isn’t performing or is affecting system
 stability.

 Chapter 16 is a bit different in that we use the Hyper-V PowerShell library, which is based on WMI, to work with virtual machines. Techniques
 to create and configure remote machines, control virtual machines, start a group of virtual machines in sequence, and administer
 virtual disks are presented. This chapter is a good example of what many administrators do automatically—take the tools that
 are provided and build a wrapper to do exactly what they need in their environment.

 In part 3, “The future: PowerShell v3 and WMI,” we take an in-depth look at some of the exciting new functionality associated with
 PowerShell and WMI; namely, using WMI over the WS-Management protocols and the introduction of CIM cmdlets and “cmdlets-over-objects”
 in PowerShell v3.

 Chapter 17 examines the WSMAN cmdlets. Using these, it is possible to access the WMI provider from the WinRM service on the remote machine.
 This enables the retrieval of information and the configuration of the remote machine. It’s possible to perform just about
 any task through the WSMAN cmdlets that you could using the WMI cmdlets. The advantage is that you bypass DCOM, become firewall
 friendly, and potentially can access CIMOM (other non-Windows WMI providers) instances on non-Windows systems. The disadvantage
 is that it involves a more complex coding syntax and that you’re not dealing with live objects.

 Chapters 18 and 19 should be read together, with the content in chapter 19 building directly on that in chapter 18. The starting point is new functionality in PowerShell v3 that enables you to wrap a WMI class in XML and use the resulting
 file as a PowerShell cmdlet—this is known by the catchy title of “cmdlets-over-objects.” The cmdlet is loaded into PowerShell
 as a module, and parameters are added to the cmdlet to provide filtering and search options. Two or more WMI classes can be
 treated this way, and the resultant cmdlets are loaded by creating a module file that calls them as submodules. Format and
 type files are also added to the module to control the formatting of the output.

 In chapter 19, WMI methods are added to the mix. These drive the creation of additional cmdlets that are again loaded as part of the module.
 The ability to “cmdletize” WMI classes gives a huge boost to the ease of use. Much of the new PowerShell functionality in
 Windows Server 8 is produced in this manner.

 Chapter 19 continues with the CIM cmdlets. These are analogous to WMI cmdlets but use a new API and new .NET objects. The CIM cmdlets
 are compared and contrasted to the WMI cmdlets to provide a context for their use. These CIM cmdlets combine the firewall
 friendliness of the WSMAN cmdlets and the ease of use of the WMI cmdlets. The chapter, and the book, closes with a review
 of CIM sessions, which can be thought of as similar to PowerShell remoting sessions. CIM sessions create a persistent connection
 to a remote machine to make multiple calls more efficient. They can work over WSMAN or DCOM to enable access to systems running
 PowerShell v3 or v2.

 There are four appendices to the book. They supply a PowerShell reference guide, a WMI reference guide, a best practices guide,
 and a list of references that can be consulted for further information.

Source code downloads

 The source code for this book can be downloaded from the publisher’s website at www.manning.com/PowerShellandWMI.

	

Warning

 All downloaded code must be tested in your environment.

	

The code is provided as a zip file with a folder for each chapter, except that the nature of chapters 18 and 19 leads to a single folder spanning both of those chapters. A PowerShell file, .ps1, is provided to match each listing in the
 chapter. The files are named for the listings; for example, Listing 3.1. ps1.

	

Tip

 Each listing is presented as one or more functions. The most efficient way to load these is to use the chapter’s module file.

	

Other files may be supplied occasionally, such as example output where the data is too big to include on the page or example
 input files. In all cases, they’re referenced in the chapters.

 Alternative coding styles are provided where I have used a report production style of script in the chapter. These can be
 found in subfolders of the relevant chapter, named “Alternative Non-Report Style”.

 In some cases, alternative scripts using the CIM cmdlets from PowerShell v3 are provided as examples of how to use this new
 functionality. The CIM alternatives are located in a subfolder of the chapter, named “CIM”.

Code and typographical conventions

 This is a book about using PowerShell, and there are a lot of examples provided throughout the book. A fixed-width font, like this, is used for short lines of code in the text. Listings and longer code examples embedded in the text also use a fixed width
 font:

 like this.

