

 [image: cover]

 Open Source SOA

 Jeff Davis

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwick, CT 06830 email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

	Development Editor: Cynthia Kane
 Copyeditor: Liz Welch
 Typesetter: Krzysztof Anton
 Cover designer: Leslie Haimes

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 11 10 09

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. History and principles

 Chapter 1. SOA essentials

 Chapter 2. Defining the Open SOA Platform

 2. Assembling components and services

 Chapter 3. Creating services using Apache Tuscany

 Chapter 4. Advanced SCA

 3. Business process management

 Chapter 5. Introducing jBPM

 Chapter 6. jBPM tasks

 Chapter 7. Advanced jBPM capabilities

 4. Event stream processing, integration, and mediation

 Chapter 8. Complex events using Esper

 Chapter 9. Enterprise integration and ESBs

 Chapter 10. ESB implementation with Apache Synapse

 5. Enterprise decision management

 Chapter 11. Business rules using JBoss Drools

 Chapter 12. Implementing Drools

 Appendix Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 1. History and principles

 Chapter 1. SOA essentials

 1.1. Brief history of distributed computing

 1.1.1. Problems related to RPC-based solutions

 1.1.2. Understanding SOAP’s messaging styles

 1.1.3. Advent of SOA

 1.2. The promise of web services for delivering SOA

 1.3. Understanding the core characteristics of SOA

 1.3.1. Service interface/contract

 1.3.2. Service transparency

 1.3.3. Service loose coupling and statelessness

 1.3.4. Service composition

 1.3.5. Service registry and publication

 1.4. Technologies of a SOA platform

 1.4.1. Business process management

 1.4.2. Enterprise decision management

 1.4.3. Enterprise service bus

 1.4.4. Event stream processor

 1.4.5. Java Message Service

 1.4.6. Registry

 1.4.7. Service components and compositions

 1.4.8. Web service mediation

 1.5. Introducing a SOA maturity model

 1.6. Summary

 Chapter 2. Defining the Open SOA Platform

 2.1. Evaluating open source products

 2.2. Choosing a BPM solution

 2.2.1. BPM product evaluation criteria

 2.2.2. Open source BPM products

 2.2.3. Selecting a BPM solution

 2.2.4. Introducing JBoss jBPM

 2.3. Choosing an enterprise decision management solution

 2.3.1. EDM product evaluation criteria

 2.3.2. Open source EDM products

 2.3.3. Selecting an EDM

 2.3.4. Introducing JBoss Rules (Drools)

 2.4. Choosing an ESB

 2.4.1. ESB product evaluation criteria

 2.4.2. Open source ESB products

 2.4.3. Selecting an ESB

 2.4.4. Introducing Synapse as a lightweight ESB

 2.5. Choosing an ESP solution

 2.5.1. What is event stream processing?

 2.5.2. Introducing Esper

 2.6. Choosing a registry

 2.6.1. Registry evaluation criteria

 2.6.2. Open source registry products

 2.6.3. Selecting a registry

 2.6.4. Introducing WSO2 Registry

 2.7. Choosing a service components and composites framework

 2.7.1. Examining the Service Component Architecture

 2.7.2. Introducing Apache Tuscany

 2.8. Choosing a web services mediation solution

 2.9. Summary

 2. Assembling components and services

 Chapter 3. Creating services using Apache Tuscany

 3.1. What are service components and compositions?

 3.2. The SCA assembly model

 3.2.1. Introducing the composite file

 3.2.2. Configuring components

 3.2.3. Defining services

 3.2.4. Working with properties

 3.2.5. Implementation options

 3.2.6. Using references for dependency injection

 3.2.7. Defining available bindings

 3.3. Summary

 Chapter 4. Advanced SCA

 4.1. Configuration using component types

 4.2. SCA interaction models

 4.2.1. Using conversations

 4.2.2. Understanding callbacks

 4.3. Scripting language support

 4.3.1. Creating a Ruby component

 4.3.2. Creating a Java interface using the Ruby method signature

 4.3.3. Modifying the service implementation class

 4.3.4. Modifying the composition assembly

 4.4. Advanced Tuscany/SCA

 4.4.1. Production deployment

 4.4.2. Introducing Service Data Objects (SDOs)

 4.4.3. Advanced SDO features

 4.5. Summary

 3. Business process management

 Chapter 5. Introducing jBPM

 5.1. BPM: the “secret sauce” of SOA

 5.2. History and overview of JBoss jBPM

 5.2.1. Development lifecycle of a jBPM process

 5.2.2. Graph-oriented programming and jBPM

 5.3. Understanding nodes

 5.3.1. Node nodetype

 5.3.2. Task-node nodetype

 5.3.3. State nodetype

 5.3.4. Mail-node nodetype

 5.3.5. Decision nodetype

 5.3.6. Fork and join nodetypes

 5.4. Using transitions

 5.5. Extending using actions

 5.5.1. Action class property instantiation

 5.5.2. Using action expressions

 5.6. Using events for capturing lifecycle changes in a process

 5.7. Managing context using variables

 Process Variables

 Local Variables

 5.8. Summary

 Chapter 6. jBPM tasks

 6.1. What are tasks?

 6.1.1. Task management using the jBPM Console

 6.1.2. task element configuration

 6.2. Task user management

 6.2.1. Actors and assignments

 6.2.2. Understanding swimlanes

 6.3. Using timers

 6.4. Task controllers

 6.5. Developing with the task API

 6.5.1. Identifying processes within a jBPM instance

 6.5.2. Identifying running process instances for a given process

 6.5.3. Finding open tasks within a process instance

 6.5.4. Finding all tasks assigned to a user

 6.5.5. Finding all pooled tasks for an actor

 6.5.6. Completing a task

 6.6. Summary

 Chapter 7. Advanced jBPM capabilities

 7.1. Important enterprise features of jBPM

 7.1.1. Superstates for grouping

 7.1.2. Using subprocesses to manage complexity

 7.1.3. Managing exceptions

 7.1.4. Scripting with BeanShell

 7.1.5. Audit logging

 7.1.6. Understanding asynchronous continuations

 7.2. Integration with SCA/SDO

 7.2.1. Using SCA client components for service integration

 7.2.2. Service enabling jBPM

 7.2.3. Developing the ListProcesses service operation

 7.2.4. Developing the CreateProcessInstance service operation

 7.3. Summary

 4. Event stream processing, integration, and mediation

 Chapter 8. Complex events using Esper

 8.1. Business events in the enterprise

 8.2. Understanding events

 8.2.1. BAM and ESP—what’s the difference?

 8.2.2. Event-Driven Architecture and SOA

 8.3. What is Esper?

 8.4. Getting started with Esper

 8.4.1. What are event objects?

 8.4.2. Defining and registering query statements

 8.4.3. Specifying listeners or subscribers

 8.4.4. Configuration options

 8.5. EPL basics

 8.5.1. Querying events

 8.5.2. Using variables

 8.5.3. Understanding views

 8.5.4. Creating new event streams with named windows

 8.6. Advanced Esper

 8.6.1. Extending with functions

 8.6.2. Applying event patterns

 8.6.3. Using JDBC for remote connectivity

 8.7. Service enabling Esper

 8.7.1. Creating a framework and components

 8.7.2. Esper service and session manager

 8.7.3. SCA composite file

 8.7.4. Testing with soapUI

 8.8. Summary

 Chapter 9. Enterprise integration and ESBs

 9.1. The relationship between ESB and SOA

 9.2. Historical foundations of ESB

 9.2.1. Core ESB capabilities

 9.2.2. Appropriate uses of an ESB

 9.2.3. Inappropriate uses of an ESB

 9.3. Introducing Apache Synapse

 9.3.1. Protocol adapters

 9.3.2. Message-oriented middleware

 9.3.3. XML-based messaging

 9.3.4. Intelligent routing and distribution

 9.3.5. Message transformation

 9.3.6. Tasks/timers

 9.3.7. Quality of service/web mediation

 9.3.8. Monitoring and administration

 9.3.9. Extendable API

 9.4. Basic Apache Synapse message and service mediation

 9.4.1. Simple message mediation example

 9.4.2. Simple service mediation example

 9.5. Summary

 Chapter 10. ESB implementation with Apache Synapse

 10.1. Learning Synapse through a case study

 10.1.1. Phase 1: typical web service mediation using error handling, routing, and transport switching

 10.1.2. Phase 2: protocol/transport bridging and event propagation

 10.1.3. Phase 3: using tasks, scripting, and database integration

 10.1.4. Phase 4: quality of service mediation

 10.2. Phase 1: simple web service mediation

 10.2.1. Sales order initiation

 10.2.2. Configuring the service mediation proxy and using validation mediation

 10.2.3. Configuring XSLT mediation

 10.2.4. Transport switching from HTTP to JMS

 10.2.5. Transport switching from JMS to HTTP

 10.3. Phase 2: VFS, CSV, email, and message wiretap

 10.3.1. Using the VFS transport

 10.3.2. Working with CSV files

 10.3.3. Exception handling and SMTP transport

 10.3.4. Using the wiretap message pattern

 10.4. Phase 3: tasks, DB mediator, and iterator

 10.4.1. Configuring Synapse tasks

 10.4.2. Using the iterator mediator to split messages

 10.4.3. Using the DB mediator

 10.5. Phase 4: QoS using Synapse

 10.5.1. Implementing WS-Security

 10.5.2. Using Synapse throttling mediator

 10.6. Summary

 5. Enterprise decision management

 Chapter 11. Business rules using JBoss Drools

 11.1. Understanding business rules

 11.1.1. Benefits and drivers of the business rule approach

 11.1.2. Relationship to SOA

 11.1.3. Characteristics of a rules engine

 11.1.4. Business rules management systems

 11.2. Introducing Drools

 11.2.1. Hello World, Drools!

 11.2.2. Running Hello World, Drools!

 11.3. Drools Rule Language (DRL) overview

