

 [image:]

 React Hooks in Action

 With Suspense and Concurrent Mode

 John Larsen

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Helen Stergius

 	
 Technical development editor:

 	
 John Guthrie

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Sharon Wilkey

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Clive Harber

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617297632

 dedication

 To Mum, for all the books. And to Dad, for all the gadgets.

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1.

 1 React is evolving

 1.1 What is React?

 Building a UI from components

 Synchronizing state and UI

 Understanding component types

 1.2 What’s new in React?

 1.3 React Hooks can add state to function components

 Stateful function components: Less code, better organization

 Custom hooks: Easier code reuse

 Third-party hooks provide ready-made, well-tested functionality

 1.4 Better UX with Concurrent Mode and Suspense

 Concurrent Mode

 Suspense

 1.5 React’s new publication channels

 1.6 Whom is this book for?

 1.7 Getting started

 2 Managing component state with the useState hook

 2.1 Setting up the bookings manager app

 Generating the app skeleton with create-react-app

 Editing the four key files

 Adding a database file for the application

 Creating page components and a UserPicker.js file

 2.2 Storing, using, and setting values with useState

 Assigning new values to variables doesn’t update the UI

 Calling useState returns a value and an updater function

 Calling the updater function replaces the previous state value

 Passing a function to useState as the initial value

 Using the previous state when setting the new state

 2.3 Calling useState multiple times to work with multiple values

 Using a drop-down list to set state

 Using a check box to set state

 2.4 Reviewing some function component concepts

 3 Managing component state with the useReducer hook

 3.1 Updating multiple state values in response to a single event

 Taking users out of the movie with unpredictable state changes

 Keeping users in the movie with predictable state changes

 3.2 Managing more complicated state with useReducer

 Updating state using a reducer with a predefined set of actions

 Building a reducer for the BookablesList component

 Accessing component state and dispatching actions with useReducer

 3.3 Generating the initial state with a function

 Introducing the WeekPicker component

 Creating utility functions to work with dates and weeks

 Building the reducer to manage dates for the component

 Passing an initialization function to the useReducer hook

 Updating BookingsPage to use WeekPicker

 3.4 Reviewing some useReducer concepts

 4 Working with side effects

 4.1 Exploring the useEffect API with simple examples

 Running side effects after every render

 Running an effect only when a component mounts

 Cleaning up side effects by returning a function

 Controlling when an effect runs by specifying dependencies

 Summarizing the ways to call the useEffect hook

 Calling useLayoutEffect to run an effect before the browser repaints

 4.2 Fetching data

 Creating the new db.json file

 Setting up a JSON server

 Fetching data within a useEffect hook

 Working with async and await

 4.3 Fetching data for the BookablesList component

 Examining the data-loading process

 Updating the reducer to manage loading and error states

 Creating a helper function to load data

 Loading the bookables

 5 Managing component state with the useRef hook

 5.1 Updating state without causing a re-render

 Comparing useState and useRef when updating state values

 Calling useRef

 5.2 Storing timer IDs with a ref

 5.3 Keeping references to DOM elements

 Setting focus on an element in response to an event

 Managing a text box via a ref

 6 Managing application state

 6.1 Passing shared state to child components

 Passing state from a parent by setting props on the children

 Receiving state from a parent as a prop

 Receiving an updater function from a parent as a prop

 6.2 Breaking components into smaller pieces

 Seeing components as part of a bigger app

 Organizing multiple components within a page’s UI

 Creating a BookableDetails component

 6.3 Sharing the state and dispatch function from useReducer

 Managing state in the BookablesView component

 Removing an action from the reducer

 Receiving state and dispatch in the BookablesList component

 6.4 Sharing the state value and updater function from useState

 Managing the selected bookable in the BookablesView component

 Receiving the bookable and updater function in BookablesList

 6.5 Passing functions to useCallback to avoid redefining them

 Depending on functions we pass in as props

 Maintaining function identity with the useCallback hook

 7 Managing performance with useMemo

 7.1 Breaking the cook’s heart by calling, “O, shortcake!”

 Generating anagrams with an expensive algorithm

 Avoiding redundant function calls

 7.2 Memoizing expensive function calls with useMemo

 7.3 Organizing the components on the Bookings page

 Managing the selected bookable with useState

 Managing the selected week and booking with useReducer and useState

 7.4 Efficiently building the bookings grid with useMemo

 Generating a grid of sessions and dates

 Generating a lookup for bookings

 Providing a getBookings data-loading function

 Creating the BookingsGrid component and calling useMemo

 Coping with racing responses when fetching data in useEffect

 8 Managing state with the Context API

 8.1 Needing state from higher up the component tree

 Displaying a call-to-action message when the page first loads

 Displaying booking information when a visitor selects a booking

 Displaying an edit button for a user’s bookings: The problem

 Displaying an edit button for a user’s bookings: The solution

 8.2 Working with custom providers and multiple contexts

 Setting an object as the context provider’s value

 Moving the state to a custom provider

 Working with multiple contexts

 Specifying a default value for a context

 9 Creating your own hooks

 9.1 Extracting functionality into custom hooks

 Recognizing functionality that could be shared

 Defining custom hooks outside your components

 Calling custom hooks from custom hooks

 9.2 Following the Rules of Hooks

 Call hooks only at the top level

 Call hooks only from React functions

 Using an ESLint plugin for the rules of hooks

 9.3 Extracting further examples of custom hooks

 Accessing window dimensions with a useWindowSize hook

 Getting and setting values with a useLocalStorage hook

 9.4 Consuming a context value with a custom hook

 9.5 Encapsulating data fetching with a custom hook

 Creating the useFetch hook

 Using the data, status, and error values the useFetch hook returns

 Creating a more specialized data-fetching hook: useBookings

 10 Using third-party hooks

 10.1 Accessing state in the URL with React Router

 Setting up routes to enable nesting

 Adding nested routes to the Bookables page

 Accessing URL parameters with the useParams hook

 Navigating with the useNavigate hook

 10.2 Getting and setting query string search parameters

 Getting search parameters from the query string

 Setting the query string

 10.3 Streamlining data-fetching with React Query

 Introducing React Query

 Giving components access to a React Query client

 Fetching data with useQuery

 Accessing data in the query cache

 Updating server state with useMutation

 Part 2.

