
 [image: cover]

 Groovy in Action, Second Edition

 Dierk König and Paul King with Guillaume Laforge, Hamlet D'Arcy, Cédric Champeau, Erik Pragt, and Jon Skeet

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Nermina Miller
Copyeditor: Jodie Allen
Technical editor Michael Smolyak
Proofreader: Elizabeth Martin
Technical proofreader: Gordon Dickens
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781935182443

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Dedication

 To our families

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Authors

 1. The Groovy language

 Chapter 1. Your way to Groovy

 Chapter 2. Overture: Groovy basics

 Chapter 3. Simple Groovy datatypes

 Chapter 4. Collective Groovy datatypes

 Chapter 5. Working with closures

 Chapter 6. Groovy control structures

 Chapter 7. Object orientation, Groovy style

 Chapter 8. Dynamic programming with Groovy

 Chapter 9. Compile-time metaprogramming and AST transformations

 Chapter 10. Groovy as a static language

 2. Around the Groovy library

 Chapter 11. Working with builders

 Chapter 12. Working with the GDK

 Chapter 13. Database programming with Groovy

 Chapter 14. Working with XML and JSON

 Chapter 15. Interacting with Web Services

 Chapter 16. Integrating Groovy

 3. Applied Groovy

 Chapter 17. Unit testing with Groovy

 Chapter 18. Concurrent Groovy with GPars

 Chapter 19. Domain-specific languages

 Chapter 20. The Groovy ecosystem

 Appendix A. Installation and documentation

 Appendix B. Groovy language information

 Appendix C. GDK API quick reference

 Appendix D. Cheat sheets

 Appendix E. Annotation parameters

 Appendix F. Compiler phases

 Appendix G. AST visitors

 Appendix H. Type checking extensions

 Appendix I. Android support

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Authors

 1. The Groovy language

 Chapter 1. Your way to Groovy

 1.1. The Groovy story

 1.1.1. What is Groovy?

 1.1.2. Playing nicely with Java: seamless integration

 1.1.3. Power in your code: a feature-rich language

 1.1.4. Community driven but corporate backed

 1.2. What Groovy can do for you

 1.2.1. Groovy for the busy Java professional

 1.2.2. Groovy for the polyglot programmer

 1.2.3. Groovy for pragmatic programmers, extremos, and agilists

 1.3. Running Groovy

 1.3.1. Using groovysh for a welcome message

 1.3.2. Using groovyConsole

 1.3.3. Using the groovy command

 1.4. Compiling and running Groovy

 1.4.1. Compiling Groovy with groovyc

 1.4.2. Running a compiled Groovy script with Java

 1.5. Groovy IDE and editor support

 1.5.1. IntelliJ IDEA plug-in

 1.5.2. NetBeans IDE plug-in

 1.5.3. Eclipse plug-in

 1.5.4. Groovy support in other editors

 1.6. Summary

 Chapter 2. Overture: Groovy basics

 2.1. General code appearance

 2.1.1. Commenting Groovy code

 2.1.2. Comparing Groovy and Java syntax

 2.1.3. Beauty through brevity

 2.2. Probing the language with assertions

 2.3. Groovy at a glance

 2.3.1. Declaring classes

 2.3.2. Using scripts

 2.3.3. GroovyBeans

 2.3.4. Annotations

 2.3.5. Using grapes

 2.3.6. Handling text

 2.3.7. Numbers are objects

 2.3.8. Using lists, maps, and ranges

 2.3.9. Code as objects: closures

 2.3.10. Groovy control structures

 2.4. Groovy’s place in the Java environment

 2.4.1. My class is your class

 2.4.2. GDK: the Groovy library

 2.4.3. Groovy compiler lifecycle

 2.5. Summary

 Chapter 3. Simple Groovy datatypes

 3.1. Objects, objects everywhere

 3.1.1. Java’s type system: primitives and references

 3.1.2. Groovy’s answer: everything’s an object

 3.1.3. Interoperating with Java: automatic boxing and unboxing

 3.1.4. No intermediate unboxing

 3.2. The concept of optional typing

 3.2.1. Assigning types

 3.2.2. Dynamic Groovy is type safe

 3.2.3. Let the casting work for you

 3.2.4. The case for optional typing

 3.3. Overriding operators

 3.3.1. Overview of overridable operators

 3.3.2. Overridden operators in action

 3.3.3. Making coercion work for you

 3.4. Working with strings

 3.4.1. Varieties of string literals

 3.4.2. Working with GStrings

 3.4.3. From Java to Groovy

 3.5. Working with regular expressions

 3.5.1. Specifying patterns in string literals

 3.5.2. Applying patterns

 3.5.3. Patterns in action

 3.5.4. Patterns and performance

 3.5.5. Patterns for classification

 3.6. Working with numbers

 3.6.1. Coercion with numeric operators

 3.6.2. GDK methods for numbers

 3.7. Summary

 Chapter 4. Collective Groovy datatypes

 4.1. Working with ranges

 4.1.1. Specifying ranges

 4.1.2. Ranges are objects

 4.1.3. Ranges in action

 4.2. Working with lists

 4.2.1. Specifying lists

 4.2.2. Using list operators

 4.2.3. Using list methods

 4.2.4. Lists in action

 4.3. Working with maps

 4.3.1. Specifying maps

 4.3.2. Using map operators

 4.3.3. Maps in action

 4.4. Notes on Groovy collections

 4.4.1. Understanding concurrent modification

 4.4.2. Distinguishing between copy and modify semantics

 4.5. Summary

 Chapter 5. Working with closures

 5.1. A gentle introduction to closures

 5.2. The case for closures

 5.2.1. Using iterators

 5.2.2. Handling resources with a protocol

 5.3. Declaring closures

 5.3.1. Simple declaration

 5.3.2. Using assignments for declaration

 5.3.3. Referring to methods as closures

 5.3.4. Comparing the available options

 5.4. Using closures

 5.4.1. Calling a closure

 5.4.2. More closure capabilities

 5.5. Understanding closure scope

 5.5.1. Simple variable scope

 5.5.2. Inspecting closure scope

 5.5.3. Scoping at work: the classic accumulator test

 5.6. Returning from closures

 5.7. Support for design patterns

 5.7.1. Relationship to the Visitor pattern

 5.7.2. Relationship to the Builder pattern

 5.7.3. Relationship to other patterns

 5.8. Summary

 Chapter 6. Groovy control structures

 6.1. Groovy truth

 6.1.1. Evaluating Boolean tests

 6.1.2. Assignments within Boolean tests

 6.2. Conditional execution structures

 6.2.1. The humble if statement

 6.2.2. The conditional ?: operator and Elvis

 6.2.3. The switch statement and the in operator

 6.2.4. Sanity checking with assertions

 6.3. Looping

 6.3.1. Looping with while

 6.3.2. Looping with for

 6.4. Exiting blocks and methods

 6.4.1. Normal termination: return/break/continue

 6.4.2. Exceptions: throw/try-catch-finally

 6.5. Summary

 Chapter 7. Object orientation, Groovy style

 7.1. Defining classes and scripts

 7.1.1. Defining fields and local variables

 7.1.2. Methods and parameters

 7.1.3. Safe dereferencing with the ?. operator

 7.1.4. Constructors

 7.2. Organizing classes and scripts

 7.2.1. File to class relationship

 7.2.2. Organizing classes in packages

 7.2.3. Further classpath considerations

 7.3. Advanced object-oriented features

 7.3.1. Using inheritance

 7.3.2. Using interfaces

 7.3.3. Multimethods

 7.3.4. Using traits

 7.4. Working with GroovyBeans

 7.4.1. Declaring beans

 7.4.2. Working with beans

 7.4.3. Using bean methods for any object

 7.4.4. Fields, accessors, maps, and Expando

 7.5. Using advanced syntax features

 7.5.1. Querying objects with GPaths

 7.5.2. Injecting the spread operator

 7.5.3. Concise syntax with command chains

 7.6. Summary

 Chapter 8. Dynamic programming with Groovy

 8.1. What is dynamic programming?

 8.2. Meta Object Protocol

 8.3. Customizing the MOP with hook methods

 8.3.1. Customizing methodMissing

 8.3.2. Customizing propertyMissing

 8.3.3. Using closures for dynamic hooks

 8.3.4. Customizing GroovyObject methods

 8.4. Modifying behavior through the metaclass

 8.4.1. MetaClass knows it all

 8.4.2. How to find the metaclass and invoke methods

 8.4.3. Setting other metaclasses

 8.4.4. Expanding the metaclass

 8.4.5. Temporary MOP modifications using category classes

 8.4.6. Writing extension modules

 8.4.7. Using the @Category annotation

 8.4.8. Merging classes with Mixins

 8.5. Real-world dynamic programming in action

 8.5.1. Calculating with metrics

 8.5.2. Replacing constructors with factory methods

 8.5.3. Fooling IDEs for fun and profit

 8.5.4. Undoing metaclass modifications

 8.5.5. The Intercept/Cache/Invoke pattern

 8.6. Summary

 Chapter 9. Compile-time metaprogramming and AST transformations

 9.1. A brief history

 9.1.1. Generating bytecode, not source code

 9.1.2. Putting the power of code generation in the hands of developers

 9.2. Making Groovy cleaner and leaner

 9.2.1. Code-generation transformations

 9.2.2. Class design and design pattern annotations

 9.2.3. Logging improvements

 9.2.4. Declarative concurrency

 9.2.5. Easier cloning and externalizing

 9.2.6. Scripting support

 9.2.7. More transformations

 9.3. Exploring AST

 9.3.1. Tools of the trade

 9.3.2. Other tools

 9.4. AST by example: creating ASTs

 9.4.1. Creating by hand

 9.4.2. AstBuilder.buildFromSpec

 9.4.3. AstBuilder.buildFromString

 9.4.4. AstBuilder.buildFromCode

 9.5. AST by example: local transformations

 9.6. AST by example: global transformations

 9.7. Testing AST transformations

 9.8. Limitations

 9.8.1. It’s early binding

 9.8.2. It’s fragile

 9.8.3. It adds complexity

 9.8.4. Its syntax is fixed

 9.8.5. It’s not typed

 9.8.6. It’s unhygienic

 9.9. Next steps

 9.10. Summary

 Chapter 10. Groovy as a static language

 10.1. Motivation for optional static typing

 10.1.1. The role of types in Groovy

 10.1.2. Type checking a dynamic language?

 10.2. Using @TypeChecked

 10.2.1. Finding typos

 10.2.2. Resolving method calls

 10.2.3. Checking assignments

 10.2.4. Type inference

 10.2.5. Type-checked Grooviness

 10.2.6. Type checking closures

 10.2.7. Revisiting dynamic features in light of type checking

 10.2.8. Mixing type-checked code with dynamic code

 10.3. Flow typing

 10.3.1. Least upper bound

 10.3.2. Smart instanceof inference

 10.3.3. Closure-shared variables

 10.4. Static compilation

 10.4.1. @CompileStatic

 10.4.2. Method dispatch

 10.5. Static type checking extensions

 Why type checking DSLs?