 11.4. Drools header elements

 11.4.1. package

 11.4.2. import

 11.4.3. expander

 11.4.4. global

 11.4.5. function

 11.5. Defining rules in Drools

 11.5.1. Modifying rule behavior with attributes

 11.5.2. Conditional part of rule statement (when part)

 11.5.3. Consequence part of rule statement (then part)

 11.6. Querying facts in Drools

 11.7. Drools RuleFlow for rule orchestration

 11.8. Alternatives to using Drools Rule Language

 11.8.1. Using DSLs for business user authoring

 11.8.2. Defining rules using decision tables

 11.9. Summary

 Chapter 12. Implementing Drools

 12.1. Case study overview

 12.1.1. Defining the DRL rules

 12.1.2. Running as an embedded engine

 12.1.3. User-friendly rules using a DSL

 12.2. Rules management using Drools Guvnor

 12.2.1. Guvnor functionality overview

 12.2.2. Rule authoring using Guvnor

 12.3. Developing decision services

 12.3.1. What are decision services?

 12.3.2. Designing the decision service

 12.3.3. Implementing the decision service using Tuscany and Drools

 12.3.4. Testing

 12.4. Summary

 Appendix Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Only if you have been in the deepest valley can you ever know how magnificent it is to be on the highest mountain.

 Richard Nixon

 I’m not sure exactly at what point I decided to write this book. I think the moment of inspiration came one night while sitting
 in the hot tub a couple years back. That day, I had spent considerable time working with the newest release (at the time)
 of JBoss jBPM. I was extremely fired up as I had explored its capabilities, and the more I dug under the covers, the more
 excited I became. Technically, as I considered its features, it provided all the capabilities we were looking for at HireRight
 for a business process management (BPM) product. However, the real challenge was, how would we integrate the solution with
 our existing products and applications?

 Like a lot of companies, HireRight uses a mix of open source and commercial products. One of the main benefits of commercial
 products is that they tend to be all-inclusive in their feature set, and provide a consistent, and often comprehensive, set
 of capabilities. Open source products, however, tend to be more narrowly focused for solving specific needs. Thus, while jBPM
 may be an excellent BPM product, it’s not obvious how you might integrate that with a services and component framework such
 as provided by Apache Tuscany. Further, building a complete SOA stack or environment using open source products can be challenging,
 because SOA itself can be a nebulous objective. Mixing and matching the best-of-breed open source products into a single,
 consistent SOA platform is a tall order, as I’ve discovered. Devoting time to studying the benefits of SOA and putting those
 concepts into practice using open source products are what formed the basis for the knowledge I share in this book. My motivation
 was to contribute in some small way to the success of open source.

 Like a lot of folks, I often felt guilty for using these outstanding open source products, yet I seldom found the time to
 contribute back to the community. Each time I presented a question in a forum or mail list and got back a plethora of responses,
 the guilt level went up. Not only was I using the product for free, but I was also receiving free, high-quality advice to
 boot (granted, HireRight does believe in assisting open source companies by purchasing support for products used in production,
 but that usually occurs long after our initial evaluation, when most questions and issues arise). Being a believer in the
 quality of open source products and the outstanding efforts of individuals who support them, I figured it was time to give
 something back—this was my motivation for writing this book.

 When a debate emerges whether to go with an open source offering, I often point out that open source, contrary to popular
 belief, represents substantially less risk to the adopting company than going with a commercial alternative. Why? As we’ve
 seen lately, commercial companies often go out of business or get acquired. When either happens, it’s not uncommon for the
 products to be discontinued, or awkwardly merged into some other offering. Further, many commercial products have a very limited
 user base, if only because they charge so much to use the products that only large enterprises adopt them. Because the user
 base is smaller, the quality of the product is often substandard compared with comparable open source products, which enjoy
 a much broader user base (more users = more feedback). When working with commercial products, how often is it that you can
 communicate directly with the developers responsible for the code? Such interaction in the open source community is common.
 Of course, with open source, you also have access to the source code, and the hidden gems in the form of JUnit test cases—one
 of the best ways to learn an open source product.

 My hope is that, by writing this book, I can help advance the adoption of these open source products, and the companies, organizations,
 or individuals that support them. I believe the benefits of SOA are real, and can be realized entirely through integrating
 best-of-breed open source products.

Acknowledgments

 People who work together will win.

 Vince Lombardi

 I’m tremendously grateful to the Manning Publications team for the hard work they contributed to bring this book to fruition—it
 was truly a team effort! Cynthia Kane was instrumental in holding my hand (okay, prodding me) along the way with marvelous
 suggestions for improvement; the copyediting and proofreading work of Liz Welch and Katie Tennant transformed the readability
 of the work; and the review coordination efforts by Karen Tegtmeyer resulted in further improvements. Lastly, Marjan Bace’s
 insights provided me with encouragement throughout the process. To others I didn’t mention, your contributions were also greatly
 appreciated!

 Special thanks are extended to the reviewers. They took time in their very busy schedules, usually under tight timelines,
 to review what was often rough copy. Their suggestions and ideas, while not always welcome by me at the time, helped make
 the book tighter in messaging and improved its content. The reviewers are Peter Johnson, Irena Kennedy, Francesco Goggi, Doug
 Warren, Davide Piazza, Ara Abrahamian, Alberto Lagna, Rick Wagner, Jonathan Esterhazy, Chuck Lee, Madhav Vodnala, Edmon Begoli,
 Valentin Crettaz, Andy Dingley, Glenn Stokol, Deiveehan Nallazhagappan, Christian Siegers, Michele Galli, Patrick Steger,
 Ramnath Devulapalli, and Marco Ughetti.

 I would also like to highlight the efforts by Paul King, who was the technical reviewer. His thorough work at validating the
 source code and suggestions for improvement were outstanding and testimony to his breadth of experience.

 Lastly, none of this would have been possible without the patience, understanding and support of my family. When I first mentioned
 to them that I was contemplating writing a book, they were a bit dubious of my plans. However, as weeks turned into months,
 and months into a year, they endured lost weekends, evenings, and vacations. None of this would have been possible without
 their encouragement; my guilt would have gotten the better of me.

 To my friends and colleagues, my apologies if I was sometimes curt when you inquired about when the book would be done—this
 was a bit of a sore spot with me. All kidding aside, I appreciated your enthusiasm for the book. Stefano Malnati, my boss,
 was a constant source of inspiration, and his leadership and integrity provided a solid foundation for my efforts.

About this Book

 The audience for the first two chapters (part 1) of this book is broad, and can range from technically savvy business users who want to learn more about service-oriented
 architecture (SOA) to programmer analysts and architects. For the remaining chapters, some prior knowledge of Java is assumed,
 and numerous code samples are sprinkled throughout those remaining chapters. That said, there is material in the introductory
 chapters in each technology area covered that can be easily digested by non-developers. While the products covered are all
 written in Java, it’s likely that if you are a C++ or C# developer, you’ll be able to follow the examples sufficiently enough
 to understand the key concepts being imparted.

 All of the products we cover in depth in the book undergo frequent updates. This may range from minor dot releases to major
 new versions. I will make every effort to make sure the examples provided in the sample code are kept up to date with the
 latest releases. Please visit http://jdavis.open-soa.info/wordpress/regularly, as it houses the latest versions of the source code and will be used to highlight any significant new releases as they pertain
 to the products covered.

Roadmap

 Part 1 of the book focuses on what constitutes SOA, the advantages gleaned by adopting this architectural pattern, and what technologies
 contribute or compliment the move to SOA. This part really establishes the foundation for the technologies we describe moving
 forward in the book, so I encourage you not to skip it!