 Listings are annotated, where necessary, and full explanations are provided in the text. In many cases, the code statements
 have been split across multiple lines in order to fit the code on the page. These lines either terminate with a back tick
 (`), which is the PowerShell continuation character, or the following line has a [image:] symbol to indicate that the line is a continuation.

 If the code has been typed directly at a PowerShell prompt, it’ll be displayed like this:

 PS> 1kb
1024

 I have followed a number of conventions when putting together the code for this book. Some of these are standard PowerShell
 best practices, and others are my personal coding style. I will usually refer to servers when discussing the types of machines we are administering, but many of the techniques covered in this book can be applied
 to desktop machines as well.

 PowerShell commands (cmdlets and functions) can have shortcut names, known as aliases, defined. I don’t normally use aliases in scripts, because I want to ensure that the scripts are readable, and are as easy
 to understand as possible. I also use the full parameter names in cmdlets. Cmdlet, parameter, property, and attribute names
 will be displayed like this.

 There is one exception to my rule on aliases, and that’s for the utility cmdlets, where I use the following conventions:

	
Where-Object is aliased as where but never as ?.

 	
ForEach-Object is aliased as foreach but never as %.

 	
Select-Object is aliased as select.

 	
Sort-Object is aliased as sort.

Group-Object and Measure-Object are used less frequently, but they’re aliased to group and measure respectively. In the discussion around a script, I always use the full cmdlet name. I have adopted this convention for a
 number of reasons:

	It is advised by the PowerShell team.

 	It represents accepted practice and usage.

 	It’s more readable.

 	It saves some space on the page.

I use double quotes around strings unless I am sure that I don’t want to substitute into the string. WMI filters and WQL use
 single quotes to delineate strings within the query. I also tend to leave keywords, such as do and if in lowercase. My function names and their parameters are usually lowercase—I’ll make an exception to this if the name is
 long and some capitalization makes it more readable.

 In some cases, the listings in the book are truncated. This is to save space and is always stated in the script’s discussion.
 The download code for the book is complete. My goal has been to provide a balance between readability, conciseness, and completeness.
 Only you can tell if I have succeeded.

Author Online

 Purchase of PowerShell and WMI includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/PowerShellandWMI. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the author some challenging questions,
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the author

 Richard Siddaway is a technical architect for Serco in the UK, working on transformation projects in the Local Government
 and Commercial arena. With more than 22 years of experience in various aspects of IT, Richard specializes in the Microsoft
 environment at an architectural level—especially around Active Directory (AD), Exchange, SQL Server, and infrastructure optimization.

 Much of his recent experience has involved Active Directory migrations and optimizations, which often include Exchange. Richard
 has hands-on administration experience and is involved in implementation activity in addition to filling architectural and
 design roles. He has extensive experience specifying, designing, and implementing high-availability solutions for a number
 of versions of the Windows platform, especially for Exchange and SQL Server.

 Richard is always looking for the opportunity to automate a process, preferably with PowerShell and WMI. Richard founded and
 currently leads the UK PowerShell User Group. Microsoft has recognized his technical expertise and community activities by
 presenting a Microsoft Most Valued Professional award. Richard has presented to The Technical Experts conference in the USA
 and Europe, the Directory Experts Conference, at various events at Microsoft in the UK and Europe, and for other user groups
 worldwide. Richard has a number of articles and technical publications to his credit, including PowerShell in Practice (Manning). He is a coauthor of the forthcoming PowerShell in Depth: A system administrator’s guide (Manning).

About the cover Illustration

 The figure on the cover of PowerShell and WMI is captioned “The Bibliophile,” which means a lover of books. The man on the cover may just be an avid reader or possibly
 he’s a collector of rare editions or even a bookseller. The illustration is taken from a 19th-century edition of Sylvain Maréchal’s
 four-volume compendium of regional and professional dress customs published in France. Each illustration is finely drawn and
 colored by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and
 regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or
 in the countryside, it was easy to identify where they lived and what their class, trade, or station in life was just by their
 dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Tools of the trade

 Welcome to PowerShell and WMI. WMI is a mature administration technology that has been with us for a good number of years. PowerShell is the relatively
 new kid on the block that’s bringing automation to administrators who haven’t considered it in the past. PowerShell and WMI
 are a natural pairing, like Batman and Robin or fish and chips.