 10.5.2. Type checking extension scripts

 10.5.3. Limits

 10.6. Summary

 2. Around the Groovy library

 Chapter 11. Working with builders

 11.1. Learning by example: Using a builder

 11.2. Building object trees with NodeBuilder

 11.2.1. NodeBuilder in action: a closer look at builder code

 11.2.2. Understanding the builder concept

 11.2.3. Smart building with logic

 11.3. Working with MarkupBuilder

 11.3.1. Building XML

 11.3.2. Building HTML

 11.4. Working with StreamingMarkupBuilder

 11.5. Task automation with AntBuilder

 11.5.1. From Ant scripts to Groovy scripts

 11.5.2. How AntBuilder works

 11.5.3. Smart automation scripts with logic

 11.6. Easy GUIs with SwingBuilder

 11.6.1. Reading a password with SwingBuilder

 11.6.2. Creating Swing widgets

 11.6.3. Arranging your widgets

 11.6.4. Referring to widgets

 11.6.5. Using Swing actions

 11.6.6. Using models

 11.6.7. Binding made easy

 11.6.8. Putting it all together

 11.7. Modern UIs with GroovyFX SceneGraphBuilder

 11.7.1. Application design with FXML

 11.7.2. Properties and binding

 11.7.3. Groovy desktop applications

 11.8. Creating your own builder

 11.8.1. Subclassing BuilderSupport

 11.8.2. Subclassing FactoryBuilderSupport

 11.8.3. Rolling your own

 11.9. Summary

 Chapter 12. Working with the GDK

 12.1. Working with objects

 12.1.1. Interactive objects

 12.1.2. Convenient Object methods

 12.1.3. Iterative Object methods

 12.2. Working with files and I/O

 12.2.1. Traversing the filesystem

 12.2.2. Reading from input sources

 12.2.3. Writing to output destinations

 12.2.4. Filters and conversions

 12.2.5. Streaming serialized objects

 12.2.6. Temporary data and file copying

 12.3. Working with threads and processes

 12.3.1. Groovy multithreading

 12.3.2. Integrating external processes

 12.4. Working with templates

 12.4.1. Understanding the template format

 12.4.2. Templates in action

 12.4.3. Advanced template issues

 12.5. Working with Groovlets

 12.5.1. Starting with “Hello world”

 12.5.2. Groovlet binding

 12.5.3. Templating Groovlets

 12.6. Summary

 Chapter 13. Database programming with Groovy

 13.1. Groovy SQL: a better JDBC

 13.1.1. Setting up for database access

 13.1.2. Executing SQL

 13.2. Advanced Groovy SQL

 13.2.1. Performing transactional updates

 13.2.2. Working with batches

 13.2.3. Working with pagination

 13.2.4. Fetching metadata

 13.2.5. Working with named and named-ordinal parameters

 13.2.6. Using stored procedures

 13.3. DataSets for SQL without SQL

 13.3.1. Using DataSet operations

 13.3.2. DataSets on database views

 13.4. Organizing database work

 13.4.1. Architectural overview

 13.4.2. Specifying the application behavior

 13.4.3. Implementing the infrastructure

 13.4.4. Using a transparent domain model

 13.4.5. Implementing the application layer

 13.5. Groovy and NoSQL

 13.5.1. MongoDB: A document-style database

 13.5.2. Neo4J: A graph database

 13.6. Other approaches

 13.7. Summary

 Chapter 14. Working with XML and JSON

 14.1. Reading XML documents

 14.1.1. Working with a DOM parser

 14.1.2. Reading with a Groovy parser

 14.1.3. Reading with a SAX parser

 14.1.4. Reading with a StAX parser

 14.2. Processing XML

 14.2.1. In-place processing

 14.2.2. Streaming processing

 14.2.3. Updating XML

 14.2.4. Combining with XPath

 14.3. Parsing and building JSON

 14.3.1. Parsing JSON

 14.3.2. Building JSON

 14.4. Summary

 Chapter 15. Interacting with Web Services

 15.1. An overview of Web Services

 15.2. Reading RSS and ATOM

 15.3. Using a REST-based API

 15.4. Using XML-RPC

 15.5. Applying SOAP

 15.5.1. Doing SOAP with plain Groovy

 15.5.2. Simplifying SOAP access using HTTPBuilder

 15.5.3. Simplifying SOAP access using groovy-wslite

 15.6. Summary

 Chapter 16. Integrating Groovy

 16.1. Prelude to integration

 16.1.1. Integrating appropriately

 16.1.2. Setting up dependencies

 16.2. Evaluating expressions and scripts with GroovyShell

 16.2.1. Starting simply

 16.2.2. Passing parameters within a binding

 16.2.3. Generating dynamic classes at runtime

 16.2.4. Parsing scripts

 16.2.5. Running scripts or classes

 16.2.6. Further parameterization of GroovyShell

 16.3. Using the Groovy script engine

 16.3.1. Setting up the engine

 16.3.2. Running scripts

 16.3.3. Defining a different resource connector

 16.4. Working with the GroovyClassLoader

 16.4.1. Parsing and loading Groovy classes

 16.4.2. The chicken and egg dependency problem

 16.4.3. Providing a custom resource loader

 16.4.4. Playing it safe in a secured sandbox

 16.5. Spring integration

 16.5.1. Wiring GroovyBeans

 16.5.2. Refreshable beans

 16.5.3. Inline scripts

 16.6. Riding Mustang and JSR-223

 16.6.1. Introducing JSR-223

 16.6.2. The script engine manager and its script engines

 16.6.3. Compilable and invocable script engines

 16.6.4. Polyglot programming

 16.7. Mastering CompilerConfiguration

 16.7.1. The import customizer

 16.7.2. The source-aware customizer

 16.7.3. Writing your own customizer

 16.7.4. The configscript compilation option

 16.8. Choosing an integration mechanism

 16.9. Summary

 3. Applied Groovy

 Chapter 17. Unit testing with Groovy

 17.1. Getting started

 17.1.1. Writing tests is easy

 17.1.2. GroovyTestCase: an introduction

 17.1.3. Working with GroovyTestCase

 17.2. Unit testing Groovy code

 17.3. Unit testing Java code

 17.4. Organizing your tests

 17.4.1. Test suites

 17.4.2. Parameterized or data-driven testing

 17.4.3. Property-based testing

 17.5. Advanced testing techniques

 17.5.1. Testing made groovy

 17.5.2. Stubbing and mocking

 17.5.3. Using GroovyLogTestCase

 17.5.4. Unit testing performance

 17.5.5. Code coverage with Groovy

 17.6. IDE integration

 17.6.1. Using GroovyTestSuite

 17.6.2. Using AllTestSuite

 17.7. Testing with the Spock framework

 17.7.1. Testing with mocks

 17.7.2. Data-driven Spock tests

 17.8. Build automation

 17.8.1. Build integration with Gradle

 17.8.2. Build integration with Maven

 17.9. Summary

 Chapter 18. Concurrent Groovy with GPars

 18.1. Concurrency for the rest of us

 18.1.1. Concurrent != parallel

 18.1.2. Introducing new concepts

 18.2. Concurrent collection processing

 18.2.1. Transparently concurrent collections

 18.2.2. Available fork/join methods

 18.3. Becoming more efficient with map/filter/reduce

 18.4. Dataflow for implicit task coordination

 18.4.1. Testing for deadlocks

 18.4.2. Dataflow on sequential datatypes

 18.4.3. Final thoughts on dataflow

 18.5. Actors for explicit task coordination

 18.5.1. Using the strengths of Groovy

 18.6. Agents for delegated task coordination

 18.7. Concurrency in action

 18.8. Summary

 Chapter 19. Domain-specific languages

 19.1. Groovy’s flexible nature

 19.1.1. Back to omitting parentheses

 19.2. Variables, constants, and method injection

 19.2.1. Injecting constants through the binding

 19.2.2. Injecting methods into a script

 19.2.3. Adding imports and static imports automatically

 19.2.4. Injecting methods (revisited)

 19.2.5. Adding closures to the binding

 19.3. Adding properties to numbers

 19.4. Leveraging named arguments

 19.5. Command chains

 19.6. Defining your own control structures

 19.7. Context switching with closures

 19.8. Another technique for builders

 19.9. Securing your DSLs

 19.9.1. Introducing SecureASTCustomizer

 19.9.2. The ArithmeticShell

 19.9.3. Stopping the execution of your programs

 19.9.4. Preventing cheating with metaprogramming

 19.10. Testing and error reporting

 19.11. Summary

 Chapter 20. The Groovy ecosystem

 20.1. Groovy Grapes for self-contained scripts

 20.2. Scriptom for Windows automation

 20.3. GroovyServ for quick startup

 20.4. Gradle for project automation

 20.5. CodeNarc for static code analysis

 20.6. GContracts for improved design

 20.7. Grails for web development

 20.8. Griffon for desktop applications

 20.9. Gaelyk for Groovy in the cloud

 20.10. Summary

 Appendix A. Installation and documentation

 A.1. Installing Groovy

 A.2. Obtaining up-to-date documentation

 A.2.1. Using online resources

 A.2.2. Connecting to the book’s forum

 Appendix B. Groovy language information

 B.1. Operator precedence

 B.2. Keyword list

 B.3. Modules

 Appendix C. GDK API quick reference

 Array of primitives

 The groovy.lang package

 The groovy.sql package

 The java.awt package

 The java.io package

 The java.lang package

 The java.math package

 The java.net package

 The java.nio.file package

 The java.sql package

 The java.util package

 The java.util.concurrent package

 The java.util.regex package

 The javax.swing package

 The javax.swing.table package

 The javax.swing.tree package

 The org.w3c.dom package

 Appendix D. Cheat sheets

 D.1. GStrings

 D.2. Lists

 D.3. Closures

 D.4. Regular expressions

 Examples

 D.5. XML GPath notation

 Appendix E. Annotation parameters

 Appendix F. Compiler phases

 Appendix G. AST visitors

 G.1. Walking and reading a tree

 G.1.1. Wiring in a Visitor

 Appendix H. Type checking extensions

 H.1. Type checking extension API

 H.1.1. The GroovyTypeCheckingExtensionSupport class

 H.1.2. Virtual methods

 H.1.3. Type-checking extension scope

 H.2. Type checking events

 H.2.1. setup

 H.2.2. finish

 H.2.3. unresolvedVariable

 H.2.4. unresolvedProperty

 H.2.5. unresolvedAttribute

 H.2.6. beforeMethodCall

 H.2.7. afterMethodCall

 H.2.8. onMethodSelection

 H.2.9. methodNotFound

 H.2.10. beforeVisitMethod

 H.2.11. afterVisitMethod

 H.2.12. beforeVisitClass

 H.2.13. afterVisitClass

 H.2.14. incompatibleAssignment

 H.2.15. ambiguousMethods

 H.2.16. incompatibleReturnType

 H.3. Extensions aren’t AST transformations

 Appendix I. Android support

 Getting started

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 For anyone considering Groovy, or just interested in seeing what all of the fuss is around the features of dynamic languages, this book will deliver.