 Chapter 1 provides some historical perspective to SOA—why it came about, and why it’s important. It also describes the essential characteristics
 of SOA, and separates the wheat from the chaff in identifying what is really most important for adopting SOA.

 Chapter 2 explores which technologies products contribute or compliment the adoption of SOA. This discussion then provides the basis
 for evaluating and selecting the open source products that are covered in depth in the chapters that follow. If you’re curious
 as to why I selected Apache Synapse instead of Apache ServiceMix or Mule for the ESB, this chapter will provide the justification.

 Part 2 of the book describes the Service Component Architecture (SCA) framework, and how it can be used to develop components that
 can be exposed as low-level or composite services. We then move into SCA implementation using the open source Apache Tuscany
 product. Given the central role that services play in SOA, this is obviously an important section.

 Chapter 3 introduces the SCA framework, its history, concepts, and benefits. The SCA assembly model, which is core to the framework,
 is described in detail. Specific examples are provided using Apache Tuscany, the SCA implementation chosen for use within
 the book.

 Chapter 4 delves into advanced Apace Tuscany features. This includes how to use scripting languages such as JRuby and Groovy for building
 components, and how more complex interaction models such as conversations and callbacks are supported. We also introduce Service
 Data Objects (SDOs) along with their features and benefits. Part 3 explores how the services created through Apache Tuscany can be combined together to form a complete business process. This
 is accomplished by way of business process management (BPM), which is defined and examined. JBoss jBPM is introduced as the
 BPM tool used within the book, and its features and capabilities are explored in depth.

 Chapter 5 introduces the role of BPM within SOA, and why we consider it to be the “secret sauce” of SOA. We follow that with an introduction
 to JBoss jBPM where we describe its key concepts, nomenclature, and how to construct a simple process using the product.

 Chapter 6 examines the role of tasks within jBPM. A task represents a human activity that needs to be performed within a business process,
 such as an approval. The functionality provided by the jBPM Console is explored, as it provides a graphical interface to managing
 tasks and processes. Lastly, we illustrate how to use the jBPM API to programmatically interact with business processes and
 tasks.

 Chapter 7 dives into some of the advanced capabilities of jBPM, including how to manage larger processes through using superstates
 and subprocesses. We also look at how to manage exceptions within a process, and the role of asynchronous continuations for
 distributed processing. Lastly, we look at how jBPM can be integrated with Apache Tuscany and SCA, and how this combination
 can be used to service-enable jBPM for integration with other platforms and languages.

 Part 4 switches gears, and covers the emerging field of complex event processing (CEP). This is illustrated through the use of Esper,
 an open source event stream processing application. Detailed examples are provided for using Esper, and we describe how Esper
 can be used in tandem with jBPM and how to service-enable Esper using Apache Tuscany. The remaining chapters then address
 enterprise service buses (ESBs), and Apache Synapse is introduced and examined in depth using a real-life case study.

 Chapter 8 provides an overview of CEP, and then introduces Esper, which is an open source application for event stream processing (ESP).
 The functionality and features of Esper are described using detailed examples, and we also illustrate how to integrate with
 Esper by service-enabling it through Apache Tuscany.

 Chapter 9 describes the appropriate role ESBs play in SOA, along with the core features commonly found in all ESBs. Then, Apache Synapse
 is introduced as the ESB of choice for the book, and some quick-and-dirty examples are provided to demonstrate its capabilities.

 Chapter 10 takes a deep dive into Synapse using a real-life case study. Advanced features such as transport switching, enterprise integration
 patterns, and quality of service mediation are described in detail.

 Part 5 concludes the remaining chapters of the book by addressing the role played by a business rules engine, and how SOA acts as
 an enabler for realizing the great benefits that can be achieved by adopting an enterprise decision management approach. JBoss
 Drools is introduced as the open source business rule engines for the examples in the book, and its features are described
 in great detail through samples and a detailed case study.

 Chapter 11 provides an overview of what constitutes business rules and the business rules approach, and why it is so beneficial, especially
 when married with SOA. We then explore the history and overview of JBoss Drools, which was selected as the rule engine of
 choice for the book. Simple examples are used to illustrate the key concepts behind Drools, such as how to construct rules
 and activate the engine.

 Chapter 12 takes a more in-depth look into Drools, and in particular, how to use Guvnor, the Business Rule Management System (BRMS)
 that comes with the product. A real-life case study is provided to explore advanced Drools capabilities such as Rule-Flow.
 Lastly, we illustrate how to service-enable Drools using Apache Tuscany.

 A bonus chapter, available online at www.manning.com/OpenSourceSOA, will cover the role of registries, and how they can be used for cataloging services and assisting in SOA governance and
 best practices. An implementation of a registry product is provided through examples of using WSO2’s Registry product.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 Source code for all working examples in this book is available for download at http://jdavis.open-soa.info/wordpress/ as well as from the publisher’s website at http://www.manning.com/OpenSourceSOA.

 The source code is packaged as an Eclipse project. There are two different download options. One, which is referred to as
 “Source with no libraries,” is a very small download and does not include any JAR libraries. Instead, an Ant target can be
 run that will automatically pull down all required libraries from various Maven public directories. The other download, which
 tops out at around 125MB, does include all of the JAR libraries pre-packaged. There is also a link to the installation instructions,
 which provides detailed instructions for setting of the source. The prerequisites (which are minimal) are described within
 the instructions PDF. Every effort will be made to keep the source code examples working with updated versions of the applications.

Author Online

 The purchase of Open Source SOA includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point
 your web browser to http://www.manning.com/OpenSourceSOA. This page provides information about how to get on the forum once you’re registered, what kind of help is available, and
 the rules of conduct on the forum.

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the cover illustration

 The figure on the cover of Open Source SOA is captioned “L’épicier,” which means storekeeper, grocer, or purveyor of fine foods. The illustration is taken from a 19th-century
 edition of Sylvain Maréchal’s four-volume compendium of regional dress customs published in France. Each illustration is finely
 drawn and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s
 towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the
 streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by
 their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. History and principles

 Service-oriented architecture (SOA) has emerged over the past several years as one of the preferred approaches for systems
 design, development, and integration. Leveraging open standards and the ubiquity of the internet, SOA is premised on the notion
 of reusable services that correspond to self-contained, logical units of work. The promise is that these services can be quickly
 pieced together using common patterns to form new applications that are tightly aligned with the needs of the business. The
 upshot? Improved business agility and cost-effective utilization of IT resources and assets.

 In part 1, we’ll examine the history behind SOA and explore some of the commonalities that it shares with earlier architectural and
 technology approaches. We’ll then identify some of the core characteristics of SOA, and explain how they’re manifested in
 actual technologies that can be used in your own enterprise. Collectively, these technologies will combine to form what we
 are calling the Open SOA Platform. Once these technologies, such as business process management (BPM), are identified, our attention will turn to surveying
 the landscape of possible open source products that can be used to satisfy these technology requirements.

 The maturity and adoption of open source products within the enterprise has become widespread. Many of these products are
 now suitable for use in crafting a technology stack that can support SOA. Some of the major challenges that have precluded
 more widespread adoption of these solutions in the past pertain to how they can be rationally assessed, and then integrated,
 within an organization. We’ll present requirements for analyzing the product categories of the SOA technology stack, and using
 them, select what we consider to be the “best of breed” open source solutions for each category. The selection criteria, as we’ll see, are also based on how well they can be integrated
 to form a complete SOA solution. What’s more, this can be accomplished at a fraction of the cost of commercial alternatives—an
 important consideration in today’s challenging economic environment.

Chapter 1. SOA essentials

 This chapter covers

	Origins of SOA in distributed computing

 	Requirements of a SOA environment

 	Key technologies supporting SOA

Ponce de León’s early quest to find the “Fountain of Youth” in Florida is one of the most frequently told stories of American
 folklore. Although he failed in his journey to find the “healing waters,” it turns out that he was in good company, for throughout
 history we can find tales of similar adventures that never materialized. The history of computing bears some resemblance.
 Every decade or so, a new “silver bullet” emerges that promises to heal the problems that have plagued software development
 in the past. Those problems include protracted development cycles; solutions that fail to achieve expectations; high maintenance
 costs; and, of course, the dreaded cost overruns.

 The quest is to find a solution that simplifies development and implementation, supports effective reuse of software assets,
 and leverages the enormous and low-cost computing power now at our fingertips. While some might claim that service-oriented
 architecture (SOA) is just the latest fad in this illusive quest, tangible results have been achieved by those able to successfully
 implement its principles. According to a recent article in the Harvard Business Journal, companies that have embraced SOA “have eliminated huge amounts of redundant software, reaped major cost savings from simplifying
 and automating manual processes, and realized big increases in productivity” [HBJ]. Further, SOA has achieved greater staying
 power than many earlier alternatives, which does say something of its merits. Perhaps this is because SOA is a more nebulous
 concept and embraces technologies as much as it does principles and guidelines—thus refuting its benefits becomes more difficult.

