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front matter


  
Foreword


  Practical Data Science with R, Second Edition, is a hands-on guide to data science, with a focus on techniques for working with structured or tabular data, using the R language and statistical packages. The book emphasizes machine learning, but is unique in the number of chapters it devotes to topics such as the role of the data scientist in projects, managing results, and even designing presentations. In addition to working out how to code up models, the book shares how to collaborate with diverse teams, how to translate business goals into metrics, and how to organize work and reports. If you want to learn how to use R to work as a data scientist, get this book.


  We have known Nina Zumel and John Mount for a number of years. We have invited them to teach with us at Singularity University. They are two of the best data scientists we know. We regularly recommend their original research on cross-validation and impact coding (also called target encoding). In fact, chapter 8 of Practical Data Science with R teaches the theory of impact coding and uses it through the author’s own R package: vtreat.


  Practical Data Science with R takes the time to describe what data science is, and how a data scientist solves problems and explains their work. It includes careful descriptions of classic supervised learning methods, such as linear and logistic regression. We liked the survey style of the book and extensively worked examples using contest-winning methodologies and packages such as random forests and xgboost. The book is full of useful, shared experience and practical advice. We notice they even include our own trick of using random forest variable importance for initial variable screening.


  Overall, this is a great book, and we highly recommend it.


  —JEREMY HOWARD

  AND RACHEL THOMAS


  
Preface


  This is the book we wish we’d had as we were teaching ourselves that collection of subjects and skills that has come to be referred to as data science. It’s the book that we’d like to hand out to our clients and peers. Its purpose is to explain the relevant parts of statistics, computer science, and machine learning that are crucial to data science.


  Data science draws on tools from the empirical sciences, statistics, reporting, analytics, visualization, business intelligence, expert systems, machine learning, databases, data warehousing, data mining, and big data. It’s because we have so many tools that we need a discipline that covers them all. What distinguishes data science itself from the tools and techniques is the central goal of deploying effective decision-making models to a production environment.


  Our goal is to present data science from a pragmatic, practice-oriented viewpoint. We work toward this end by concentrating on fully worked exercises on real data—altogether, this book works through over 10 significant datasets. We feel that this approach allows us to illustrate what we really want to teach and to demonstrate all the preparatory steps necessary in any real-world project.


  Throughout our text, we discuss useful statistical and machine learning concepts, include concrete code examples, and explore partnering with and presenting to nonspecialists. If perhaps you don’t find one of these topics novel, we hope to shine a light on one or two other topics that you may not have thought about recently.
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About This Book


  This book is about data science: a field that uses results from statistics, machine learning, and computer science to create predictive models. Because of the broad nature of data science, it’s important to discuss it a bit and to outline the approach we take in this book.


  


  
What is data science?


  The statistician William S. Cleveland defined data science as an interdisciplinary field larger than statistics itself. We define data science as managing the process that can transform hypotheses and data into actionable predictions. Typical predictive analytic goals include predicting who will win an election, what products will sell well together, which loans will default, and which advertisements will be clicked on. The data scientist is responsible for acquiring and managing the data, choosing the modeling technique, writing the code, and verifying the results.


  Because data science draws on so many disciplines, it’s often a “second calling.” Many of the best data scientists we meet started as programmers, statisticians, business intelligence analysts, or scientists. By adding a few more techniques to their repertoire, they became excellent data scientists. That observation drives this book: we introduce the practical skills needed by the data scientist by concretely working through all of the common project steps on real data. Some steps you’ll know better than we do, some you’ll pick up quickly, and some you may need to research further.


  Much of the theoretical basis of data science comes from statistics. But data science as we know it is strongly influenced by technology and software engineering methodologies, and has largely evolved in heavily computer science– and information technology– driven groups. We can call out some of the engineering flavor of data science by listing some famous examples:


  
    	Amazon’s product recommendation systems


    	Google’s advertisement valuation systems


    	LinkedIn’s contact recommendation system


    	Twitter’s trending topics


    	Walmart’s consumer demand projection systems

  


  These systems share a lot of features:


  
    	All of these systems are built off large datasets. That’s not to say they’re all in the realm of big data. But none of them could’ve been successful if they’d only used small datasets. To manage the data, these systems require concepts from computer science: database theory, parallel programming theory, streaming data techniques, and data warehousing.


    	Most of these systems are online or live. Rather than producing a single report or analysis, the data science team deploys a decision procedure or scoring procedure to either directly make decisions or directly show results to a large number of end users. The production deployment is the last chance to get things right, as the data scientist can’t always be around to explain defects.


    	All of these systems are allowed to make mistakes at some non-negotiable rate.


    	None of these systems are concerned with cause. They’re successful when they find useful correlations and are not held to correctly sorting cause from effect.

  


  This book teaches the principles and tools needed to build systems like these. We teach the common tasks, steps, and tools used to successfully deliver such projects. Our emphasis is on the whole process—project management, working with others, and presenting results to nonspecialists.


  


  
Roadmap


  This book covers the following:


  
    	Managing the data science process itself. The data scientist must have the ability to measure and track their own project.


    	Applying many of the most powerful statistical and machine learning techniques used in data science projects. Think of this book as a series of explicitly worked exercises in using the R programming language to perform actual data science work.


    	Preparing presentations for the various stakeholders: management, users, deployment team, and so on. You must be able to explain your work in concrete terms to mixed audiences with words in their common usage, not in whatever technical definition is insisted on in a given field. You can’t get away with just throwing data science project results over the fence.

  


  We’ve arranged the book topics in an order that we feel increases understanding. The material is organized as follows.


  Part 1 describes the basic goals and techniques of the data science process, emphasizing collaboration and data. Chapter 1 discusses how to work as a data scientist. Chapter 2 works through loading data into R and shows how to start working with R.


  Chapter 3 teaches what to first look for in data and the important steps in characterizing and understanding data. Data must be prepared for analysis, and data issues will need to be corrected. Chapter 4 demonstrates how to correct the issues identified in chapter 3.


  Chapter 5 covers one more data preparation step: basic data wrangling. Data is not always available to the data scientist in a form or “shape” best suited for analysis. R provides many tools for manipulating and reshaping data into the appropriate structure; they are covered in this chapter.


  Part 2 moves from characterizing and preparing data to building effective predictive models. Chapter 6 supplies a mapping of business needs to technical evaluation and modeling techniques. It covers the standard metrics and procedures used to evaluate model performance, and one specialized technique, LIME, for explaining specific predictions made by a model.


  Chapter 7 covers basic linear models: linear regression, logistic regression, and regularized linear models. Linear models are the workhorses of many analytical tasks, and are especially helpful for identifying key variables and gaining insight into the structure of a problem. A solid understanding of them is immensely valuable for a data scientist.


  Chapter 8 temporarily moves away from the modeling task to cover more advanced data treatment: how to prepare messy real-world data for the modeling step. Because understanding how these data treatment methods work requires some understanding of linear models and of model evaluation metrics, it seemed best to defer this topic until part 2.


  Chapter 9 covers unsupervised methods: modeling methods that do not use labeled training data. Chapter 10 covers more advanced modeling methods that increase prediction performance and fix specific modeling issues. The topics covered include tree-based ensembles, generalized additive models, and support vector machines.


  Part 3 moves away from modeling and back to process. We show how to deliver results. Chapter 11 demonstrates how to manage, document, and deploy your models. You’ll learn how to create effective presentations for different audiences in chapter 12.


  The appendixes include additional technical details about R, statistics, and more tools that are available. Appendix A shows how to install R, get started working, and work with other tools (such as SQL). Appendix B is a refresher on a few key statistical ideas.