 Gregory Pierce, JavaLobby.org

 Not just a language guide, this book presents the clear, readable, and enjoyable specification of Groovy ... you should definitely read it.

 Alexander Popescu, Mindstorm

 A real page-turner. Brilliant examples ... all other programming books I know really fall behind.

 Dr. Gernot Starke

 Excellent code samples ... very readable.

 Scott Shaw, ThoughtWorks

 Great, logical focus on language features.

 Norman Richards, author of XDoclet in Action

 Destined to be the definitive guide. First rate!

 Glen Smith, Bytecode Pty Ltd.

 Examples are clear, complete, and they work!

 David Sills, JavaLobby.org

 Among the top five Manning books. For me personally, it’s also a perception-changing and influential book.

 Weiqi Gao

 The examples are the strongest part of the book—all assumptions are checked using assertions, and they have been run before printing so one can trust that they’re faultless. Explanations are fine-grained so even inexperienced developers can read it with understanding.

 Marek Zganiacz, Comarch SA

 Very readable, engaging, and does a great job of slotting Groovy into the broader world of software development. Highly recommended.

 Pan Pantziarka

 Real computer LITERATURE.

 Johannes Link

Foreword to the First Edition

 I first integrated Groovy into a project I was working on almost two years ago. There is a long and rich history of using “scripting languages” as a flexible glue to stitch together, in different ways, large modular components from a variety of frameworks. Groovy is a particularly interesting language from this tradition, because it doesn’t shy away from linguistic sophistication in the pursuit of concise programming, especially in the areas around XML, where it is particularly strong. Groovy goes beyond the “glue” tradition of the scripting world to being an effective implementation language in its own right. In fact, while Groovy is often thought of and referred to as a scripting language, it really is much more than that.

 It is traditional for scripting languages to have an uneasy relationship with the underlying linguistic system in which the frameworks are implemented. In Groovy’s case, they have been able to leverage the underlying Java model to get integration that is smooth and efficient. And because of the linguistic similarities between Java and Groovy, it is fairly painless for developers to shift between programming in one environment and the other.

 Groovy in Action by Dierk König and his coauthors is a clear and detailed exposition of what is groovy about Groovy. I’m glad to have it on my bookshelf.

 JAMES GOSLING CREATOR OF JAVA DECEMBER 2006

Preface

 Nothing is more terrible than ignorance in action.

 Johann Wolfgang von Goethe

 Thinking back to January 2007 when the first edition of this book hit the shelves, feels like time travel to the Middle Ages. The idea of using a programming language other than Java on the Java platform was widely considered frivolous. Today, a new language seems to pop up every other week, and we even go as far as designing languages for specific domains (DSLs) on a per-project basis.

 This evolution of languages reflects a change in concerns. If performance were still our utmost concern, we would all be coding in a low-level language. But if performance is considered “good enough” for our purposes, we now turn our focus on human approachability.

 Groovy has been a trendsetter for this development. Many Groovy features that ease the burden of developers are now commonplace in novel languages and may even find their way into newer versions of Java: literal declarations for common datatypes, simplified property access, null-safe dereferencing, closures, and more. Surprisingly many languages have adopted Groovy’s optional typing strategy—few languages can claim to have static and dynamic behavior at the same time, though, the way Groovy has since version 2.

 Just like Groovy, the first edition of this book set some trends as well. The idea of having every single listing as a self-testing piece of code resonated in the market and may be one reason why the book is among Manning’s top-ten bestsellers of the decade.

 The feedback for the first edition was overwhelming. We never expected to have so many great developers speaking so nicely about our work. We have no words to express this feeling of being proud and humbled at the same time. Most touching, though, was the stranger who once gave Dierk a pat on the back and mumbled, “Thank you for the book!” and then disappeared into the crowd. This book is for him.

 We are fully aware that the first edition would have never been so successful if Groovy itself had been less appealing. The reason for Groovy’s success is easy to see: it delivers its power in the most Java-friendly manner. It is Java’s dynamic friend.

 The development of Groovy, from version 1.0 covered in the first edition of this book until the current version 2.4, has closed what used to be a syntax gap by providing enums, annotations, generics, the classic for loop, nested classes, varargs, static imports, and the ability to use Groovy closures where Java 8 expects lambda expressions.

 The Groovy project has progressed at a very high speed, not only in its core but also at its periphery. We see, for example, new usages of compile-time meta-programming. This core feature gets instantly applied in the Spock testing framework, which in turn contributes back its “power assert” feature to the core. The community is buzzing and it has become a challenge to keep up to date with all the developments and activities.

 It’s only natural that many readers of the first edition of Groovy in Action (or “Gina” as we say for short) demanded an update that we are now happy to deliver as the second edition (codename “ReGina”). Our goal in this book is not only to rework the code examples, update the API description, and explain new features, but also to reflect the marketplace and the growth of the ecosystem. Groovy has evolved from a niche language to the default choice for dynamic programming on the Java platform for millions of developers.

 Major financial organizations use Groovy to transfer billions of dollars every day, space agencies watch the stars with the help of Groovy, and satellite live-data streams are handled by Groovy code. Groovy is traveling the oceans, shipping containers around the globe, helping software developers automate recurring tasks, and running Mom’s website. We felt an obligation to provide an up-to-date, solid, and comprehensive book to all these users.

 Not only did Groovy and its environment change, we authors changed as well. We enjoyed the luxury of working on Groovy projects, introducing new team members to the language, running workshops and tutorials, recognizing struggles (and occasionally struggling ourselves), finding lots of unanticipated use cases while consulting, exploring new practices, using the toolset in anger, and generally facing the Groovy development reality. The book reflects these experiences.

 In this second edition, we put more emphasis on the optional typing system, explain both dynamic and static metaprogramming in full depth, dive into type checking and static compilation, cover domain-specific languages, and introduce new modules that have evolved for user interfaces, testing, XML, JSON, database programing, Web Services, dependency management, build automation, and concurrent programming as well as give you an updated overview of the Groovy ecosystem. We hope you will find this updated book an enjoyable and rewarding read.

 DIERK KÖNIG

 PAUL KING

Acknowledgments

 Our publisher warned us that a second edition would be much more difficult. We did not understand that back then, but he was right. We needed to get more coauthors on board to account for the growth of Groovy and we are very grateful that Hamlet D’Arcy, Cédric Champeau, and Erik Pragt joined the group. Paul King invested an enormous amount of extra time and I (Dierk) am also very grateful to him for that.

 We’re deeply indebted to our technical reviewing team: Atul Khot, David McFarland, Jakob Mayr, Ken Shih, Paul Grebenc, Phillip Warner, Rick Wagner, Robert O’Connor, Ronald Tischliar, Scott Ruch, Vinod Panicker, and Vladimír Oraný, with special thanks to our technical editor Michael Smolyak and technical proofreader Gordon Dickens.

 While the book was in development, readers could subscribe to Manning’s Early Access Program (MEAP) to get the content early and to provide feedback. We received so many valuable suggestions that we cannot possibly list everyone’s name, but we would like to say a big thank you to all of you! The MEAP ran longer than any other and while we are not proud of that record, we thank everyone for their patience and hope that you will find the book up-to-date and worth the wait.

 Other friends helped with the book in one way or another: Andres Almiray, Bob Brown, Nick Chase, Andy Clement, Scott Davis, Marc Guillemot, Dr. Urs Hengartner, Arturo Herrero, Martin Huber, Roshan Dawrani, Wim Deblauwe, Dean DeChambeau, Gordon Dickens, Andrew Eisenberg, Jeremy Flowers, Dave Klein, Rupin Kotecha, Kenneth Kousen, Peter Ledbrook, Mac Liaw, Johannes Link, Joshua Logan, Chris Mair, Tsuyoshi Miyake, Vaclav Pech, Graeme Rocher, Baruch Sadogursky, Uwe Sauerbrei, Erik Schwalbe, Larry Seltzer, Jim Shingler, Dan Sline, Glen Smith, David Stuve, Andre Steingress, Jochen Theodorou, Marija Tudor, Craig Walls, Dr. Hans-Dirk Walter, and Geertjan Wielenga.

 The book would never had made it to the shelves without the support and guidance of everyone at Manning, especially our publisher Marjan Bace, our editors Nermina Miller and Maureen Spencer, and all the other great people who worked with us: Jodie Allen, Luke Bace, Jeff Bleiel, Olivia Booth, Candace Gillhoolley, Todd Green, Steven Hong, Cynthia Kane, Emily Macel, Elizabeth Martin, Tara McGoldrick Walsh, Mary Piergies, Christina Rudloff, Mike Stephens, and Kevin Sullivan.

 Finally, very special thanks to James Gosling for writing the foreword to the first edition of Groovy in Action.

 But most of all, we thank our families for their ongoing encouragement to pursue our ideas, their patience when we were once again physically or mentally absent, and their love that gives us a purpose in life. We love you.

