

 [image:]

 AI-Powered Developer

 Build software with ChatGPT and Copilot

 Nathan B. Crocker

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Katie Sposato Johnson

 	
 Technical editor:

 	
 Nicolai Nielsen

 	
 Review editor:

 	
 Dunja Nikitović

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Tiffany Taylor

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Mark Thomas

 	
 Typesetter:

 	
 Tamara Švelić Sabljić

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633437616

 dedication

 Dedicated to the memory of Catherine L. Crocker, whose strength and love continue to guide me.

 Though no longer beside us, her spirit and wisdom remain ever-present.

 Her legacy lives on in every word I write.

 Gone from this world, but forever in our hearts.

 contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. The foundation

 1 Understanding large language models

 1.1 Accelerating your development

 1.2 A developer’s introduction to LLMs

 1.3 When to use and when to avoid generative AI

 2 Getting started with large language models

 2.1 A foray into ChatGPT

 Navigating nuances with GPT-4

 Charting paths with GPT-3.5

 Navigating the AI seas: From the shores of GPT-3.5 to the horizons of GPT-4

 2.2 Let Copilot take control

 2.3 Let CodeWhisperer speak loudly

 2.4 Comparing ChatGPT, Copilot, and CodeWhisperer

 Part 2. The input

 3 Designing software with ChatGPT

 3.1 Introducing our project, the information technology asset management system

 3.2 Asking ChatGPT to help with our system design

 3.3 Documenting your architecture

 4 Building software with GitHub Copilot

 4.1 Laying the foundation

 Expressing our domain model

 Favoring immutability

 Decorating our favorite classes

 Adapting a strategy for depreciation

 4.2 Weaving patterns, patterns, patterns

 Paying a visit to our department

 Creating objects in a factory (pattern)

 Instructing the system on how to build

 Observing changes

 4.3 Plugging in ports and adapters

 Hexagonal architecture in review

 Driving our application

 Accessing our data and persisting our changes

 Centralizing (and externalizing) our data access

 5 Managing data with GitHub Copilot and Copilot Chat

 5.1 Amassing our dataset

 5.2 Monitoring our assets in real time with Kafka

 5.3 Analyzing, learning, and tracking with Apache Spark

 Part 3. The feedback

 6 Testing, assessing, and explaining with large language models

 6.1 Testing, testing … one, two, three types

 Unit testing

 Integration testing

 Behavior testing

 6.2 Assessing quality

 6.3 Hunting for bugs

 6.4 Covering code

 6.5 Transliterating code—from code to descriptions

 6.6 Translating from one language to another

 Part 4. Into the world

 7 Coding infrastructure and managing deployments

 7.1 Building a Docker image and “deploying” it locally

 7.2 Standing up infrastructure by copiloting Terraform

 7.3 Moving a Docker image around (the hard way)

 7.4 Moving a Docker image around (the easy way)

 7.5 Deploying our application onto AWS Elastic Kubernetes Service

 7.6 Setting up a continuous integration/continuous deployment pipeline in GitHub Actions

 8 Secure application development with ChatGPT

 8.1 Modeling threats with ChatGPT

 Why it matters in today’s development landscape

 How ChatGPT can aid in threat modeling

 Case study: Simulating threat modeling with ChatGPT

 8.2 Scrutinizing application design and identifying potential vulnerabilities

 Evaluating design problems

 Recognizing common vulnerabilities

 8.3 Applying security best practices

 Setting the security mindset

 Continuous security testing

 8.4 Encrypting data at rest and transit

 The importance of data encryption

 Data encryption at rest

 Data encryption in transit

 9 GPT-ing on the go

 9.1 Motivating theory

 9.2 Hosting your own LLM

 Baselining with ChatGPT

 Asking Llama 2 to spit out an answer

 Democratizing answers with GPT-4All

 Appendix A. Setting up ChatGPT

 Appendix B. Setting up GitHub Copilot

 Appendix C. Setting up AWS CodeWhisperer

 index

 front matter

 preface

 Welcome to AI-Powered Developer, your gateway to exploring the symbiotic relationship between programming and artificial intelligence. This book is not just a narrative about AI and its applications in software development—it’s an invitation to venture into the uncharted territory of coding powered by cutting-edge AI models like ChatGPT and GitHub Copilot. As you turn these pages, you’ll embark on a journey of exploration and discovery, unearthing a new perspective on how AI can reshape and enhance the coding landscape.