  The material is organized in terms of goals and tasks, bringing in tools as they’re needed. The topics in each chapter are discussed in the context of a representative project with an associated dataset. You’ll work through a number of substantial projects over the course of this book. All the datasets referred to in this book are at the book’s GitHub repository, https://github.com/WinVector/PDSwR2. You can download the entire repository as a single zip file (one of GitHub’s services), clone the repository to your machine, or copy individual files as needed.


  


  
Audience


  To work the examples in this book, you’ll need some familiarity with R and statistics. We recommend you have some good introductory texts already on hand. You don’t need to be expert in R before starting the book, but you will need to be familiar with it.


  To start with R, we recommend Beyond Spreadsheets with R by Jonathan Carroll (Manning, 20108) or R in Action by Robert Kabacoff (now available in a second edition: http://www.manning.com/kabacoff2/), along with the text’s associated website, Quick-R (http://www.statmethods.net). For statistics, we recommend Statistics, Fourth Edition, by David Freedman, Robert Pisani, and Roger Purves (W. W. Norton & Company, 2007).


  In general, here’s what we expect from our ideal reader:


  
    	
An interest in working examples. By working through the examples, you’ll learn at least one way to perform all steps of a project. You must be willing to attempt simple scripting and programming to get the full value of this book. For each example we work, you should try variations and expect both some failures (where your variations don’t work) and some successes (where your variations outperform our example analyses).


    	
Some familiarity with the R statistical system and the will to write short scripts and programs in R. In addition to Kabacoff, we list a few good books in appendix C. We’ll work specific problems in R; you’ll need to run the examples and read additional documentation to understand variations of the commands we didn’t demonstrate.


    	
Some comfort with basic statistical concepts such as probabilities, means, standard deviations, and significance. We’ll introduce these concepts as needed, but you may need to read additional references as we work through examples. We’ll define some terms and refer to some topic references and blogs where appropriate. But we expect you will have to perform some of your own internet searches on certain topics.


    	
A computer (macOS, Linux, or Windows) to install R and other tools on, as well as internet access to download tools and datasets. We strongly suggest working through the examples, examining R help() on various methods, and following up with some of the additional references.

  


  


  
What is not in this book?


  
    	
This book is not an R manual. We use R to concretely demonstrate the important steps of data science projects. We teach enough R for you to work through the examples, but a reader unfamiliar with R will want to refer to appendix A as well as to the many excellent R books and tutorials already available.


    	
This book is not a set of case studies. We emphasize methodology and technique. Example data and code is given only to make sure we’re giving concrete, usable advice.


    	
This book is not a big data book. We feel most significant data science occurs at a database or file manageable scale (often larger than memory, but still small enough to be easy to manage). Valuable data that maps measured conditions to dependent outcomes tends to be expensive to produce, and that tends to bound its size. For some report generation, data mining, and natural language processing, you’ll have to move into the area of big data.


    	
This is not a theoretical book. We don’t emphasize the absolute rigorous theory of any one technique. The goal of data science is to be flexible, have a number of good techniques available, and be willing to research a technique more deeply if it appears to apply to the problem at hand. We prefer R code notation over beautifully typeset equations even in our text, as the R code can be directly used.


    	
This is not a machine learning tinkerer’s book. We emphasize methods that are already implemented in R. For each method, we work through the theory of operation and show where the method excels. We usually don’t discuss how to implement them (even when implementation is easy), as excellent R implementations are already available.

  


  


  
Code conventions and downloads


  This book is example driven. We supply prepared example data at the GitHub repository (https://github.com/WinVector/PDSwR2), with R code and links back to original sources. You can explore this repository online or clone it onto your own machine. We also supply the code to produce all results and almost all graphs found in the book as a zip file (https://github.com/WinVector/PDSwR2/raw/master/CodeExamples.zip), since copying code from the zip file can be easier than copying and pasting from the book. Instructions on how to download, install, and get started with all the suggested tools and example data can be found in appendix A, in section A.1.


  We encourage you to try the example R code as you read the text; even when we’re discussing fairly abstract aspects of data science, we’ll illustrate examples with concrete data and code. Every chapter includes links to the specific dataset(s) that it references.


  In this book, code is set with a fixed-width font like this to distinguish it from regular text. Concrete variables and values are formatted similarly, whereas abstract math will be in italic font like this. R code is written without any command-line prompts such as > (which is often seen when displaying R code, but not to be typed in as new R code). Inline results are prefixed by R’s comment character #. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers ([image: ]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  


  
Working with this book


  Practical Data Science with R is best read while working at least some of the examples. To do this we suggest you install R, RStudio, and the packages commonly used in the book. We share instructions on how to do this in section A.1 of appendix A. We also suggest you download all the examples, which include code and data, from our GitHub repository at https://github.com/WinVector/PDSwR2.


  
Downloading the book’s supporting materials/repository


  The contents of the repository can be downloaded as a zip file by using the “download as zip” GitHub feature, as shown in the following figure, from the GitHub URL https://github.com/WinVector/PDSwR2.
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  Clicking on the “Download ZIP” link should download the compressed contents of the package (or you can try a direct link to the ZIP material: https://github.com/WinVector/PDSwR2/archive/master.zip). Or, if you are familiar with working with the Git source control system from the command line, you can do this with the following command from a Bash shell (not from R):

  git clone https://github.com/WinVector/PDSwR2.git


  In all examples, we assume you have either cloned the repository or downloaded and unzipped the contents. This will produce a directory named PDSwR2. Paths we discuss will start with this directory. For example, if we mention working with PDSwR2/UCICar, we mean to work with the contents of the UCICar subdirectory of wherever you unpacked PDSwR2. You can change R’s working directory through the setwd() command (please type help(setwd) in the R console for some details). Or, if you are using RStudio, the file-browsing pane can also set the working directory from an option on the pane’s gear/more menu. All of the code examples from this book are included in the directory PDSwR2/CodeExamples, so you should not need to type them in (though to run them you will have to be working in the appropriate data directory—not in the directory you find the code in).


  The examples in this book are supplied in lieu of explicit exercises. We suggest working through the examples and trying variations. For example, in section 2.3.1, where we show how to relate expected income to schooling and gender, it makes sense to try relating income to employment status or even age. Data science requires curiosity about programming, functions, data, variables, and relations, and the earlier you find surprises in your data, the easier they are to work through.


  


  
Book forum


  Purchase of Practical Data Science with R includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/practical-data-science-with-r-second-edition. You can also learn more about Manning's forums and the rules of conduct at https://forums.manning.com/forums/about.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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About the Cover Illustration


  The figure on the cover of Practical Data Science with R is captioned “Habit of a Lady of China in 1703.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local dress customs of the lands he surveyed and mapped; they are brilliantly displayed in this four-volume collection.


  Fascination with faraway lands and travel for pleasure were relatively new phenomena in the eighteenth century, and collections such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations centuries ago. Dress codes have changed, and the diversity by region and country, so rich at that time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, viewing it optimistically, we have traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.


  At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of national costumes three centuries ago, brought back to life by Jefferys’ pictures.


  


  Part 1. Introduction to data science


  In part 1, we concentrate on the most essential tasks in data science: working with your partners, defining your problem, and examining your data.


  Chapter 1 covers the lifecycle of a typical data science project. We look at the different roles and responsibilities of project team members, the different stages of a typical project, and how to define goals and set project expectations. This chapter serves as an overview of the material that we cover in the rest of the book, and is organized in the same order as the topics that we present.


  Chapter 2 dives into the details of loading data into R from various external formats and transforming the data into a format suitable for analysis. It also discusses the most important R data structure for a data scientist: the data frame. More details about the R programming language are covered in appendix A.


  Chapters 3 and 4 cover the data exploration and treatment that you should do before proceeding to the modeling stage. In chapter 3, we discuss some of the typical problems and issues that you’ll encounter with your data and how to use summary statistics and visualization to detect those issues. In chapter 4, we discuss data treatments that will help you deal with the problems and issues in your data. We also recommend some habits and procedures that will help you better manage the data throughout the different stages of the project.