 11 Code splitting with Suspense

 11.1 Importing code dynamically with the import function

 Setting up a web page to load JavaScript when a button is clicked

 Using default and named exports

 Using static imports to load JavaScript

 Calling the import function to dynamically load JavaScript

 11.2 Importing components dynamically with lazy and Suspense

 Converting a component to a lazy component with the lazy function

 Specifying fallback content with the Suspense component

 Understanding how lazy and Suspense work together

 Code splitting an app on its routes

 11.3 Catching errors with error boundaries

 Checking out the error boundary example in the React docs

 Creating our own error boundary

 Recovering from errors

 12 Integrating data fetching with Suspense

 12.1 Data fetching with Suspense

 Upgrading promises to include their status

 Using the promise status to integrate with Suspense

 Fetching data as early as possible

 Fetching new data

 Recovering from errors

 Checking the React docs

 12.2 Using Suspense and error boundaries with React Query

 12.3 Loading images with Suspense

 Using React Query and Suspense to provide an image-loading fallback

 Prefetching images and data with React Query

 13 Experimenting with useTransition, useDeferredValue, and SuspenseList

 13.1 Making smoother transitions between states

 Avoiding receded states with useTransition

 Giving users feedback with isPending

 Integrating transitions with common components

 Holding on to old values with useDeferredValue

 13.2 Using SuspenseList to manage multiple fallbacks

 Showing data from multiple sources

 Controlling multiple fallbacks with SuspenseList

 13.3 Concurrent Mode and the future

 index

 front matter

preface

 As a high school teacher and a programmer, I was in a great position to develop applications to support teaching, learning, and organization within schools. I could see firsthand and day-to-day the requirements of students, teachers, and support staff and work with them to build intuitive apps and tools that made it easier to plan, communicate, understand, and play. I started with quiz apps and matching games written in JavaScript, and then created lesson-planning and resource-booking apps that made use of jQuery and templating. Then the science department wanted a way to order equipment for lessons, the leadership team wanted a way for staff to pass on announcements, and the ICT technicians wanted a way for staff to report and manage problems with software and hardware. How about a seating plans app, a content management system for news stories on the website, a bespoke calendar, an interactive duty roster, or a sports match diary, all with a consistent look and feel?

 While each project had its own requirements, there was a lot of overlap, and similar methods could be used across apps. To speed things along, I switched to JavaScript end-to-end with Node.js, Express, Handlebars, Backbone, and Marionette. For the most part, it all worked well, although making updates as requirements changed was sometimes fiddly. In particular, the flow of data between the models, views, and controllers wasn’t always smooth. The users were happy, but I could see the underlying problems in the code and knew I’d have to get back to it and straighten out the twists and turns at some point.

 Then I came across React, and all my problems were solved! Okay, not quite. But React’s model of components, props, state, and automatic re-rendering clicked with me in a way no other framework had before. One by one, I converted the existing apps to React. Every time, they became simpler, easier to understand, and easier to maintain. Common components could be reused, and I could make changes and add new features quickly and with confidence. While not quite a React zealot (I’m a fan of framework diversity), I was definitely a convert and enjoyed the developer experience and the user response.

 Now with React Hooks, my code has taken another positive step along the simplicity scale. Code that was split across class component life-cycle methods can be collocated, either within function components or in external custom hooks. It’s easy to isolate, maintain, and share code for particular functionality, whether it’s for setting a document title, accessing local storage, managing context values, measuring onscreen elements, subscribing to a service, or fetching data. And hooking into the functionality of existing libraries like React Router, Redux, React Query, and React Spring has become easier, too. Using React Hooks offers a new way of thinking about React components, and although it has some initial gotchas to look out for, it’s a definite change for the better in my view.

 The switch to hooks is part of an underlying change in the way React will work going forward. Concurrent Mode will become the new normal, enabling time-slicing wizardry where rendering doesn’t block the main thread and high-priority updates like user input can be rendered straightaway, even while the UI for other components is being built. Selective hydration will allow React to load component code just in time for user interactions, and the Suspense API will let developers more carefully specify loading states while code and resources load.

 The React team is focused on building a great developer experience so that developers can build great user experiences. Further changes are still to come, and best practices will continue to emerge, but I hope React Hooks in Action with Suspense and Concurrent Mode gives you a solid grasp of the existing changes and prepares you for the exciting developments on the horizon.

acknowledgments

 This is where I’d normally thank friends and family for their patience as I’ve been locked away in a bunker, furiously clacking those typewriter keys, creating my masterpiece, as everyone else gets on with life as normal. But, what with one thing and another in 2020, it’s been far from life as normal. So, I’d like to thank anyone and everyone who’s made things better in any way, large or small, for those around them, in difficult times.