 The essence of this book lies in its unconventional approach. Unlike most technical literature, it doesn’t provide a rigid script to follow. This is because the book deals with the application of large language models in software development, an area where outcomes can be surprisingly diverse even when the input remains the same. Think of it more like a compass guiding your way through an intriguing landscape of possibilities rather than a map delineating a predetermined route.

 AI-Powered Developer encourages you to experiment, ask questions, and, most importantly, be open to unexpected results. It will ignite your curiosity, spur your creativity, and stimulate your problem-solving skills. The world of large language models like ChatGPT and Copilot offers more than just coding assistance—it provides a transformative framework that has the potential to revolutionize software development at its core.

 At its heart, this book assumes the role of a mentor, a catalyst that nudges you to venture beyond the familiar boundaries of traditional coding, encouraging you to explore the intricate dance of AI and programming. It seeks to whet your appetite for the untapped potential that these generative AI models bring to the table. Through a myriad of real-world examples, hands-on exercises, and insights, you’ll not only learn how to use these AI tools but also gain a deeper understanding of their functioning, their potential, and their limitations.

 Yet, as with any mentorship, the rewards of this journey are proportional to the passion, curiosity, and commitment you bring. By diving deep, asking questions, and challenging assumptions, you’ll gain not just technical skills but also a broader perspective on what it means to be a developer in the age of AI.

 This is an exciting time in the field of software development. AI and machine learning are disrupting traditional paradigms, offering new tools and methodologies that can significantly enhance productivity, creativity, and efficiency. By integrating AI into the development process, we can tackle more complex problems, streamline workflows, and fundamentally transform the way we approach coding.

 AI-Powered Developer is more than just a book—it’s a doorway to this new world, a world that blends the logic of programming with the power and flexibility of AI. Whether you’re a seasoned developer or an enthusiastic beginner, this book will equip you with the tools, techniques, and knowledge to make the most of these advancements and chart your own path in this evolving landscape.

 Remember, every great journey begins with a single step. By choosing to read this book, you’ve already taken that step. Now, let’s venture into the exciting world of intelligent coding together. Enjoy the journey!

 acknowledgments

 Embarking on the journey of writing this book was no small endeavor. It required commitment, dedication, and countless hours of meticulous labor. It was a path fraught with challenges, but every step was an enriching experience, bringing me closer to the vast and fascinating world of AI-powered coding. It’s a journey I couldn’t have begun, let alone completed, without the support and contributions of some extraordinary individuals.

 My profound gratitude goes to my editor, Katie Sposato Johnson, who was instrumental in shaping this book. Her incisive comments, critical insights, and constructive feedback helped refine my thoughts and transform them into a coherent, engaging narrative. Her unwavering commitment and passionate involvement were invaluable to this project.

 A special note of thanks to my technical editor, Nicolai Nielsen, who is lead AI Engineer at SymphonyAI, and is both a coder and content creator, creating educational AI and computer vision videos on YouTube and courses that help people while scaling his brands. Nicolai’s expertise and keen eye for detail kept me on my toes, continually reminding me of how much more there is to learn in this expansive field. His inputs were not just educational but humbling, shaping my understanding and keeping me grounded.

 I am deeply grateful to everyone at Manning for their relentless support throughout this journey. Their professionalism, cooperative spirit, and commitment to excellence have been an inspiration. They played a critical role in bringing this book to life, for which I am immensely thankful.

 To all the reviewers: Carmelo San Giovanni, Chad Yantorno, Christopher Forbes, Dan McCreary, Dewang Mehta, Greg MacLean, Håvard Wall, Jeff Smith, Jim Matlock, Jonathan Boiser, Louis Aloia, Luke Kupka, Mariano Junge, Maxim Volgin, Maxime Boillot, Mike Piscatello, Milorad Imbra, Peter Dickten, Philip Patterson, Pierre-Michel Ansel, Rambabu Posa, Rebecca Wagaman, Riccardo Marotti, Roy Wilsker, Stefano Priola, Thomas Jaensch, Thomas Joseph Heiman, Tiago Boldt Sousa, Tony Holdroyd, and Walter Alexander Mata López, your suggestions helped make this a better book.