 The book has three sections. In this first part of the book, we’ll look at the technologies in isolation.

 Chapter 1 provides a brief overview of the subject as well as some examples of the benefits that using PowerShell and WMI together
 will bring to your environment.

 In chapter 2, we’ll turn our attention to PowerShell, looking at its major elements and how to use them. This isn’t intended to be a complete
 PowerShell tutorial, but taken together with appendix A, it will supply the information you need to get the most from this book.

 WMI moves on stage in chapter 3, and you’ll learn what it is and how to use it with PowerShell. We’ll look at the WQL language along with some advanced topics,
 including using WMI and .NET together.

 Finally, chapter 4 shows some ways to optimize your use of WMI and PowerShell. These suggestions are not intended to be prescriptions but are
 based on my accumulation of experience from using PowerShell and WMI. They will hopefully make using these technologies easier
 and more enjoyable. Learn from my mistakes, in other words.

Chapter 1. Solving administrative challenges

	

 This chapter covers

	The administrator’s headache

 	Solving the challenge with automation

 	PowerShell and WMI—the automation tools

	

Ask any Windows administrator about their biggest problems, and somewhere in the list, usually near the top, will be too much
 work and not enough time to do it. They know that automation is possible, will be at least aware of some of the technologies
 that could solve their problems, such as Windows Management Instrumentation (WMI) and PowerShell, but don’t have the time
 to spend investigating the technologies. That’s a shame because it’s commonly accepted that 70 percent of an organization’s
 IT budget is used to “keep the lights on.” Automation can make a worthwhile contribution to reducing that percentage and freeing
 people and money to contribute to the business bottom line.

 It’s also possible that they’ve looked at WMI or PowerShell and decided they were too difficult. This is an understandable
 view, given the issues with WMI in VBScript—especially the amount of work involved in getting WMI to work in VBScript, and the lack of usable examples that also explain the techniques that have to be used. Some horrendous examples
 of PowerShell have been posted on the web that put me off, never mind someone wanting to start with the subject! Unfortunately,
 administrators then miss out on the possibilities that automation provides to reduce their workload and accomplish more.

 The aim of this book is to radically lower the entry bar to using WMI productively in your environment. The examples that
 are provided can be used with few or no, changes. You’ll also gain a deeper understanding of WMI that can be used to work
 with areas we don’t cover.

 PowerShell itself is constructed to make WMI usage much easier and more intuitive. PowerShell is Microsoft’s automation engine
 that, among other things, provides easy-to-use access to the rich management toolset available in WMI. Together, PowerShell
 and WMI provide a set of tested techniques that will enable you to administer your Windows environment more quickly and easily.
 You’ll be able to automate many of the standard tasks that currently consume too much of your attention, freeing up time to
 do the more interesting things that otherwise couldn’t be fitted into your normal working day.

 The first thing I’ll do in this chapter is define the problem we’re trying to solve. There are a number of issues that affect
 any Windows environment of significant size:

	Number of systems

 	Rising infrastructure complexity

 	Rate of change

The second part of the chapter shows why PowerShell and WMI provide a great toolset for solving these problems. Getting the
 most out of PowerShell involves investing a little time in learning it, especially when using WMI. Automation is the key to
 making your life as an administrator easier. The benefits you can achieve with PowerShell and WMI automation provide an excellent
 return on the investment you make in learning to use the technologies.

 The chapter closes with two examples showcasing the power this combination of technologies delivers to us. The first example
 shows how you can shut down all the servers in your data center with one command, and the second shows how you can test settings
 on many machines in one pass.

 Let’s start with a look at the responsibilities of a modern Windows administrator and the problems administrators face.

1.1. Administrative challenges

 Administrators are very busy people. They seem to be continually asked to do more with fewer resources. Figure 1.1 illustrates this with a sketch graph that I’ll refer to in the following sections. One thing the graph illustrates is the
 ever-decreasing cost, in real terms, of hardware. For example, I recently acquired a laptop with a quad-core processor (hyperthreading
 allows Windows to see eight cores) and 16 GB of RAM as a mobile lab. A few years ago, a machine with those specifications
 was a mid-range server, not a laptop!