 Thank you to Helen Stergius, my editor at Manning, for her patience and encouragement; writing a book is a long process but is made much easier with the support and advice of a great editor like Helen. Thanks also to John Guthrie and Clive Harber for their attention to detail and honest, constructive feedback; they really helped to make the code and explanations clearer and more consistent. I would also like to thank Deirdre Hiam, my production editor; Sharon Wilkey, my copyeditor; Keri Hales, my proofreader, and Aleksandar Dragosavljevic´, my reviewing editor.

 To all the reviewers: Annie Taylor Chen, Arnaud Castelltort, Bruno Sonnino, Chunxu Tang, Clive Harber, Daniel Couper, Edin Kapic, Gustavo Filipe Ramos Gomes, Isaac Wong, James Liu, Joe Justesen, Konstantinos Leimonis, Krzysztof Kamyczek, Rob Lacey, Rohit Sharma, Ronald Borman, Ryan Burrows, Ryan Huber, and Sairam Sai, your suggestions helped make this a better book.

about this book

 React Hooks in Action with Suspense and Concurrent Mode is a book for experienced React developers. It introduces the hooks now built into React and shows how to use them when developing apps with React function components, managing state in and across components, and synchronizing component state via external APIs. It demonstrates how the hooks approach is great for encapsulation and reuse, for simplifying component code, and for preparing for changes to come. It also explores some of the more experimental Suspense and Concurrent Mode APIs that the React team is still working on.

Who should read this book

 If you’ve used React before and want to see how hooks can help improve your code, shifting your components from class-based to function-based and integrating with Suspense and Concurrent Mode to improve the developer and user experiences, then this book will show you the way. You should already be able to create a new app with create-react-app and install packages with npm (or Yarn). The code examples use modern JavaScript syntax and patterns like destructuring, default parameters, the spread operator, and the optional chaining operator, so, while there are brief explanations when they’re first used, the more comfortable you are with their use, the better.

How this book is organized: A roadmap

 React Hooks in Action has 13 chapters across two parts. The book’s page at Manning’s website also includes articles that offer extra examples and explanations that didn’t fit within the main flow of the book.

 Part 1 introduces the syntax and use of the new, stable, non-experimental, built-in React Hooks. It also shows how to roll your own custom hooks and make the most of third-party hooks made available by existing React libraries:

 	
 We start in chapter 1 with an overview of recent and upcoming changes in React, with a particular focus on how React Hooks help you organize, maintain, and share your component code.

 	
 Chapter 2 introduces our first hook, useState. Components can use it to manage state values and to trigger re-rendering when the values change.

 	
 Sometimes multiple state values are linked together, with a change in one causing changes in others. The useReducer hook, covered in chapter 3, provides a way to manage multiple state changes in one place.

 	
 React aims to keep the UI in sync with your app’s state. Sometimes your app needs to retrieve state from somewhere else or display it outside the document, maybe in the browser title, for example. When your app performs side effects by reaching outside its components, you should wrap the code by using the useEffect hook, discussed in chapter 4, to keep all the pieces synchronized.

 	
 Chapter 5 uses the useRef hook to update state without causing a re-render (when working with a timer ID, for example) and to maintain references to elements on the page, like text boxes on forms.

 	
 Our apps use multiple components, and chapter 6 investigates strategies for sharing state, passing it down via props. The chapter shows how to share the updater and dispatch functions from useState and useReducer and how to create an unchanging reference to a function with the useCallback hook.

 	
 Components sometimes rely on functions to generate or transform data in some way. If those functions take a relatively long time to do their thing, you want to call them only when absolutely necessary. Chapter 7 shows how to enlist the help of the useMemo hook to limit when expensive functions run.

 	
 Sometimes the same state values are used widely by many components across an app. Chapter 8 explains how to use React’s Context API and useContext hook to share state without passing props down through multiple levels of components.

 	
 React Hooks are just functions. You can move code that calls hooks into functions outside your components. Such functions, or custom hooks, can then be shared among components and across projects. Chapter 9 explains why and how you’d create custom hooks, with plenty of examples, and highlights the Rules of Hooks.

 	
 Popular React libraries have been updated to work with hooks. Chapter 10 makes use of third-party hooks from React Router, for managing state in the URL, and React Query for painlessly syncing your UI with state stored on a server.

 Part 2 explains how to more effectively load component code for larger apps and use Suspense components and error boundaries to organize fallback UI as resources are loading. It then dives into experimental APIs for integrating data loading with Suspense and working in Concurrent Mode:

 	
 Chapter 11 discusses code splitting, combining React.lazy for lazy-loading components, Suspense components for showing fallback UI as your components lazily load, and error boundaries for showing fallback UI if something goes wrong.

 	
 In chapter 12, we head into more experimental territory, looking at how libraries might integrate data fetching and image loading with Suspense.

 	
 Finally, in chapter 13, we explore some volatile APIs that work only in Concurrent Mode. The useTransition and useDeferredValue hooks and the SuspenseList component are all designed to improve the user experience during state changes in your apps. Exactly how they work is still changing, but the chapter gives you a heads-up about the problems they’re trying to solve.

 While the book’s main example app is built up over the course of the book, you should have no problems if you want to head straight for a certain chapter or hook. If you want to run individual code examples, you can check out the corresponding repo branch and go from there.

 The chapters also include exercises to practice the ideas just presented. They mostly ask you to replicate the approach from one page of the example app on another page. For example, the book may show you how to update the Bookables page and then ask you to do the same for the Users page. Getting your hands dirty with the code is an effective learning strategy for many, but you can always check out the solution code from the repo if necessary.