  Chapter 5 covers how to wrangle or manipulate data into a ready-for-analysis shape.


  On completing part 1, you’ll understand how to define a data science project, and you’ll know how to load data into R and prepare it for modeling and analysis.


  


  Chapter 1. The data science process


  This chapter covers


  
    	Defining data science


    	Defining data science project roles


    	Understanding the stages of a data science project


    	Setting expectations for a new data science project

  


  Data science is a cross-disciplinary practice that draws on methods from data engineering, descriptive statistics, data mining, machine learning, and predictive analytics. Much like operations research, data science focuses on implementing data-driven decisions and managing their consequences. For this book, we will concentrate on data science as applied to business and scientific problems, using these techniques.


  The data scientist is responsible for guiding a data science project from start to finish. Success in a data science project comes not from access to any one exotic tool, but from having quantifiable goals, good methodology, cross-discipline interactions, and a repeatable workflow.


  This chapter walks you through what a typical data science project looks like: the kinds of problems you encounter, the types of goals you should have, the tasks that you’re likely to handle, and what sort of results are expected.


  We’ll use a concrete, real-world example to motivate the discussion in this chapter.[1]
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      For this chapter, we'll use a credit dataset donated by Dr. Hans Hofmann, professor of integrative biology, to the UCI Machine Learning Repository in 1994. We've simplified some of the column names for clarity. The original dataset can be found at http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data). We'll show how to load this data and prepare it for analysis in chapter 2. Note that the German currency at the time of data collection was the deutsche mark (DM).
    

  

  


  Example


  Suppose you’re working for a German bank. The bank feels that it’s losing too much money to bad loans and wants to reduce its losses. To do so, they want a tool to help loan officers more accurately detect risky loans.

  


  This is where your data science team comes in.


  


  
1.1. The roles in a data science project


  Data science is not performed in a vacuum. It’s a collaborative effort that draws on a number of roles, skills, and tools. Before we talk about the process itself, let’s look at the roles that must be filled in a successful project. Project management has been a central concern of software engineering for a long time, so we can look there for guidance. In defining the roles here, we’ve borrowed some ideas from Fredrick Brooks’ “surgical team” perspective on software development, as described in The Mythical Man-Month: Essays on Software Engineering (Addison-Wesley, 1995). We also borrowed ideas from the agile software development paradigm.


  1.1.1. Project roles


  Let’s look at a few recurring roles in a data science project in table 1.1.


  Table 1.1. Data science project roles and responsibilities


  
    
      
      
    

    
      
        	
          Role

        

        	
          Responsibilities

        
      

    

    
      
        	Project sponsor

        	Represents the business interests; champions the project
      


      
        	Client

        	Represents end users’ interests; domain expert
      


      
        	Data scientist

        	Sets and executes analytic strategy; communicates with sponsor and client
      


      
        	Data architect

        	Manages data and data storage; sometimes manages data collection
      


      
        	Operations

        	Manages infrastructure; deploys final project results
      

    
  


  Sometimes these roles may overlap. Some roles—in particular, client, data architect, and operations—are often filled by people who aren’t on the data science project team, but are key collaborators.


  Project sponsor


  The most important role in a data science project is the project sponsor. The sponsor is the person who wants the data science result; generally, they represent the business interests. In the loan application example, the sponsor might be the bank’s head of Consumer Lending. The sponsor is responsible for deciding whether the project is a success or failure. The data scientist may fill the sponsor role for their own project if they feel they know and can represent the business needs, but that’s not the optimal arrangement. The ideal sponsor meets the following condition: if they’re satisfied with the project outcome, then the project is by definition a success. Getting sponsor sign-off becomes the central organizing goal of a data science project.

  


  Keep the sponsor informed and involved


  It’s critical to keep the sponsor informed and involved. Show them plans, progress, and intermediate successes or failures in terms they can understand. A good way to guarantee project failure is to keep the sponsor in the dark.

  


  To ensure sponsor sign-off, you must get clear goals from them through directed interviews. You attempt to capture the sponsor’s expressed goals as quantitative statements. An example goal might be “Identify 90% of accounts that will go into default at least two months before the first missed payment with a false positive rate of no more than 25%.” This is a precise goal that allows you to check in parallel if meeting the goal is actually going to make business sense and whether you have data and tools of sufficient quality to achieve the goal.


  Client


  While the sponsor is the role that represents the business interests, the client is the role that represents the model’s end users’ interests. Sometimes, the sponsor and client roles may be filled by the same person. Again, the data scientist may fill the client role if they can weight business trade-offs, but this isn’t ideal.


  The client is more hands-on than the sponsor; they’re the interface between the technical details of building a good model and the day-to-day work process into which the model will be deployed. They aren’t necessarily mathematically or statistically sophisticated, but are familiar with the relevant business processes and serve as the domain expert on the team. In the loan application example, the client may be a loan officer or someone who represents the interests of loan officers.


  As with the sponsor, you should keep the client informed and involved. Ideally, you’d like to have regular meetings with them to keep your efforts aligned with the needs of the end users. Generally, the client belongs to a different group in the organization and has other responsibilities beyond your project. Keep meetings focused, present results and progress in terms they can understand, and take their critiques to heart. If the end users can’t or won’t use your model, then the project isn’t a success, in the long run.


  Data scientist


  The next role in a data science project is the data scientist, who’s responsible for taking all necessary steps to make the project succeed, including setting the project strategy and keeping the client informed. They design the project steps, pick the data sources, and pick the tools to be used. Since they pick the techniques that will be tried, they have to be well informed about statistics and machine learning. They’re also responsible for project planning and tracking, though they may do this with a project management partner.


  At a more technical level, the data scientist also looks at the data, performs statistical tests and procedures, applies machine learning models, and evaluates results—the science portion of data science.

  


  
    Domain empathy

    It is often too much to ask for the data scientist to become a domain expert. However, in all cases the data scientist must develop strong domain empathy to help define and solve the right problems.

  

  


  Data architect


  The data architect is responsible for all the data and its storage. Often this role is filled by someone outside of the data science group, such as a database administrator or architect. Data architects often manage data warehouses for many different projects, and they may only be available for quick consultation.


  Operations


  The operations role is critical both in acquiring data and delivering the final results. The person filling this role usually has operational responsibilities outside of the data science group. For example, if you’re deploying a data science result that affects how products are sorted on an online shopping site, then the person responsible for running the site will have a lot to say about how such a thing can be deployed. This person will likely have constraints on response time, programming language, or data size that you need to respect in deployment. The person in the operations role may already be supporting your sponsor or your client, so they’re often easy to find (though their time may be already very much in demand).


  


  
1.2. Stages of a data science project


  The ideal data science environment is one that encourages feedback and iteration between the data scientist and all other stakeholders. This is reflected in the lifecycle of a data science project. Even though this book, like other discussions of the data science process, breaks up the cycle into distinct stages, in reality the boundaries between the stages are fluid, and the activities of one stage will often overlap those of other stages.[2] Often, you’ll loop back and forth between two or more stages before moving forward in the overall process. This is shown in figure 1.1.
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      One common model of the machine learning process is the cross-industry standard process for data mining (CRISP-DM) (https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining). The model we’ll discuss here is similar, but emphasizes that back-and-forth is possible at any stage of the process.
    

  


  Figure 1.1. The lifecycle of a data science project: loops within loops
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  Even after you complete a project and deploy a model, new issues and questions can arise from seeing that model in action. The end of one project may lead into a follow-up project.


  Let’s look at the different stages shown in figure 1.1.