 Figure 1.1. The relationship between decreasing hardware costs, increasing infrastructure complexity, and the cost of administering the
 evolving infrastructure

 [image:]

 The same is true in the server market—4-, 8-, or even 10-core processors and lots of relatively cheap memory mean that we
 can afford to run applications and business processes that were previously only considered by large corporations with huge
 budgets.

 This leads directly to the other components of the graph, which show the steep rise in infrastructure complexity and the even
 faster rise in administration costs. The continual upward growth of infrastructure complexity and cost isn’t sustainable.
 PowerShell and WMI can help you break out of this growth curve. First, though, we need to examine the problem in a little
 more depth—where do the complexity and cost of administration come from?

 1.1.1. Too many machines

 This may seem to be an odd way to look at infrastructure, but do you really need every server you’ve created? Many, if not
 most, organizations have too many servers. This comes about for a number of reasons:

	
The decreasing cost of hardware— This change leads to it being easier to add a new server than to think about using an existing one.

 	
Department- or project-based purchasing— This approach raises questions about server ownership and makes departments or projects unwilling to share resources.

 	
The “one application—one server rule”— Separating applications so that a problem in one doesn’t affect others may still be valid for business-critical applications,
 but it’s not necessarily required for second- or third-line applications. It’s definitely not required for testing and training
 versions.

 	
Weak or reactive IT departments— The lack of controls and processes in IT leads to departments and projects introducing systems that IT doesn’t know about
 and has had no involvement with until the systems hit production.

An administrator’s workload increases faster than the rate of increase of machines due to the time spent switching one’s focus
 between machines (often requiring a new remote connection to be made) and the additional complexity each machine and its supported
 applications bring to the environment.

 Virtualization is one of the hot topics in IT at present, with most organizations virtualizing at least part of their server
 estates. There are several advantages of virtualization:

	Reduced numbers of physical servers

 	Reduced requirement for data center facilities, including space, power, and air conditioning

 	Increased use of physical assets, giving a better return on investment

The organization as a whole benefits from virtualization, but the administrator’s load is increased. If you have 100 servers
 to administer before virtualization, and you change to use 4 physical hosts and virtualize the 100 servers, you now have 104
 systems to administer. The complexity may increase as well, because the virtualization platform may introduce a different
 operating system into the environment. The increase in the total (physical plus virtual) number of systems also means that
 there will be more change happening as the environment evolves.

 1.1.2. Too many changes

 Change can be viewed as an administrator’s worst headache. Unfortunately environments aren’t static:

	Operating system and application patches are released on a regular basis.

 	New versions of software are released.

 	Storage space needs to be readjusted to match usage patterns.

 	Application usage patterns force hardware upgrades.

 	Virtualization and other disruptive new technologies change the way environments are created and configured.

This level of activity, multiplied across the tens, hundreds, or even thousands of machines, builds on top of the day-to-day
 activity, such as monitoring and backups.

 This situation isn’t supportable in the long term. Organizations can’t absorb ever-increasing administration costs, and today’s
 economic realities prevent other mechanisms, such as increased revenue, from providing an escape. The situation has to be
 resolved by reducing the cost of administration. But administrators are hampered in doing this by the fact that many changes
 bring new technologies into the environment without ensuring they’re supportable.

 1.1.3. Complexity and understanding

 Complexity is the real problem in many cases. It can arise due to a number of causes:

	Multiple operating systems bring different toolsets and terminology, even between versions of Windows.

 	Different types of applications, such as databases, email, Active Directory, and web-based applications, require different
 skill sets, use different tools, and place different stresses on a server that the administrator must accommodate.

 	Many machines perform the same or similar roles, but subtle, potentially undocumented, differences increase the likelihood
 of error.

Complexity is often compounded by incomplete knowledge and skill sets on the part of the administrators. Too often a project
 will introduce a new technology and administrators are expected to immediately pick up and manage the systems. Do the administrators
 have the skills? Do they have the time to learn the intricacies of the new technology? Sadly, the answer to both questions
 is often no.

 This leads administrators to make best-guess decisions about how to do things. Sometimes, if the new technology is a version
 change from something already in use, administrators will continue to use the old methods even if there’s now a better way
 to perform the task.