About the code

 The book includes an ongoing example, a bookings app, that we build up from chapter to chapter. The example provides a great context for discussing React Hooks and seeing them in action. But the focus of the book is on the hooks, not the bookings app, so, while most of the app’s code is in the book, some updated listings are available in the example app’s GitHub repo but are not shown in the book. The repo is at https://github.com/jrlarsen/react-hooks-in-action. I’ll point out when you need to go to the repo for the latest changes. Waypoints in the development of the example app are on separate branches in the repo.

 Some short examples also are not part of the main bookings app. Their code is either on CodeSandbox for React-based examples, or on JS Bin for vanilla JavaScript examples. The code listings in the book include links to GitHub, CodeSandbox, or JS Bin as appropriate.

 The examples were all thoroughly tested using React 17.0.1. Chapter 13 is an exception; it uses the experimental release of React, so its examples are not guaranteed to work with any version other than the one used on its branches in the repo.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, or because it is the focus of the surrounding discussion.

 In some cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of React Hooks in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/book/react-hooks-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 The official React documentation at https://reactjs.org is a thorough, well-written resource and is in the process of being rewritten. Definitely check it out. This book’s page at www.manning.com/books/react-hooks-in-action also has a few articles that expand on certain sections and ideas.

about the author

 John Larsen has been programming since the 1980s, starting with BASIC on a Commodore VIC-20 and moving on to Java, PHP, C#, and JavaScript. He’s the author of Get Programming with JavaScript, also from Manning. A mathematics teacher in the UK for 25 years, he taught computing to high-schoolers and developed web-based programs to support teaching, learning, and communication in schools. More recently, John has taught English in Japan and is working hard to improve his Japanese language skills.

about the cover illustration

 The figure on the cover of React Hooks in Action is captioned “Femme de la Carie,” or Woman from Caria. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1

 Part 1 of React Hooks in Action with Suspense and Concurrent Mode introduces React Hooks and covers the key hooks in the first stable release of React 17. You’ll see how to manage state within function components, share state with children and deeper descendants, and synchronize state with outside services, servers, and APIs. You’ll also learn how to create your own hooks (while following the rules) and make the most of third-party hooks from established libraries like React Router, React Query, and React Spring.

 A booking app acts as a consistent context for the examples presented, and you’ll see how to load and manage data and orchestrate the interactions between components and react to the actions of users. But first, what are hooks, and why are they a step in the right direction?

1 React is evolving

 React is a JavaScript library for building beautiful user interfaces. The React team wants the developer experience to be as great as possible so that developers are inspired and enabled to create delightful, productive user experiences. React Hooks in Action with Suspense and Concurrent Mode is your guide to some of the latest additions to the library, additions that can simplify your code, improve code reuse, and help make your applications slicker and more responsive, leading to happier developers and happier users.

 This chapter gives a brief overview of React and its new features to whet your appetite for the details that follow later in the book.

1.1 What is React?

 Say you are creating a user interface (UI) for the web, the desktop, for a smartphone, or even for a virtual reality (VR) experience. You want your page or app to display a variety of data that changes over time, like authenticated user info, filterable product lists, data visualization, or customer details. You expect the user to interact with the app, choosing filters and data sets and customers to view, filling in form fields, or even exploring a VR space! Or maybe your app will consume data from a network or from the internet, like social media updates, stock tickers, or product availability. React is here to help.

 React makes it easy to build user interface components that are composable and reusable and that react to changes in data and to user interactions. A page from a social media site includes buttons, posts, comments, images, and video, among many other interface components. React helps update the interface as the user scrolls down the page, opens up posts, adds comments, or transitions to other views. Some components on the page might have repeated subcomponents, page elements with the same structure but different content. And those subcomponents could be made up of components too! There are image thumbnails, repeated buttons, clickable text, and icons aplenty. Taken as a whole, the page has hundreds of such elements. But by breaking such rich interfaces into reusable components, development teams can more easily focus on specific areas of functionality and put the components to use on multiple pages.

 Making it easy to define and reuse components, and compose them into complex but understandable and usable interfaces is one of React’s core purposes. Other frontend libraries are out there (like AngularJS, Vue.js, and Ember.js), but this is a React book, so we concentrate on how React approaches components, data flow, and code reuse.

 Over the next few sections, we take a high-level look at how React helps developers build such apps, highlighting five of its key features:

 	
 Building UI from reusable, composable components

 	
 Describing UI by using JSX—a blend of HTML-style templating and JavaScript

 	
 Making the most of JavaScript without introducing too many idiomatic constraints

 	
 Intelligently synchronizing state and UI

 	
 Helping manage the fetching of code, assets, and data

1.1.1 Building a UI from components

 Social media sites show rich, hierarchical, multilayered user interfaces that React can help you design and code. But for now, let’s start with something a bit simpler to get a feel for the features of React.

 Say you want to build a quiz app to help learners test themselves on facts they’ve been studying. Your component should be able to show and hide questions, and show and hide answers. One question-and-answer pair might look something like figure 1.1.