 My deepest gratitude is for my family—my pillars of strength. To my wife, Jenn, thank you for being my rock and for the countless hours of patience, understanding, and love you’ve poured into this endeavor. To my daughters, Maeve and Orla, you are my inspiration—your joy, curiosity, and boundless enthusiasm fuel my endeavors. To all my family members who supported me in myriad ways, thank you.

 This book is a culmination of countless hours of effort, dedication, and teamwork. I am deeply grateful to everyone who contributed to making it a reality. Thank you all.

 about this book

 AI-Powered Developer is your essential guide to mastering the integration of large language models like ChatGPT and CoPilot into your software development process. This comprehensive book delivers practical advice and showcases best practices, helping you harness the power of AI to enhance your projects. From the do’s and don’ts of AI implementation to real-world examples, you’ll gain the insights and tools you need to elevate your development skills and stay ahead in the ever-evolving tech landscape.

 Who should read this book?

 Professional developers and enthusiasts alike should get value from this book. Although the book is largely aimed at experienced developers, large language models (LLMs) can be used to accelerate your learning because these tools can provide explanations, code examples, and guidance on programming concepts. Experienced developers can use these tools to improve productivity, streamline coding processes, and tackle complex coding challenges more efficiently. These tools can assist in generating code snippets, debugging, and providing insights on best practices.

 How this book is organized: A roadmap

 The book is divided into four main parts, followed by three practical appendices for setup assistance:

 	
 Part 1: The Foundation

 	
 Chapter 1 introduces LLMs, tracing their history and providing a conceptual understanding of generative AI. It also advises on the appropriate and cautious use of these technologies.

 	
 Chapter 2 offers a primer on starting with LLMs, comparing ChatGPT, GitHub Copilot, and CodeWhisperer and detailing the initial steps in harnessing their potential.

 	
 Part 2: The Input

 	
 Chapter 3 walks through designing software with the help of ChatGPT, using an information technology asset management (ITAM) system as a project example.

 	
 Chapter 4 focuses on building software with GitHub Copilot, covering foundational concepts like domain modeling, immutability, and design patterns.

 	
 Chapter 5 delves into managing data with GitHub Copilot and Copilot Chat, exploring real-time asset monitoring with Kafka and data analysis with Apache Spark.

 	
 Part 3: The Feedback

 	
 Chapter 6 discusses the testing, quality assessment, and explanation processes of software developed with LLMs, including bug hunting and code translation.

 	
 Part 4: Into the World

 	
 Chapter 7 covers coding infrastructure and managing deployments, from building Docker images to setting up continuous integration/continuous deployment pipelines with GitHub Actions.

 	
 Chapter 8 addresses secure application development using ChatGPT, including threat modeling and the application of security best practices.

 	
 Chapter 9 explores the concept of “GPT-ing on the go,” including hosting your own LLM and democratizing access with GPT-4All.

 The appendices provide straightforward guidance on setting up ChatGPT, Copilot, and CodeWhisperer, ensuring that you have the practical knowledge to begin your journey in AI-powered development.

 With the exception of the last chapter, this book is meant to be read in order, as each chapter builds on the previous chapters. The last chapter can be read at any point after the first.

 About the code

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/ai-powered-developer. The complete code for the examples in the book is available for download from the Manning website at www.manning.com/books/ai-powered-developer and from GitHub at https://github.com/nathanbcrocker/ai_powered_developer.

 It is important to note that part of the value of this book is to work through the examples using the recommended (and non-recommended) tools. An additional note related to the source code is that these tools will rarely produce the same output, even given the same input. You should not get frustrated or discouraged if your code is wildly different from the source code in the repository. The source code is provided for your edification and for enhancing your learning, should you find it useful.

 To get the most from this book, you will need a recent version of Python 3 with the ability to install new packages. To run most of the infrastructure-related systems, you will need to be able to install Docker images and run Docker containers.