About this Book

 Groovy in Action, Second Edition describes the Groovy language, presents the library classes and methods that Groovy adds to the standard Java Development Kit, and leads you through a number of topics that you are likely to encounter in your daily development work. The book has three parts:

 	
Part 1 The Groovy language

 	
Part 2 Around the Groovy library

 	
Part 3 Applied Groovy

 An introductory chapter explains what Groovy is and then part 1 starts with a broad overview of Groovy’s language features, before going into more depth about scalar and collective datatypes. The language description includes an explanation of the closure concept that is ubiquitous in Groovy, describing how it relates to and distinguishes itself from control structures. We present Groovy’s model of object-orientation and its dynamic capabilities at both runtime and compile-time. Part 1 closes with a surprise: You can use Groovy as a static language as well!

 Part 2 begins the library description with a presentation of Groovy’s builder concept and its various implementations. An explanation of the GDK follows, with Groovy’s enhancements to the Java standard library. This is the “beef” of the library description in part 2. The Groovy library shines with simple but powerful support for database programming and XML and JSON handling, and we include a detailed exposition of both topics. Another big advantage of Groovy is its all-out seamless integration with Java, and we explain the options provided by the Groovy library for setting this into action.

 If part 1 was a tutorial and part 2 a reference, part 3 is about typical use cases for Groovy. It starts with a thorough exposition of how to use Groovy for test automation. Testing is an important topic in itself, but with Groovy even more so since Groovy developers seem to be very quality-oriented and even in otherwise plain-Java projects, Groovy is often used for testing because it is so convenient. Next, we want to use Groovy on multi-core machines and thus go into concurrent programming with Groovy. Another much-requested topic is using Groovy for domain specific languages, which we cover in a full, dedicated chapter. Part 3 ends with an overview of the Groovy ecosystem.

 The book closes with an extensive series of helpful appendixes, which are intended to serve as quick references, cheat sheets, and detailed technical descriptions.

Who should read this book?

 This book is for everyone who wants to learn Groovy as a new dynamic programming language. Existing Groovy users can use it to deepen their knowledge; and both new and experienced programmers can use it as a black-and-white reference. We found ourselves going to our own book to look up details that we had forgotten. Newcomers to Groovy will need a basic understanding of Java since Groovy is completely dependent on it; Java basics are not covered in our book.

 Topics have been included that will make reading and understanding easier, but are not mandatory prerequisites: patterns of object-oriented design, Ant, Maven, JUnit, HTML, XML, JSON, Swing, and JavaFX. It is beneficial—but not required—to have been exposed to some other scripting language. This enables you to connect what you read to what you already know. Where appropriate, we point out similarities and differences between Groovy and other languages.

What’s new in the second edition?

 When starting the second edition, we considered adding visual clues or icons to the book so readers could quickly see what had changed from the first edition. We had to give up on that idea or the whole book would have been full of markers since there is hardly any paragraph that hasn’t changed!

 The second edition is a full rewrite. We dropped some chapters, reorganized others, and added new ones, so the book now has 20 chapters, up from 16, and a few hundred additional pages of genuinely new content. These changes reflect the evolution of the language and its use in the market.

 Tackling the task of covering such a big topic needs many hands and we were very lucky that Hamlet Darcy, Cédric Champeau, and Erik Pragt joined the team. Hamlet authored the new chapters 9 “AST Transformations” and 20 “The Groovy Ecosystem.” Cédric contributed his deep knowledge of Groovy internals to the new chapter 10 “Groovy as a static language” and helped to fine-tune chapters 7, 9, and 16. Erik got the laborious task of going through all changes to the Groovy standard library for chapter 12 “Working with the GDK” and fundamentally revised chapter 17 “Unit testing with Groovy” to cover the popular Spock testing framework.

 Guillaume Laforge revised chapter 16 “Integrating Groovy” and shaped new chapter 19 “Domain Specific Languages (DSLs)” to address this important usage of Groovy.

 Dierk König added chapter 19 “Concurrent Groovy with GPars” to show how well Groovy fits into the multi-core era. He also thoroughly revised and updated the core “language” chapters 1 through 6. Former chapter 7 was split into “Object orientation, Groovy style,” and a new chapter 8 “Dynamic Programming with Groovy.”

 Paul King revised the “library” chapters 11 “Working with builders,” 13 “Database programming with Groovy,” and split the former XML chapter 14 into “Working with XML and JSON” and 15 “Interacting with Web Services” and extended the content to account for the rising importance of these Groovy usages. He also did the enormous work of going through every single page of the book to ensure consistency in style, wording, feel, and appearance. With so many authors and such diverse topics it is very difficult to keep the book coherent. If we finally managed to achieve this, it is thanks to Paul.

Code conventions and downloads

 This book provides copious examples that show how you can make use of each of the topics covered. Source code in listings or in text appears in a fixed-width font like this to separate it from ordinary text. In addition, class and method names, object properties, and other code-related terms and content in text are presented using fixed-width font.

 Occasionally, code is italicized, as in reference.dump(). In this case reference should not be entered literally but replaced with the content that is required, such as the appropriate reference.

 Where the text contains the pronouns “I” and “we”, the “we” refers to all the authors. “I” refers to the lead author of the respective chapter.

 Most of the code examples contain Groovy code. This code is very compact so we present it “as is” without any omissions. Unless stated otherwise, you can copy and paste it into a new file and run it right away. In rare cases, when this wasn’t possible, we have used ... (ellipses).

 Java, HTML, XML, and command-line input can be verbose. In many cases, the original source code (available online) has been reformatted; we’ve added line breaks and reworked indentation to accommodate the page space available in the book. In rare cases, when even this was not enough, line-continuation markers were added.

 Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered cueballs link to additional explanations that follow the listing.

 You can download the source code for all of the examples in the book from the publisher’s website at www.manning.com/GroovyinActionSecondEdition.

Keeping up to date

 The world doesn’t stop turning when you finish writing a book, and getting the book through production also takes time. Therefore, some of the information in any technical book becomes quickly outdated, especially in the dynamic world of agile languages.

 This book covers Groovy 2.4. Groovy will see numerous improvements, and by the time you read this, it’s possible that an updated version will have become available. New Groovy versions always come with a detailed list of changes. It is unlikely that any of the core Groovy concepts as laid out in this book will change significantly in the near future; and even then the emphasis is likely to be on additional concepts and features. Groovy has earned a reputation of caring deeply about backward compatibility. This outlook makes the book a wise investment, even in a rapidly changing world.

 We will do our best to keep the online resources for this book reasonably up to date and provide information about language and library changes as the project moves on. Please check for updates on the book’s web page at www.manning.com/GroovyinActionSecondEdition.

Author Online

 Purchase of Groovy in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/GroovyinActionSecondEdition. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum. It also provides links to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the cover illustration

 The figure on the cover of Groovy in Action, Second Edition is a “Danzerina del Japon,” a Japanese dancer, taken from a Spanish compendium of regional dress customs first published in Madrid in 1799. While the artist may have captured the “spirit” of a Japanese dancer in his drawing, the illustration does not accurately portray the looks, dress, or comportment of a Japanese woman or geisha of the time, compared to Japanese drawings from the same period. The artwork in this collection was clearly not researched first hand!

 The book’s title page states:

 Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y en special para los que tienen la del viajero universal

 which we translate, as literally as possible, thus:

 General collection of costumes currently used in the nations of the known world, designed and printed with great exactitude by R.M.V.A.R. This work is very useful especially for those who hold themselves to be universal travelers

 Although nothing is known of the designers, engravers, and workers who colored this illustration by hand, the “exactitude” of their execution is evident in this drawing. The “Danzerina del Japon” is just one of many figures in this colorful collection. Travel for pleasure was a relatively new phenomenon at the time and books such as this one were popular, introducing both the tourist as well as the armchair traveler to the exotic inhabitants, real and imagined, of other regions of the world.

 Dress codes have changed since then and the diversity by nation and by region, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on the rich diversity of regional life two centuries ago, brought back to life by the pictures from this collection.

About the Authors

 DIERK KÖNIG has worked for over 20 years as a professional software developer, architect, trainer, and consultant. Through his publications, conference appearances, trainings, workshops, and consulting activities, Dierk has reached more developers than he ever thought possible. He has worked with Canoo Engineering AG, Basle, Switzerland, since 2000, where he is a cofounder and enjoys being part of a thriving organization.

 Dierk contributes to many open source projects, including Groovy, Grails, OpenDolphin, Frege, and CanooWebTest. He joined the Groovy project in 2004 and has worked as a committer ever since. He presented Groovy to win the JAX Innovation Award 2007 and won the JAX Developer Challenge 2009 with his team.

 He is an acknowledged reviewer and contributor to numerous books, including the classic Extreme Programming Explained (Kent Beck), Test-Driven Development (Kent Beck), Agile Development in the Large (Jutta Eckstein), Unit Testing in Java (Johannes Link), JUnit and Fit (Frank Westphal), Refactoring in Large Software Projects (Martin Lippert and Stephen Roock), The Definitive Guide to Grails (Graeme Rocher), and Grails in Action (Glen Smith, Peter Ledbrook).

 In the course of authoring this second edition, Dierk became a happy husband and a proud father of a girl and a boy. You can follow him on twitter as @mittie.

 DR. PAUL KING’S career spans technical and managerial roles in a number of organizations, underpinned by deep knowledge of the information technology and telecommunications markets and a passion for the creation of innovative organizations. Throughout his career, Paul has provided technical and strategic consulting to hundreds of organizations in the U.S. and Asia Pacific. The early stages of Paul’s career were highlighted by his contributions to various research fields, including object-oriented software development, formal methods, telecommunications, and distributed systems. He has had numerous publications at international conferences and in journals and trade magazines. He is an award-winning author and sought-after speaker at conferences.

 Currently, Paul leads ASERT (Advanced Software Engineering, Research & Training), which is recognized as a world-class center of expertise in the areas of middleware technology, agile development, and internet application development and deployment. ASERT has experience teaching thousands of students in more than 15 countries, and has provided consulting services and development assistance throughout Asia Pacific to high-profile startups and government e-commerce sites. In his spare time, Paul is a taxi driver and homework assistant for his seven children and two grandchildren. You can follow him on twitter as @paulk_asert.