  1.2.1. Defining the goal


  The first task in a data science project is to define a measurable and quantifiable goal. At this stage, learn all that you can about the context of your project:
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    	Why do the sponsors want the project in the first place? What do they lack, and what do they need?


    	What are they doing to solve the problem now, and why isn’t that good enough?


    	What resources will you need: what kind of data and how much staff? Will you have domain experts to collaborate with, and what are the computational resources?


    	How do the project sponsors plan to deploy your results? What are the constraints that have to be met for successful deployment?

  


  Let’s come back to our loan application example. The ultimate business goal is to reduce the bank’s losses due to bad loans. Your project sponsor envisions a tool to help loan officers more accurately score loan applicants, and so reduce the number of bad loans made. At the same time, it’s important that the loan officers feel that they have final discretion on loan approvals.


  Once you and the project sponsor and other stakeholders have established preliminary answers to these questions, you and they can start defining the precise goal of the project. The goal should be specific and measurable; not “We want to get better at finding bad loans,” but instead “We want to reduce our rate of loan charge-offs by at least 10%, using a model that predicts which loan applicants are likely to default.”


  A concrete goal leads to concrete stopping conditions and concrete acceptance criteria. The less specific the goal, the likelier that the project will go unbounded, because no result will be “good enough.” If you don’t know what you want to achieve, you don’t know when to stop trying—or even what to try. When the project eventually terminates—because either time or resources run out—no one will be happy with the outcome.


  Of course, at times there is a need for looser, more exploratory projects: “Is there something in the data that correlates to higher defaults?” or “Should we think about reducing the kinds of loans we give out? Which types might we eliminate?” In this situation, you can still scope the project with concrete stopping conditions, such as a time limit. For example, you might decide to spend two weeks, and no more, exploring the data, with the goal of coming up with candidate hypotheses. These hypotheses can then be turned into concrete questions or goals for a full-scale modeling project.


  Once you have a good idea of the project goals, you can focus on collecting data to meet those goals.


  1.2.2. Data collection and management


  This step encompasses identifying the data you need, exploring it, and conditioning it to be suitable for analysis. This stage is often the most time-consuming step in the process. It’s also one of the most important:


  
    	What data is available to me?


    	Will it help me solve the problem?


    	Is it enough?


    	Is the data quality good enough?
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  Imagine that, for your loan application problem, you’ve collected a sample of representative loans from the last decade. Some of the loans have defaulted; most of them (about 70%) have not. You’ve collected a variety of attributes about each loan application, as listed in table 1.2.


  Table 1.2. Loan data attributes


  
    
      
    

    
      
        	
Status_of_existing_checking_account (at time of application)

      


      
        	
Duration_in_month (loan length)

      


      
        	Credit_history
      


      
        	
Purpose (car loan, student loan, and so on)

      


      
        	
Credit_amount (loan amount)

      


      
        	
Savings_Account_or_bonds (balance/amount)

      


      
        	Present_employment_since
      


      
        	Installment_rate_in_percentage_of_disposable_income
      


      
        	Personal_status_and_sex
      


      
        	Cosigners
      


      
        	Present_residence_since
      


      
        	
Collateral (car, property, and so on)

      


      
        	Age_in_years
      


      
        	
Other_installment_plans (other loans/lines of credit—the type)

      


      
        	
Housing (own, rent, and so on)

      


      
        	Number_of_existing_credits_at_this_bank
      


      
        	
Job (employment type)

      


      
        	Number_of_dependents
      


      
        	
Telephone (do they have one)

      


      
        	
Loan_status (dependent variable)

      

    
  


  In your data, Loan_status takes on two possible values: GoodLoan and BadLoan. For the purposes of this discussion, assume that a GoodLoan was paid off, and a BadLoan defaulted.

  


  Try to directly measure the information you need


  As much as possible, try to use information that can be directly measured, rather than information that is inferred from another measurement. For example, you might be tempted to use income as a variable, reasoning that a lower income implies more difficulty paying off a loan. The ability to pay off a loan is more directly measured by considering the size of the loan payments relative to the borrower’s disposable income. This information is more useful than income alone; you have it in your data as the variable Installment_rate_in_percentage_of_disposable_income.

  


  This is the stage where you initially explore and visualize your data. You’ll also clean the data: repair data errors and transform variables, as needed. In the process of exploring and cleaning the data, you may discover that it isn’t suitable for your problem, or that you need other types of information as well. You may discover things in the data that raise issues more important than the one you originally planned to address. For example, the data in figure 1.2 seems counterintuitive.


  Figure 1.2. The fraction of defaulting loans by credit history category. The dark region of each bar represents the fraction of loans in that category that defaulted.
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  Why would some of the seemingly safe applicants (those who repaid all credits to the bank) default at a higher rate than seemingly riskier ones (those who had been delinquent in the past)? After looking more carefully at the data and sharing puzzling findings with other stakeholders and domain experts, you realize that this sample is inherently biased: you only have loans that were actually made (and therefore already accepted). A true unbiased sample of loan applications should include both loan applications that were accepted and ones that were rejected. Overall, because your sample only includes accepted loans, there are fewer risky-looking loans than safe-looking ones in the data. The probable story is that risky-looking loans were approved after a much stricter vetting process, a process that perhaps the safe-looking loan applications could bypass. This suggests that if your model is to be used downstream of the current application approval process, credit history is no longer a useful variable. It also suggests that even seemingly safe loan applications should be more carefully scrutinized.


  Discoveries like this may lead you and other stakeholders to change or refine the project goals. In this case, you may decide to concentrate on the seemingly safe loan applications. It’s common to cycle back and forth between this stage and the previous one, as well as between this stage and the modeling stage, as you discover things in the data. We’ll cover data exploration and management in depth in chapters 3 and 4.


  1.2.3. Modeling


  You finally get to statistics and machine learning during the modeling, or analysis, stage. Here is where you try to extract useful insights from the data in order to achieve your goals. Since many modeling procedures make specific assumptions about data distribution and relationships, there may be overlap and back-and-forth between the modeling stage and the data-cleaning stage as you try to find the best way to represent the data and the best form in which to model it.
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  The most common data science modeling tasks are these:


  
    	
Classifying— Deciding if something belongs to one category or another


    	
Scoring— Predicting or estimating a numeric value, such as a price or probability


    	
Ranking— Learning to order items by preferences


    	
Clustering— Grouping items into most-similar groups


    	
Finding relations— Finding correlations or potential causes of effects seen in the data


    	
Characterizing— Very general plotting and report generation from data

  


  For each of these tasks, there are several different possible approaches. We’ll cover some of the most common approaches to the different tasks in this book.


  The loan application problem is a classification problem: you want to identify loan applicants who are likely to default. Some common approaches in such cases are logistic regression and tree-based methods (we’ll cover these methods in depth in chapters 7 and 10). You’ve been in conversation with loan officers and others who would be using your model in the field, so you know that they want to be able to understand the chain of reasoning behind the model’s classification, and they want an indication of how confident the model is in its decision: is this applicant highly likely to default, or only somewhat likely? To solve this problem, you decide that a decision tree is most suitable. We’ll cover decision trees more extensively in chapter 10, but for now we will just look at the resulting decision tree model.[3]
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      In this chapter, for clarity of illustration, we deliberately fit a small and shallow tree.
    

  


  Let’s suppose that you discover the model shown in figure 1.3. Let’s trace an example path through the tree. Let’s suppose that there is an application for a one-year loan of DM 10,000 (deutsche mark, the currency at the time of the study). At the top of the tree (node 1 in figure 1.3), the model checks if the loan is for longer than 34 months. The answer is “no,” so the model takes the right branch down the tree. This is shown as the highlighted branch from node 1. The next question (node 3) is whether the loan is for more than DM 11,000. Again, the answer is “no,” so the model branches right (as shown by the darker highlighted branch from node 3) and arrives at leaf 3. Historically, 75% of loans that arrive at this leaf are good loans, so the model recommends that you approve this loan, as there is a high probability that it will be paid off.