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book.

 liveBook discussion forum

 Purchase of AI-Powered Developer includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/ai-powered-developer/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

 about the author

 [image:]

 Nathan B. Crocker is the co-founder and chief technology officer (CTO) of Checker, an API-first solution that connects the traditional capital markets infrastructure to the blockchain ecosystem. Using his expertise in building digital asset infrastructure, Nathan now leads the technological vision and development at Checker, building its core infrastructure that enables new financial applications on the blockchain.

 about the cover illustration

 The figure on the cover of AI-Powered Developer is captioned “Junger kroatischer Gebirgsbauer,” or “Young Croatian Mountain Peasant,” and is taken from a collection of historical and folk clothing illustrations, published in 1912. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 Part 1. The foundation

 In part 1, we establish a comprehensive understanding of large language models (LLMs) and their significance in modern software development. This part of the book traces the historical evolution of generative AI, providing a solid conceptual framework for these powerful technologies. It emphasizes the importance of responsible and cautious use, guiding readers through the fundamental principles and potential pitfalls of integrating AI into their workflows. Additionally, this part offers practical advice on getting started with LLMs, comparing popular tools such as ChatGPT, GitHub Copilot, and CodeWhisperer and detailing the initial steps to harness their capabilities effectively.

 1 Understanding large language models

 This chapter covers

 	Introducing generative AI (specifically, large language models)

 	Exploring the benefits of generative AI

 	Determining when and when not to use generative AI

 Whether you realize it or not, and whether you want to admit it or not, you have quietly received a promotion. Every professional software engineer has. Almost overnight, we have gone from staff engineers to engineering managers. You now have the world’s smartest and most talented junior developer on your team—generative AI is your new coding partner. So, guiding, mentoring, and performing code reviews should become part of your daily routine. This chapter will provide you with an overview of a subset of generative AI called large language models (LLMs), specifically ChatGPT, GitHub Copilot, and AWS CodeWhisperer.

 Note This is not a traditional programming book. You will not be able to use it like you would a script. You are going to engage in a dialogue with LLMs, and like any conversation, the words and direction will change depending on the model and the prior context. The output you receive will very likely differ from what is printed in this book. This should not discourage you. Instead, you should explore. The journey is as rewarding as the destination. You may find yourself frustrated that you can’t follow along. Have patience. If you are disciplined (and somewhat adventurous), you can get GPT to cooperate with the general themes and aim of this book: learning how to use generative AI to make you a better programmer.

 1.1 Accelerating your development

 Welcome to a new era in software development in which your development team expands by one very talented engineer. Generative AI isn’t just a tool; it’s your next team member, poised to elevate your programming to new heights. Imagine designing intricate systems, coding with unprecedented speed, and testing with robustness you never thought possible—all with an intelligence that learns from the best. In this book, we’ll explore how generative AI will not only assist you in everyday coding tasks but also enable you to achieve feats previously beyond reach, ensuring faster development, enhanced quality, and the capacity to innovate like never before.

 LLMs and generative AI can drastically accelerate your software development process. By automating the tedious creation of boilerplate code, you are freed to focus on creative problem-solving and value-adding tasks. Consider this example: you want to have the LLM set up a Flask application. You might use the following prompt:

 	

 [image:]

 	
 Generate a stubbed-out Flask application.

 The LLM might output the following Python code.

 Listing 1.1 Potential code generated by an LLM to stub out a Flask application

 from flask import Flask

app = Flask(__name__)

@app.route('/')
def home():
 return "Hello, world!"

if __name__ == '__main__':
 app.run(debug=True)

 LLMs are deep learning models that are good at providing natural language responses to natural language prompts. You can imagine simply describing what you need in plain English and receiving ready-to-integrate code:

 	

 [image:]

 	
 Create a class for managing user sessions in Python.

 Here’s a possible response.