 GUILLAUME LAFORGE has been the official Groovy project manager since the end of 2004, after having been a contributor and later a core committer on the project. He is also the specification lead for JSR-241, the ongoing effort to standardize the Groovy language through Sun’s Java Community Process. Guillaume is Groovy’s “public face” and often responds to interviews regarding Groovy and presents his project at conferences around the world, such as at JavaOne or Devoxx, where he recently spoke about how scripting can simplify enterprise development. Guillaume cofounded the G2One company, which focused on and further developed the Groovy and Grails technologies, later acquired by SpringSource; also VMware and its Pivotal spin-off. Guillaume recently joined Restlet as Product Ninja and Advocate.

 CÉDRIC CHAMPEAU is a member of the Groovy core team. He is a passionate developer who started writing programs at the age of eight and learned it the hard way by manually typing magazine listings into an Amstrad PC1512. He worked several years in natural language processing where he used Groovy in multiple contexts, from a workflow engine to a DSL for linguists, and Lucene custom scoring. This is how he dived into the internals of the language and started contributing before becoming one of the core team members. He implemented many advanced Groovy features like compilation customizers, static compilation, traits, the markup template engine, and the recent support for Android.

 HAMLET D’ARCY is a software engineer at Microsoft, founder of the Basel-based Hackergarten open source coding group, and can be found speaking at local and international user groups and conferences. He’s a committer on the Groovy and CodeNarc projects and a contributor on a number of other projects (including the IDEA Groovy Plugin). He’s passionate about learning new languages and different ways of thinking about problems. He blogs regularly at http://hamletdarcy.blogspot.com.

 ERIK PRAGT is a passionate software developer with a broad range of experience in static languages like Java and Scala, and dynamic languages like Groovy, JavaScript, and Python. Having worked as a consultant for a broad range of customers, mostly in the Telecom, ISP, and banking sectors, Erik is now an independent freelance consultant. He founded the Dutch Groovy and Grails user group, and is a regular conference speaker and trainer. Erik spends most of his free time working on open source software. In the limited time he’s not sitting behind the computer he can be found in the gym, riding his motorcycle, or diving, always looking for new inspiration, which he shares on twitter at @epragt.

 JON SKEET Jon Skeet is a software engineer working for Google in London. He is probably best known for his contributions on Stack Overflow. He blogs, tweets (@jonskeet), speaks at conferences, and generally says too much and listens too little. For some years now, his primary open source contribution to the world has been Noda Time, a better .NET date and time API. He is the author of Manning’s C# in Depth, Third Edition.

 Part 1. The Groovy language

 A good notation has subtlety and suggestiveness which at times makes it almost seem like a live teacher.

 Bertrand Russell The World of Mathematics (1956)

 Learning a new programming language is comparable to learning to speak a foreign language. You have to deal with new vocabulary, grammar, and language idioms. But this initial effort pays off multiple times. With the new language, you find unique ways to express yourself, you’re exposed to new concepts and styles that add to your personal abilities, and you may even explore new perspectives on your world. This is what Groovy did for us, and we hope Groovy will do it for you, too.

 The first part of this book introduces you to the language basics: the Groovy syntax, grammar, and typical idioms. We present the language by example as opposed to using an academic style.

 You may skim this part on first read and revisit it before going into serious development with Groovy. If you decide to skim, please make sure you visit chapter 2 and its examples. They are cross-linked to the in-depth chapters so you can easily look up details about any topic that interests you.

 One of the difficulties of explaining a programming language by example is that you have to start somewhere. No matter where you start, you end up needing to use some concept or feature that you haven’t explained yet for your examples. Section 2.3 serves to resolve this perceived deadlock by providing a collection of self-explanatory warm-up examples.

 We explain the main portion of the language using its built-in datatypes and introduce expressions, operators, and keywords as we go along. By starting with some of the most familiar aspects of the language and building up your knowledge in stages, we hope you’ll always feel confident when exploring new territory.

 Chapter 3 introduces Groovy’s practical approach to typing, examines the numeric and other primitive types that Groovy supports, and discusses strings and regular expressions.

 Chapter 4 continues looking at Groovy’s rich set of built-in types, examining those with a collection-like nature: ranges, lists, and maps.

 Chapter 5 builds on the preceding sections and provides an in-depth description of the closure concept.

 Chapter 6 touches on logical branching, looping, and shortcutting program execution flow.

 Chapter 7 sheds light on the way Groovy builds on Java’s object-oriented features adding support for multimethods and traits.

 Chapter 8 looks at Groovy’s dynamic programming capabilities.

 Chapter 9 dives into compile-time metaprogramming and AST transformations.

 Chapter 10, the final chapter in part 1, discusses Groovy as a static language.

 At the end of part 1, you’ll have the whole picture of the Groovy language. This is the basis for getting the most out of part 2, which explores the Groovy library: the classes and methods that Groovy adds to the Java platform. Part 3, “Applied Groovy,” leads you through places where the power of Groovy is put into action.

 Chapter 1. Your way to Groovy

 This chapter covers

 	What Groovy is all about

 	How it makes your programming life easier

 	How to start

 It isn’t the mountains ahead to climb that wear you out; it’s the pebble in your shoe.

 Muhammad Ali

 You’ve heard of Groovy, maybe even installed the distribution and tried snippets from the online tutorials. Perhaps your project has adopted Groovy as a dynamic extension to Java and you now seek information about what you can do with it. You may have been acquainted with Groovy from using the Grails web application platform, the Griffon desktop application framework, the Gradle build system, or the Spock testing facility, and now look for background information about the language that these tools are built upon. This book delivers to that purpose, but you can expect even more from learning Groovy.

 Groovy will give you quick wins, whether by making your Java code simpler to write, by automating recurring tasks, by modeling business logic in domain-specific languages (DSLs), or by supporting ad-hoc scripting for your daily work as a programmer. It’ll give you longer-term wins by making your code simpler to read. Perhaps most important, it’s a pleasure to use.

 Learning Groovy is a wise investment. Groovy brings the power of advanced language features such as closures, dynamic methods, and the Meta Object Protocol (MOP) to the Java platform. Your Java knowledge will not become obsolete by walking the Groovy path. Groovy will build on your experience and familiarity with the Java platform, allowing you to pick and choose when you use which tool—and when to combine the two seamlessly.

 Groovy follows a pragmatic “no drama”[1] approach: it obeys the Java object model and always keeps the perspective of a Java programmer. It doesn’t force you into any new programming paradigm, but offers those advanced capabilities that you legitimately expect from a “top-of-stack” language.

 1 Thanks to Mac Liaw for this wording.

 This first chapter provides background information about Groovy and everything you need to know to get started. It starts with the Groovy story: why Groovy was created, what considerations drive its design, and how it positions itself in the landscape of languages and technologies. The next section expands on Groovy’s merits and how they can make life easier for you, whether you’re a Java programmer, a script aficionado, or an agile developer.

 We strongly believe that there’s only one way to learn a programming language: by trying it. We present a variety of scripts to demonstrate the compiler, interpreter, and shells, before listing plug-ins available for widely used IDEs and where to find the latest information about Groovy.

 By the end of this chapter, you’ll have a basic understanding of what Groovy is and how you can experiment with it.

 We—the authors, the reviewers, and the editing team—wish you a great time programming Groovy and using this book for guidance and reference.

1.1. The Groovy story

 At Groovy One 2004—a gathering of Groovy developers in London—James Strachan gave a keynote address telling the story of how he arrived at the idea of inventing Groovy.

 He and his wife were waiting for a late plane. While she went shopping, he visited an internet cafe and spontaneously decided to go to the Python website and study the language. In the course of this activity, he became more and more intrigued. Being a seasoned Java programmer, he recognized that his home language lacked many of the interesting and useful features Python had invented, such as native language support for common datatypes in an expressive syntax and, more important, dynamic behavior. The idea was born to bring such features to Java.

 This led to the main principles that guide Groovy’s development: to be a feature-rich and Java-friendly language, bringing the attractive benefits of dynamic languages to a robust and well-supported platform.

 Figure 1.1 shows how this unique combination defines Groovy’s position in the varied world of languages for the Java platform.[2] We don’t want to offend anyone by specifying exactly where we believe any particular other language might fit in the figure, but we’re confident of Groovy’s position.

 2 See www.is-research.de/info/vmlanguages/category/jvm-language/, which lists about 240 languages targeting the Java virtual machine (JVM).

 Figure 1.1. The landscape of JVM-based languages. Groovy is a feature-rich and Java-friendly language—it excels at both sides instead of sacrificing one for the sake of the other.

 [image:]

 In the early days of Groovy, we were mainly asked how it’d compare to Java, BeanShell, Pnuts, and embedded expression languages. The focus was clearly on Java friendliness. Then the focus shifted to dynamic capabilities and the debate went on putting Groovy, JavaScript (Rhino), Jython, and JRuby side by side. Recently, we see more comparison with Clojure, Scala, Kotlin, Ceylon, Fan, Nice, Newspeak, and Frege. Most of them introduce the functional programming paradigm to the Java platform, which makes a comparison on the feature dimension rather difficult. They’re simply different. Some other JVM languages like Alice and Fortress are even totally unrelated. By the time you read this, some new kids are likely to have appeared on the block and the pendulum may have swung in a totally different direction. But with the landscape picture shown in figure 1.1 you’re able to also position upcoming languages.

 Some languages may offer more advanced features than Groovy. Not so many languages may claim to fit equally well to the Java language. None can currently touch Groovy when you consider both aspects together: nothing provides a better combination of Java friendliness and a complete feature set.

 With Groovy being in this position, what are its main characteristics?

 1.1.1. What is Groovy?

 Groovy is an optionally typed, dynamic language for the Java platform with many features that are inspired by languages like Python, Ruby, and Smalltalk, making them available to Java developers using a Java-like syntax. Unlike other alternative languages, it’s designed as a companion to, not a replacement for, Java.

 Groovy is often referred to as a scripting language, and it works very well for scripting. It’s a mistake to label Groovy purely in those terms, though. It can be precompiled into Java bytecode, integrated into Java applications, power web applications, add an extra degree of control within build files, and be the basis of whole applications on its own. Groovy, obviously, is too flexible to be pigeonholed.

 What we can say about Groovy is that it’s closely tied to the Java platform. This is true in terms of both implementation (many parts of Groovy are written in Java, with the rest being written in Groovy itself) and interaction. When you program in Groovy, in many ways you’re writing a special kind of Java. All the power of the Java platform—including the massive set of available libraries—is there to be harnessed.

