

 [image: cover]

Taming Text:
How to Find, Organize, and Manipulate It

 Grant S. Ingersoll, Thomas S. Morton, and Andrew L. Farris

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Jeff Bleiel
Technical proofreader: Steven Rowe
Copyeditor: Benjamin Berg
Proofreader: Katie Tennant
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Getting started taming text

 Chapter 2. Foundations of taming text

 Chapter 3. Searching

 Chapter 4. Fuzzy string matching

 Chapter 5. Identifying people, places, and things

 Chapter 6. Clustering text

 Chapter 7. Classification, categorization, and tagging

 Chapter 8. Building an example question answering system

 Chapter 9. Untamed text: exploring the next frontier

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. Getting started taming text

 1.1. Why taming text is important

 1.2. Preview: A fact-based question answering system

 1.2.1. Hello, Dr. Frankenstein

 1.3. Understanding text is hard

 1.4. Text, tamed

 1.5. Text and the intelligent app: search and beyond

 1.5.1. Searching and matching

 1.5.2. Extracting information

 1.5.3. Grouping information

 1.5.4. An intelligent application

 1.6. Summary

 1.7. Resources

 Chapter 2. Foundations of taming text

 2.1. Foundations of language

 2.1.1. Words and their categories

 2.1.2. Phrases and clauses

 2.1.3. Morphology

 2.2. Common tools for text processing

 2.2.1. String manipulation tools

 2.2.2. Tokens and tokenization

 2.2.3. Part of speech assignment

 2.2.4. Stemming

 2.2.5. Sentence detection

 2.2.6. Parsing and grammar

 2.2.7. Sequence modeling

 2.3. Preprocessing and extracting content from common file formats

 2.3.1. The importance of preprocessing

 2.3.2. Extracting content using Apache Tika

 2.4. Summary

 2.5. Resources

 Chapter 3. Searching

 3.1. Search and faceting example: Amazon.com

 3.2. Introduction to search concepts

 3.2.1. Indexing content

 3.2.2. User input

 3.2.3. Ranking documents with the vector space model

 3.2.4. Results display

 3.3. Introducing the Apache Solr search server

 3.3.1. Running Solr for the first time

 3.3.2. Understanding Solr concepts

 3.4. Indexing content with Apache Solr

 3.4.1. Indexing using XML

 3.4.2. Extracting and indexing content using Solr and Apache Tika

 3.5. Searching content with Apache Solr

 3.5.1. Solr query input parameters

 3.5.2. Faceting on extracted content

 3.6. Understanding search performance factors

 3.6.1. Judging quality

 3.6.2. Judging quantity

 3.7. Improving search performance

 3.7.1. Hardware improvements

 3.7.2. Analysis improvements

 3.7.3. Query performance improvements

 3.7.4. Alternative scoring models

 3.7.5. Techniques for improving Solr performance

 3.8. Search alternatives

 3.9. Summary

 3.10. Resources

 Chapter 4. Fuzzy string matching

 4.1. Approaches to fuzzy string matching

 4.1.1. Character overlap measures

 4.1.2. Edit distance measures

 4.1.3. N-gram edit distance

 4.2. Finding fuzzy string matches

 4.2.1. Using prefixes for matching with Solr

 4.2.2. Using a trie for prefix matching

 4.2.3. Using n-grams for matching

 4.3. Building fuzzy string matching applications

 4.3.1. Adding type-ahead to search

 4.3.2. Query spell-checking for search

 4.3.3. Record matching

 4.4. Summary

 4.5. Resources

 Chapter 5. Identifying people, places, and things

 5.1. Approaches to named-entity recognition

 5.1.1. Using rules to identify names

 5.1.2. Using statistical classifiers to identify names

 5.2. Basic entity identification with OpenNLP

 5.2.1. Finding names with OpenNLP

 5.2.2. Interpreting names identified by OpenNLP

 5.2.3. Filtering names based on probability

 5.3. In-depth entity identification with OpenNLP

 5.3.1. Identifying multiple entity types with OpenNLP

 5.3.2. Under the hood: how OpenNLP identifies names

 5.4. Performance of OpenNLP

 5.4.1. Quality of results

 5.4.2. Runtime performance

 5.4.3. Memory usage in OpenNLP

 5.5. Customizing OpenNLP entity identification for a new domain

 5.5.1. The whys and hows of training a model

 5.5.2. Training an OpenNLP model

 5.5.3. Altering modeling inputs

 5.5.4. A new way to model names

 5.6. Summary

 5.7. Further reading

 Chapter 6. Clustering text

 6.1. Google News document clustering

 6.2. Clustering foundations

 6.2.1. Three types of text to cluster

 6.2.2. Choosing a clustering algorithm

 6.2.3. Determining similarity

 6.2.4. Labeling the results

 6.2.5. How to evaluate clustering results

 6.3. Setting up a simple clustering application

 6.4. Clustering search results using Carrot2

 6.4.1. Using the Carrot2API

 6.4.2. Clustering Solr search results using Carrot2

 6.5. Clustering document collections with Apache Mahout

 6.5.1. Preparing the data for clustering

 6.5.2. K-Means clustering

 6.6. Topic modeling using Apache Mahout

 6.7. Examining clustering performance

 6.7.1. Feature selection and reduction

 6.7.2. Carrot2 performance and quality

 6.7.3. Mahout clustering benchmarks

 6.8. Acknowledgments

 6.9. Summary

 6.10. References

 Chapter 7. Classification, categorization, and tagging

 7.1. Introduction to classification and categorization

 7.2. The classification process

 7.2.1. Choosing a classification scheme

 7.2.2. Identifying features for text categorization

 7.2.3. The importance of training data

 7.2.4. Evaluating classifier performance

 7.2.5. Deploying a classifier into production

 7.3. Building document categorizers using Apache Lucene

 7.3.1. Categorizing text with Lucene

 7.3.2. Preparing the training data for the MoreLikeThis categorizer

 7.3.3. Training the MoreLikeThis categorizer

 7.3.4. Categorizing documents with the MoreLikeThis categorizer

 7.3.5. Testing the MoreLikeThis categorizer

 7.3.6. MoreLikeThis in production

 7.4. Training a naive Bayes classifier using Apache Mahout

 7.4.1. Categorizing text using naive Bayes classification

 7.4.2. Preparing the training data

 7.4.3. Withholding test data

 7.4.4. Training the classifier

 7.4.5. Testing the classifier

 7.4.6. Improving the bootstrapping process

 7.4.7. Integrating the Mahout Bayes classifier with Solr

 7.5. Categorizing documents with OpenNLP

 7.5.1. Regression models and maximum entropy document categorization

 7.5.2. Preparing training data for the maximum entropy document categorizer

 7.5.3. Training the maximum entropy document categorizer

 7.5.4. Testing the maximum entropy document classifier

 7.5.5. Maximum entropy document categorization in production

 7.6. Building a tag recommender using Apache Solr

 7.6.1. Collecting training data for tag recommendations

 7.6.2. Preparing the training data

 7.6.3. Training the Solr tag recommender

 7.6.4. Creating tag recommendations

 7.6.5. Evaluating the tag recommender

 7.7. Summary

 7.8. References

 Chapter 8. Building an example question answering system

 8.1. Basics of a question answering system

 8.2. Installing and running the QA code

 8.3. A sample question answering architecture

 8.4. Understanding questions and producing answers

 8.4.1. Training the answer type classifier