 Listing 1.2 Potential code generated to create a session management class

 import uuid
from datetime import datetime, timedelta

class SessionManager:
 def __init__(self):
 self.sessions = {}

 def create_session(self, user_id):
 """Create a new session for a user with a unique session ID and expiration time."""
 session_id = str(uuid.uuid4())
 # Sessions expire after 1 hour
 expiration = datetime.now() + timedelta(hours=1)
 self.sessions[session_id] = {'user_id':
 user_id, 'expiration': expiration}
 return session_id

 def get_user_id(self, session_id):
 """Retrieve a user ID from a session ID
 if the session is still valid."""
 session_info = self.sessions.get(session_id)
 if session_info and session_info['expiration'] > datetime.now():
 return session_info['user_id']
 return None # Session is expired or does not exist

 def delete_session(self, session_id):
 """Delete a session by its ID."""
 if session_id in self.sessions:
 del self.sessions[session_id]

 def is_session_valid(self, session_id):
 """Check if a session is still valid."""
 return session_id in self. sessions and self.sessions[session_id]['expiration'] > datetime.now()

 These tools also enhance your debugging efficiency by identifying patterns and suggesting fixes. Suppose you want your AI tool to analyze a block of code and flag potential memory leaks. It might produce the following code.

 Listing 1.3 Using an LLM to find a potential memory leak in Python

 def process_data():
 large_data = [x for x in range(1000000)] # Large list of numbers
 result = sum(large_data)
 print("Result of processing:", result)
 # large_data not cleared or reassigned,
 # potentially leading to memory retention

process_data()

 According to the explanation provided by ChatGPT, this Python code demonstrates a potential memory leak due to a large list not being cleared after use, which can keep its contents in memory longer than necessary if references are not properly managed.

 In the improved code, the AI tool suggests explicitly clearing the list or reassigning None after its usage to help in releasing the memory sooner, especially in environments where garbage collection is not aggressive.

 Listing 1.4 “Improved” LLM code to address the potential memory leak

 def process_data():
 large_data = [x for x in range(1000000)] # Large list of numbers
 result = sum(large_data)
 print("Result of processing:", result)
 large_data = None # Clear the reference to release memory

process_data()

 Moreover, when it comes to refactoring, the AI can suggest optimizations that make your code cleaner and more efficient, as shown in the next two listings.

 Listing 1.5 Verbose code before the suggested refactoring

 class DataProcessor:
 def __init__(self, data):
 self.data = data

 def process_data(self):
 if self. data is not None:
 if len(self.data) > 0:
 processed_data = []
 for d in self.data:
 if d is not None:
 if d % 2 == 0:
 processed_data.append(d)
 return processed_data
 else:
 return []
 else:
 return []

processor = DataProcessor([1, 2, 3, 4, None, 6])
result = processor.process_data()
print("Processed Data:", result)

 After the refactoring, the code is more readable, maintainable, and idiomatic.

 Listing 1.6 LLM refactored code that is more concise

 class DataProcessor:
 def __init__(self, data):
 self. data = data or []

 def process_data(self):
 return [d for d in self.data if d is not None and d % 2 == 0]

processor = DataProcessor([1, 2, 3, 4, None, 6])
result = processor.process_data()
print("Processed Data:", result)

 LLMs extend beyond mere code generation; they are sophisticated enough to assist in designing software architecture as well. This capability allows developers to engage with these models more creatively and strategically. For instance, rather than simply requesting specific snippets of code, a developer can describe the overall objectives or functional requirements of a system. The LLM can then propose various architectural designs, suggest design patterns, or outline an entire system’s structure. This approach not only saves significant time but also takes advantage of the AI’s extensive training to innovate and optimize solutions, potentially introducing efficiencies or ideas that the human developer may not have initially considered. This flexibility makes LLMs invaluable partners in the creative and iterative processes of software development. We will explore this in chapter 3.

 In addition, by enhancing the quality and security of your deliverables—from code to documentation—these tools ensure that your outputs meet the highest standards. For instance, when integrating a new library, the AI can automatically generate secure, efficient implementation examples, helping you avoid common security pitfalls.

 Finally, learning new programming languages or frameworks becomes significantly easier. The AI can provide real-time, context-aware guidance and documentation, helping you to not only understand but also apply new concepts practically. For example, are you transitioning to a new framework like Dash? Your AI assistant can instantly generate sample code snippets and detailed explanations tailored to your current project’s context.