 This lack of skills and knowledge leads to mistakes, and these mistakes cost money, often in terms of lost revenue for the
 organization. This puts more pressure on the administrators and leads to a lack of trust from the business. The IT department
 is often then excluded from discussions about new technologies until it’s too late, and the cycle takes another spiral downwards.

 Not only are major changes introduced by projects, administrators also face the host of minor changes required to keep their
 environments secure and running smoothly.

1.2. Automation: the way forward

 The way to overcome these issues is to introduce automation. Get the machines to do the mundane, repetitive work—that’s what
 we invented them for!

 Automation means many things to many people. There’s a hierarchy of automation activity that can be considered, as shown in
 figure 1.2.

 Figure 1.2. Hierarchy of automation activity

 [image:]

 The question that needs to be answered by every organization is, “Where do I get the most benefit?” The answer depends on
 what you’re trying to achieve and where you are now. I know of a number of organizations that are quite happy using the standard
 Windows tools and a few bulk-editing tools. Others attempt to schedule everything or even create automated responses to events.
 Automation, for most organizations, involves a mixture of command-line tools, scripting, and scheduled tasks.

 That leads to the second big question, which is, “How do I automate my administrative tasks?” PowerShell provides a set of
 command-line tools (called cmdlets) that can be used interactively. As the commands become longer and more ambitious, there’s
 a natural progression into scripting. One of the great strengths of PowerShell is that you can use exactly the same commands
 in a script or at the command prompt, so everything you’ve learned about commands is still usable in scripts.

 PowerShell by itself is a wonderful tool (OK, I am fanatical about it), but you can take it a stage further and layer WMI
 on top. This opens a standards-based management toolset that you can use on local and remote machines and that can potentially
 include non-Windows systems when PowerShell v3 is used. The scripts can be run interactively or they can be scheduled to run
 at a specific time by using PowerShell and WMI. But before we get into those delights, let’s have a look at automation in
 general.

 In this book, we’ll be concentrating on scripting as the primary automation activity. It could be argued that because you’re
 using PowerShell, you could do much of your work from the command line. The benefit of scripting, though, is that you can
 reuse the code and save even more time by not having to rewrite the code each time you want to use it. This topic is covered
 in depth in chapter 4 of PowerShell in Practice (Manning 2010).

 Scheduled tasks and automatic responses are too dependent on the particular environments for this book, so in chapter 3 we’ll start to look at how you can automate responses to events that occur on your systems. We’ll revisit this in later chapters
 as we consider specific areas of administration. We won’t neglect the use of the command line, though. Many of the examples
 are short enough to use interactively.

 Let’s look at an example. Suppose you need to determine the amount of free space on the C: drive of a number of machines in
 your environment. One way is to go to the data center, assuming they’re all in the same data center, and log onto the console
 of each machine. You’d then need to open Windows Explorer or another tool and find the free space on the C: drive. Write down
 the answer, and repeat for the next machine on the list.

 A slightly easier option is to use Windows’ Remote Desktop functionality to connect to each machine. Then you’d need to manually
 obtain the information. With this approach you don’t have to move from your desk, but it still takes too much time.

 My favorite solution is to use PowerShell as shown in listing 1.1. Don’t worry if you don’t understand the code right now. We’ll return to this script in chapter 6 when we look at how to administer the disks in servers.

	

 Scripting Conventions
 I discussed these conventions in the introductory material but if you’re like me you skipped that part of the book.

 I will usually refer to servers when discussing the types of machines you’re administering but many of the techniques covered
 in this book can be applied to desktop machines as well.

 PowerShell commands (cmdlets and functions) can have shortcut names, known as aliases, defined. I don’t normally use aliases
 in scripts as I want to ensure that the scripts are readable and as easy to understand as possible. I also use the full parameter
 names in cmdlets.

 There is one exception to this rule and that’s for the utility cmdlets where I use the following conventions:

	
Where-Object aliased as where but never as ?

 	
ForEach-Object aliased as foreach but never as %

 	
Select-Object aliased as select

 	
Sort-Object aliased as sort

In the discussion around a script I always use the full cmdlet name.

 I have adopted this convention for a number of reasons:

	On the advice of the PowerShell team.