 8.4.2. Chunking the query

 8.4.3. Computing the answer type

 8.4.4. Generating the query

 8.4.5. Ranking candidate passages

 8.5. Steps to improve the system

 8.6. Summary

 8.7. Resources

 Chapter 9. Untamed text: exploring the next frontier

 9.1. Semantics, discourse, and pragmatics: exploring higher levels of NLP

 9.1.1. Semantics

 9.1.2. Discourse

 9.1.3. Pragmatics

 9.2. Document and collection summarization

 9.3. Relationship extraction

 9.3.1. Overview of approaches

 9.3.2. Evaluation

 9.3.3. Tools for relationship extraction

 9.4. Identifying important content and people

 9.4.1. Global importance and authoritativeness

 9.4.2. Personal importance

 9.4.3. Resources and pointers on importance

 9.5. Detecting emotions via sentiment analysis

 9.5.1. History and review

 9.5.2. Tools and data needs

 9.5.3. A basic polarity algorithm

 9.5.4. Advanced topics

 9.5.5. Open source libraries for sentiment analysis

 9.6. Cross-language information retrieval

 9.7. Summary

 9.8. References

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 At a time when the demand for high-quality text processing capabilities continues to grow at an exponential rate, it’s difficult
 to think of any sector or business that doesn’t rely on some type of textual information. The burgeoning web-based economy
 has dramatically and swiftly increased this reliance. Simultaneously, the need for talented technical experts is increasing
 at a fast pace. Into this environment comes an excellent, very pragmatic book, Taming Text, offering substantive, real-world, tested guidance and instruction.

 Grant Ingersoll and Drew Farris, two excellent and highly experienced software engineers with whom I’ve worked for many years,
 and Tom Morton, a well-respected contributor to the natural language processing field, provide a realistic course for guiding
 other technical folks who have an interest in joining the highly recruited coterie of text processors, a.k.a. natural language
 processing (NLP) engineers.

 In an approach that equates with what I think of as “learning for the world, in the world,” Grant, Drew, and Tom take the
 mystery out of what are, in truth, very complex processes. They do this by focusing on existing tools, implemented examples,
 and well-tested code, versus taking you through the longer path followed in semester-long NLP courses.

 As software engineers, you have the basics that will enable you to latch onto the examples, the code bases, and the open source
 tools here referenced, and become true experts, ready for real-world opportunites, more quickly than you might expect.

 LIZ LIDDY
DEAN, ISCHOOL
SYRACUSE UNIVERSITY

Preface

 Life is full of serendipitous moments, few of which stand out for me (Grant) like the one that now defines my career. It was
 the late 90s, and I was a young software developer working on distributed electromagnetics simulations when I happened on
 an ad for a developer position at a small company in Syracuse, New York, called TextWise. Reading the description, I barely
 thought I was qualified for the job, but decided to take a chance anyway and sent in my resume. Somehow, I landed the job,
 and thus began my career in search and natural language processing. Little did I know that, all these years later, I would
 still be doing search and NLP, never mind writing a book on those subjects.

 My first task back then was to work on a cross-language information retrieval (CLIR) system that allowed users to enter queries
 in English and find and automatically translate documents in French, Spanish, and Japanese. In retrospect, that first system
 I worked on touched on all the hard problems I’ve come to love about working with text: search, classification, information
 extraction, machine translation, and all those peculiar rules about languages that drive every grammar student crazy. After
 that first project, I’ve worked on a variety of search and NLP systems, ranging from rule-based classifiers to question answering
 (QA) systems. Then, in 2004, a new job at the Center for Natural Language Processing led me to the use of Apache Lucene, the
 de facto open source search library (these days, anyway). I once again found myself writing a CLIR system, this time to work
 with English and Arabic. Needing some Lucene features to complete my task, I started putting up patches for features and bug
 fixes. Sometime thereafter, I became a committer. From there, the floodgates opened. I got more involved in open source, starting
 the Apache Mahout machine learning project with Isabel Drost and Karl Wettin, as well as cofounding Lucid Imagination, a company
 built around search and text analytics with Apache Lucene and Solr.

 Coming full circle, I think search and NLP are among the defining areas of computer science, requiring a sophisticated approach
 to both the data structures and algorithms necessary to solve problems. Add to that the scaling requirements of processing
 large volumes of user-generated web and social content, and you have a developer’s dream. This book addresses my view that
 the marketplace was missing (at the time) a book written for engineers by engineers and specifically geared toward using existing,
 proven, open source libraries to solve hard problems in text processing. I hope this book helps you solve everyday problems
 in your current job as well as inspires you to see the world of text as a rich opportunity for learning.

 GRANT INGERSOLL

 I (Tom) became fascinated with artificial intelligence as a sophomore in high school and as an undergraduate chose to go to
 graduate school and focus on natural language processing. At the University of Pennsylvania, I learned an incredible amount
 about text processing, machine learning, and algorithms and data structures in general. I also had the opportunity to work
 with some of the best minds in natural language processing and learn from them.

 In the course of my graduate studies, I worked on a number of NLP systems and participated in numerous DARPA-funded evaluations
 on coreference, summarization, and question answering. In the course of this work, I became familiar with Lucene and the larger
 open source movement. I also noticed that there was a gap in open source text processing software that could provide efficient
 end-to-end processing. Using my thesis work as a basis, I contributed extensively to the OpenNLP project and also continued
 to learn about NLP systems while working on automated essay and short-answer scoring at Educational Testing Services.

 Working in the open source community taught me a lot about working with others and made me a much better software engineer.
 Today, I work for Comcast Corporation with teams of software engineers that use many of the tools and techniques described
 in this book. It is my hope that this book will help bridge the gap between the hard work of researchers like the ones I learned
 from in graduate school and software engineers everywhere whose aim is to use text processing to solve real problems for real
 people.