 Listing 1.7 LLM-generated sample code demonstrating how to use a library

 import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import pandas as pd
import plotly.express as px

Sample data creation
dates = pd.date_range(start='1/1/2020', periods=100)
prices = pd.Series(range(100)) + pd.Series(range(100))/2
Just a simple series to mimic stock prices
data = pd.DataFrame({'Date': dates, 'Price': prices})

Initialize the Dash app (typically in your main module)
app = dash.Dash(__name__)

Define the layout of the app
app.layout = html.Div([
 html.H1("Stock Prices Dashboard"),
 dcc.DatePickerRange(
 id='date-picker-range',
 start_date=data['Date'].min(),
 end_date=data['Date'].max(),
 display_format='MMM D, YYYY',
 start_date_placeholder_text='Start Period',
 end_date_placeholder_text='End Period'
),
 dcc.Graph(id='price-graph'),
])

Callback to update the graph based on the date range picker input
@app.callback(
 Output('price-graph', 'figure'),
 Input('date-picker-range', 'start_date'),
 Input('date-picker-range', 'end_date')
)
def update_graph(start_date, end_date):
 filtered_data = data[(data['Date'] >=
 start_date) & (data['Date'] <= end_date)]
 figure = px.line(filtered_data, x='Date',
 y='Price', title='Stock Prices Over Time')
 return figure

Run the app
if __name__ == '__main__':
 app.run_server(debug=True)

 We can see the output of this code in figure 1.1, which is the running Dash code.

 [image:]

 Figure 1.1 The Stock Prices Dashboard created by ChatGPT in response to the prompt “create a sample dashboard using dash”

 The real power of LLMs unfolds in their integration in development environments. Tools like GitHub Copilot, developed by Microsoft, harness the capabilities of LLMs to provide real-time coding assistance directly in integrated development environments (IDEs) such as Visual Studio Code. We will unleash this power in chapter 4.

 This book will not only explain these concepts but also demonstrate them through numerous examples, showing how you can use LLMs to improve your productivity and code quality dramatically. From setting up your environment to tackling complex coding challenges, you’ll learn how to make the most out of these intelligent tools in your everyday development.

 1.2 A developer’s introduction to LLMs

 Although this book is mainly a practitioner’s guide and therefore very light on theory, the following section will provide you with the most relevant material for you to get the most out of your new teammate.

 Yes, but I want to know more

 If you are interested in diving deeper into the theory behind LLMs, neural networks, and all things generative AI, you should look at the following two books: the forthcoming Build a Large Language Model (From Scratch) by Sebastian Raschka (Manning, 2024) and the amusingly titled The Complete Obsolete Guide to Generative AI by David Clinton (Manning, 2024).

 Let’s start with a very simple definition of what an LLM is and what it can do for you; this way, you can properly pitch it to your boss and co-workers. A large language model is a type of artificial intelligence model that processes, understands, and generates human-like text based on the data it has been trained on. These models are a subset of deep learning and are particularly advanced in handling various aspects of natural language processing (NLP).

 As the name implies, these models are “large” not just in terms of the physical size of the data they are trained on but also in the complexity and number of parameters. Modern LLMs like OpenAI’s GPT-4 have up to hundreds of billions of parameters.

 LLMs are trained on vast amounts of text data. This training involves reading and analyzing a wide range of internet texts, books, articles, and other forms of written communication to learn the structure, nuances, and complexities of human language.

 Most LLMs use the Transformer architecture, a deep learning model that relies on self-attention mechanisms to weigh the importance of different words in a sentence regardless of their position. This allows LLMs to generate more contextually relevant text. A typical Transformer model consists of an encoder and a decoder, each composed of multiple layers.

 Understanding the architecture of LLMs helps in using their capabilities more effectively as well as addressing their limitations in practical applications. As these models continue to evolve, they promise to offer even more sophisticated tools for developers to enhance their applications.

 1.3 When to use and when to avoid generative AI

 Generative AI (and by extension an LLM) is not a one-size-fits-all solution. Understanding when to employ these technologies, as well as recognizing situations where they may be less effective or even problematic, is crucial for maximizing their benefits while mitigating potential drawbacks. We will start with when it is appropriate for you to use an LLM:

 	
 Enhancing productivity

 	
 Example—Use AI to automate boilerplate code, generate documentation, or provide coding suggestions within your IDE.

 	
 Discussed in chapters 3 and 4—These chapters explore how tools like GitHub Copilot can boost coding efficiency.

 	
 Learning and exploration

 	
 Example—Employ AI to learn new programming languages or frameworks by generating example codes and explanations.