  Figure 1.3. A decision tree model for finding bad loan applications. The outcome nodes show confidence scores.
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  On the other hand, suppose that there is an application for a one-year loan of DM 15,000. In this case, the model would first branch right at node 1, and then left at node 3, to arrive at leaf 2. Historically, all loans that arrive at leaf 2 have defaulted, so the model recommends that you reject this loan application.


  We’ll discuss general modeling strategies in chapter 6 and go into details of specific modeling algorithms in part 2.


  1.2.4. Model evaluation and critique


  Once you have a model, you need to determine if it meets your goals:


  
    	Is it accurate enough for your needs? Does it generalize well?


    	Does it perform better than “the obvious guess”? Better than whatever estimate you currently use?


    	Do the results of the model (coefficients, clusters, rules, confidence intervals, significances, and diagnostics) make sense in the context of the problem domain?
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  If you’ve answered “no” to any of these questions, it’s time to loop back to the modeling step—or decide that the data doesn’t support the goal you’re trying to achieve. No one likes negative results, but understanding when you can’t meet your success criteria with current resources will save you fruitless effort. Your energy will be better spent on crafting success. This might mean defining more-realistic goals or gathering the additional data or other resources that you need to achieve your original goals.


  Returning to the loan application example, the first thing to check is whether the rules that the model discovered make sense. Looking at figure 1.3, you don’t notice any obviously strange rules, so you can go ahead and evaluate the model’s accuracy. A good summary of classifier accuracy is the confusion matrix, which tabulates actual classifications against predicted ones.[4]
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      Normally, we’d evaluate the model against a test set (data that wasn’t used to build the model). In this example, for simplicity, we'll evaluate the model against the training data (data that was used to build the model). Also note we are following a convention that we will use when plotting: predictions are the x-axis, which for tables means predictions are the column names. Be aware that there are other conventions for confusion matrices.
    

  


  In listing 1.1, you will create a confusion matrix where rows represent actual loan status, and columns represent predicted loan status. To improve legibility, the code references matrix elements by name rather than by index. For example, conf_mat ["GoodLoan", "BadLoan"] refers to the element conf_mat[2, 1]: the number of actual good loans that the model predicted were bad. The diagonal entries of the matrix represent correct predictions.


  Listing 1.1. Calculating the confusion matrix

  library("rpart")                                                           ❶
 load("loan_model_example.RData")                                          ❷
 conf_mat <-
      table(actual = d$Loan_status, pred = predict(model, type = 'class')) ❸

##           pred
## actual     BadLoan GoodLoan
##   BadLoan       41      259
##   GoodLoan      13      687

(accuracy <- sum(diag(conf_mat)) / sum(conf_mat))                          ❹
 ## [1] 0.728
(precision <- conf_mat["BadLoan", "BadLoan"] / sum(conf_mat[, "BadLoan"])  ❺
 ## [1] 0.7592593
(recall <- conf_mat["BadLoan", "BadLoan"] / sum(conf_mat["BadLoan", ]))    ❻
 ## [1] 0.1366667

(fpr <- conf_mat["GoodLoan","BadLoan"] / sum(conf_mat["GoodLoan", ]))      ❻
 ## [1] 0.01857143


  ❶ How to install all the packages needed to run examples in the book can be found here: https://github.com/WinVector/PDSwR2/blob/master/packages.R.


  ❷ This file can be found at https://github.com/WinVector/PDSwR2/tree/master/Statlog.


  ❸ Creates the confusion matrix


  ❹ Overall model accuracy: 73% of the predictions were correct.


  ❺ Model precision: 76% of the applicants predicted as bad really did default.


  ❻ Model recall: the model found 14% of the defaulting loans.


  ❻ False positive rate: 2% of the good applicants were mistakenly identified as bad.


  The model predicted loan status correctly 73% of the time—better than chance (50%). In the original dataset, 30% of the loans were bad, so guessing GoodLoan all the time would be 70% accurate (though not very useful). So you know that the model does better than random and somewhat better than obvious guessing.


  Overall accuracy is not enough. You want to know what kind of mistakes are being made. Is the model missing too many bad loans, or is it marking too many good loans as bad? Recall measures how many of the bad loans the model can actually find. Precision measures how many of the loans identified as bad really are bad. False positive rate measures how many of the good loans are mistakenly identified as bad. Ideally, you want the recall and the precision to be high, and the false positive rate to be low. What constitutes “high enough” and “low enough” is a decision that you make together with the other stakeholders. Often, the right balance requires some trade-off between recall and precision.


  There are other measures of accuracy and other measures of the quality of a model, as well. We’ll talk about model evaluation in chapter 6.


  1.2.5. Presentation and documentation


  Once you have a model that meets your success criteria, you’ll present your results to your project sponsor and other stakeholders. You must also document the model for those in the organization who are responsible for using, running, and maintaining the model once it has been deployed.
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  Different audiences require different kinds of information. Business-oriented audiences want to understand the impact of your findings in terms of business metrics. In the loan example, the most important thing to present to business audiences is how your loan application model will reduce charge-offs (the money that the bank loses to bad loans). Suppose your model identified a set of bad loans that amounted to 22% of the total money lost to defaults. Then your presentation or executive summary should emphasize that the model can potentially reduce the bank’s losses by that amount, as shown in figure 1.4.


  Figure 1.4. Example slide from an executive presentation
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  You also want to give this audience your most interesting findings or recommendations, such as that new car loans are much riskier than used car loans, or that most losses are tied to bad car loans and bad equipment loans (assuming that the audience didn’t already know these facts). Technical details of the model won’t be as interesting to this audience, and you should skip them or only present them at a high level.


  A presentation for the model’s end users (the loan officers) would instead emphasize how the model will help them do their job better:


  
    	How should they interpret the model?


    	What does the model output look like?


    	If the model provides a trace of which rules in the decision tree executed, how do they read that?


    	If the model provides a confidence score in addition to a classification, how should they use the confidence score?


    	When might they potentially overrule the model?

  


  Presentations or documentation for operations staff should emphasize the impact of your model on the resources that they’re responsible for. We’ll talk about the structure of presentations and documentation for various audiences in part 3.


  1.2.6. Model deployment and maintenance


  Finally, the model is put into operation. In many organizations, this means the data scientist no longer has primary responsibility for the day-to-day operation of the model. But you still should ensure that the model will run smoothly and won’t make disastrous unsupervised decisions. You also want to make sure that the model can be updated as its environment changes. And in many situations, the model will initially be deployed in a small pilot program. The test might bring out issues that you didn’t anticipate, and you may have to adjust the model accordingly. We’ll discuss model deployment in chapter 11.
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  When you deploy the model, you might find that loan officers frequently override the model in certain situations because it contradicts their intuition. Is their intuition wrong? Or is your model incomplete? Or, in a more positive scenario, your model may perform so successfully that the bank wants you to extend it to home loans as well.


  Before we dive deeper into the stages of the data science lifecycle, in the following chapters, let’s look at an important aspect of the initial project design stage: setting expectations.


  


  
1.3. Setting expectations


  Setting expectations is a crucial part of defining the project goals and success criteria. The business-facing members of your team (in particular, the project sponsor) probably already have an idea of the performance required to meet business goals: for example, the bank wants to reduce their losses from bad loans by at least 10%. Before you get too deep into a project, you should make sure that the resources you have are enough for you to meet the business goals.


  This is an example of the fluidity of the project lifecycle stages. You get to know the data better during the exploration and cleaning phase; after you have a sense of the data, you can get a sense of whether the data is good enough to meet desired performance thresholds. If it’s not, then you’ll have to revisit the project design and goal-setting stage.