 THOMAS MORTON

 Like Grant, I (Drew) was first introduced to the field of information retrieval and natural language processing by Dr. Elizabeth
 Liddy, Woojin Paik, and all of the others doing research at TextWise in the mid 90s. I started working with the group as I
 was finishing my master’s at the School of Information Studies (iSchool) at Syracuse University. At that time, TextWise was
 transitioning from a research group to a startup business developing applications based on the results of our text processing
 research. I stayed with the company for many years, constantly learning, discovering new things, and working with many outstanding
 people who came to tackle the challenges of teaching machines to understand language from many different perspectives.

 Personally, I approach the subject of text analytics first from the perspective of a software developer. I’ve had the privilege
 of working with brilliant researchers and transforming their ideas from experiments to functioning prototypes to massively
 scalable systems. In the process, I’ve had the opportunity to do a great deal of what has recently become known as data science
 and discovered a deep love of exploring and understanding massive datasets and the tools and techniques for learning from
 them.

 I cannot overstate the impact that open source software has had on my career. Readily available source code as a companion
 to research is an immensely effective way to learn new techniques and approaches to text analytics and software development
 in general. I salute everyone who has made the effort to share their knowledge and experience with others who have the passion
 to collaborate and learn. I specifically want to acknowledge the good folks at the Apache Software Foundation who continue
 to grow a vibrant ecosystem dedicated to the development of open source software and the people, process, and community that
 support it.

 The tools and techniques presented in this book have strong roots in the open source software community. Lucene, Solr, Mahout,
 and OpenNLP all fall under the Apache umbrella. In this book, we only scratch the surface of what can be done with these tools.
 Our goal is to provide an understanding of the core concepts surrounding text processing and provide a solid foundation for
 future explorations of this domain.

 Happy coding!

 DREW FARRIS

Acknowledgments

 A long time coming, this book represents the labor of many people whom we would like to gratefully acknowledge. Thanks to
 all the following:

	The users and developers of Apache Solr, Lucene, Mahout, OpenNLP, and other tools used throughout this book

 	Manning Publications, for sticking with us, especially Douglas Pundick, Karen Tegtmeyer, and Marjan Bace

 	Jeff Bleiel, our development editor, for nudging us along despite our crazy schedules, for always having good feedback, and
 for turning developers into authors

 	Our reviewers, for the questions, comments, and criticisms that make this book better: Adam Tacy, Amos Bannister, Clint Howarth,
 Costantino Cerbo, Dawid Weiss, Denis Kurilenko, Doug Warren, Frank Jania, Gann Bierner, James Hatheway, James Warren, Jason
 Rennie, Jeffrey Copeland, Josh Reed, Julien Nioche, Keith Kim, Manish Katyal, Margriet Bruggeman, Massimo Perga, Nikander
 Bruggeman, Philipp K. Janert, Rick Wagner, Robi Sen, Sanchet Dighe, Szymon Chojnacki, Tim Potter, Vaijanath Rao, and Jeff
 Goldschrafe

 	Our contributors who lent their expertise to certain sections of this book: J. Neal Richter, Manish Katyal, Rob Zinkov, Szymon
 Chojnacki, Tim Potter, and Vaijanath Rao

 	Steven Rowe, for a thorough technical review as well as for all the shared hours developing text applications at TextWise,
 CNLP, and as part of Lucene

 	Dr. Liz Liddy, for introducing Drew and Grant to the world of text analytics and all the fun and opportunity therein, and
 for contributing the foreword

 	All of our MEAP readers, for their patience and feedback

 	Most of all, our family, friends, and coworkers, for their encouragement, moral support, and understanding as we took time
 from our normal lives to work on the book

Grant Ingersoll

 Thanks to all my coworkers at TextWise and CNLP who taught me so much about text analytics; to Mr. Urdahl for making math
 interesting and Ms. Raymond for making me a better student and person; to my parents, Floyd and Delores, and kids, Jackie
 and William (love you always); to my wife, Robin, who put up with all the late nights and lost weekends—thanks for being there
 through it all!

Tom Morton

 Thanks to my coauthors for their hard work and partnership; to my wife, Thuy, and daughter, Chloe, for their patience, support,
 and time freely given; to my family, Mortons and Trans, for all your encouragement; to my colleagues from the University of
 Pennsylvania and Comcast for their support and collaboration, especially Na-Rae Han, Jason Baldridge, Gann Bierner, and Martha
 Palmer; to Jörn Kottmann for his tireless work on OpenNLP.

Drew Farris

 Thanks to Grant for getting me involved with this and many other interesting projects; to my coworkers, past and present,
 from whom I’ve learned incredible things and with whom I’ve shared a passion for text analytics, machine learning, and developing
 amazing software; to my wife, Kristin, and children, Phoebe, Audrey, and Owen, for their patience and support as I stole time
 to work on this and other technological endeavors; to my extended family for their interest and encouragement, especially
 my Mom, who will never see this book in its completed form.

About this Book

 Taming Text is about building software applications that derive their core value from using and manipulating content that primarily consists
 of the written word. This book is not a theoretical treatise on the subjects of search, natural language processing, and machine
 learning, although we cover all of those topics in a fair amount of detail throughout the book. We strive to avoid jargon
 and complex math and instead focus on providing the concepts and examples that today’s software engineers, architects, and
 practitioners need in order to implement intelligent, next-generation, text-driven applications. Taming Text is also firmly grounded in providing real-world examples of the concepts described in the book using freely available, highly
 popular, open source tools like Apache Solr, Mahout, and OpenNLP.

Who should read this book

 Is this book for you? Perhaps. Our target audience is software practitioners who don’t have (much of) a background in search,
 natural language processing, and machine learning. In fact, our book is aimed at practitioners in a work environment much
 like what we’ve seen in many companies: a development team is tasked with adding search and other features to a new or existing
 application and few, if any, of the developers have any experience working with text. They need a good primer on understanding
 the concepts without being bogged down by the unnecessary.

 In many cases, we provide references to easily accessible sources like Wikipedia and seminal academic papers, thus providing
 a launching pad for the reader to explore an area in greater detail if desired. Additionally, while most of our open source
 tools and examples are in Java, the concepts and ideas are portable to many other programming languages, so Rubyists, Pythonistas,
 and others should feel quite comfortable as well with the book.

 This book is clearly not for those looking for explanations of the math involved in these systems or for academic rigor on
 the subject, although we do think students will find the book helpful when they need to implement the concepts described in
 the classroom and more academically-oriented books.

 This book doesn’t target experienced field practitioners who have built many text-based applications in their careers, although
 they may find some interesting nuggets here and there on using the open source packages described in the book. More than one
 experienced practitioner has told us that the book is a great way to get team members who are new to the field up to speed
 on the ideas and code involved in writing a text-based application.