 Until recently, achieving a technology infrastructure capable of sustaining a SOA generally required purchasing expensive
 commercial products. This was especially true if an enterprise desired a well-integrated and comprehensive solution. While
 several early SOA-related open source products were introduced, they tended to focus on specific, niche areas. For example,
 Apache Axis was first introduced in 2004 and became a widely adopted web services toolkit for Java. As we’ll discover, however,
 web services represent only a piece of the SOA puzzle. Fast-forward to 2008 and we now see commercially competitive open source
 products across the entire SOA product spectrum. The challenge now for a SOA architect wanting to use open source is how to
 select among the bewildering number of competing products. Even more challenging is how to integrate them.

 The goal of this book is to help you identify the core technologies that constitute a SOA and the open source technologies
 that you can use to build a complete SOA platform. Our focus will be on how to integrate these core technologies into a compelling
 solution that’s comparable in breadth and depth to the expensive offerings provided by the commercial vendors. SOA is now
 attainable for even the smallest of enterprises using high-quality open source software. This book will present a technology
 blueprint for open source SOA. Of course, thanks to the plethora of high-quality open source solutions, you can naturally
 swap out the solutions I’m advocating with those you deem appropriate.

 Before jumping headfirst into the technology stack, let’s establish some context for where SOA originated and develop a common
 understanding of what it is.

1.1. Brief history of distributed computing

 The mainframe systems of the 1960s and ’70s, such as the IBM System/360 series, rarely communicated with each other. Indeed,
 one of the main selling points of a mainframe was that it would provide you with everything necessary to perform the computing
 functions of a business. When communications were required, the process usually amounted to transferring data by way of tape
 from one system to another. Over time, though, real-time access between systems became necessary, especially as the number
 of systems within an organization multiplied. This need was especially apparent in financial markets, where trading required
 real-time transactional settlements that often spanned across companies.

 Initially, real-time access was accomplished via low-level socket communications. Usually written in assembly language or
 C, socket programming was complex and required a deep understanding of the underlying network protocols. Over time, protocols such as Network File System (NFS)
 and File Transfer Protocol (FTP) came on the scene that abstracted out the complexity of sockets. Companies such as TIBCO
 emerged that developed “middleware” software explicitly designed to facilitate messaging and communications between servers.
 Eventually, the ability to create distributed applications became feasible through the development of remote procedure calls
 (RPCs). RPCs enabled discrete functions to be performed by remote computers as though they were running locally. As Sun Microsystems’
 slogan puts it, “The Network is the Computer.”

 By the 1980s, personal computers had exploded onto the scene, and developers were seeking more effective ways to leverage
 the computing power of the desktop. As the price of hardware came down, the number of servers within the enterprise increased
 exponentially. These trends, coupled with the growing maturity of RPC, led to two important advances in distributed computing:

	
Common Object Request Broker Architecture (CORBA)— Originated in 1991 as a means for standardizing distributed execution of programming functions, the first several releases
 only supported the C programming language. Adoption was slow, as commercial implementations were expensive and the ambiguities
 within the specification made for significant incompatibilities between vendor products. The 2.0 release in 1998 was significant
 in that it supported several additional language mappings and addressed many of the shortfalls present in the earlier standards.
 However, the advent of Java, which dramatically simplified distributed computing through Remote Method Invocation (RMI), and
 finally, through XML, has largely led to the demise of CORBA (at least in new implementations).

 	
Distributed Computing Object Model (DCOM)— DCOM is a proprietary Microsoft technology that was largely motivated as a response to CORBA. The first implementations appeared
 in 1993. While successful within the Microsoft world, the proprietary nature obviously limited its appeal. The wider enterprise
 class of applications that were emerging at the time—Enterprise Resource Planning (ERP) systems—generally used non-Microsoft
 technologies. Later, Java’s Enterprise JavaBeans (EJB) platform could be construed as Java’s alternative to DCOM, as it shared
 many of the same characteristics.

By the late 1990s, with the widespread adoption of the internet, companies began recognizing the benefits of extending their
 computing platform to partners and customers. Before this, communications among organizations were expensive and had to rely
 on leased lines (private circuits). Leased lines were impractical except for the largest of enterprises. Unfortunately, using
 CORBA or DCOM over the internet proved to be challenging, in part due to networking restrictions imposed by firewalls that
 only permitted HTTP traffic (necessary for browser and web server communications). Another reason was that neither CORBA nor
 DCOM commanded dominant market share, so companies attempting communication links often had competing technologies.

 When the Simple Object Access Protocol (SOAP) first arrived (in January 2000), it was touted as a panacea due to its interoperable
 reliance on XML. SOAP was largely envisioned as an RPC alternative to CORBA and DCOM. Since RPCs were the predominant model
 for distributed computing, it naturally followed that SOAP was originally used in a similar capacity. However, RPC-based solutions,
 regardless of their technology platform, proved nettlesome. (It is worth noting that SOAP’s RPC was an improvement over earlier
 RPC implementations, as it relied on XML as the payload, which facilitates a much higher degree of interoperability between
 programming languages.)

 1.1.1. Problems related to RPC-based solutions

 While RPC-based distributed computing was no doubt a substantial improvement over earlier lower-level socket-based communications,
 it suffered from several limitations:

	Tight coupling between local and remote systems requires significant bandwidth demands. Repeated RPC calls from a client to
 server can generate substantial network load.

 	The fine-grained nature of RPC requires a highly predictable network. Unpredictable latency, a hallmark of internet-based
 communications, is unacceptable for RPC-based solutions.

 	RPC’s data type support, which aims to provide complete support for all native data types (arrays, strings, integers, etc.),
 becomes challenging when attempting to bridge between incompatible languages, such as C++ and Java. Often, incompatibilities
 result, greatly complicating its use.

SOAP RPC-style messages also suffered from the same inherent limitations as those mentioned here. Fortunately, SOAP offers
 alternative message styles that overcome these shortcomings.

 1.1.2. Understanding SOAP’s messaging styles

 In addition to the RPC-style SOAP messaging, the founders of the standard had the foresight to create what is known as the
 document-style SOAP message. As pointed out earlier, the RPC style is for creating tightly coupled, distributed applications
 where a running program on one machine can rather transparently invoke a function on a remote machine. The intention with
 RPC is to treat the remote function in the same way as you would a local one, without having to dwell on the mechanics of
 the network connectivity. For example, a conventional client-server application could utilize SOAP RPC-style messaging for
 its communication protocol.

 Document style, on the other hand, was envisioned more as a means for application-to-application messaging, perhaps among
 business partners. In other words, it was intended for more “loosely coupled” integrations, such as document or data transfers.
 The differences between the two styles are defined within the SOAP standard and are reflected in the Web Service Definition
 Language (WSDL) interface specification that describes a given service.

 After the initial flirtation with RPC-based web services, a coalescing of support has emerged for the document-style SOAP
 messaging. Microsoft was an early proponent of the document style, and Sun likewise embraced it completely when introducing
 the Java API for XML Web Services (JAX-WS). Web services became viewed as a panacea to achieving SOA. After all, a linchpin
 of SOA is the service, and a service requires three fundamental aspects: implementation; elementary access details; and a
 contract [MargolisSharpe]. A SOAP-based web service, with its reliance on the WSDL standard, appeared to address all three. The implementation is
 the coding of the service functionality; the access details and contract are addressed within the WSDL as the port type and
 XML schema used for document-style messaging. So if you simply expose all your internal components as SOAP-based services,
 you then have the foundation by which you can (a) readily reuse the services, and (b) combine the services into higher-level
 business processes—characteristics that eventually would become cornerstones of SOA. So what exactly is SOA?

 1.1.3. Advent of SOA

 The concepts that today are associated with SOA began to emerge with the widespread adoption of the internet, and more specifically,
 HTTP. By 2003, Roy Schulte of Gartner Group had coined the term SOA, and it quickly became ubiquitous. What it was, exactly,
 remained somewhat difficult to quantify. Through time, some commonalities appeared in the various definitions:

 Contemporary SOA represents an open, agile extensible, federated, composable architecture comprised of autonomous, QoS-capable,
 vendor diverse, interoperable, discoverable, and potentially reusable services, implemented as Web services. [Erl2005]

 Service-Oriented Architecture is an IT strategy that organizes the discrete functions contained in enterprise applications
 into interoperable, standards-based services that can be combined and reused quickly to meet business needs. [BEA]

 As you can see, the common theme is the notion of discrete, reusable business services that can be used to construct new and
 novel business processes or applications. As you learned earlier, however, many past component-based frameworks attempted
 similar objectives. What distinguishes these approaches from the newer SOA?