 Does this make Groovy just a layer of syntactic sugar? Not at all. Although everything you do in Groovy could be done in Java, it’d be madness to write the Java code required to work Groovy’s magic. Groovy performs a lot of work behind the scenes to achieve its agility and dynamic nature. As you read this book, try to think every so often about what would be required to mimic the effects of Groovy using Java. Many of the Groovy features that seem extraordinary at first—encapsulating logic in objects in a natural way, building hierarchies with barely any code other than what’s absolutely required to compute the data, expressing database queries in the normal application language before they’re translated into SQL, manipulating the runtime behavior of individual objects after they’ve been created—are tasks that Java wasn’t designed for.

 To quote a JavaOne slogan: Groovy is there for “extending the reach of Java.”

 Let’s take a closer look at what makes Groovy so appealing, starting with how Groovy and Java work hand-in-hand.

 1.1.2. Playing nicely with Java: seamless integration

 Being Java friendly means two things: seamless integration with the Java Runtime Environment and having a syntax that’s aligned with Java.

Seamless integration

 Figure 1.2 shows the integration aspect of Groovy: it runs inside the JVM and makes use of Java’s libraries (together called the Java Runtime Environment, or JRE). Groovy is only a new way of creating ordinary Java classes—from a runtime perspective, Groovy is Java with an additional JAR file as a dependency.

 Figure 1.2. Groovy and Java join together in a tongue-and-groove fashion.

 [image:]

 Consequently, calling Java from Groovy is a nonissue. When developing in Groovy, you end up doing this all the time without noticing. Every Groovy type is a subtype of java.lang.Object. Every Groovy object is an instance of a type in the normal way. A Groovy date is a java.util.Date. You can call all methods on it that you know are available for a Date, and you can pass it as an argument to any method that expects a Date.

 Calling into Java is an easy exercise. It’s something that all JVM languages offer, at least the ones worth speaking of. They all make it possible, some by staying inside their own non-Java abstractions, and some by providing a gateway. Groovy is one of the few that does it its own way and the Java way at the same time, because there’s no difference.

 Integration in the opposite direction is just as easy. Suppose a Groovy class MyGroovyClass is compiled into MyGroovyClass.class and put on the classpath. You can use this Groovy class from within a Java class by typing

 new MyGroovyClass(); // create from Java

 You can then call methods on the instance, pass the reference as an argument to methods, and so forth. The JVM is blissfully unaware that the code was written in Groovy. This becomes particularly important when integrating with Java frameworks that call your class where you have no control over how that call is affected.

 The “interoperability” in this direction is a bit more involved for alternative JVM languages. Yes, they may compile to bytecode but that doesn’t mean much by itself, because one can produce valid bytecode that’s totally incomprehensible for a Java caller. A language may not even be object-oriented and provide classes and methods. And even if it does, it may assign totally different semantics to those abstractions. Groovy, in contrast, fully stays inside the Java object model. Actually, compiling to class files is only one of many ways to integrate Groovy into your Java project. Chapter 16 on integration describes the full range of options. The integration ladder in figure 1.3 arranges the criteria by their significance.

 Figure 1.3. The integration ladder shows increasing cross-language support from simple calls for interoperability up to seamless tool integration.

 [image:]

 One step up on the integration ladder and you meet the issue of references. A Groovy class may reference a Java class (that goes without saying) and a Java class may reference a Groovy class, as you’ve just seen. You can even have circular references and groovyc compiles them all transparently. Even better, the leading IDEs provide cross-language compile, navigation, and refactoring such that you rarely need to care about the project build setup. You’re free to choose Java or Groovy when implementing any class for that matter. Such tight build-time integration is a challenge for every other language.

 The next rung where candidates slip off is overloaded methods. Imagine you set out to implement the Java interface java.io.Writer in any non-Java language. It comes with three versions of write that take one parameter: write(int c), write(String str), and write(char[] buf). Implementing this in Groovy is trivial—it’s exactly like in Java. The formal parameter types distinguish which methods you override. That’s one of many merits of optional typing. Languages that are solely dynamically typed have no way of doing this.

 But the buck doesn’t stop here. The Java–Groovy mix allows annotations and interfaces being defined in either language and implemented and used in the other. You can subclass in any combination even with abstract classes and “sandwich” inheritance like Java–Groovy–Java or Groovy–Java–Groovy in arbitrary depth. It may look exotic at first sight but we actually needed this feature in customer projects. We’ll come back to that. Of course, this integration presupposes that your language knows about annotations and interfaces like Groovy does.

 True seamless integration means that you can take any Java class from a given Java codebase and replace it with a Groovy class. Likewise, you can take any Groovy class and rewrite it in Java, both without touching any other class in the code base. That’s what we call a drop-in replacement, which imposes further considerations about annotations, static members, and accessibility of the used libraries from Java.

 Generated bytecode can be more or less Java-tool friendly. There are more and more tools on the market that directly augment your bytecode, be it for gathering test coverage information or “weaving aspects” in. These tools don’t only expect bytecode to be valid, but also to find well-known patterns in it such as the Java and Groovy compiler provide. Bytecode generated by other languages is often not digestible for such tools.

 Alternative Java virtual machine (JVM) languages are often attributed as working “seamlessly” with Java. With the integration ladder in figure 1.3, you can check to what degree this applies: calls into Java, calls from Java, bidirectional compilation, inheritance intermix, mutual class substitutability, and tool support. We didn’t even consider security, profiling, debugging, and other Java architectures. So much for the platform integration, now on to the syntax.

Syntax alignment

 The second dimension of Groovy’s friendliness is its syntax alignment. Let’s compare the different mechanisms to obtain today’s date in various languages to demonstrate what alignment should mean:

 import java.util.*; // Java
Date today = new Date(); // Java

today = new Date() // Groovy

require 'date' # Ruby
today = Date.new # Ruby

import java.util._ // Scala
var today = new Date // Scala

(import '(java.util Date)) ; Clojure
(def today (new Date)) ; Clojure
(def today (Date.)) ; Clojure alternative

 The Groovy solution is short, precise, and more compact than regular Java. Groovy doesn’t need to import the java.util package or specify the Date type. This is very handy when using Groovy to evaluate user input. In those cases, one cannot assume that the user is proficient in Java package structures or willing to write more code than necessary. Additionally, Groovy doesn’t require semicolons when it can understand the code without them. Despite being more compact, Groovy is fully comprehensible to a Java programmer.

 The Ruby solution is listed to illustrate what Groovy avoids: a different packaging concept (require), a different comment syntax, and a different object-creation syntax. Scala introduces a new wildcard syntax with underscores and has its own way of declaring whether a reference is supposed to be (in Java terms) “final” or not (var vs. val). The user has to provide one or the other. Clojure doesn’t support wildcard imports as of now, and shows two alternative ways of instantiating a Java class, both of which differ syntactically from Java.

 Although all the alternative notations make sense in themselves and may even be more consistent than Java, they don’t align as nicely with the Java syntax and architecture as Groovy does. Throw into the mix that Groovy is the only language besides Java that fully supports the Java notation of generics and annotations and you easily retrace why the Groovy syntax is placed perfectly aligned with Java.

 Now you have an idea what Java friendliness means in terms of integration and syntax alignment. But how about feature richness?

 1.1.3. Power in your code: a feature-rich language

 Giving a list of Groovy features is a bit like listing moves a dancer can perform. Although each feature is important in itself, it’s how well they work together that makes Groovy shine. Groovy has three main enhancements over and above those of Java: language features, libraries specific to Groovy, and additions to the existing Java standard classes (known as the Groovy Development Kit, or GDK). Figure 1.4 shows some of these enhancements and how they fit together. The shaded circles indicate the way that the features use each other. For instance, many of the library features rely heavily on language features. Idiomatic Groovy code rarely uses one feature in isolation; instead, it usually uses several of them together, like notes in a chord.

 Figure 1.4. Many of the additional libraries and GDK enhancements in Groovy build on the new language features. The combination of the three forms a “sweet spot” for clear and powerful code.

 [image:]

 Unfortunately, many of the features can’t be understood in just a few words. Closures, for example, are an invaluable language concept in Groovy, but the word on its own doesn’t tell you anything. We won’t go into all the details now, but here are a few examples to whet your appetite.

Listing a file: closures and I/O additions

 Closures are blocks of code that can be treated as first-class objects: passed around as references, stored, executed at arbitrary times, and so on. Java’s anonymous inner classes are often used this way, particularly with adapter classes, but the syntax of inner classes is ugly, and they’re limited in terms of the data they can access and change.

 File handling in Groovy is made significantly easier with the addition of various methods to classes in the java.io package. A great example is the File.eachLine method. How often have you needed to read a file, a line at a time, and perform the same action on each line, closing the file at the end? This is such a common task; it shouldn’t be difficult. In Groovy, it isn’t.

 Let’s put the two features together and create a complete program that lists a file with line numbers:

 def number = 0
new File('data.txt').eachLine { line ->
 number++
 println "$number: $line"
}

 which prints

 1: first line
2: second line

 The braces enclose the closure. It’s passed as an argument to File’s new eachLine method, which in turn calls back the closure for each line that it reads, passing the current line as an argument.

Printing a list: collection literals and simplified property access

 The interfaces java.util.List and java.util.Map are probably the most widely used ones in Java, but there’s little language support for them. Groovy adds the ability to declare list and map literals just as easily as you would a string or numeric literal, and it adds many methods to the collection classes.

 Similarly, the JavaBean conventions for properties are almost ubiquitous in Java, but the language makes no use of them. Groovy simplifies property access, allowing for far more readable code.

 Here’s an example using these two features to print the package for each of a list of classes. Note that the word “clazz” isn’t “class” because that would be a Groovy keyword—exactly like in Java. Although Java would allow a similar first line to declare an array, we’re using a real list here—elements could be added or removed with no extra work:

 def classes = [String, List, File]
for (clazz in classes) {
 println clazz.package.name
}

 which prints

 java.lang
java.util
java.io

 In Groovy, you can even avoid such commonplace for loops by applying property access to a list—the result is a list of the properties. Using this feature, an equivalent solution to the previous code is

 println([String, List, File]*.package*.name)

 which prints

 [java.lang, java.util, java.io]

 Pretty cool, eh? The star character is optional in the preceding code. It’s added to emphasize that the access to package and name is spread over the list and thus applied to every item in it.