 Ultimately, we hope this book is an up-to-date guide for the modern programmer, a guide that we all wish we had when we first
 started down our career paths in programming text-based applications.

Roadmap

 Chapter 1 explains why processing text is important, and what makes it so challenging. We preview a fact-based question answering (QA)
 system, setting the stage for utilizing open source libraries to tame text.

 Chapter 2 introduces the building blocks of text processing: tokenizing, chunking, parsing, and part of speech tagging. We follow up
 with a look at how to extract text from some common file formats using the Apache Tika open source project.

 Chapter 3 explores search theory and the basics of the vector space model. We introduce the Apache Solr search server and show how
 to index content with it. You’ll learn how to evaluate the search performance factors of quantity and quality.

 Chapter 4 examines fuzzy string matching with prefixes and n-grams. We look at two character overlap measures—the Jaccard measure and the Jaro-Winkler distance—and explain how to find
 candidate matches with Solr and rank them.

 Chapter 5 presents the basic concepts behind named-entity recognition. We show how to use OpenNLP to find named entities, and discuss
 some OpenNLP performance considerations. We also cover how to customize OpenNLP entity identification for a new domain.

 Chapter 6 is devoted to clustering text. Here you’ll learn the basic concepts behind common text clustering algorithms, and see examples
 of how clustering can help improve text applications. We also explain how to cluster whole document collections using Apache
 Mahout, and how to cluster search results using Carrot2.

 Chapter 7 discusses the basic concepts behind classification, categorization, and tagging. We show how categorization is used in text
 applications, and how to build, train, and evaluate classifiers using open source tools. We also use the Mahout implementation
 of the naive Bayes algorithm to build a document categorizer.

 Chapter 8 is where we bring together all the things learned in the previous chapters to build an example QA system. This simple application
 uses Wikipedia as its knowledge base, and Solr as a baseline system.

 Chapter 9 explores what’s next in search and NLP, and the roles of semantics, discourse, and pragmatics. We discuss searching across
 multiple languages and detecting emotions in content, as well as emerging tools, applications, and ideas.

Code conventions and downloads

 This book contains numerous code examples. All the code is in a fixed-width font like this to separate it from ordinary text. Code members such as method names, class names, and so on are also in a fixed-width font.

 In many listings, the code is annotated to point out key concepts, and numbered bullets are sometimes used in the text to
 provide additional information about the code.

 Source code examples in this book are fairly close to the samples that you’ll find online. But for brevity’s sake, we may
 have removed material such as comments from the code to fit it well within the text.

 The source code for the examples in the book is available for download from the publisher’s website at www.manning.com/TamingText.

Author Online

 The purchase of Taming Text includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser at www.manning.com/TamingText. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions,
 lest their interest stray!

 The Author Online forum and archives of previous discussions will be accessible from the publisher’s website as long as the
 book is in print.

About the Cover Illustration

 The figure on the cover of Taming Text is captioned “Le Marchand,” which means merchant or storekeeper. The illustration is taken from a 19th-century edition of
 Sylvain Maréchal’s four-volume compendium of regional dress customs published in France. Each illustration is finely drawn
 and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns
 and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets
 or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their
 dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Chapter 1. Getting started taming text

 In this chapter

	Understanding why processing text is important

 	Learning what makes taming text hard

 	Setting the stage for leveraging open source libraries to tame text

If you’re reading this book, chances are you’re a programmer, or at least in the information technology field. You operate
 with relative ease when it comes to email, instant messaging, Google, YouTube, Facebook, Twitter, blogs, and most of the other
 technologies that define our digital age. After you’re done congratulating yourself on your technical prowess, take a moment
 to imagine your users. They often feel imprisoned by the sheer volume of email they receive. They struggle to organize all
 the data that inundates their lives. And they probably don’t know or even care about RSS or JSON, much less search engines,
 Bayesian classifiers, or neural networks. They want to get answers to their questions without sifting through pages of results.
 They want email to be organized and prioritized, but spend little time actually doing it themselves. Ultimately, your users
 want tools that enable them to focus on their lives and their work, not just their technology. They want to control—or tame—the uncontrolled beast
 that is text. But what does it mean to tame text? We’ll talk more about it later in this chapter, but for now taming text involves three
 primary things:

	The ability to find relevant answers and supporting content given an information need

 	The ability to organize (label, extract, summarize) and manipulate text with little-to-no user intervention

 	The ability to do both of these things with ever-increasing amounts of input

This leads us to the primary goal of this book: to give you, the programmer, the tools and hands-on advice to build applications
 that help people better manage the tidal wave of communication that swamps their lives. The secondary goal of Taming Text is to show how to do this using existing, freely available, high quality, open source libraries and tools.

 Before we get to those broader goals later in the book, let’s step back and examine some of the factors involved in text processing
 and why it’s hard, and also look at some use cases as motivation for the chapters to follow. Specifically, this chapter aims
 to provide some background on why processing text effectively is both important and challenging. We’ll also lay some groundwork
 with a simple working example of our first two primary tasks as well as get a preview of the application you’ll build at the
 end of this book: a fact-based question answering system. With that, let’s look at some of the motivation for taming text
 by scoping out the size and shape of the information world we live in.

1.1. Why taming text is important

 Just for fun, try to imagine going a whole day without reading a single word. That’s right, one whole day without reading
 any news, signs, websites, or even watching television. Think you could do it? Not likely, unless you sleep the whole day.
 Now spend a moment thinking about all the things that go into reading all that content: years of schooling and hands-on feedback
 from parents, teachers, and peers; and countless spelling tests, grammar lessons, and book reports, not to mention the hundreds
 of thousands of dollars it takes to educate a person through college. Next, step back another level and think about how much
 content you do read in a day.

 To get started, take a moment to consider the following questions:

	How many email messages did you get today (both work and personal, including spam)?

 	How many of those did you read?

 	How many did you respond to right away? Within the hour? Day? Week?

 	How do you find old email?

 	How many blogs did you read today?

 	How many online news sites did you visit?

 	
Did you use instant messaging (IM), Twitter, or Facebook with friends or colleagues?

 	How many searches did you do on Google, Yahoo!, or Bing?

 	What documents on your computer did you read? What format were they in (Word, PDF, text)?

 	How often do you search for something locally (either on your machine or your corporate intranet)?

 	How much content did you produce in the form of emails, reports, and so on?

Finally, the big question: how much time did you spend doing this?