	As discussed earlier, CORBA, EJB, and DCOM are all based on RPC technologies. In many ways, this is the exact opposite of
 SOA, since it introduces highly coupled solutions by way of using distributed objects and remote functions. A central theme
 of SOA, on the other hand, specifically encourages loosely coupled services (I’ll address this concept in greater detail later
 in this chapter).

 	In the case of EJB and DCOM, they are both tied to specific platforms and are thus not interoperable. Unless a homogenous
 environment exists (which is rare in today’s enterprises, as they are often grown through acquisition), the benefits from
 them couldn’t be achieved easily. SOA-based web services were designed with interoperability in mind.

 	
CORBA, EJB, and, to a lesser degree, DCOM were complicated technologies that often required commercial products to implement
 (at least in their earliest incarnations). In particular, CORBA required use of Interface Description Language (IDL) mappings,
 which were tedious to manage, and until recently with the 3.0 release of EJB, complex XML descriptor files were required for
 its implementation. SOA can be introduced using a multitude of off-the-shelf, open source technologies.

 	SOA relies on XML as the underlying data representation, unlike the others, which used proprietary, binary-based objects.
 XML’s popularity is undeniable, in part because it is easy to understand and generate.

Another distinction between a SOA and earlier RPC-based component technologies is that a SOA is more than technology per se,
 but has grown to embrace the best practices and standards that are rooted in the lessons found through decades of traditional
 software development. This includes notions such as governance, service-level agreements, metadata definitions, and registries.
 These topics will be addressed in greater detail in the sections that follow.

 So what does a SOA resemble conceptually? Figure 1.1 depicts the interplay between the backend systems, exposed services, and orchestrated business processes.

 Figure 1.1. Illustration of a SOA environment. Notice the relationships between services and business processes.

 [image:]

 As you can see, low-level services (sometimes referred to as fine-grained) represent the layer atop the enterprise business
 systems/applications. These components allow the layers above to interact with these systems. The composite services layer
 represents more coarse-grained services that consist of two or more individual components. For example, a createPO composite service may include integrating finer-grained services such as createCustomer, createPOHeader, and createPOLineItems. The composite services, in turn, can then be called by higher-level orchestrations, such as one for processing orders placed
 through a website.

 What is interesting is that, in many respects, SOA is a significant departure from older distributed computing models, which
 centered around the exchange of distributed objects and remote functions. SOA instead emphasizes a loosely coupled affiliation
 of services that are largely autonomous in nature.

 The benefits achieved from embracing SOA are now being realized by the early adopters. When monolithic applications are replaced
 by discrete services, software can be updated and replaced on a piece-by-piece basis, without requiring wholesale changes
 to entire systems. This strategy improves flexibility and efficiency. An often-overlooked benefit is that this then enables
 a company to selectively outsource nonpri-mary activities to specialists who can perform the function more efficiently and
 at the lowest cost. Thanks to the advances in connectivity, where a service is housed can be largely transparent to the enterprise.

 However, SOA is clearly no silver bullet. According to a recent InformationWeek survey [IW], 58 percent of respondents reported that their SOA projects introduced more complexity into their IT environments. In 30
 percent of those projects, the costs were more than anticipated. Nearly the same percentage responded that their SOA initiatives
 didn’t meet expectations. SOAP-based web services do introduce some added complexity to the SOA equation, despite their hype.

1.2. The promise of web services for delivering SOA

 The SOAP standard, with its reliance on WSDLs, appeared to address many of the fundamental requirements of a SOA. That being
 the case, SOA, in many individuals’ eyes, became rather synonymous with web services. The major platform vendors, such as
 Sun, IBM, Microsoft, BEA (now Oracle), and JBoss, developed tools that greatly facilitated the creation of SOAP-based web
 services. Companies began to eagerly undertake proof-of-concept initiatives to scope out the level of effort required to participate
 in this new paradigm. Web commerce vendors were some of the earliest proponents of exposing their API through SOAP, with eBay
 and Amazon.com leading the way (more than 240,000 people have participated in Amazon Web Services). Software as a Service
 (SaaS) vendors such as Salesforce emerged that greatly leveraged on the promise of web services. Indeed, Salesforce became
 the epitome of what the next generation of software was touted to become.

 Within organizations, the challenge of exposing core business functionality as web services turned out to be daunting. Simply
 exposing existing objects and methods as web services often proved ill advised—to do so simply embraces the RPC model of distributed
 computing, not the SOA principles of loosely coupled, autonomous services. Instead, façade patterns or wrappers were often
 devised to create the desired web services. This approach often entailed writing significant amounts of new code, which contrasted
 with the heady promises made by vendors. The challenges were compounded by the vast number of choices that were available, even within a particular language environment. In the Java world
 alone, there were a bewildering number of choices for creating web services: Apache Axis (and Axis 2); Java-WS; Spring-WS,
 JBossWS, and CXF (previously known as XFire)—and these are just the open source products! Knowing which technology to use
 alone required significant investment.

 Other factors also served to dampen the interest in SOAP web services. The perceived complexity of the various WS-* standards
 led to a movement to simply use XML-over-HTTP, as is the basis for Representational State Transfer (REST)-based web services
 (for more on this raging controversy between REST and SOAP, see [RESTvsSOAP]). The nomenclature found in the WSDL specification, such as port types and bindings, is alien to many developers and strikes
 them as overly convoluted, especially for simple services (in the WSDL 2.0 standard, some of this arcane nomenclature has
 been removed, for instance, replacing port type with interface and port with endpoint, which is a big improvement, especially for Java and C# developers who are already familiar with such terms and their meaning).
 Interestingly enough, some convergence between REST and SOAP is taking place, such as the acknowledgment among some REST advocates
 that the metadata description capabilities of a WSDL are important. Towards this end, REST advocates have devised a new metadata
 specification for REST-based web services called the Web Application Description Language (WADL) [WADL]. While I may sometimes appear to be a bigot of SOAP, that’s primarily because of the metadata features of WSDL, and REST
 coupled with WADL creates a compelling alternative.

 The early enthusiasm for SOAP-based web services as the springboard for SOA began to wane as alternatives such as Web-Oriented
 Architecture (WOA) began to emerge, which promises a simpler, non-SOAP-based SOA architecture (see [Hinchcliffe]). Truth be told, there’s likely room for both, with large enterprises opting for the WS-* stack due to its well-defined
 interface support, security, and reliable messaging provisions.

1.3. Understanding the core characteristics of SOA

 As it turns out, achieving SOA requires more than SOAP-based web services. The characteristics of SOA transcend a particular
 technology. SOA is an amalgamation of technologies, patterns, and practices, the most important of which I’ll address in this
 section.

 1.3.1. Service interface/contract

 Services must have a well-defined interface or contract. A contract is the complete specification of a service between a service
 provider and a specific consumer. It should also exist in a form that’s readily digestible by possible clients. This contract
 should identify what operations are available through the service, define the data requirements for any exchanged information,
 and detail how the service can be invoked. A good example of how such a contract can be crafted can be found in a WSDL. Apart
 from describing which operations are available through a given network “endpoint,” it also incorporates XML Schema support
 to describe the XML message format for each of the service operations. Figure 1.2 illustrates the relationship between WSDL and XML Schema.

 Figure 1.2. WSDL usage of XML Schema for defining the specification of an operation

 [image:]

 Multiple operations can be defined, each of which can have its own schema definition associated with it. While the WSDL nomenclature
 can be confusing (particularly the 1.1 specification, with its rather arcane concepts of ports and bindings), it has, arguably,
 been the most successful means for defining what constitutes an interface and contract for a service. Commercial vendors,
 in particular, have created advanced tooling within their platforms that can parse and introspect WSDLs for code generation
 and service mapping. The WSDL 2.0 specification is intended to simplify the learning curve and further advance its adoption.

 One of the early criticisms of the WSDL specification was that the specific service endpoint was “hardwired” into the specification.
 This limitation was largely addressed in the WS-Addressing standard, which has achieved widespread adoption. It supports dynamic
 endpoint addressing by including the addressing information within the body of the SOAP XML message, and not “outside” of
 it within the SOAPAction HTTP header. The endpoint reference contained with the WS-Addressing block could also be a logical network location, not
 a physical one. This enables more complex load-balancing and clustering topologies to be supported. We’ll explore the issue
 of why such “service transparency” is beneficial next.

 1.3.2. Service transparency

 Service transparency pertains to the ability to call a service without specific awareness of its physical endpoint within the network. The perils
 of using direct physical endpoints can be found in recent history. Nearly all enterprise systems began offering significant
 API support for their products by the mid-1990s. This trend allowed clients to begin tapping into the functionality and business
 rules of the systems relatively easily. One of the most immediate, and undesirable, consequences of doing this was the introduction
 of point-to-point interfaces. Before long, you began seeing connectivity maps that resemble figure 1.3.