  1.3.1. Determining lower bounds on model performance


  Understanding how well a model should do for acceptable performance is important when defining acceptance criteria.


  The null model represents the lower bound on model performance that you should strive for. You can think of the null model as being “the obvious guess” that your model must do better than. In situations where there’s a working model or solution already in place that you’re trying to improve, the null model is the existing solution. In situations where there’s no existing model or solution, the null model is the simplest possible model: for example, always guessing GoodLoan, or always predicting the mean value of the output when you’re trying to predict a numerical value.


  In our loan application example, 70% of the loan applications in the dataset turned out to be good loans. A model that labels all loans as GoodLoan (in effect, using only the existing process to classify loans) would be correct 70% of the time. So you know that any actual model that you fit to the data should be better than 70% accurate to be useful—if accuracy were your only metric. Since this is the simplest possible model, its error rate is called the base error rate.


  How much better than 70% should you be? In statistics there’s a procedure called hypothesis testing, or significance testing, that tests whether your model is equivalent to a null model (in this case, whether a new model is basically only as accurate as guessing GoodLoan all the time). You want your model accuracy to be “significantly better”—in statistical terms—than 70%. We will discuss significance testing in chapter 6.


  Accuracy is not the only (or even the best) performance metric. As we saw previously, the recall measures the fraction of true bad loans that a model identifies. In our example, the null model that always guesses GoodLoan would have zero recall in identifying bad loans, which obviously is not what you want. Generally, if there is an existing model or process in place, you’d like to have an idea of its precision, recall, and false positive rates; improving one of these metrics is almost always more important than considering accuracy alone. If the purpose of your project is to improve the existing process, then the current model must be unsatisfactory for at least one of these metrics. Knowing the limitations of the existing process helps you determine useful lower bounds on desired performance.


  


  
Summary


  The data science process involves a lot of back-and-forth—between the data scientist and other project stakeholders, and between the different stages of the process. Along the way, you’ll encounter surprises and stumbling blocks; this book will teach you procedures for overcoming some of these hurdles. It’s important to keep all the stakeholders informed and involved; when the project ends, no one connected with it should be surprised by the final results.


  In the next chapters, we’ll look at the stages that follow project design: loading, exploring, and managing the data. Chapter 2 covers a few basic ways to load the data into R, in a format that’s convenient for analysis.


  In this chapter you have learned


  
    	A successful data science project involves more than just statistics. It also requires a variety of roles to represent business and client interests, as well as operational concerns.


    	You should make sure you have a clear, verifiable, quantifiable goal.


    	Make sure you’ve set realistic expectations for all stakeholders.

  


  


  Chapter 2. Starting with R and data


  This chapter covers


  
    	Starting to work with R and data


    	Mastering R’s data frame structure


    	Loading data into R


    	Recoding data for later analysis

  


  This chapter works through how to start working with R and how to import data into R from diverse sources. This will prepare you to work examples throughout the rest of the book.


  Figure 2.1 is a diagram representing a mental model for the book that has been reshaded to emphasize the purpose of this chapter: starting to work with R and importing data into R. The overall diagram shows the data science process diagram from chapter 1 combined with a rebus form of the book title. In each chapter, we will reshade this mental model to indicate the parts of the data science process we are emphasizing. For example: in this chapter, we are mastering the initial steps of collecting and managing data, and touching on issues of practicality, data, and R (but not yet the art of science).


  Figure 2.1. Chapter 2 mental model
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  Many data science projects start when someone points the analyst toward a bunch of data, and the analyst is left to make sense of it.[5] Your first thought may be to use ad hoc tools and spreadsheets to sort through it, but you will quickly realize that you’re taking more time tinkering with the tools than actually analyzing the data. Luckily, there’s a better way: using R. By the end of the chapter, you’ll be able to confidently use R to extract, transform, and load data for analysis.
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      We assume the reader is interested in working as an analyst, statistician, or data scientist, so we will alternate using these terms to represent people similar to the reader.
    

  


  
    R without data is like going to the theater to watch the curtain go up and down.


    Adapted from Ben Katchor’s Julius Knipl, Real Estate Photographer: Stories

  


  


  
2.1. Starting with R


  R is open source software that runs well on Unix, Linux, Apple’s macOS, and Microsoft Windows. This book will concentrate on how to work as a data scientist. However, to work the examples, the reader must be familiar with R programming. If you want to pick up some prerequisite knowledge, we suggest consulting free manuals from CRAN (the main R package repository: https://cran.r-project.org/manuals.html) and other online materials. A number of good books for starting with R include these:


  
    	
R in Action, Second Edition, Robert Kabacoff, Manning, 2015


    	
Beyond Spreadsheets with R, Jonathan Carroll, Manning, 2018


    	
The Art of R Programming, Norman Matloff, No Starch Press, 2011


    	
R for Everyone, Second Edition, Jared P. Lander, Addison-Wesley, 2017

  


  Each book has a different teaching style, and some include material on statistics, machine learning, and data engineering. A little research may tell you which books work well for you. This book will concentrate on working substantial data science examples, demonstrating the steps needed to overcome typical issues found in your own future real-world applications.


  It is our opinion that data science is repeatable: the same job rerun on the same data should give a similar quality result (the exact result may vary due to numeric issues, timing issues, issues arising from parallelism, and issues around pseudo-random numbers). In fact, we should insist on repeatability. This is why we are discussing programming in a data science book. Programming is the reliable way to specify a reusable sequence of operations. With this in mind, one should always consider a data refresh (getting newer, corrected, or larger data) as a good thing, because rerunning an analysis should be, by design, very easy. An analysis that has a number of steps performed by hand is never going to be easy to repeat.


  2.1.1. Installing R, tools, and examples


  We suggest you follows the steps in section A.1 of appendix A to install R, packages, tools, and the book examples.

  


  Look for help


  R includes a very nice help system. To get help on an R command, just run the help() command in the R console. For example, to see details about how to change directories, you would type help(setwd). You must know the name of the function to get help, so we strongly recommend keeping notes. For some simple functions, we will not explain the function and leave it to the reader to call help() to work out what the function does.

  


  2.1.2. R programming


  In this section, we will briefly describe some R programming conventions, semantics, and style issues. Details can be found in package-specific documentation, the R help() system, and by trying variations of the examples we present here. Here, we’ll concentrate on aspects that differ from other common programming languages, and conventions that we emphasize in the book. This should help you get into an R frame of mind.


  There are a number of common R coding style guides. Coding style is an attempt to make things more consistent, clear, and readable. This book will follow a style variation we have found to be very effective in teaching and code maintenance. Obviously, our style is just one among many, and is in no way mandatory. Good starting references include these:


  
    	
The Google R Style Guide (https://google.github.io/styleguide/Rguide.html)


    	Hadley Wickham’s style guide from Advanced R (http://adv-r.had.co.nz/Style.html)

  


  We will try to minimize differences from current convention and call out where we have such differences. We also recommend “R tips and tricks” from the author’s blog.[6]
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      See http://www.win-vector.com/blog/tag/r-tips/.
    

  


  R is a rich and broad language, often with many ways to accomplish the same task. This represents a bit of an initial learning curve, as the meaning of R programs can be hard to discern until you get familiar with the notation. However, time spent reviewing some of the basic notation is well rewarded, as it will make working through the coming substantial examples much easier. We understand the grammar of R is itself uninteresting to the reader coming here to learn data science methods and practices (our exact target audience!), but this small initial exertion prevents a lot of confusion later. We will use this section to describe a bit of R’s notation and meaning, concentrating on that which is particularly useful and surprising. All the following are small and basic points, but many of them are subtle and worth experimenting with.