 If you’re anything like the typical information worker, then you can most likely relate to IDC’s (International Data Corporation)
 findings from their 2009 study (Feldman 2009):

 Email consumes an average of 13 hours per week per worker... But email is no longer the only communication vehicle. Social
 networks, instant messaging, Yammer, Twitter, Facebook, and LinkedIn have added new communication channels that can sap concentrated
 productivity time from the information worker’s day. The time spent searching for information this year averaged 8.8 hours
 per week, for a cost of $14,209 per worker per year. Analyzing information soaked up an additional 8.1 hours, costing the
 organization $13,078 annually, making these two tasks relatively straightforward candidates for better automation. It makes
 sense that if workers are spending over a third of their time searching for information and another quarter analyzing it,
 this time must be as productive as possible.

 Furthermore, this survey doesn’t even account for how much time these same employees spend creating content during their personal
 time. In fact, eMarketer estimates that internet users average 18 hours a week online (eMarketer) and compares this to other
 leisure activities like watching television, which is still king at 30 hours per week.

 Whether it’s reading email, searching Google, reading a book, or logging into Facebook, the written word is everywhere in
 our lives.

 We’ve seen the individual part of the content picture, but what about the collective picture? According to IDC (2011), the
 world generated 1.8 zettabytes of digital information in 2011 and “by 2020 the world will generate 50 times [that amount].” Naturally, such prognostications
 often prove to be low given we can’t predict the next big trend that will produce more content than expected.

 Even if a good-size chunk of this data is due to signal data, images, audio, and video, the current best approach to making
 all this data findable is to write analysis reports, add keyword tags and text descriptions, or transcribe the audio using
 speech recognition or a manual closed-captioning approach so that it can be treated as text. In other words, no matter how
 much structure we add, it still comes back to text for us to share and comprehend our content. As you can see, the sheer volume
 of content can be daunting, never mind that text processing is also a hard problem on a small scale, as you’ll see in a later
 section. In the meantime, it’s worthwhile to think about what the ideal applications or tools would do to help stem the tide
 of text that’s engulfing us. For many, the answer lies in the ability to quickly and efficiently hone in on the answer to our questions,
 not just a list of possible answers that we need to then sift through. Moreover, we wouldn’t need to jump through hoops to
 ask our questions; we’d just be able to use our own words or voice to express them with no need for things like quotations,
 AND/OR operators, or other things that make it easier on the machine but harder on the person.

 Though we all know we don’t live in an ideal world, one of the promising approaches for taming text, popularized by IBM’s
 Jeopardy!-playing Watson program and Apple’s Siri application, is a question answering system that can process natural languages
 such as English and return actual answers, not just pages of possible answers. In Taming Text, we aim to lay some of the groundwork for building such a system. To do this, let’s consider what such a system might look
 like; then, let’s take a look at some simple code that can find and extract key bits of information out of text that will
 later prove to be useful in our QA system. We’ll finish off this chapter by delving deeper into why building such a system
 as well as other language-based applications is so hard, along with a look at how the chapters to follow in this book will
 lay the foundation for a fact-based QA system along with other text-based systems.

1.2. Preview: A fact-based question answering system

 For the purposes of this book, a QA system should be capable of ingesting a collection of documents suspected to have answers
 to questions that users might ask. For instance, Wikipedia or a collection of research papers might be used as a source for
 finding answers. In other words, the QA system we propose is based on identifying and analyzing text that has a chance of
 providing the answer based on patterns it has seen in the past. It won’t be capable of inferring an answer from a variety
 of sources. For instance, if the system is asked “Who is Bob’s uncle?” and there’s a document in the collection with the sentences
 “Bob’s father is Ola. Ola’s brother is Paul,” the system wouldn’t be able to infer that Bob’s uncle is Paul. But if there’s
 a sentence that directly states “Bob’s uncle is Paul,” you’d expect the system to be able to answer the question. This isn’t
 to say that the former example can’t be attempted; it’s just beyond the scope of this book.

 A simple workflow for building the QA system described earlier is outlined in figure 1.1.

 Figure 1.1. A simple workflow for answering questions posed to a QA system

 [image:]

 Naturally, such a simple workflow hides a lot of details, and it also doesn’t cover the ingestion of the documents, but it
 does allow us to highlight some of the key components needed to process users’ questions. First, the ability to parse a user’s
 question and determine what’s being asked typically requires basic functionality like identifying words, as well as the ability
 to understand what kind of answer is appropriate for a question. For instance, the answer to “Who is Bob’s uncle?” should
 likely be a person, whereas the answer to “Where is Buffalo?” probably requires a place-name to be returned. Second, the need
 to identify candidate answers typically involves the ability to quickly look up phrases, sentences, or passages that contain
 potential answers without having to force the system to parse large quantities of text.

 Scoring implies many of the basic things again, such as parsing words, as well as a deeper understanding of whether a candidate
 actually contains the necessary components to answer a question, such as mentioning a person or a place. As easy as some of
 these things sound given the ease with which most humans think they do these things, they’re not to be taken for granted. With this in mind, let’s take a look at an example of processing
 a chunk of text to find passages and identify interesting things like names.

 1.2.1. Hello, Dr. Frankenstein

 In light of our discussion of a question answering system as well as our three primary tasks for working with text, let’s
 take a look at some basic text processing. Naturally, we need some sample text to process in this simple system. For that,
 we chose Mary Shelley’s classic Frankenstein. Why Frankenstein? Besides the authors’ liking the book from a literary standpoint, it also happens to be the first book we came across on
 the Gutenberg Project site (http://www.gutenberg.org/), it’s plain text and nicely formatted (which you’ll find is a rarity in your day-to-day life with text), and there’s the
 added bonus that it’s out of copyright and freely distributable. We’ve included a full copy in our source tree, but you can
 also download a copy of the book at http://www.gutenberg.org/cache/epub/84/pg84.txt.

 Now that we have some text to work with, let’s do a few tasks that come up time and time again in text applications:

	Search the text based on user input and return the relevant passage (a paragraph in this example)

 	Split the passage into sentences

 	Extract “interesting” things from the text, like the names of people

To accomplish these tasks, we’ll use two Java libraries, Apache Lucene and Apache OpenNLP, along with the code in the com.tamingtext.frankenstein.Frankenstein
 Java file that’s included with the book and also available on GitHub at http://www.github.com/tamingtext/book. See https://github.com/tamingtext/book/blob/master/README for instructions on building the source.

 The high-level code that drives this process can be seen in the following listing.

 Listing 1.1. Frankenstein driver program

 [image:]

 In the driver example, you first index the content. Indexing is the process of making the content searchable using Lucene.
 We’ll explain this in more detail in the chapter on search later in the book. For now, you can think of it as a quick way
 of looking up where words occur in a piece of text. Next you enter a loop where you ask the user to enter a query, execute
 the search, and then process the discovered results. For the purposes of this example, you treat each paragraph as a searchable
 unit. This means that when you execute a search, you’ll be able to know exactly which paragraph in the book matched the query.