 Figure 1.3. Example of how point-to-point connections greatly complicate service integration

 [image:]

 An environment punctuated by such point-to-point connections quickly becomes untenable to maintain and extremely brittle.
 By making a change in something as simple as the endpoint connection string or URI, you can break a number of applications,
 perhaps even unknowingly. For example, in figure 1.3 imagine if the CRM system’s network address changed—a multitude of other apps would immediately break.

 An enterprise service bus (ESB) is often touted as the savior for avoiding the proliferation of such point-to-point connections,
 since its messaging bus can act as a conduit for channeling messages to the appropriate endpoint location. It no doubt performs
 such functionality admirably, but the same thing can be accomplished through a simple service mediator or proxy. The scenario
 depicted in figure 1.3 could then be transformed to the one shown in figure 1.4.

 Figure 1.4. Example of mediator or proxy-based service endpoint environment

 [image:]

 Obviously, figure 1.4 is an improvement over figure 1.3. No longer does the client application or API user have to explicitly identify the specific endpoint location for a given
 service call. Instead, all service calls are directed to the proxy or gateway, which, in turn, forwards the message to the
 appropriate endpoint destination. If an endpoint address then changes, only the proxy configuration will be required to be
 changed.

 The WS-Addressing specification, one of the earliest and most well-supported of the WS-* standards, defines an in-message
 means for defining the desired endpoint or action for SOAP-based web services. It is significant in that, without it, only
 the transport protocol (typically HTTP) contains the routing rules (it’s worth noting that SOAP supports more transports than
 just HTTP, such as JMS). WS-Addressing supports the use of logical message destinations, which would leave the actual physical
 destination to be determined by a service mediator (to learn more about WS-Addressing, see the [WSAddressing] reference in the Resources section at the end of this book).

 Until fairly recently, no true open source web service proxy solution was available. However, Apache Synapse, although sometimes
 positioned as an ESB, is designed largely with this capability in mind. It supports outstanding proxy capabilities and can
 also serve as a protocol switcher. For instance, Synapse can be easily configured to receive a SOAP HTTP message and deposit
 it for internal consumption by a Java JMS queue. Synapse will be covered in depth in upcoming chapters.

 1.3.3. Service loose coupling and statelessness

 Simply exposing a service as a SOAP-based web service, defined by a WSDL, does not, by itself, constitute service enablement.
 A key consideration is also whether the service is sufficiently self-contained so that it could be considered stand-alone.
 This factor is sometimes referred to as the level of “service coupling.” For example, let’s assume that we want to create
 a new service to add a new customer to your company’s CRM system. If in order to use the service you must include CRM-specific
 identifiers such as OrganizationId, you have now predicated the use of that service on having a prior understanding of the internals of the CRM. This can greatly
 complicate the use of the service by potential consumers and may limit its audience potential. In this case, it would be preferable
 to create a composite service that performs the OrganizationId lookup first, and then performs the call to insert the new customer.

 Related to this issue is granularity, which refers to the scope of functionality addressed by the service. For instance, a
 fine-grained service may resemble something like addCustomerAddress, whereas a coarse-grained service is more akin to addCustomer. The preponderance of literature advocates the use of coarse-grained services, in part for performance reasons as well as
 convenience. If the objective is to add a new customer to your CRM system, calling a single service with a large XML payload
 is obviously preferable to having to chain together a multitude of lower-level service calls. That said, maximizing reusability
 may sometimes warrant the construction of finer-grained services. In our example, having the ability to addCustomerAddress can be used in a variety of cases, not limited to just creating a new customer. Indeed, composite services that are coarser
 grained in function can then be crafted based on the lower-level services.

 Finally, if possible, a service should be stateless. What would be an example of a stateful service? Imagine a service that includes a validation operation that first must be called prior to the actual action operation. If successful, the validation call would return a unique identifier. The action
 operation would then require that validation ID as its input. In this scenario, the data input from the validation call would
 be stored in a session state awaiting a subsequent call to perform the desired activity. While this solution avoids forcing
 the client user to resubmit the complete data set twice (one for the operation, the other for the action), it introduces additional
 complexity for the service designer (though various service implementations, both open source and proprietary, do attempt
 to simplify building stateful services). In particular, scalability can be adversely impacted, as the application server must
 preserve session state and manage the expiration of unused sessions. Performance management is complicated if appliance-based
 load balancing is being used, as it must pin the session calls to specific application servers (software clustering can overcome
 this, but it introduces its own challenges).

 In the previous scenario, statefulness can be avoided by requiring the client to again send all relevant data when making the action call, along with the validation
 ID retrieved from the validation call. The validation ID would be persisted in a database and provided a timestamp. The action
 call would have to take place within a given number of minutes before the validation ID became invalidated.

 1.3.4. Service composition

 One of the main objectives of a SOA is the ability to generate composite services and/or orchestrations using service components
 as the building blocks. A composable service is largely a function of how well it is designed to participate in such a role. As was illustrated in figure 1.1, there are two general types of composite services. The first type, which could be classified as simple or primitive, simply wraps one or more lower-level services together into a more coarse-grained operation. This process can usually be
 accomplished by defining a simple data flow that stitches together services and then exposes the new functionality as a new
 service. Another goal may be to simply impose a new service contract for an existing service while leaving the underlying
 target endpoint unchanged. In any case, the underlying service or services participating in the simple composition must adhere
 to these attributes we’ve already addressed (and some of which will follow). They include a well-defined service contract;
 stateless in design, loosely coupled, and offer high availability. A composite service should be no different, and should
 be treated like any other service, as shown in figure 1.5.

 Figure 1.5. A composite service is added to an existing catalog of services.

 [image:]

 The second type of composite services is the complex or workflow-type business processes, often referred to as business process management (BPM). These processes are generally
 multistep creations that may optionally include long-running transactions. The WS-BPEL (Business Process Execution Language)
 set of standards defines an XML-based language for describing a sequence flow of activities, or process. Within a process
 definition, a rich set of nodes can be used for routing, event handling, exception management (compensation), and flow control.
 The core WS-BPEL standard is tailored for working with SOAP-based web services. Because of this orientation, the entry point for invoking a WS-BPEL process is most typically a SOAP web service (other possibilities may include a timer service,
 for example). This can be either a blessing or a curse, depending on whether SOAP services are a standard within your environment.

 How does a composite service author have visibility into which services are available for use when constructing such processes?
 This is the role of the service registry, which we’ll cover next.

 1.3.5. Service registry and publication

 Unlike in the movie Field of Dreams, “if you build it, they will come” doesn’t apply to services. Clients must be aware of the existence of a service if they’re
 expected to use it. Not only that, services must include a specification or contract that clearly identifies input, outputs,
 faults, and available operations. The web services WSDL specification is the closest and most well-adopted solution for service
 reflection. The Universal Description, Discovery, and Integration (UDDI) standard was intended as a platform-independent registry
 for web services. UDDI can be used as both a private or public registry. Further, using the UDDI API, a client could theoretically,
 at least, “discover” services and bind to them. Unfortunately, UDDI suffered from an arcane and complex nomenclature, and
 its dynamic discovery features were myopic and predicated on naive assumptions. Today, relatively few enterprise customers
 are using UDDI and fewer still public registries. In practice, UDDI is rarely used today, except behind the scenes in a handful
 of commercial products where its complexity can be shielded from the user. Unfortunately, no standards-based alternative to
 UDDI is in sight.

 The failure of UDDI doesn’t obviate the need for a registry, and most companies have instead devised a variety of alternatives.
 For SOAP-based web services, a comprehensive WSDL can often be adequate. It can list all the available services and operations.
 Others have used simple database or Lightweight Directory Access Protocol (LDAP) applications to capture service registry
 information. Simply storing a catalog of services and their descriptions and endpoints in a wiki may suffice for many companies.
 Recently, there has also been an emergence of new open source registry solutions, such as MuleSource’s Galaxy and WSO2’s Registry, which attempt to fill this void; we’ll discuss these solutions
 in the next chapter.

 Now that we’ve identified some of the core characteristics of SOA, let’s turn our attention to how those higher-level objectives
 can be decomposed into specific technologies that, when combined, can comprise a complete SOA technology platform.

1.4. Technologies of a SOA platform

 As pointed out earlier, it’s a mistake to assume that SOA is all about technology choices. Issues like governance, quality
 of service, and so forth are all major contributors to crafting a complete SOA. That said, our intention is to focus on the
 technical aspects, as the other areas largely fall outside the scope of this book. Figure 1.6 depicts the various technologies that constitute a SOA technology platform, which, moving forward, I will refer to as the
 Open SOA Platform. We’ll explore each in greater detail along with an explanation of how the technologies tie together.

 Figure 1.6. SOA technology platform. In chapter 2, we begin identifying applicable technologies for many of these areas.