 	Because it represents accepted practice and usage.

 	Because it’s more readable.

 	It saves some space on the page.

	

In this PowerShell example you start with a list of server names taken from my lab setup. This list is piped into a ForEach-Object cmdlet (aliased as foreach) that calls Get-WmiObject for each server in the list in order to find the information on the logical disk used as the C: drive. You then format the
 information and output it as a table, as shown in the following listing.

 Listing 1.1. Find free disk space

 "dc02", "W08R2CS01", "W08R2CS02", "W08R2SQL08",
"W08R2SQL08A", "WSS08" | foreach {
 Get-WmiObject -Class Win32_LogicalDisk `
-ComputerName $_ -Filter "DeviceId='C:'" } |
Format-Table SystemName, @{Name="Free";
 Expression={[math]::round($($_.FreeSpace/1GB), 2)}} -auto

 The free space is recalculated from bytes to GB to make the results more understandable. Notice that PowerShell understands
 GB, as well as KB, MB, TB, and PB. The results look like this:

 SystemName Free
---------- ----
W08R2CS01 119.04
W08R2CS02 118.65
W08R2SQL08 114.8
W08R2SQL08A 115.17
WSS08 111.41
DC02 118.53

	

Note

 I don’t intend to show output from every script we discuss in the book, but I will show output occasionally where it aids
 in the discussion of a particular issue.

	

There are a number of enhancements that you could apply to this script:

	Put the computer names into a CSV file (as we’ll do in listing 1.4)

 	Add the results to an Excel spreadsheet, or a database, so that trends can be seen

 	Schedule the task to run on a periodic basis

I use a similar script, with the first two enhancements, to regularly report on disk space trends for the organization I’m
 currently working with. I now have a tool that takes seconds to run against each machine and provides vital information. It’s
 also quickly and easily extensible to cover other machines that may become of interest. The script took me a few minutes to
 write and test, and there’s an immediate payback every time I use it.

 PowerShell is designed to provide this type of return. In the words of Jeffrey Snover, the architect of PowerShell, “I firmly
 believe that economics determine what people do and don’t do so PowerShell is designed from the ground up to make composable,
 high-level task oriented abstractions be the cheapest things to produce and support.” The full article, “The Semantic Gap,”
 is available from the Windows PowerShell Blog at http://blogs.msdn.com/b/powershell/. A search for semantic gap will take you to the post.

 The second part of this book will show many examples of this concept in action, but for now we’ll have a closer look at PowerShell
 and discuss why it’s the ideal platform for automating your administration.

1.3. PowerShell overview

 In this section, I want to show you why PowerShell is the ideal platform for automating your Windows administration.

 PowerShell is now on its second version (with the third in beta at the time of writing). It’s part of the default installation
 of Windows 7 and Windows Server 2008 R2 (for Server Core it’s an optional install). PowerShell v2 also can be installed on
 Windows Server 2008, Windows Server 2003, Windows Vista, and Windows XP. PowerShell v3 is an integral part of the Windows
 8 family of operating systems. This level of support means you can use PowerShell to manage all of your Windows systems.

	

Windows 2000 Support

 Windows 2000 is now out of support and won’t be considered in this book. PowerShell doesn’t have an option to install on Windows
 2000.

	

There are also an increasing number of applications that have PowerShell support built into them. It’s a requirement for all
 new versions of the major Microsoft products, and adoption by third-party vendors is steadily increasing the scope of PowerShell.

	

 PowerShell resources
 Chapter 2 provides an overview of PowerShell’s features, the language, and how to use it. It isn’t a full PowerShell tutorial, but
 it will explain what you need to understand the examples in the second part of the book.

 Bruce Payette’s Windows PowerShell in Action, second edition (Manning 2011) provides the most detailed coverage of PowerShell from a language perspective. My PowerShell in Practice (Manning 2010) supplies many examples of using PowerShell to administer Windows systems.

	

The ability to access remote machines (which we’ll look at in chapter 2) simplifies administration, because you can automate your whole Windows environment from a single administration console.
 This is how you can break the curve of rising infrastructure complexity. We’ll look at how you can achieve this after we’ve
 examined PowerShell’s scope.