 	
 Covered in chapter 5—Here, we examine how AI can accelerate the learning process and introduce you to new technologies.

 	
 Handling repetitive tasks

 	
 Example—Use AI to handle repetitive software testing or data entry tasks, freeing up time for more complex problems.

 	
 Explored in chapter 7—Discusses automation in testing and maintenance tasks.

 There are, however, situations in which you should avoid using LLMs and generative AI tools such as ChatGPT and GitHub Copilot, mainly those related to data security and privacy protection. Using AI in environments with sensitive or proprietary data can risk unintended data leaks. There are several reasons for this, one of which is that part or all of the code is sent to the model as context, meaning at least part of your proprietary code may find its way outside of your firewall. There is a question as to whether it may be included in the training data for the next round of training. But have no fear: we will examine a couple of methods to address this concern in chapter 9.

 Another scenario in which you might limit your usage is when precision and expertise are required. Given that a feature of LLMs is their ability to add randomness to their output (sometimes referred to as hallucinations), the output may contain subtle variations from the true and right answer. For this reason, you should always verify the output before including it in your codebase.

 Although generative AI offers numerous advantages, it’s essential to apply it judiciously, considering both the context of its use and the specific needs of the project. By understanding when to use these powerful tools and when to proceed with caution, developers can maximize their effectiveness and ensure ethical and efficient use of technology.

 Summary

 	
 Generative AI is both evolutionary and revolutionary. It’s evolutionary in the sense that it is just another iteration of the tools that we as developers use every day. It’s revolutionary in that it will transform how we do our jobs.

 	
 The future of development will involve managing generative AI. Even the mythical 10× developer will not have the productivity of a developer with an AI partner; an AI-powered developer will produce higher-quality code at a substantially faster rate, at a lower cost than one who is not. We will spend more of our time training our AI partner to do what we want and how we want it done than we do writing code without the AI.

 	
 Trust but verify the LLM’s output.

 2 Getting started with large language models

 This chapter covers

 	Engaging with ChatGPT

 	Learning the basics of using Copilot

 	Learning the basics of using CodeWhisperer

 	Exploring prompt engineering patterns

 	Contrasting the differences between these three Generative AI offerings

 In this chapter, we embark on a practical journey through the landscape of Generative AI, harnessing the power of three groundbreaking tools: ChatGPT, GitHub Copilot, and AWS CodeWhisperer. As we navigate the intricacies of these technologies, we’ll apply them to a series of challenging scenarios modeled after the rigorous interview questions posed by leading tech giants. Whether you’re a seasoned developer or a curious enthusiast, prepare to unlock innovative strategies that could give you the edge in your next technical interview. Get ready to transform abstract concepts into tangible solutions right at the forefront of AI’s evolving role in tech hiring.

 We will begin by using two currently available models for ChatGPT: GPT-4 and GPT-3.5. The purpose is twofold: it will allow us to appreciate the engagement model of ChatGPT, and it will also let us establish a baseline against which we can compare and contrast the other two. Using two models will also allow us to appreciate the generational sea change between these model versions. Finally, throughout this chapter, we will use some common patterns in prompt engineering.

 2.1 A foray into ChatGPT

 Context is one of the most important aspects of working with ChatGPT. Your previous prompts can drastically change the results from your current prompt. In language models like ChatGPT, a prompt refers to the input provided to the model to generate a response. It can be a single sentence, a paragraph, or even a longer text. It serves as the instruction or query to the model, guiding its response. Given the quality of the prompt and the context in which the model responds, it is essential always to be aware of the prompts you have issued in the current session. Therefore, starting with a new session every time you begin a new project is advised. Appendix A will walk you through setting up an account, logging in to ChatGPT, and writing your first prompt.

 2.1.1 Navigating nuances with GPT-4

 In this section, we will work toward finding a solution to the following question: “How would you reserve a singly linked list in Python?”

 What is a singly linked list?

 A singly linked list is a fundamental data structure in computer science that consists of a sequence of elements, each stored in a node. Generally, singly linked lists consist of nodes in which the data is stored and a reference to the next node in the linked list.

 With a singly linked list, you can only travel in one direction. Common operations on a singly linked list include insertion (adding a new node), deletion (removing a node), searching (finding a node), and traversal (accessing each node sequentially).