 [image:]

 1.4.1. Business process management

 Business process management (BPM) is a set of technologies that enables a company to build, usually through visual flow steps,
 executable processes that span across multiple organizations or systems. In the past, such systems were less elegantly referred
 to as workflow processing engines. The promise of BPM, as optimistically stated by Howard Smith and Peter Finger is that, “BPM doesn’t speed up applications development; it eliminates the need for it” [SmithFinger]. This is because business applications, in this historical context, create stovepipes that are separated by function, time,
 and the data they use. The process in BPM refers to a holistic view of the enterprise, which incorporates employees, partners, customers, systems, applications,
 and databases. This also serves to extract the full value of these existing assets in ways never before possible.

	

 Where are the applications?
 In looking at figure 1.6, you may be wondering, “Where are the applications?” The presentation layer can be considered your typical application, but with such a variety of different delivery models
 (mobile, web, gadgets, hybrids like Adobe AIR, RSS feeds, and so forth), the very notion of what constitutes an application
 is changing. Hence, we use “Presentation Services,” which represent anything that can be considered an interface to computing
 services.

	

Many consider BPM to be the “secret sauce” of SOA, insofar as the benefit it provides to companies that adopt it. In the book
 The New Age of Innovation, the authors identify business processes as the “key enablers of an innovation culture” [Prahalad]. To be competitive in a dynamic marketplace, business processes must change at a rapid pace, and this can only be achieved
 through BPM systems that enable defining, visualizing, and deploying such processes.

 For a system to participate in a BPM process, services or functionality must be made externally accessible. For this reason,
 SOA is often considered a prerequisite for BPM, since SOA is fundamentally about exposing services in a way that enables them
 to participate in higher-level collaborations. Theoretically at least, BPM allows business users to design applications using
 a Lego-like approach, piecing together software services one-upon-another to build a new higher-level solution. In reality,
 it’s obviously not quite so simple, but skilled business analysts can use the visual design and simulation tools for rapid
 prototyping. These design primitives can also be highly effective at conveying system requirements.

 The fundamental impetus behind BPM is cost savings and improved business agility. As TIBCO founder Vivek Ranadivé notes, “The goal of BPM is to improve an organization’s business processes by making them
 more efficient, more effective and more capable of adapting to an ever-changing environment” [Ranadivé]. Integrating many disparate systems and linking individuals across organizational boundaries into coherent processes can
 naturally result in significant return on investment (ROI). A useful byproduct of such efforts is improved reporting and management
 visibility. Agility, or the ability of a company to quickly react to changes in the marketplace, is improved by enabling new
 business processes to be created quickly, using existing investments in technology.

 1.4.2. Enterprise decision management

 An enterprise decision management (EDM) system incorporates a business rule engine (BRE) for executing defined business rules
 and a Business Rule Management System (BRMS) for managing the rules. What exactly is a business rule? It is a statement, written in a manner easily digestible
 by those within the business, which makes an assertion about some aspect of how the business should function. For example,
 a company’s policy for when to extend credit is based on certain business rules, such as whether the client has a Dun & Bradstreet
 number and has been in business for x number of years. Such rules permeate most historical applications, where literally thousands of them may be defined within
 the application code. Unfortunately, when they are within application code, modifying the rules to reflect changing business
 requirements is costly and time consuming.

 A rules-based system, or BRMS, attempts to cleanly separate such rules from program code. The rules can then be expressed
 in a language the business user can understand and easily modify without having to resort to application development changes.
 This also serves to make business rules an “enterprise asset” that represents the very lifeblood of an organization. Figure 1.7 illustrates how a centralized decision service can be used by services and applications.

 Figure 1.7. A centralized decision service can be used by other services and applications.

 [image:]

 One of the biggest challenges when building applications is bridging the knowledge gap that exists between the subject matter
 experts (SMEs) who have an intimate understanding of the business, and the developers who often possess only a cursory awareness
 (and sometimes desire no more than that). Developers are faced with translating business requirements into abstract representations
 in code. This gap is often responsible for the disappointing results that too often surround the rollout of new applications.
 As Taylor and Raden note, “Embedding business expertise in the system is hard because those who understand the business can’t
 code, and those who understand the code don’t run the business” [TaylorRaden].

 What differentiates a BRMS from an EDM? To be honest, it’s probably mostly semantics, but EDM does emphasize centralized management
 of all business rules, including those considered operational, which may range in the thousands for a given company. According to
 Taylor and Raden, this includes heretofore “hidden” decisions that permeate a company, such as product pricing for a particular
 customer, or whether a customer can return a given product.

 In chapters 11 and 12 we cover EDM in more detail, and describe how the use of domain-specific languages (DSLs) can be used to create business-specific,
 natural language representations of rules most suitable for maintenance by SMEs.

 1.4.3. Enterprise service bus

 An enterprise service bus (ESB) is at its core a “middleware” application whose role is to provide interoperability between
 different communication protocols. For example, it’s not uncommon for a company to receive incoming ASCII-delimited orders
 through older protocols such as FTP. An ESB can “lift” that order from the FTP site, transform it into XML, and then submit
 internally to a web service for consumption and processing. Although this can all be done manually, an ESB offers out-of-the-box
 adapters for such processing, and most commonly, event-flow visual modeling tools to generate chained microflows. The cost savings over conventional code techniques is often substantial.

 How does such a microflow (or what could be alternatively called a real-time data flow) differ from a BPM-type application? After all, at first glance they may appear similar. One key distinction is that BPM
 applications are typically designed for support of long-running transactions and use a central orchestration engine to manage
 how the process flow occurs. A real-time data flow, however, typically uses a model more akin to what’s known as choreography.
 In a choreographed flow, each node (or hop) encapsulates the logic of what step to perform next. In addition, a real-time
 data flow typically passes data by way of message queues, and thus there’s a single running instance of the process, with
 queues corresponding to each node that consume those messages. A BPM, on the other hand, typically instantiates a separate
 process instance for each new inbound message. This is because, as a potentially long-running transaction, the sequential
 queuing method would not be appropriate. To keep the number of running processes to a reasonable number, a BPM engine will
 “hydrate” or “dehydrate” the process to and from running memory to a serialized form, which can then be stored in a database.

 Table 1.1 describes a typical set of services provided in an ESB. Because of the number of services provided by an ESB, it sometimes
 is described as a “backplane” or central nervous system that ties together the various SOA technologies.

 Table 1.1. Core ESB features and capabilities

	
 Feature

 	
 Description

	Data Connectivity/Adapters
 	HTTP (SOAP, XML), FTP, SFTP, File, and JMS connectivity.

	Data Transformation
 	XSLT for XML-based transformations.

	Intelligent Routing
 	Content-based routing based on message properties or inline XML via XPath. Some include additional, more advanced rule-based
 routing using a rules engine.

	Service Management
 	Administrative tools for managing deployments, versioning, and system configuration.

	Monitoring & Logging
 	The ability to monitor, in real time, document and message flows. Beneficial is the capability to put inline interceptors
 between nodes and specifically target individual nodes for more verbose logging.

	Data-flow Choreography
 	The ability to visually (or through editing declarative XML files) create graphs or chains to describe a sequence of steps
 necessary to complete a data flow.

	Custom API
 	The ability to add custom adapters or components to the ESB.

	Timing Services
 	The ability to create time-based actions or triggers.

Figure 1.8 depicts the role that an ESB plays in integrating various protocols and how they can be exposed through a standard messaging
 bus.

 Figure 1.8. Example of an ESB-centric approach for enterprise architecture

 [image:]

 The flexibility of an ESB to tap into a variety of communication protocols lends some merit to an ESB-centric architecture.
 However, if an organization can successfully expose its business services as web services, the central role that an ESB plays
 is diminished (in any case, it certainly has a role in a SOA technology stack).

 Let’s now turn our attention to how analytical information can be drawn by the messages that flow through an ESB.

 1.4.4. Event stream processor

 An event is simply something of interest that happens within your business. It may be expected and normal, or abnormal. An event that
 doesn’t occur may have as much importance as those that do. Too many events may also indicate a problem. Why is it relevant
 to SOA? Event stream processing (ESP) support can be integrated into the implementation of your services so that real-time
 visibility into systems becomes a reality. This operational intelligence arms your enterprise with the ability to quickly
 spot anomalies and respond accordingly. Adding such capabilities into legacy solutions is often not feasible, and instead
 you must rely on data warehouse and business intelligence tools, neither of which provides real-time visibility.