 [image:]

 Figure 1.1 Part of a quiz app showing a question and an answer

 You could create a component for the question section and a component for the answer section. But the structure of the two components is the same: each has a title, some text to show and hide, and a button to do the showing and hiding. React makes it easy to define a single component, say a TextToggle component, that you can use for both the question and the answer. You pass the title and text and whether the text should be shown to each of your TextToggle components. You pass the values as properties (or props), something like this:

 <TextToggle title="Question" text="Who created JavaScript?" show={true} />

<TextToggle title="Answer" text="Brendan Eich" show={false} />

 Wait! What now? Is that HTML? XML? JavaScript? Well, programming with React is programming in JavaScript. But React provides an HTML-like syntax for describing your UI called JSX. Before running your app, the JSX needs to be preprocessed to convert it into the actual JavaScript that creates the elements of your user interface. At first it seems a bit strange, mixing HTML with your JavaScript, but it turns out the convenience is a big plus. And once your code finally runs in the browser (or other environment), it really is just JavaScript. A package called Babel is almost always used to compile the code you write into the code that will run. You can find out more about Babel at https://babeljs.io.

 This chapter offers only a high-level overview of React, so we won’t explore JSX any further here. It’s worth mentioning up front, though, because it’s a widely used part of React development. In fact, in my opinion, React’s JavaScriptiness is one of its appeals—although other opinions are available—and, for the most part, it doesn’t introduce many constraints. While best practices have emerged and continue to do so, being a good JavaScript programmer and being a good React programmer are very similar skills.

 So, say you’ve created the TextToggle component; what’s next? With React, you can define new components made up of existing components. You can encapsulate the question card, showing the question and the answer, as its own QuestionCard component. And if you want to show multiple questions at once, your Quiz component UI could be made up of multiple QuestionCard components.

 Figure 1.2 shows two QuestionCard components making up a Quiz component. The Quiz component is a container for the QuestionCards and has no visible presence apart from the cards it contains.

 [image:]

 Figure 1.2 Quiz component showing two QuestionCard components

 So, the Quiz component is made up of QuestionCard components, and they, in turn, are made up of TextToggle components, which are made up of standard HTML elements—an h2, a p, and a button, for example. Ultimately, the Quiz component comprises all native UI elements. Figure 1.3 shows the simple hierarchy for your Quiz component.

 [image:]

 Figure 1.3 Quiz component hierarchy

 React makes this component creation and composition much easier. And once you’ve crafted your components, you can reuse them and share them easily, too. Imagine a learning resource site with different pages for different topics. On each page, you could include your Quiz component, just passing it the quiz data for that topic.

 Many React components are available to download in package management repositories like npm. There’s no need to re-create common use cases, simple or complex, when well-used, well-tested examples of drop-down menus, date pickers, rich text editors, and probably quiz templates, also, are ready and waiting to be used.

 React also provides mechanisms and patterns for passing your app’s data to the components that need them. In fact, that synchronization, of state and UI, goes to the heart of what React is and what it does.

1.1.2 Synchronizing state and UI

 React keeps an app’s user interface synchronized with its data. The data held in your app at any moment is called the app’s state and might include, for example, current posts, details about the logged-in user, whether comments are shown or hidden, or the content of a text input field. If new data arrives over the network or a user updates a value via a button or text input, React works out what changes need to be made to the display and efficiently updates it.

 React intelligently schedules the order and timing of the updates to optimize the perceived performance of your app and improve the user experience. Figure 1.4 represents this idea, that React responds to a change in a component’s state by re-rendering the user interface.

 [image:]

 Figure 1.4 When a value in a component’s state changes, React re-renders the user interface.

 But updating state and re-rendering is not a one-off task. A visitor using your app is likely to cause a multitude of state changes, and React will need to repeatedly ask your components for the latest UI that represents those latest state values. It’s your components’ job to convert their state and props (the properties passed to them) into a description of their user interface. React then takes those UI descriptions and schedules updates to the browser’s Document Object Model (DOM) where necessary.

 Cycle diagrams

 To represent the ongoing cycle of state changes and UI updates, this book uses circular cycle diagrams to illustrate the interactions between your components and React. Figure 1.5 is a simple example, showing how React calls your component code when the component first appears and when a user updates a value.

 [image:]

 Figure 1.5 React calls and re-calls your component to generate a description of its UI using the latest state.

 The cycle diagrams are accompanied by tables, like table 1.1, describing the diagrams’ steps in more detail. The diagram and table pair don’t necessarily cover everything that is happening but pull out the key steps to help you understand the similarities and differences related to the way components work in different scenarios.

 For example, this section’s figure doesn’t show how the event handler works with React to update the state; that detail is added in later diagrams when introducing the relevant React Hooks.

 Table 1.1 Some key steps when React calls and re-calls a function component

 	
 Step

 	
 What happens?

 	
 Discussion

 	
 1

 	
 React calls the component.

 	
 To generate the UI for the page, React traverses the tree of components, calling each one. React will pass each component any props set as attributes in the JSX.

 	
 2

 	
 The component specifies an event handler.

 	
 The event handler may listen for user clicks, timers firing, or resources loading, for example. The handler will change the state when it runs later. React will hook up the handler to the DOM when it updates the DOM in step 4.

 	
 3

 	
 The component returns its UI.

 	
 The component uses the current state value to generate its user interface and returns it, finishing its work.

 	
 4

 	
 React updates the DOM.

 	
 React compares the description of the UI the component returns with the current description of the app’s UI. It efficiently makes any necessary changes to the DOM and sets up or updates event handlers as necessary.

 	
 5

 	
 The event handler fires.

 	
 An event fires, and the handler runs. The handler changes the state.

 	
 6

 	
 React calls the component.

 	
 React knows the state value has changed so must recalculate the UI.

 	
 7

 	
 The component specifies an event handler.