 After you have your paragraphs, you switch over to using OpenNLP, which will take each paragraph, split it into sentences,
 and then try to identify the names of people in a sentence. We’ll forgo examining the details of how each of the methods are
 implemented, as various sections in the remainder of the book cover the concepts. Instead, let’s run the program and try a
 query and look at the results.

 To run the code, open a terminal window (command prompt and change into the directory containing the unpacked source code)
 and type bin/frankenstein.sh on UNIX/Mac or bin/frankenstein.cmd on Windows. You should see the following:

 Initializing Frankenstein
Indexing Frankenstein
Processed 7254 lines. Paragraphs: 722
Type your query. Hit Enter to process the query \
(the empty string will exit the program):
>

 At this point, you can enter a query, such as "three months". A partial listing of the results follows. Note that we’ve inserted [...] in numerous places for formatting purposes.

 >"three months"
Searching for: "three months"
Found 4 total hits.

Match: [0] Paragraph: 418
Lines: 4249-4255
 "'Do you consider,' said his companion to him, ...
 ----- Sentences ----
 [0] "'Do you consider,' said his companion to him, ...
 [1] I do not wish to take any unfair advantage, ...

Match: [1] Paragraph: 583
Lines: 5796-5807
 The season of the assizes approached. ...
 ----- Sentences ----
... [2] Mr. Kirwin charged himself with every care ...
 >>>> Names
 Kirwin
... [4] ... that I was on the Orkney Islands ...
 >>>> Locations
 Orkney Islands

Match: [2] Paragraph: 203
Lines: 2167-2186
 Six years had elapsed, passed in a dream but for one indelible trac
e, ...
 ----- Sentences ----
... [4] ... and represented Caroline Beaufort in an ...
 >>>> Names
 Caroline Beaufort
... [7] While I was thus engaged, Ernest entered: ... "Welcome
, my dearest Victor," said he. "Ah!
 >>>> Names
 Ah
 [8] I wish you had come three months ago, and then you would ha
ve found us all joyous and delighted.
 >>>> Dates
 three months ago
 [9] ... who seems sinking under his misfortune; and your pers
uasions will induce poor Elizabeth to cease her ...
 >>>> Names
 Elizabeth
 ...

 This output shows the results of fetching the top paragraphs that mention “three months” as a phrase (four paragraphs in all)
 along with a few examples of the sentences in the paragraph, as well as lists of any names, dates, or locations in that text.
 In this example, you can see samples of the sentence detection as well as the extraction of names, locations, and dates. A
 keen eye will also notice a few places where the simple system is clearly wrong. For instance, the system thinks Ah is a name, but that Ernest isn’t. It also failed to split the text ending in “... said he. “Ah!” into separate sentences. Perhaps our system doesn’t
 know how to properly handle exclamation points or there was some odd formatting in the text.

 For now, we’ll wave our hands as to why these failed. If you explore further with other queries, you’ll likely find plenty
 of the good, bad, and even the ugly in processing text. This example makes for a nice segue into our next section, which will
 touch on some of these difficulties in processing text as well as serve as motivation for many of the approaches we take in the
 book.

1.3. Understanding text is hard

 Suppose Robin and Joe are talking, and Joe states, “The bank on the left is solid, but the one on the right is crumbling.”
 What are Robin and Joe talking about? Are they on Wall Street looking at the offices of two financial institutions, or are
 they floating down the Mississippi River looking for a place to land their canoe? If you assume the former, the words solid and crumbling probably refer to the state of the banks’ finances, whereas the latter case is an assessment of the quality of the ground
 on the side of a river. Now, what if you replaced the characters’ names with the names Huck and Tom from The Adventures of Tom Sawyer? You’d likely feel pretty confident in stating it’s a river bank and not a financial institution, right? As you can see,
 context is also important. It’s often the case that only with more information from the surrounding context combined with
 your own experiences can you truly know what some piece of content is about. The ambiguity in Joe’s statement only touches
 on the surface of the complexity involved in understanding text.

 Given well-written, coherent sentences and paragraphs, knowledgeable people seamlessly look up the meanings of words and incorporate
 their experiences and knowledge of their surroundings to arrive at an understanding of content and conversations. Literate
 adults can (more or less) effortlessly dissect sentences, identify relationships, and infer meaning nearly instantaneously.
 And, as in the Robin and Joe example, people are almost always aware when something is significantly out of place or lacking
 from a sentence, paragraph, or document as a whole. Human beings also feed off others in conversation, instantly adapting
 tone and emotions to convey thoughts on subjects ranging from the weather to politics to the role of the designated hitter.
 Though we often take these skills for granted, we should remember that they have been fine-tuned through many years of conversation,
 education, and feedback from others, not to mention all the knowledge passed down from our ancestors.

 At the same time, computers and the fields of information retrieval (IR) and natural language processing (NLP) are still relatively
 young. Computers need to be capable of processing language on many different levels in order to come close to “understanding”
 content like people do. (For an in-depth discussion of the many factors that go into NLP, see Liddy [2001].) Though full understanding
 is a tall order for a computer, even doing basic tasks can be overwhelming given the sheer volume of text available and the
 variety with which it occurs.

 There’s a reason the saying goes “the numbers don’t lie” and not “the text doesn’t lie”; text comes in all shapes and meanings
 and trips up even the smartest people on a regular basis. Writing applications to process text can mean facing a number of
 technical and nontechnical challenges. Table 1.1 outlines some of the challenges text applications face, each row increasing in difficulty from the previous.

 Table 1.1. Processing text presents challenges at many levels, from handling character encodings to inferring meaning in the context
 of the world around us.

	
 Level

 	
 Challenges

	Character
 	
	Character encodings, such as ASCII, Shift-JIS, Big 5, Latin-1, UTF-8, UTF-16.

 	Case (upper and lower), punctuation, accents, and numbers all require different treatments in different applications.

	Words and morphemes[a]

 	
	Word segmentation: dividing text into words. Fairly easy for English and other languages that use whitespace; much harder
 for languages like Chinese and Japanese.

 	Assigning part of speech.

 	Identifying synonyms; synonyms are useful for searching.

 	Stemming: the process of shortening a word to its base or root form. For example, a simple stemming of words is word.

 	Abbreviations, acronyms, and spelling also play important roles in understanding words.

	Multiword and sentence
 	
	Phrase detection: quick red fox, hockey legend Bobby Orr, and big brown shoe are all examples of phrases.

 	Parsing: breaking sentences down into subject-verb and other relationships often yields useful information about words and
 their relationships to each other.

 	Sentence boundary detection is a well-understood problem in English, but is still not perfect.

 	Coreference resolution: “Jason likes dogs, but he would never buy one.” In this example, he is a coreference to Jason. The need for coreference resolution can also span sentences.