  


  Prefer working code


  Prefer programs, scripts, or code that works but does not yet do what you want. Instead of writing a large, untested program or script that embodies every desired step of analysis, write a program that performs a step correctly, and then iteratively revise the script to perform more steps correctly. This discipline of moving from a working revision usually gets to final correct results much faster than attempting to debug a large, faulty system into correctness.

  


  Examples and the comment character (#)


  In examples, we will show R commands as free text, with the results prefixed by the hash mark, #, which is R’s comment character. In many examples, we will include the results after the commands, prefixed with the comment character. R printing usually includes array cell indices in square braces and often involves line wrapping. For example, printing the integers 1 through 25 looks like the following:

  print(seq_len(25))
# [1]  1  2  3  4  5  6  7  8  9 10 11 12
# [13] 13 14 15 16 17 18 19 20 21 22 23 24
# [25] 25


  Notice the numbers were wrapped to three lines, and each line starts with the index of the first cell reported on the line inside square brackets. Sometimes we will not show results, an extra encouragement to work these particular examples.


  Printing


  R has a number of rules that turn implicit or automatic printing on and off. Some packages such as ggplot2 use printing to trigger their intended operations. Typing a value usually triggers printing the value. Care must be taken in a function or a for loop, as in these contexts, R’s automatic printing of results is disabled. Printing of very large objects can be a problem, so you want to avoid printing objects of unknown size. Implicit printing can often be forced by adding extra parentheses such as in “(x <- 5)”.


  Vectors and lists


  Vectors (sequential arrays of values) are fundamental R data structures. Lists can hold different types in each slot; vectors can only hold the same primitive or atomic type in each slot. In addition to numeric indexing, both vectors and lists support name-keys. Retrieving items from a list or vector can be done by the operators shown next.

  


  Vector indexing


  R vectors and lists are indexed from 1, and not from 0 as with many other programming languages.

  

  example_vector <- c(10, 20, 30)                ❶
example_list <- list(a = 10, b = 20, c = 30)   ❷

example_vector[1]                              ❸
 ## [1] 10
example_list[1]
## $a
## [1] 10

example_vector[[2]]                            ❹
 ## [1] 20
example_list[[2]]
## [1] 20

example_vector[c(FALSE, TRUE, TRUE)]           ❺
 ## [1] 20 30
example_list[c(FALSE, TRUE, TRUE)]
## $b
## [1] 20
##
## $c
## [1] 30

example_list$b                                 ❻
 ## [1] 20

example_list[["b"]]
## [1] 20


  ❶ Builds an example vector. c() is R’s concatenate operator—it builds longer vectors and lists from shorter ones without nesting. For example, c(1) is just the number 1, and c(1, c(2, 3)) is equivalent to c(1, 2, 3), which in turn is the integers 1 through 3 (though stored in a floating-point format).


  ❷ Builds an example list


  ❸ Demonstrates vector and list use of []. Notice that for the list, [] returns a new short list, not the item.


  ❹ Demonstrates vector and list use of [[]]. In common cases, [[]] forces a single item to be returned, though for nested lists of complex type, this item itself could be a list.


  ❺ Vectors and lists can be indexed by vectors of logicals, integers, and (if the vector or list has names) characters.


  ❻ For named examples, the syntax example_list$b is essentially a short-hand for example_list[["b"]] (the same is true for named vectors).


  We will not always share so many notes for every example, but we invite the reader to work as if there were such notes by calling help() on every function or command used. Also, we very much encourage trying variations. In R “errors” are just R’s way of saying it safely refused to complete an ill-formed operation (an error does not indicate “crash,” and results are not corrupted). So fear of errors should not limit experiments.

  x <- 1:5
print(x)                                                                   ❶
# [1] 1 2 3 4 5

x <- cumsumMISSPELLED(x)                                                   ❷
# Error in cumsumMISSPELLED(x) : could not find function "cumsumMISSPELLED"

print(x)                                                                   ❸
# [1] 1 2 3 4 5

x <- cumsum(x)                                                             ❹
print(x)
# [1]  1  3  6 10 15


  ❶ Defines a value we are interested in and stores it in the variable x


  ❷ Attempts, and fails, to assign a new result to x


  ❸ Notice that in addition to supplying a useful error message, R preserves the original value of x.


  ❹ Tries the operation again, using the correct spelling of cumsum(). cumsum(), short for cumulative sum, is a useful function that computes running totals quickly.


  Another aspect of vectors in R is that most R operations are vectorized. A function or operator is called vectorized when applying it to a vector is shorthand for applying a function to each entry of the vector independently. For example, the function nchar() counts how many characters are in a string. In R this function can be used on a single string, or on a vector of strings.

  


  Lists and vectors are R’s map structures


  Lists and vectors are R’s map structures. They can map strings to arbitrary objects. The primary list operations [], match (), and %in% are vectorized. This means that, when applied to a vector of values, they return a vector of results by performing one lookup per entry. For pulling individual elements out of a list, use the double-bracket notation [[]].

  

  nchar("a string")
# [1] 8

nchar(c("a", "aa", "aaa", "aaaa"))
# [1] 1 2 3 4

  


  Logical operations


  R’s logical operators come in two flavors. R has standard infix scalar-valued operators that expect only one value and have the same behavior and same names as you would see in C or Java: && and ||. R also has vectorized infix operators that work on vectors of logical values: & and |. Be sure to always use the scalar versions (&& and ||) in situations such as if statements, and the vectorized versions (& and |) when processing logical vectors.

  


  NULL and NANA (not available) values


  In R NULL is just a synonym for the empty or length-zero vector formed by using the concatenate operator c() with no arguments. For example, when we type c() into the R console, we will see the value NULL returned. In R NULL is not any sort of invalid pointer (as it is in most C/Java-related languages). NULL is simply a length-zero vector. Concatenating NULL is a safe and well-defined operation (in fact it’s a “no operation” or “no-op” that does nothing). For example, c(c(), 1, NULL) is perfectly valid and returns the value 1.


  NA stands for “not available” and is fairly unique to R. Most any simple type can take on the value NA. For example, the vector c("a", NA, "c") is a vector of three character strings where we do not know the value of the second entry. Having NA is a great convenience as it allows us to annotate missing or unavailable values in place, which can be critical in data processing. NA behaves a little bit like the NaN value in floating-point arithmetic,[7] except we are not restricted to using it only with floating-point types. Also, NA means “not available,” not invalid (as NaN denotes), so NA has some convenient rules such as the logical expression FALSE & NA simplifying to FALSE.
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      The limits of floating-point arithmetic, or how real numbers are commonly approximated in computers, is a common source of confusion and problems when working with numeric data. To appreciate the issues of working with numeric data, we recommend data scientists read David Goldberg’s 1991 Computing Surveys. “What Every Computer Scientist Should Know About Floating-Point Arithmetic” has been publicly shared from this issue (https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html).
    

  


  Identifiers


  Identifiers or symbol names are how R refers to variables and functions. The Google R Style Guide insists on writing symbol names in what is called “CamelCase” (word boundaries in names are denoted by uppercase letters, as in “CamelCase” itself). The Advanced R guide recommends an underscore style where names inside identifiers are broken up with underscores (such as “day_one” instead of “DayOne”). Also, many R users use a dot to break up names with identifiers (such as “day.one”). In particular, important built-in R types such as data.frame and packages such as data.table use the dot notation convention.


  We recommend using the underscore notation, but find we often must switch between conventions when working with others. If possible, avoid the dot convention, as this notation is usually used for other purposes in object-oriented languages and databases, and so needlessly confuses others.[8]
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      The dot notation likely comes from the Lisp world (which strongly influenced R) and the aversion to underscores likely is a holdover from when “_” was one of the usable assignment operators in R (it is no longer used as an assignment operator in R).
    