 	
 This is a new version of the handler and may use the newly updated state value.

 	
 8

 	
 The component returns its UI.

 	
 The component uses the current state value to generate its user interface and returns it, finishing its work.

 	
 9

 	
 React updates the DOM.

 	
 React compares the description of the UI the component returns with the previous description of the app’s UI. It efficiently makes any necessary changes to the DOM and sets up or updates event handlers as necessary.

 The illustrations also use consistent icons to represent key objects and actions discussed in the surrounding text, such as components, state values, event handlers, and UI.

 State in the quiz app

 Social media pages, like the one discussed at the start of the chapter, usually require a lot of state, with new posts being loaded and users liking posts, adding comments, and interacting with components in a variety of ways. Some of that state, like the current user, may be shared across many components, whereas other state, like a comment, may be local to a post.

 In the Quiz app, you have a question-and-answer component, a QuestionCard, shown again in figure 1.6. Users can show and hide each question and answer and move to the next available question.

 [image:]

 Figure 1.6 The question-and-answer component with the answer hidden

 The QuestionCard component state includes the information needed to display the current question and answer:

 	
 The question number

 	
 The number of questions

 	
 The question text

 	
 The answer text

 	
 Whether the question is hidden or shown

 	
 Whether the answer is hidden or shown

 Clicking the answer’s Show button changes the state of the component. Maybe an isAnswerShown variable switches from false to true. React will notice that the state has changed, will update the displayed component to show the answer text, and toggle the button’s text from Show to Hide (figure 1.7).

 [image:]

 Figure 1.7 The question-and-answer component with the answer shown

 Clicking the Next button changes the question number. It will switch from question 1 to question 2, as shown in figure 1.8. If the questions and answers for the whole quiz are in memory, React can update the display straightaway. If they need to be loaded from a file or service, React can wait while the data is being fetched before updating the UI or, if the network is slow, show a loading indicator like a spinner.

 [image:]

 Figure 1.8 The question-and-answer component showing the second question. The answer has been hidden.

 The simple Quiz app example doesn’t need much state to perform its duties. Most real-world apps are more complicated. Deciding where state should live—whether a component should manage its own state, whether some components should share state, and whether some state should be globally shared—is an important part of building apps. React provides mechanisms for all three scenarios, and published packages, like Redux, MobX, React Query, and Apollo Client, for example, offer approaches to manage state via a data store outside your components.

 In the past, whether or not your component managed some of its own state determined the method of component creation you would use; React provides two main methods: function components and class components, as discussed in the next section.

1.1.3 Understanding component types

 To define a component, React lets you use two JavaScript structures: a function or a class. Before React Hooks, you would use a function when the component didn’t need any local state (you would pass it all its data via props):

 function MyComponent (props) {
 // Maybe work with the props in some way.
 // Return the UI incorporating prop values.
}

 You would use a class when the component needed to manage its own state, perform side effects (like loading its data or getting hands-on with the DOM), or directly respond to events:

 class MyComponent extends React.Component {
 constructor (props) {
 super(props);

 this.state = {
 // Set up state here. ❶
 };
 }

 componentDidMount () {
 // Perform a side effect like loading data. ❷
 }

 render () {
 // Return the UI using prop values and state. ❸
 }
}

 ❶ Class components set up their state in a constructor function.

 ❷ Class components can include methods for various stages in their life cycle.

 ❸ Class components have a render method that returns their UI.

 The addition of React Hooks means you can now use function components to manage state and side effects:

 function MyComponent (props) {
 // Use local state.
 const [value, setValue] = useState(initialValue); ❶
 const [state, dispatch] = useReducer(reducer, initialState); ❶

 useEffect(() => {
 // Perform side effect. ❷
 });

 return (
 <p>{value} and {state.message}</p> ❸
);
}

 ❶ Use hooks to manage state.

 ❷ Use hooks to manage side effects.

 ❸ Return UI directly from the function.

 The React team recommends the use of functions for components in new projects (although there is no plan to remove class components, so no need for big rewrites of existing projects). Table 1.2 lists the component types and their descriptions.

 Table 1.2 Component types and their descriptions (continued)

 	
 Component type

 	
 Description

 	
 Stateless function component

 	
 A JavaScript function that is passed properties and returns UI

 	
 Function component

 	
 A JavaScript function that is passed properties and uses hooks to manage state and perform side effects, as well as returning UI

 	
 Class component

 	
 A JavaScript class that includes a render method that returns UI. It may also set up state in its constructor function and manage state and perform side effects in its life-cycle methods.

 Function components are just JavaScript functions that return a description of their user interface. When writing components, developers usually use JSX to specify the UI. The UI might depend on properties passed to the function. With stateless function components, that’s where the story ends; they turn properties into UI. More generally, function components can now include state and work with side effects.

 Class components are built using the JavaScript class syntax, extending from a React.Component or React.PureComponent base class. They have a constructor function, where state can be initialized, and methods that React calls as part of the component life cycle; for instance, when the DOM has been updated with the latest component UI or when the properties passed to the component change. They also have a render method that returns a description of the component’s UI. Class components were the way to create stateful components that could cause side effects.

 We’ll see in section 1.3 how function components with hooks provide a better way of creating stateful components and managing side effects than classes. First, let’s take a more general look at what’s new in React and how the new features make working with React even better.

 Component side effects

 React components generally transform state into UI. When component code performs actions outside this main focus—perhaps fetching data like blog posts or stock prices from the network, setting up a subscription to an online service, or directly interacting with the DOM to focus form fields or measure element dimensions—we describe those actions as component side effects.