 	Words often have multiple meanings; using the context of a sentence or more may help choose the correct word. This process
 is called word sense disambiguation and is difficult to do well.

 	Combining the definitions of words and their relationships to each other to determine the meaning of a sentence.

	Multisentence and paragraph
 	At this level, processing becomes more difficult in an effort to find deeper understanding of an author’s intent. Algorithms
 for summarization often require being able to identify which sentences are more important than others.

	Document
 	Similar to the paragraph level, understanding the meaning of a document often requires knowledge that goes beyond what’s contained
 in the actual document. Authors often expect readers to have a certain background or possess certain reading skills. For example,
 most of this book won’t make much sense if you’ve never used a computer and done some programming, whereas most newspapers
 assume at least a sixth-grade reading level.

	Multidocument and corpus
 	At this level, people want to quickly find items of interest as well as group related documents and read summaries of those
 documents. Applications that can aggregate and organize facts and opinions and find relationships are particularly useful.

 a A morpheme is a small linguistic unit that still has meaning. Prefixes and suffixes are examples of morphemes.

 Beyond these challenges, human factors also play a role in working with text. Different cultures, different languages, and
 different interpretations of the same writing can leave even the best engineer wondering what to implement. Merely looking
 at some sample files and trying to extrapolate an approach for a whole collection of documents is often problematic. On the
 other side of the coin, manually analyzing and annotating large sets of documents can be expensive and time consuming. But
 rest assured that help is available and text can be tamed.

1.4. Text, tamed

 Now that you’ve seen some of the challenges you’re about to face, take heart knowing that many tools exist both commercially
 and in the open source community (see http://www.opensource.org) to tackle these topics and many more. One of the great things about the journey you’re embarking on is its ever-changing
 and ever-improving nature. Problems that were intractable 10 years ago due to resource limits are now yielding positive results
 thanks to better algorithms, faster CPUs, cheaper memory, cheaper disk space, and tools for easily harnessing many computers
 into a single virtual CPU. Now, more than ever, quality open source tools exist that can form the foundation for new ideas
 and new applications.

 This book is written to bring real-world experience to these open source tools and introduce you to the fields of natural
 language processing and information retrieval. We can’t possibly cover all aspects of NLP and IR nor are we going to discuss
 bleeding-edge research, at least not until the end of the book; instead we’ll focus on areas that are likely to have the biggest
 impact in taming your text.

 By focusing on topics like search, entity identification (finding people, places, and things), grouping and labeling, clustering, and summarization, we can build practical applications
 that help users find and understand the important parts of their text quickly and easily.

 Though we hate to be a buzzkill on all the excitement of taming text, it’s important to note that there are no perfect approaches
 in working with text. Many times, two people reviewing the same output won’t agree on the correctness of the results, nor
 will it be obvious what to fix to satisfy them. Furthermore, fixing one problem may expose other problems. Testing and analysis
 are as important as ever to achieving quality results. Ultimately, the best systems take a human-in-the-loop approach and
 learn from user feedback where possible, just as smart people learn from their mistakes and from their peers. The user feedback
 need not be explicit, either. Capturing clicks, and analyzing logs and other user behaviors can provide valuable feedback
 on how your users are utilizing your application. With that in mind, here are some general tips for improving your application
 and keeping your sanity:

	Get to know your users. Do they care about certain structures like tables and lists, or is it enough to collect all the words
 in a document? Are they willing to give you more information in return for better results, or is simplicity the rule? Are
 they willing to wait longer for better results, or do they need a best guess immediately?

 	
Get to know your content. What file formats (HTML, Microsoft Word, PDF, text) are used? What structures and features are important?
 Does the text contain a lot of jargon, abbreviations, or different ways of saying the same thing? Is the content focused on
 a single area of interest or does it cover a number of topics?

 	Test, test, and test some more. Take the time (but not too much time) to measure the quality of your results and the cost
 of obtaining them. Become practiced in the art of arbitration. Every nontrivial text-based application will need to make trade-offs
 in regards to quality and scalability. By combining your knowledge of your users and your content, you can often find the
 sweet spot of quality and performance that satisfies most people most of the time.

 	Sometimes, a best guess is as good as it gets. Look for ways to provide confidence levels to your users so they can make an
 informed decision about your response.

 	All else being equal, favor the simpler approach. Moreover, you’ll be amazed at how good simple solutions can be at getting
 decent results.

Also, though working in non-native languages is an interesting problem in itself, we’ll stick to English for this book. Rest
 assured that many of the approaches can be applied to other languages given the right resources.

 It should also be pointed out that the kinds of problems you might wish to solve range in difficulty from relatively straightforward
 to so hard you might as well flip a coin. For instance, in English and other European languages, tokenization and part of
 speech tagging algorithms perform well, whereas tools like machine translation of foreign languages, sentiment analysis, and
 reasoning from text are much more difficult and often don’t perform well in unconstrained environments.

 Finally, text processing is much like riding a roller coaster. There will be highs when your application can do no wrong and
 lows when your application can do no right. The fact is that none of the approaches discussed in this book or in the broader
 field of NLP are the final solution to the problem. Therein lies the ultimate opportunity for you to dig in and add your signature.
 So let’s get started and lay the foundation for the ideas to come in later chapters by setting the context that takes us beyond
 search into the wonderful world of natural language processing.

1.5. Text and the intelligent app: search and beyond

 For many years now, search has been king. Without the likes of Google and Yahoo!, there’s no doubt that the internet wouldn’t
 be anywhere near what it is today. Yet, with the rise of good open source search tools like Apache Solr and Apache Lucene,
 along with a myriad of crawlers and distributed processing techniques, search is a commodity, at least on the smaller scale
 of personal and corporate search where huge data centers aren’t required. At the same time, people’s expectations of search
 engines are increasing. We want better results in less time while entering only one or two keywords. We also want our own
 content easily searched and organized.

 Furthermore, corporations are under huge pressure to constantly add value. Every time some big player like Google or Amazon
 makes a move to better access information, the bar is raised for the rest of us. Five, ten, or fifteen years ago, it was enough
 to add search capabilities to be able to find data; now search is a prerequisite and the game-changing players use complex
 algorithms utilizing machine learning and deep statistical analysis to work with volumes of data that would take people years
 to understand. This is the evolution of the intelligent application. More and more companies are adopting machine learning
 and deep text analysis in well-defined areas to bring more intelligence to their applications.