 1.3.1. PowerShell scope

 PowerShell enables you to administer a range of applications, from those having direct PowerShell support built into them
 to community-inspired and -provided additions that are available for download.

 A number of major applications have direct PowerShell support:

	Exchange 2007/2010 (probably the poster child of PowerShell support)

 	SQL Server 2008/2012

 	SharePoint 2010

 	Various members of the System Center family

Other elements of the Windows environment have PowerShell support available through Microsoft or third-party additions, including
 the following:

	Active Directory

 	IIS

 	Clustering

 	Terminal Services

 	Graphical presentation tools

The availability of functionality is good, but to get the most from it you need to get it into production use, and the sooner
 the better. One way to achieve this is to take advantage of the PowerShell community, which supplies sample code that can
 shorten the development cycle. PowerShell has a very strong and productive community that starts with the PowerShell team
 but also includes the following resources (links are provided in appendix D):

	Blogs, including mine

 	Code repositories for community contributions, such as www.poshcode.org and www.powershell.com

 	Forums, such as www.powershell.com

This provides a breadth and depth of support and additional functionality that almost guarantees you’ll be able to find help
 with solving your problem.

 1.3.2. PowerShell and .NET

 Whenever PowerShell is discussed, the fact that it’s .NET-based and can access most of the .NET Framework is brought up. At
 this point, I find that the eyes of many administrators begin to glaze over and they slide down into their seats. WAKE UP!

 Yes, PowerShell is .NET-based and there are some really clever things that can be done by working directly with .NET code
 in PowerShell, some of which we’ll see in later chapters. But you don’t need to do this until you’re ready to work at this
 level. There are a huge number of administration tasks you can perform without dipping your toes any further into the .NET
 waters than we did in listing 1.1. Just don’t forget that .NET is there when you need it, and there are lots of great examples of how to work with .NET available
 from the PowerShell community.

	

 WMI and .NET
 It’s possible to use WMI functionality through .NET code created and run in PowerShell. This is an advanced technique that
 we’ll look at in chapter 12, when we’re working with IIS.

 There are generally alternatives to using .NET in this way, and I’ll always choose those over a .NET-based solution. I’m an
 administrator, not a developer, and I’ll present solutions for administrators.

	

As an example of how you can use .NET with PowerShell, let’s look at the services running on a system. A subset of the installed
 services on my test system is shown in figure 1.3.

 Figure 1.3. Using Get-Service to display a subset of the running services

 [image:]

 The Get-Service cmdlet (a PowerShell command) returns a list of the running services. I have restricted the output by using wi* to only return services starting with “wi.” The results are piped into a Format-Table cmdlet that outputs the results as a nicely formatted table.

	

Note

 The PowerShell pipeline passes .NET objects rather than text as in with other shells. This supplies a large measure of PowerShell’s
 power.

	

I deliberately chose to use wi* because it demonstrates two services we’ll be seeing a lot more of later: WMI and Windows Remote Management (WinRM). (It
 also keeps the figure to a reasonable size.)

 Underneath the hood, Get-Service is using a .NET class called System. ServiceProcess.ServiceController, which is fascinating but doesn’t mean much to me without looking up the .NET documentation. The beauty is that you don’t
 need to know this 99.99 percent or more of the time. PowerShell abstracts all of this, and you can perform your discovery
 with an easy-to-use command that has a descriptive name.

 1.3.3. Breaking the curve

 In figure 1.1 you saw that there’s a continuous rise in the complexity of organizations and the cost of performing the administration in
 those organizations. This continuous increase isn’t supportable in the long term, and we need a way to break the upward curve.

 PowerShell can help us break that curve by providing the following:

	A set of tools to interactively administer servers and applications

 	An automation engine that works across the entire Windows estate

 	The ability to apply those concepts to a number of applications

 	Remote administration engines that enable multiple machines to be administered with a single command

 	Asynchronous and scheduled tasks to further enhance automation

PowerShell offers a productivity boost that will easily repay the time you spend learning to get the best from the technology.
 And using PowerShell and WMI together will further enhance your productivity gains.

1.4. WMI overview

 In this section, we’ll look at what WMI offers us as administrators. We’ll examine WMI in much greater detail in chapters 3 and 4, where we’ll drill into the details of how to use it to automate administration tasks.