 Event stream processing is considered part of a relatively new technology sometimes referred to as complex event processing
 (CEP). TIBCO’s Ranadivé defines it as

 ...an innovative technology that pulls together real-time information from multiple databases, applications and message-based
 systems and then analyzes this information to discern patterns and trends that might otherwise go unnoticed. CEP gives companies
 the ability to identify and anticipate exceptions and opportunities buried in seemingly unrelated events. [Ranadivé]

 The role of an ESP is to receive multiple streams of real-time data and to, in turn, detect patterns among the events. A variety
 of filters, time-based aggregations, triggers, and joins are typically used by the ESP to assist in pattern detection. The
 interpreted results from the ESP can then be fed into business activity monitoring (BAM) dashboards.

 In Performance Dashboards, Wayne Eckerson identifies three types of business intelligence dashboards: operational, tactical, and strategic [Eckerson]. Operational dashboards generate alerts that notify users about exception conditions. They may also utilize statistical models for predictive forecasting.
 Tactical dashboards provide high-level summary information along with modeling tools. Strategic dashboards, as the name implies, are primarily used by executives to ensure company objectives are being met. Operational dashboards
 rely on the data that event stream processors generate. As the saying goes, you can’t drive forward while looking in your
 rearview mirror. For a business to thrive in today’s competitive landscape, real-time analysis is essential. This provides
 a company with the ability to immediately spot cost savings opportunities, such as sudden drops in critical raw materials;
 proactively identify problem areas, such as a slowdown in web orders due to capacity issues; and unleash new product offerings.

 An event architecture strategy must be part of any SOA solution and must be designed from the get-go to be effective. Bolting
 on such capabilities later can result in expensive reengineering of code and services. Service components and backbone technologies
 (such as the ESB) should be propagating notable events. While a process may not be immediately in place to digest them, adding
 such capabilities later can be easily introduced by adding new Event Query Language (EQL) expressions into the ESP engine.
 We’ll examine EQL in more detail in chapter 8.

 The messages that carry event data that flow into an ESP are, within a Java environment, most likely to arrive by way of the
 Java Message Service (JMS), which is addressed next.

 1.4.5. Java Message Service

 The Java Message Service is one of the fundamental technologies associated with the Java Platform Enterprise Edition. It is
 considered message-oriented middleware (MOM) and supports two types of message models: (1) the point-to-point queuing model,
 and (2) the publish and subscribe model. The queuing model, which is probably used most frequently, enables a broadcaster
 to publish a message to a specific queue, whereby it can then be consumed by a given client. It is considered point-to-point
 because once the message is consumed by a client, it is no longer available to other clients. In the publish/subscribe model,
 events are published to one or more interested listeners, or observers. This model is analogous to broadcast television or
 radio, where a publisher (station) is sending out its signal to one or more subscribers (listeners).

 JMS typically is ideally suited for asynchronous communications, where a “fire-and-forget” paradigm can be used. This contrasts
 with SOAP-based web services, which follow a request/response type model (this isn’t a concrete distinction—there are variations
 of JMS and SOAP that support more than one model—but a generalization). JMS is typically used as one of the enabling technologies
 within an ESB and is usually included within such products.

 Since JMS is rather ubiquitous in the Java world and well documented through books and articles, I won’t cover it directly
 in this book. It is, however, a critical technology for Java-based SOA environments. Let’s now address an often-overlooked
 but critical technology for building a SOA platform: a registry.

 1.4.6. Registry

 The implementation artifacts that derive from a SOA should be registered within a repository to maximize reuse and provide
 for management of enterprise assets. Metadata refers to data about data, so in this context, it refers to the properties and
 attributes of these assets. Assets, as shown in figure 1.9, include service components and composites, business process/orchestrations, and applications. It may also include typical
 LDAP objects such as users, customers, and products.

 Figure 1.9. Example of an LDAP repository used as a registry. Notice that it’s not just used for users, but also for products and even
 applications.

 [image:]

 For smaller organizations, more informal repositories may be utilized and could be as simple as wiki articles or a simple
 database that describes the various assets. As organizations grow in size, however, having an appropriate technology like
 LDAP simplifies management and assists in reporting, governance, and security profiling. It’s important to treat the SOA artifacts
 as true corporate assets—this represents highly valuable intellectual property, after all.

 The metadata attributes for a given asset type will vary, so a flexible repository schema is essential. For example, a service
 component’s attributes include the following:

	Service endpoint (WS-Addressing)

 	Service description

 	WSDL location

 	Revision/version number

 	Source code location

 	Example request/response messages

 	Reference to functional and design documents

 	Change requests

 	Readme files

 	Production release records

Orchestrations and application may share a similar, if expanded, set of attributes, whereas those relating to a user will
 obviously vary significantly. A bonus chapter available at http://www.manning.com/davis includes coverage of registries.

 We’re nearly completed with our whirlwind overview of critical SOA technologies. One essential technology, indeed a cornerstone
 of SOA, is addressed next: services.

 1.4.7. Service components and compositions

 Service components and composites represent the core building blocks for what constitutes a SOA platform. A service can be
 construed as an intelligent business function that combines data and logic to form an abstract interaction with an underlying
 business service. This service is often a discrete piece of functionality that represents a capability found within an existing
 application. An example of such a service might be a customer address lookup using information found within a CRM system.
 The service component, in this instance, “wraps” CRM API calls so that it can be called from a variety of clients using just
 a customer name as the service input. If the CRM API had to be called directly, a multistep process of (a) first identifying
 the customerId based on the customer name, (b) performing code-list lookups for finding coded values, and (c) using the customerId to then call a getAddress operation may be necessary. The service component abstracts the methods and objects of the CRM into generic methods or objects
 and makes the underlying details transparent to the calling client. An illustration of such a service façade or wrapper is
 shown in figure 1.10.

 Figure 1.10. Using a façade/wrapper pattern for exposing service functionality

 [image:]

 A service must support two fundamental requirements: a well-defined interface and binding. The interface is the contract that
 defines the service specification and is represented as a WSDL for SOAP-based web services. The binding is the communications
 protocol for how the client will interact with the service. Examples of such protocols are SOAP over HTTP; JMS; Java RMI (RMI);
 and EJB. Using a combination of those two requirements, a developer who wants to create a client that uses a service should
 be able to do so. Of course, how well the interface is designed will dictate how truly useful the service is.

 A composite service, as the name suggests, is created by combining the functionality of one or more individual components.
 Composites may serve to further abstract functionality and are often considered coarse-grained services (such as a service
 to create a new customer). A composite service, in turn, may then be combined with other services to create even higher level
 composites. In any event, composites share the same requirements as components—an interface and binding.

 Thomas Erl classifies compositions into two distinct types: primitive and complex [Erl2007]. A primitive type might be used for simple purposes such as content filtering or routing and usually involves two or three individual
 components. A complex composition could be a BPEL-based service that contains multiple nodes or sequence steps. Chapters 3 and 4 provides in-depth coverage of service components and composites.

 Regardless of what protocol and standards your services use, there will likely be scenarios, particularly when integrating
 with outside organizations, that deviate from your best laid plans. One way to bridge such differences, and to improve service
 availability and performance, is through web service mediation technology—the topic of the next section.

 1.4.8. Web service mediation

 Mediation refers to bridging the differences between two parties. Consistent with that definition, web service mediation (WSM)
 refers to bridging between different communications protocols, with the result being a SOAP-based web service that can be
 redirected to an appropriate endpoint. For example, a web mediation engine might be used to process authenticating the credentials
 of inbound calls from an external partner’s SOAP message using WS-Security (WSS). If approved, the message can then be forwarded,
 minus the WS-Security heading, to an internal web service to process the request. Or, perhaps a partner is unwilling or unable
 to use SOAP, and instead prefers a REST (XML over HTTP) solution. Using a mediator, the inbound REST call can be easily transformed
 into SOAP by adding the appropriate envelope. Even transformations between entirely different protocols, such as FTP to SOAP,
 are typically possible. Figure 1.11 depicts the role of the mediator.

 Figure 1.11. The role of web services mediator in bridging between protocols

 [image:]

 A mediator serves other purposes as well, such as logging of all requests and responses, internal load balancing, advanced
 caching, and support of advanced WS-* features such as WSReliableMessaging. Another important feature is the ability to act
 as a proxy server. This allows the WSM to transparently intercept outbound messages, log them, and apply a WS-Security envelope,
 for example. The publisher of the originating message can let such policies be applied externally in a consistent fashion
 and not have to worry about implementing such complex details. Compliance and security can be managed independently of the
 application—a major benefit.

OEBPS/01fig04.jpg

OEBPS/01fig05.jpg

OEBPS/01fig02.jpg

OEBPS/01fig03.jpg

OEBPS/manning.jpg

OEBPS/01fig01_alt.jpg

OEBPS/logo.jpg

OEBPS/infi.jpg

OEBPS/01fig06_alt.jpg

OEBPS/01fig08_alt.jpg

OEBPS/01fig07.jpg

OEBPS/cover.jpg

OEBPS/01fig10.jpg

OEBPS/01fig09.jpg

OEBPS/01fig11.jpg