XML handling the Groovy way: GPath with dynamic properties

 Whether you’re reading it or writing it, working with XML in Java requires a considerable amount of work. Alternatives to the W3C DOM make life easier, but Java itself doesn’t help you in language terms—it’s unable to adapt to your needs. Groovy allows classes to act as if they had properties at runtime even if the names of those properties aren’t known when the class is compiled. GPath was built on this feature, and it allows seamless XPath-like navigation of XML documents.

 Suppose you have a file called customers.xml such as this:

 <?xml version="1.0" ?>
<customers>
 <corporate>
 <customer name="Bill Gates" company="Microsoft" />
 <customer name="Tim Cook" company="Apple" />
 <customer name="Larry Ellison" company="Oracle" />
 </corporate>
 <consumer>
 <customer name="John Doe" />
 <customer name="Jane Doe" />
 </consumer>
</customers>

 You can print all the corporate customers with their names and companies using just the following code:

 def customers = new XmlSlurper().parse(new File('customers.xml'))
for (customer in customers.corporate.customer) {
 println "${customer.@name} works for ${customer.@company}"
}

 which prints

 Bill Gates works for Microsoft
Tim Cook works for Apple
Larry Ellison works for Oracle

 Note that Groovy cannot possibly know anything in advance about the elements and attributes that are available in the XML file. It happily compiles anyway. That’s one capability that distinguishes a dynamic language.

A friendly language

 Even trying to demonstrate just a few features of Groovy, you’ve seen other features in the preceding examples—string interpolation with GString, simpler for loops, optional typing, and optional statement terminators and parentheses, just for starters. The features work so well with each other and become second nature so quickly, you hardly notice you’re using them.

 Although being Java friendly and feature rich are the main driving forces for Groovy, there are more aspects worth considering. So far, we’ve focused on the hard technical facts about Groovy, but a language needs more than that to be successful. It needs to attract people. In the world of computer languages, building a better mousetrap doesn’t guarantee that the world will beat a path to your door. It has to appeal to both developers and their managers, in different ways.

 1.1.4. Community driven but corporate backed

 For some people it’s comforting to know that their investment in a language is protected by its adoption as a standard. This is one of the distinctive promises of Groovy. Groovy is a de-facto standard like Spring and, not coincidentally, it’s endorsed by the same company. Groovy is also a “first-class citizen” in the Spring framework.

 The size of the user base is a second criterion. The larger the user base, the greater the chance of obtaining good support and sustainable development. Groovy’s user base has grown beyond all expectations and has recently reached the top 20 of the TIOBE (www.tiobe.com) index.[3] Recent polls suggest that Groovy is used in the majority of organizations that develop professionally with Java, much higher than any alternative language. Groovy is regularly covered in Java conferences and publications, and virtually any Java open source project that allows scripting extensions supports Groovy and has become an important item in many developers’ CVs and job descriptions.

 3 Groovy’s ranking tends to jump around quite a lot for that index as TIOBE Software alters its algorithm.

 Many corporations support Groovy. Oracle integrates Groovy support in its NetBeans IDE tool suite, presents Groovy at JavaOne, and pushes forward the idea of multiple languages on the JVM, as in the JSRs 223 (Scripting Integration) and 292 (InvokeDynamic). Oracle has a long-standing tradition of using Groovy in a number of products, just like other big players including IBM and SAP. While the development of Groovy has always been driven by its community, it also profited from financial backing. Sustainability of the Groovy development was first sponsored by Big Sky Technology, then by G2One and SpringSource (later acquired by VMware and then spun off as part of Pivotal). Since 2015, Groovy is run under the stewardship of the Apache Software Foundation (ASF). Big thanks to all that made this development possible!

 Commercial support is also available if needed. Many companies offer training, consulting, and engineering for Groovy, including the ones that we authors work for: ASERT, Canoo, and Jworks.

 Attraction is more than strategic considerations, however. Beyond what you can measure is a gut feeling that causes you to enjoy programming or not.

 The developers of Groovy are aware of this feeling, and it’s carefully considered when deciding on language features. After all, there’s a reason for the name of the language.

 	

 Groovy

 “A situation or an activity that one enjoys or to which one is especially well suited (found his groove playing bass in a trio). A very pleasurable experience; enjoy oneself (just sitting around, grooving on the music). To be affected with pleasurable excitement. To react or interact harmoniously.” (http://dict.leo.org).

 	

 Working with Groovy feels like a partnership between you and the language, rather than a battle to express what’s clear in your mind in a way the computer can understand.

 Of course, while it’s nice to “feel the groove,” you still need to pay your bills. In the next section, we’ll look at practical advantages Groovy will bring to your professional life.

1.2. What Groovy can do for you

 Depending on your background and experience, you’re probably interested in different features of Groovy. It’s unlikely that anyone will require every aspect of Groovy in their day-to-day work, just as no one uses the whole of the mammoth framework provided by the Java standard libraries.

 This section presents interesting Groovy features and areas of applicability for Java professionals; script programmers; and pragmatic, extreme, and agile programmers. We recognize that developers rarely have just one role within their jobs and may well have to take on each of these identities in turn. But it’s helpful to focus on how Groovy helps in the kinds of situations typically associated with each role.

 1.2.1. Groovy for the busy Java professional

 If you consider yourself a Java professional, you probably have years of experience in Java programming. You know all the important parts of the Java Runtime API and most likely the APIs of a lot of additional Java packages.

 But, be honest. There are times when you cannot easily leverage this knowledge. Consider an everyday task like searching through a number of websites for a particular word. If you’re in a hurry you might even want to do the searching concurrently. You probably know several libraries and classes that could be effectively utilized to accomplish this ad-hoc task but, if you’re like us, you probably consider coding the Java solution as just too much effort.

 As you’ll learn in this book, with Groovy you can quickly open the console and accomplish this task by typing just a few lines of code as shown here:

 import static groovyx.gpars.GParsPool.withPool

def urls = [
 'http://www.groovy-lang.org',
 'http://gpars.codehaus.org',
 'http://gr8conf.org/'
]*.toURL()

println withPool {
 urls.collectParallel {
 it.text.findAll(~/[Gg]roovy/).size()
 }
}

 At the time of writing, this produced the following list of three numbers:

 [38, 13, 2]

 With current versions of Java, the equivalent solution with its exception handling, thread management, and other scaffolding code is significantly harder to write and understand. Java 8 improves on this somewhat, thanks to the introduction of lambdas, but Groovy remains far ahead with regard to readability and ease of use.

 Besides command-line availability and code beauty, Groovy allows you to bring dynamic behavior to Java applications, such as through expressing business rules that can be maintained while the application is running, allowing smart configurations, or even implementing DSLs.

 You have the options of using static or dynamic types and working with precompiled code or plain Groovy source code with on-demand compiling. As a developer, you can decide where and when you want to put your solution “in stone” and where it needs to be flexible. With Groovy, you have the choice.

 This should give you enough safeguards to feel comfortable incorporating Groovy into your projects so you can benefit from its features.

 1.2.2. Groovy for the polyglot programmer

 As a polyglot programmer, you may be versed in various kinds of languages and programming paradigms like Perl, Ruby, Python, Smalltalk, Lisp, Haskell, or Dylan. But the Java platform has an undeniable market share, and it’s fairly common that folks like you work with the Java language to make a living. Corporate clients often run a Java standard platform (for example, JEE), allowing nothing but Java to be developed and deployed in production. You have no chance of getting your ultraslick foreign-language solution in there, so you bite the bullet, thinking all day, “If I only had [your language here], I could replace this whole method with a single line!” We confess to having experienced this kind of frustration.

 Groovy can give you relief and bring back the fun of programming by providing advanced language features where you need them: in your daily work. By allowing you to call methods on anything, pass blocks of code around for immediate or later execution following a functional approach, augment existing library code with your own specialized semantics, and use a host of other powerful features, Groovy lets you express yourself clearly and achieve miracles with little code. Just sneak the groovy-all-*.jar file into your project’s classpath, and you’re there.

 Today, software development is seldom a solitary activity, and your teammates (and your boss) need to know what you’re doing with Groovy and what Groovy is about. This book aims to be a device you can pass along to others so they can learn, too. (Of course, if you can’t bear the thought of parting with it, you can tell them to buy their own copies. We won’t mind.)

 1.2.3. Groovy for pragmatic programmers, extremos, and agilists

 If you fall into this category, you probably already have an overloaded bookshelf, a board full of index cards with tasks, and an automated test suite that threatens to turn red at a moment’s notice. The next iteration release is close, and there’s anything but time to think about Groovy. Even uttering the word makes your pair-programming mate start questioning your state of mind.

 One thing that we’ve learned about being pragmatic, extreme, or agile is that every now and then you have to step back, relax, and assess whether your tools are still sharp enough to cut smoothly. Despite the ever-pressing project schedules, you need to sharpen the saw regularly. In software terms, that means having the knowledge and resources needed and using the right methodology, tools, technologies, and languages for the task at hand.

 Groovy will be your house elf for all automation tasks that you’re likely to have in your projects. These range from simple build automation, continuous integration (CI), and reporting, up to automated documentation, shipment, and installation. The Groovy automation support leverages the power of existing solutions such as Ant, Maven, and Gradle while providing a simple and concise language means to control them. Groovy even helps with testing, both at the unit and functional levels, helping us test-driven folks feel right at home.

 Hardly any school of programmers applies as much rigor and pays as much attention as we do when it comes to self-describing, intention-revealing code. We feel an almost physical need to remove duplication while striving for simpler solutions. This is where Groovy can help tremendously.

 Before Groovy, I (Dierk) used other scripting languages (preferably Ruby) to sketch some design ideas, do a spike (a programming experiment to assess the feasibility of a task), and run a functional prototype. The downside was that I was never sure if what I was writing would also work in Java. Worse, in the end, I had the work of porting it over or redoing it from scratch. With Groovy, I can do all the exploration work directly on my target platform.

 	

 Real-life example

 Recently, Guillaume and I did a spike on prime number factorization.[4] We started with a small Groovy solution that did the job cleanly but not efficiently. Using Groovy’s interception capabilities, we unit-tested the solution and counted the number of operations. Because the code was clean, it was a breeze to optimize the solution and decrease the operation count. It would have been much more difficult to recognize the optimization potential in Java code. The final result can be used from Java as it stands, and although we certainly still have the option of porting the optimized solution to plain Java, which would give us another performance gain, we can defer the decision until the need arises.