 WMI has been available to Windows administrators since the days of Windows NT 4, but it isn’t a static technology. Each new
 version of Windows brings changes to the functionality available through WMI, usually by adding extra capabilities but occasionally
 by removing or radically changing functionality. New versions of other applications can have a similar impact. For instance,
 Exchange 2003 had WMI support, but that was removed in Exchange 2007/2010.

	

WMI and Office

 Microsoft Office 2007 supplied a WMI provider in the shape of the root\MSAPPS12 namespace. This functionality was removed
 in Office 2010. Remnants of WMI classes will remain on a system if an upgrade from Office 2007 to 2010 is performed, but they
 won’t be usable.

	

The only way to be sure that particular functionality is available on your version of Windows is to check the documentation
 on the Microsoft Developer Network (MSDN). The WMI functionality available on a particular system can be discovered in a number
 of ways using PowerShell and other tools. Chapter 3 supplies full instructions on this.

 There are many automation scripts available using WMI, and most of them use VBScript due to the efforts of the people behind
 the Microsoft Script Center after Windows 2000 shipped. This gives the unfortunate impression that WMI requires a lot of coding
 for you to achieve any gains. This is no longer true, as you’ll see in a little while, and it’s slowly becoming apparent on
 the internet as the PowerShell community supplies example code using WMI.

 To get started, let’s look at what WMI actually is.

 1.4.1. What is WMI?

 Just what is WMI? The abbreviation stands for Windows Management Instrumentation and the functionality is automatically installed
 with Windows. The base functionality can be enhanced by adding features and roles to Windows or by installing additional applications.

 At first glance, it may seem like a very large set of stuff that you might be able to use if you get lucky and someone has
 mapped out how to use the bit you’re interested in. When we get to chapter 3, though, you’ll see that there is a structure to WMI that you can exploit to discover what is available, and to some degree
 how to use it.

 At this stage you need to be aware that WMI doesn’t exist in a vacuum. It’s Microsoft’s implementation of the Common Information
 Model (CIM) that’s produced by the Distributed Management Task Force (DMTF). The CIM (and WMI) defines a series of classes
 that supply information about Windows systems, and they may allow you to directly interact with aspects of local and remote
 systems.

 You can look at the WMI classes available for working with disks by using Get-WmiObject:

 Get-WmiObject -List *disk* | sort name | select name

 This command will produce output like the following:

 Name

CIM_DiskDrive
CIM_DisketteDrive
CIM_DiskPartition
CIM_DiskSpaceCheck
CIM_LogicalDisk
CIM_LogicalDiskBasedOnPartition
CIM_LogicalDiskBasedOnVolumeSet
CIM_RealizesDiskPartition
Win32_DiskDrive
Win32_DiskDrivePhysicalMedia
Win32_DiskDriveToDiskPartition
Win32_DiskPartition
Win32_DiskQuota
Win32_LogicalDisk
Win32_LogicalDiskRootDirectory
Win32_LogicalDiskToPartition
Win32_LogonSessionMappedDisk
Win32_MappedLogicalDisk
Win32_PerfFormattedData_PerfDisk_LogicalDisk
Win32_PerfFormattedData_PerfDisk_PhysicalDisk
Win32_PerfRawData_PerfDisk_LogicalDisk
Win32_PerfRawData_PerfDisk_PhysicalDisk

 There are a number of classes that start with CIM_ and others that start with Win32_. There isn’t always a one-to-one pairing of the two types, but major object types such as logical disks are paired. The CIM_ class is the parent, corresponding to the definition supplied by the DMTF; the Win32_ classes are child classes that Microsoft has implemented. In some cases the classes are identical, and in others there is
 additional functionality in the Microsoft class. We’ll usually be working with the Win32_ classes.

	

 Powershell v3
 Microsoft invested very heavily in WMI for PowerShell v3, and it offers several improvements:

	A new API and associated .NET classes

 	Closer adherence to the CIM standards (so expect less deviation from the standard in Microsoft’s implementations)

 	Simplified creation of WMI providers (see chapter 3 for details on providers)

 	The ability to create cmdlets directly from WMI objects (see chapters 18 and 19)