  


  Line breaks


  It is generally recommended to keep R source code lines at 80 columns or fewer. R accepts multiple-line statements as long as where the statement ends is unambiguous. For example, to break the single statement “1 + 2" into multiple lines, write the code as follows:

  1 +
  2


  Do not write code like the following, as the first line is itself a valid statement, creating ambiguity:

  1
  + 2


  The rule is this: force a syntax error every time reading the statement across multiple lines terminates early.


  Semicolons


  R allows semicolons as end-of-statement markers, but does not require them. Most style guides recommend not using semicolons in R code and certainly not using them at ends of lines.


  Assignment


  R has many assignment operators (see table 2.1); the preferred one is <-. = can be used for assignment in R, but is also used to bind argument values to argument names by name during function calls (so there is some potential ambiguity in using =).


  Table 2.1. Primary R assignment operators


  
    
      
      
      
    

    
      
        	
          Operator

        

        	
          Purpose

        

        	
          Example

        
      

    

    
      
        	<-

        	Assign the value on the right to the symbol on the left.

        	x <- 5 # assign the value of 5 to the symbol x
      


      
        	=

        	Assign the value on the right to the symbol on the left.

        	x = 5 # assign the value of 5 to the symbol x
      


      
        	->

        	Assign left to right, instead of the traditional right to left.

        	5 -> x # assign the value of 5 to the symbol x
      

    
  


  Left-hand sides of assignments


  Many popular programming languages only allow assignment of values into variable name or symbols. R allows slice expressions on the left-hand sides of assignments, and both numeric and logical array indexing. This allows for very powerful array-slicing commands and coding styles. For example, we can replace all the missing values (denoted by “NA") in a vector with zero as shown in the following example:

  d <- data.frame(x = c(1, NA, 3))    ❶
print(d)
#    x
# 1  1
# 2 NA
# 3  3                              ❷

d$x[is.na(d$x)] <- 0                ❸
print(d)
#   x
# 1 1
# 2 0
# 3 3


  ❶ “data.frame” is R’s tabular data type, and the most important data type in R. A data.frame holds data organized in rows and columns.


  ❷ When printing data.frames, row numbers are shown in the first (unnamed) column, and column values are shown under their matching column names.


  ❸ We can place a slice or selection of the x column of d on the left-hand side of an assignment to easily replace all NA values with zero.


  Factors


  R can handle many kinds of data: numeric, logical, integer, strings (called character types), and factors. Factors are an R type that encodes a fixed set of strings as integers. Factors can save a lot on storage while appearing to behave as strings. However, factors can have potentially confusing interactions with the as.numeric() command (which returns the factor codes for factors, but parses text for character types). Factors also encode the entire set of allowed values, which is useful—but can make combining data from different sources (that saw different sets of values) a bit of a chore. To avoid issues, we suggest delaying conversion of strings to factors until late in an analysis. This is usually accomplished by adding the argument stringsAsFactors = FALSE to functions such as data.frame() or read.table(). We, however, do encourage using factors when you have a reason, such as wanting to use summary() or preparing to produce dummy indicators (see “A bit more on factor coding” after listing 2.10 for more details on dummy indicators and their relation to factors).


  Named arguments


  R is centered around applying functions to data. Functions that take a large number of arguments rapidly become confusing and illegible. This is why R includes a named argument feature. As an example, if we wanted to set our working directory to “/tmp” we would usually use the setwd() command like so: setwd("/tmp"). However, help(setwd) shows us the first argument to setwd() has the name dir, so we could also write this as setwd(dir = "/tmp"). This becomes useful for functions that have a large number of arguments, and for setting optional function arguments. Note: named arguments must be set by =, and not by an assignment operator such as <-.


  
    If you have a procedure with 10 parameters, you probably missed some.


    Alan Perlis, “Epigrams on Programming,” ACM SIGPLAN Notices 17

  


  Package notation


  In R there are two primary ways to use a function from a package. The first is to attach the package with the library() command and then use the function name. The second is to use the package name and then :: to name the function. An example of this second method is stats::sd(1:5). The :: notation is good to avoid ambiguity or to leave a reminder of which package the function came from for when you read your own code later.


  Value semantics


  R is unusual in that it efficiently simulates “copy by value" semantics. Any time a user has two references to data, each evolves independently: changes to one do not affect the other. This is very desirable for part-time programmers and eliminates a large class of possible aliasing bugs when writing code. We give a quick example here:

  d <- data.frame(x = 1, y = 2)     ❶
d2 <- d                           ❷
d$x <- 5                          ❸

print(d)
#   x y
# 1 5 2

print(d2)
#   x y
# 1 1 2


  ❶ Creates some example data and refers to it by the name d


  ❷ Creates an additional reference d2 to the same data


  ❸ Alters the value referred to by d


  Notice d2 keeps the old value of 1 for x. This feature allows for very convenient and safe coding. Many programming languages protect references or pointers in function calls in this manner; however, R protects complex values and does so in all situations (not just function calls). Some care has to be taken when you want to share back changes, such as invoking a final assignment such as d2 <- d after all desired changes have been made. In our experience, R’s value isolation semantics prevents far more issues than the copy-back inconvenience it introduces.


  Organizing intermediate values


  Long sequences of calculations can become difficult to read, debug, and maintain. To avoid this, we suggest reserving the variable named “.” to store intermediate values. The idea is this: work slow to move fast. For example: a common data science problem is to sort revenue records and then calculate what fraction of total revenue is achieved up to a given sorting key. In R this can be done easily by breaking this task into small steps:

  data <- data.frame(revenue = c(2, 1, 2),                        ❶
                   sort_key = c("b", "c", "a"),
                   stringsAsFactors = FALSE)
print(data)
#   revenue sort_key
# 1       2        b
# 2       1        c
# 3       2        a

. <- data                                                       ❷
. <- .[order(.$sort_key), , drop = FALSE]                       ❸
.$ordered_sum_revenue <- cumsum(.$revenue)
.$fraction_revenue_seen <- .$ordered_sum_revenue/sum(.$revenue)
result <- .                                                     ❹

print(result)
#   revenue sort_key ordered_sum_revenue fraction_revenue_seen
# 3       2        a                   2                   0.4
# 1       2        b                   4                   0.8
# 2       1        c                   5                   1.0


  ❶ Our notional, or example, data.


  ❷ Assign our data to a temporary variable named “.”. The original values will remain available in the “data” variable, making it easy to restart the calculation from the beginning if necessary.


  ❸ Use the order command to sort the rows. drop = FALSE is not strictly needed, but it is good to get in the habit of including it. For single-column data.frames without the drop = FALSE argument, the [,] indexing operator will convert the result to a vector, which is almost never the R user's true intent. The drop = FALSE argument turns off this conversion, and it is a good idea to include it “just in case” and a definite requirement when either the data.frame has a single column or when we don’t know if the data.frame has more than one column (as the data.frame comes from somewhere else).


  ❹ Assigns the result away from “.” to a more memorable variable name


  The R package dplyr replaces the dot notation with what is called piped notation (supplied by a another package named magrittr, and similar to the JavaScript method, chaining). Because the dplyr is very popular, you are likely to see code written in this style, and we will use this style from time to time to help prepare you for such code. However, it is important to remember that dplyr is merely a popular alternative to standard R code, and not a superior alternative.

  library("dplyr")

result <- data %>%
  arrange(., sort_key) %>%
  mutate(., ordered_sum_revenue = cumsum(revenue)) %>%
  mutate(., fraction_revenue_seen = ordered_sum_revenue/sum(revenue))


  Each step of this example has been replaced by the corresponding dplyr equivalent. arrange() is dplyr’s replacement for order(), and mutate() is dplyr’s replacement for assignment. The code translation is line by line, with the minor exception that assignment is written first (even though it happens after all other steps). The calculation steps are sequenced by the magrittr pipe symbol %>%.
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