 The adoption of machine learning and NLP techniques is grounded in the reality of practical applications dealing with large
 volumes of data, and not the grandiose, albeit worthwhile, notion of machines “understanding” people or somehow passing the
 Turing Test (see http://en.wikipedia.org/wiki/Turing_Test). These companies are focused on finding and extracting important text features; aggregating information like user clicks,
 ratings, and reviews; grouping and summarizing similar content; and, finally, displaying all of these features in ways that
 allow end users to better find and use the content, which should ultimately lead to more purchases or traffic or whatever
 is the objective. After all, you can’t buy something if you can’t find it, right?

 So, how do you get started doing all of these great things? You start by establishing the baseline with search (covered in
 chapter 3) and then examine ways of automatically organizing content using concepts that you employ in your daily life. Instead of
 doing it manually, you let the machine do it for you (with a little help when needed). With that in mind, the next few sections
 break down the ideas of search and organizing content into three distinct areas and propose an example that ties many of the
 concepts together, which will be explored more completely in the ensuing chapters.

 1.5.1. Searching and matching

 Search provides the starting point for most of your text taming activities, including our proposed QA system, where you’ll
 rely on it both for indexing the input data as well as for identifying candidate passages that match a user’s question. Even
 when you need to apply techniques that go beyond search, you’ll likely use search to find the subset of text or documents
 on which to apply more advanced techniques.

 In chapter 3, “Searching,” we’ll explore how to make documents available for searching, indexing, and how to retrieve documents based on a query. We’ll
 also explore how documents are ranked by a search engine and use this information to improve the returned results. Finally,
 we’ll examine faceted search, which allows searches to be refined by limiting results to a predefined category. The coverage
 of these topics will be grounded in examples using Apache Solr and Apache Lucene.

 After you’re familiar with the techniques of search, you’ll quickly realize that search is only as good as the content backing
 that search. If the words and phrases that your users are looking for aren’t in your index, then you won’t be able to return
 a relevant result. In chapter 4, “Fuzzy string matching,” we’ll look at techniques for enabling query recommendations based on the content that’s available via query spell-checking as well as how these same techniques
 can be applied to database- or record-linking tasks that go beyond simple database joins. These techniques are often used
 not only as part of search, but also for more complex things like identifying whether two user profiles are the same person,
 as might happen when two companies merge and their customer lists must be combined.

 1.5.2. Extracting information

 Though search will help you find documents that contain the information you need, often you need to be able to identify smaller
 units of information. For instance, the ability to identify proper names in a large collection of text can be immensely helpful
 in tracking down criminal activity or finding relationships between people who might not otherwise meet. To do this we’ll
 explore techniques for identifying and classifying small selections of text, typically just a few words in length.

 In chapter 2, “Foundations of taming text,” we’ll introduce techniques for identifying words that form a linguistic unit such as noun phrases, which can be used to identify
 words in a document or query which can be grouped together. In chapter 5, “Identifying people, places, and things,” we’ll look at how to identify proper names and numeric phrases and put them into semantic categories such as person, location,
 and date, irrespective of their linguistic usage. This ability will be fundamental to your ability to build a QA system in
 chapter 8. For both of these tasks we’ll use the capabilities of OpenNLP and explore how to use its existing models as well as build
 new models that better fit the data. Unlike the problem of searching and matching, these models will be built from examining
 manually annotated content and then using statistical machine learning approaches to produce a model.

 1.5.3. Grouping information

 The flip side to extracting information from text is adding supplemental information to your text by grouping it together
 or adding labels. For example, think about how much easier it would be to process your email if it were automatically tagged
 and prioritized so that you could also find all emails that are similar to one another. This way, you could focus in on just
 those emails that require your immediate attention as well as find supporting content for emails you’re sending.

 One common approach to this is to group your text into categories. As it turns out, the techniques used for extracting information
 can also be applied to grouping text or documents into categories. These groups can often then be used as facets in your search
 index, supplemental keywords, or as an alternate way for users to navigate information. Even in cases where your users are
 providing the categories via tagging, these techniques can recommend tags that have been used in the past. Chapter 7, “Classification, categorization, and tagging,” shows how to build models to classify documents and how to apply these models to new documents to improve user experience
 with text.

 When you’ve tamed your text and are able to find what you’re looking for, and you’ve extracted the information needed, you
 may find you have too much of a good thing. In chapter 6, “Clustering text,” we’ll look at how to group similar information. These techniques can be used to identify redundant information and, if necessary,
 suppress it. They can also be used to group similar documents so that a user can peruse entire topics at a time and access
 the relevancy of multiple documents at once without having to read each document.

 1.5.4. An intelligent application

 In our penultimate chapter, “Building an example question answering system,” we’ll bring a number of the approaches described in the early chapters together to build an intelligent application. Specifically,
 you’ll build a fact-based question answering system designed to find answers to trivia-like questions in text. For instance,
 given the right content, you should be able to answer questions like, “Who is the President of the United States?” This system
 uses the techniques of chapter 3, “Searching,” to identify text that might contain the answer to your question. The approaches presented in chapter 5, “Identifying people, places, and things,” will be used to find these pieces of text that are often the answers to fact-based questions. The material in chapter 2, “Foundations of taming text,” and chapter 7, “Classification, categorization, and tagging,” will be used to analyze the question being asked, and determine what type of information the question is looking for. Finally,
 you’ll apply the techniques for document ranking described in chapter 3 to rank your answers.

1.6. Summary

 Taming text is a large and sometimes overwhelming task, further complicated by different languages, different dialects, and
 different interpretations. Text can appear as elegant prose written by great authors or the ugliest of essays written without
 style or substance. Whatever its form, text is everywhere and it must be dealt with by people and programs. Luckily, many
 tools exist both commercially and in open source to help try to make sense of it all. It won’t be perfect, but it’s getting
 better all the time. So far, we’ve taken a look at some of the reasons why text is so important as well as hard to process.
 We’ve also looked at what role text plays in the intelligent web, introduced the topics we’ll cover, and gave a brief overview
 of some of the things needed to build a simple question answering system. In the next chapter, we’ll kick things off by laying
 down the foundations of text analysis along with some basics on extracting raw text from the many file formats found in the
 wild today.

OEBPS/006fig01_alt.jpg
Frankenstein

frankenstein = new Frankenstein(

frankenstein.init () ; P v,
frankenstein. index() ; e
String query = null;
while (true) (Ukl
query = getQuery(]; L
if (query = mull) (
Results results = frankenstein.search(query) ; <— Perform search
frankenstein. exanineResults (results) ; e
displayResults (results) ; ety
) else (interesting items.

break;

OEBPS/0vifig02.jpg

OEBPS/01fig01_alt.jpg
Parse question and
determine what's
boing asked

‘Score candidate
answers

dentiy candidate.
answers

Retum top scoring
answers.

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/0vifig01.jpg

OEBPS/cover.jpg
How tofind, organize /g%
and manipulate it

MANNING