 We want our app and its components to behave predictably, so should make sure any necessary side effects are deliberate and visible. As you’ll see in chapter 4, React provides the useEffect hook to help us set up and manage side effects in our functional components.

1.2 What’s new in React?

 React 16 included a rewrite of core functionality that has paved the way for a steady rollout of new library features and approaches. We’ll explore several of the newest additions in the chapters that follow. The new features include the following:

 	
 Stateful function components (useState, useReducer)

 	
 Context API (useContext)

 	
 Cleaner side-effect management (useEffect)

 	
 Simple but powerful code reuse patterns (custom hooks)

 	
 Code splitting (lazy)

 	
 Faster initial loading and intelligent rendering (Concurrent Mode—experimental)

 	
 Better feedback for loading states (Suspense, useTransition)

 	
 Powerful debugging, inspection, and profiling (Development Tools and Profiler)

 	
 Targeted error handling (error boundaries)

 The words starting with use—useState, useReducer, useContext, useEffect, and useTransition—are examples of React Hooks. They are functions that you can call from React function components and that hook into key React functionality: state, life cycle, and context. React Hooks let you add state to function components, cleanly encapsulate side effects, and reuse code across your project. By using hooks, you do away with the need for classes, reducing and consolidating your code in an elegant way. Section 1.3 discusses React components and hooks in a little more detail.

 Concurrent Mode and Suspense provide the means to be more deliberate about when code, data, and assets are loaded and to wrangle loading states and fallback content like spinners in a coordinated manner. The aim is to improve the user experience as applications load and states change and to improve the developer experience, making it easier to hook into these new behaviors. React can pause the rendering of expensive but nonurgent components and switch to urgent tasks, like reacting to user interactions, to keep your application responsive and to smooth the perceived path for user productivity.

 The React documentation at https://reactjs.org is a great resource, providing clear, well-structured explanations of the philosophy, API, and recommended use of the library, as well as blog posts from the team and links to live code examples, conference talks on the new features, and other React-related resources. While this book will concentrate on hooks, Suspense, and Concurrent Mode, do check out the official docs to find out more about the other additions to React. In particular, take a look at the blog post on React 17 (https://reactjs.org/blog/2020/10/20/react-v17.html). The next major version of React was released in October 2020 but contains no new developer-facing features. Instead, it includes changes to make it easier to gradually upgrade React apps as well as further experimental development of Concurrent Mode and its APIs.

1.3 React Hooks can add state to function components

 As discussed in section 1.1.2, one of React’s core strengths is how it synchronizes application and component state with the UI. As the state changes, based on user interactions or data updates from the system or network, React intelligently and efficiently works out what changes should be made to the DOM in a browser or to the UI, more generally, in other environments.

 The state could be local to a component, raised to a component higher in the tree, and shared among siblings via properties, or global and accessed via React’s Context 4 and return a new component that wraps the passed-in component but that has extra functionality). For a component to have state, it used to be that you’d use a class component with the JavaScript class extending from React.Component. Now, with React Hooks, you can add state to function components.

1.3.1 Stateful function components: Less code, better organization

 Compared to classes, function components with hooks encourage cleaner, leaner code that can be easily tested, maintained, and reused. The function component is a JavaScript function that returns a description of its user interface. That UI depends on properties passed in and state managed or accessed by the component. Figure 1.9 shows a diagram representing a function component.

 [image:]

 Figure 1.9 A Quiz function component with state and encapsulated code for loading data and managing a subscription to a service

 The figure shows a Quiz component that performs a couple of side effects:

 	
 It loads its own question data—both initial data and new questions when the user chooses a new question set.

 	
 It subscribes to a user service—the service provides updates about other quiz users currently online so the user can join a team or challenge a rival.

 In JavaScript, functions can contain other functions, so the component can contain event handlers that react to user interactions with the UI, for example, to show, hide, or submit answers, or to move to the next question. Within the component, you can easily encapsulate side effects, like fetching the question data or subscribing to the user service. You can also include cleanup code for those side effects to cancel any unfinished data fetching and unsubscribe from the user service. Using hooks, those features can even be extracted into their own functions outside the component, ready for reuse or sharing.

 Here are some of the results of using the new function component approach rather than the older class-based approach:

 	
 Less code

 	
 Better code organization with related code kept together along with any cleanup code

 	
 Extraction of features to external functions that can be reused and shared

 	
 More easily testable components

 	
 No need to call super()in a class constructor

 	
 No need to work with this and bind handlers

 	
 Simpler life-cycle model

 	
 Local state in scope for handlers, side effect functions, and the returned UI

 All of the items in this list facilitate writing code that’s easier to understand and so easier to work with and maintain. That’s not to say nuances might not trip up developers working with the new approaches for the first time, but I’ll highlight those nuances as we delve more deeply into each concept and their connections throughout this book.

 React Hooks in Action outlines the functional approach to component building, rather than using classes. But it’s sometimes worth comparing the new methods with the old to motivate adoption and because it’s interesting (and, in the case of hooks, a little cool!) to see the differences. If you’re new to React and have never seen the code for class components, don’t worry. Rest assured that the function components we’ll be using for the rest of the book are the preferred approach going forward. The following discussion should still give you an idea of how this new approach simplifies and organizes the code needed to create React components.

 The title of this section is “Stateful function components: Less code, better organization.” Better than what? Well, with class components, state was set up in the constructor function, event handlers were bound to this, and side-effect code was split across multiple life-cycle methods (componentDidMount, componentWillUnmount, componentWillUpdate, and so on). It was common for code relating to different effects and features to sit side-by-side in a life-cycle method. You can see in figure 1.10 how the Quiz class component code for loading question data and subscribing to the user service is split across methods and how some methods include a mix of code for the two tasks.

 [image:]

 Figure 1.10 A class component with code spread across life-cycle methods, and a function component with the same functionality but with less, better organized code

 Function components with hooks no longer need all the life-cycle methods because effects can be encapsulated into hooks. The change leads to neater, better organized code, as seen in the Quiz function component in figure 1.10. The code has been much more sensibly organized with the two side effects separated and their code consolidated in one place for each effect. The improved organization makes it easier to find the code for a particular effect, see how a component works, and maintain it in the future. In fact, keeping a feature or effect’s code in one place makes it much easier to extract into an external function of its own, and that’s what we’ll discuss next.

1.3.2 Custom hooks: Easier code reuse

 Function components with hooks encourage you to keep related side-effect logic in one place. If the side effect is a feature that many components will need, you can take the organization a step further and extract the code into its own external function; you can create what is called a custom hook.

 Figure 1.11 shows how the question loading and user service subscription tasks for the Quiz function component could be moved into their own custom hooks. Any state that is used solely for those tasks can be moved into the corresponding hook.

 [image:]

 Figure 1.11 The code for fetching question data and for subscribing to a user service can be extracted into custom hooks. The accompanying state can also be managed by the hooks.

 There’s no magic here; it’s just how functions usually work in JavaScript: the function is extracted from the component and then called from the component. Once you have a custom hook, you aren’t restricted to calling it from your original component. You can use it across many components, share it with your team, or publish it for others to use.

 Figure 1.12 shows the new super-slim Quiz function component using the useUsers custom hook and the useFetch custom hook to carry out the user service subscription and question-fetching tasks that, previously, it carried out on its own. But now a second component, Chat, makes use of the useUsers custom hook too. Hooks make this kind of feature sharing much easier in React; custom hooks can be imported and used wherever they are needed in your portfolio of applications.

 [image:]

 Figure 1.12 You can extract code into custom hooks for reuse and sharing. The Quiz component calls both the useUsers and useFetch hooks. The Chat component calls the useUsers hook.

 Each custom hook can maintain its own state, whatever it needs to perform its duties. And because hooks are just functions, if components need access to any of the hook’s state, the hook can include the state in its return value. For example, a custom hook that fetches user info for a specified ID could store the fetched user data locally but return it to any components that call the hook. Each hook call encapsulates its own state, just like any other function.

 To get a sense of the variety of common tasks that programmers have easily abstracted into custom hooks, take a look at the useHooks website at https://usehooks .com (figure 1.13).

 [image:]

 Figure 1.13 The useHooks website has many examples of custom hooks.

 It showcases easy-to-use recipes, including these:

 	
 useRouter—Wraps the new hooks made available by React Router

 	
 useAuth—Enables any component to get the current auth state and re-render if it changes

 	
 useEventListener—Abstracts the process of adding and removing event listeners to components

 	
 useMedia—Makes it easy to use media queries in your component logic

 It’s well worth researching on sites like useHooks or in package repositories like npm whether hooks exist that fit your use cases before rolling your own. If you already use libraries or frameworks for common scenarios like data fetching or state management, check the latest versions to see if they’ve introduced hooks to make working with them easier. We’ll take a look at a few such packages in the next section.

1.3.3 Third-party hooks provide ready-made, well-tested functionality

 Sharing functionality across components is not new; it’s been an essential part of React development for some time. Hooks offer a much cleaner way of sharing code and hooking into functionality than the older methods of higher-order components and render props, which often lead to highly nested code (“wrapper hell”) and false code hierarchies.

 Third-party libraries that work with React have been quick to release new versions that make the most of hooks’ simpler API and more direct methods of integration. We take a very brief look at three examples in this section:

 	
 React Router for page navigation

 	
 Redux as an application data store

 	
 React Spring for animation

 React Router

 React Router provides components to help developers manage navigation between pages in their apps. Its custom hooks make it easy to access common objects involved in navigation: useHistory, useLocation, useParams, and useRouteMatch. For example, useParams gives access to any parameters matched in a page’s URL:

 URL: /quiz/:title/:qnum
Code: const {title, qnum} = useParams();

 Redux

 For some applications, a separate store for state might be appropriate. Redux is a popular library for creating such stores and it is often combined with React via the React Redux library. Since version 7.1, React Redux offers hooks to make interacting with the store easier: useSelector, useDispatch, and useStore. For example, useDispatch lets you dispatch an action to update the state in the store. Say you have an application to build question sets for quizzes and you want to add a question:

OEBPS/OEBPS/Images/1-4.png

OEBPS/OEBPS/Images/1-9.png

OEBPS/OEBPS/Images/1-8.png

OEBPS/OEBPS/Images/1-10.png

OEBPS/OEBPS/Images/cover.jpeg

OEBPS/OEBPS/Images/1-3.png

OEBPS/OEBPS/Images/1-7.png

OEBPS/OEBPS/Images/1-13.png

OEBPS/OEBPS/Images/1-11.png

OEBPS/OEBPS/Images/1-6.png

OEBPS/OEBPS/Images/1-2.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/1-1.png

OEBPS/OEBPS/Images/1-12.png

OEBPS/OEBPS/Images/1-5.png

OEBPS/OEBPS/Images/Manning_copyright.png