 4 Every ordinal number N can be uniquely disassembled into factors that are prime numbers: N = p1 × p2 × p3. The factorization problem is known to be hard. Its complexity guards cryptographic algorithms like the popular Rivest–Shamir–Adleman (RSA) algorithm.

 	

 The seamless interplay of Groovy and Java opens two dimensions of optimizing code: using Java for code that needs to be optimized for runtime performance, and using Groovy for code that needs to be optimized for flexibility and readability.

 Along with all these tangible benefits, there’s value in learning Groovy for its own sake. It’ll open your mind to new solutions, helping you to perceive new concepts when developing software, whichever language you use.

 No matter what kind of programmer you are, we hope you’re now eager to get some Groovy code under your fingers. If you cannot hold back from looking at real Groovy code, look ahead at chapter 2.

1.3. Running Groovy

 First, we need to introduce you to the tools you’ll be using to run and optionally compile Groovy code. If you want to try these out as you read, you’ll need to have Groovy installed, of course. Appendix A provides a guide for the installation process.

 	

 Tip

 You can execute Groovy code—and most examples in this book—even without installing anything! Point your browser to http://groovyconsole.appspot.com/. This console is hosted on the Google app engine and is provided by Guillaume Laforge. Share and enjoy!

 	

 There are three commands to execute Groovy code and scripts, as shown in table 1.1. Each of the three different mechanisms of running Groovy is demonstrated in the following sections with examples and screenshots. Groovy can also be run like any ordinary Java program, as you’ll see in section 1.4.2, and there’s also a special integration with Ant that’s explained in section 1.4.3.

 Table 1.1. Commands to execute Groovy

 	
 Command

 	
 What it does

 	groovy

 	Starts the processor that executes Groovy scripts. Single-line Groovy scripts can be specified as command-line arguments.

 	groovysh

 	Starts the groovysh command-line shell, used to execute Groovy code interactively. By entering statements or whole scripts line by line into the shell, code is executed on the fly.

 	groovyConsole

 	Starts a graphical interface that’s used to execute Groovy code interactively; moreover, groovyConsole loads and runs Groovy script files.

 We’ll explore several options for integrating Groovy in Java programs in chapter 11.

 1.3.1. Using groovysh for a welcome message

 Let’s look at groovysh first because it’s a handy tool for running experiments with Groovy. It’s easy to edit and run Groovy interactively in this shell, and doing so facilitates seeing how Groovy works without creating and editing script files.

 To start the shell, run groovysh (UNIX) or groovysh.bat (Windows) from the command line. You should get a command prompt like the following where you can enter Groovy code to receive a warm welcome:

 Groovy Shell (2.4.0, JVM: 1.7.0_75)
Type ':help' or ':h' for help.
--
groovy:000> "Welcome, " + System.properties."user.name"
===> Welcome, Dierk
groovy:000>

 The shell is a good companion when you work on a remote server with only a text terminal available. For the more common case where you are working on a desktop or laptop machine, there are options that are even more comfortable as you’ll see in a minute.

 The shell can be started with a number of different command-line options that are well explained in the online documentation (www.groovy-lang.org/groovysh.html). The shell also understands useful commands, most notably help, which spares us listing all commands here. One explanation, though: the shell comes with the notion of an editing buffer that comes in to play when a statement or expression spans multiple lines. Class and method definitions are typical cases. The shell then keeps track of the line numbers and allows various commands on the buffer, like editing it in your system’s text editor.

 1.3.2. Using groovyConsole

 groovyConsole is a Swing interface that acts as a minimal Groovy development editor. It lacks support for the command-line options supported by groovysh; however, it has a File menu to allow Groovy scripts to be loaded, created, and saved. Interestingly, groovyConsole is written in Groovy. Its implementation is a good demonstration of builders, which are discussed in chapter 11.

 groovyConsole takes no arguments and starts a two-paned window like the one shown in figure 1.5. The console accepts keyboard input in the upper pane. To run a script, either key in Ctrl-R or Ctrl-Enter, or use the Run command from the Action menu. When any part of the script code is selected, only the selected text is executed. This feature is useful for simple debugging or single stepping by successively selecting one or multiple lines.

 Figure 1.5. groovyConsole with a script in the edit pane that finds the IP addresses of google.com. The output pane captures the result.

 [image:]

 groovyConsole comes with all the UI goodness that you expect from a Swing application.[5] Walk through the menus or read the documentation under www.groovy-lang.org/groovyconsole.html (you got the pattern by now, right?). The console comes with some pleasant surprises. For good reasons, we made it very “demo-friendly.” Ctrl-Shift-L and Ctrl-Shift-S will make the code appear larger or smaller so that the audience can better see the code.

 5 Thanks to Romain Guy, the UI expert and coauthor of Filthy Rich Clients: Developing Animated and Graphical Effects for Desktop Java Applications (Addison-Wesley Professional, 2007), who supported the Groovy team here.

 You can also drag and drop Groovy files from your filesystem right into the editor. But that’s not all!

 Figure 1.6 shows the Object Browser inspecting the returned list of IP addresses. It contains information about the ArrayList class in the header, with tabbed tables showing available variables, methods, and fields.

 Figure 1.6. The Groovy Object Browser when opened on an object of type ArrayList, displaying the table of available methods in its bytecode and registered meta-methods.

 [image:]

 For easy browsing, you can sort columns by clicking the headers or reverse the sort with a second click. You can sort by multiple criteria by clicking column headers in sequence, and rearrange the columns by dragging the column headers.

 By this means, you can easily find out which methods you can call on the object you’re currently working on (same intent as code completion in IDEs), which type declared that method, and whether it comes from Groovy or Java. Let’s try this out: click the Name header to sort by method names, then click Declarer, then click Origin. Now scroll down the list until you see Object as the declarer. Now you should see the same as in figure 1.6: the list of all methods, including parameter types and return type, that Groovy adds to java.lang.Object. You’ll learn more about these methods in chapter 12.

 Highlighted is the method dump() that Groovy adds to all objects. Try it! Put it in the input field of the console. You’ll see that it’s like toString() but includes the internal state of the object.

 Unless explicitly stated otherwise, you can put any code example in this book directly into groovysh or groovyConsole and run it there. The more often you do that, the quicker you’ll get a feeling for the language.

 1.3.3. Using the groovy command

 The groovy command is used to execute Groovy programs and scripts. Listing 1.1 calculates the golden ratio that intersects a line into a smaller and bigger part such that the total line length relates to the bigger part like the bigger part relates to the smaller part. Composing paintings, photos, or UIs with the help of the golden ratio is considered pleasing to the human eye and has a long tradition in classic art. The pentagram that underlies the Groovy logo is composed of golden ratios.[6]

 6 For additional information about pentagrams and golden ratios, see http://en.wikipedia.org/wiki/Golden_ratio#Pentagram.

 We calculate the golden ratio by narrowing down on the ratio of adjacent Fibonacci[7] numbers. The Fibonacci number sequence is a pattern where the first two numbers are 1 and 1, and every subsequent number is the sum of the preceding two. The ratio between fibo(n) and fibo(n – 1) comes closer and closer to the golden ratio for increasing values of n.

 7 Leonardo Pisano (1170–1250), a.k.a. Fibonacci, was a mathematician from Pisa (now a town in Italy). He introduced this number sequence to describe the growth of an isolated rabbit population. Although this may be questionable from a biological point of view, his number sequence plays a role in many different areas of science and art. For more information, you can subscribe to the Fibonacci Quarterly.

 We don’t go into the details of the implementation right now. Think about it as arbitrary Groovy code, which for the beginning isn’t quite as “Groovy idiomatic” as it could be. One little explanation anyway: [-1] refers to the last element in a list, [-2] to the last-but-one.

 If you’d like to try this, copy the code into a file, and save it as Gold.groovy. The file extension doesn’t matter much as far as the groovy executable is concerned, but naming Groovy scripts with a .groovy extension is conventional. One benefit of using this extension is that you can omit it on the command line when specifying the name of the script—instead of groovy Gold.groovy, you can just run groovy Gold.

 Listing 1.1. Calculating the golden ratio with Gold.groovy

 [image:]

 Run this file as a Groovy program by passing the filename to the groovy command. You should see the following output that prints the value, the last step of the calculation, and a visual indication of where the golden ratio intersects a given line:

 found golden ratio with fibo(23) as
46368 / 28657 = 1.6180339882
__________|________________

 The groovy command has many additional options that are useful for command-line scripting. For example, expressions can be executed by typing groovy -e "println Math.PI", which prints 3.141592653589793 to the console. Section 12.3 will lead you through the full range of options, with numerous examples.

 In this section, we’ve dealt with Groovy’s support for simple ad-hoc scripting, but this isn’t the whole story. The next section expands on how Groovy fits into a code-compile-run cycle.

1.4. Compiling and running Groovy

 So far, we’ve used Groovy in direct[8] mode, where the code is directly executed without producing any executable files. In this section, you’ll see a second way of using Groovy: compiling it to Java bytecode and running it as regular Java application code within a JVM, called precompiled mode. Both ways execute Groovy inside a JVM eventually, and both ways compile the Groovy code to Java bytecode. The major difference is when that compilation occurs and whether the resulting classes are used in memory or stored on disk.

 8 We avoid the term interpreted to make clear that Groovy code is never interpreted in the sense of traditional Perl/Python/Ruby/Bash scripts. It’s always fully compiled into proper classes, even if that happens transparently.

 1.4.1. Compiling Groovy with groovyc

 Compiling Groovy is straightforward because it comes with a compiler called groovyc. The groovyc compiler generates at least one class file for each Groovy source file compiled. As an example, you can compile Gold.groovy from the previous section into normal Java bytecode by running groovyc on the script file like so:

 groovyc -d classes Gold.groovy

 In this case, the groovyc compiler outputs Java class files to a directory named classes, which you told it to do with the -d flag. If the directory specified with -d doesn’t exist, it’s created. When you’re running the compiler, the name of each generated class file is printed to the console.

 For each script, Groovy generates a class that extends groovy.lang.Script, which contains a main method so that Java can execute it. The name of the compiled class matches the name of the script being compiled. More classes may be generated, depending on the script code.

 Now that you’ve got a compiled program, let’s see how to run it.

 1.4.2. Running a compiled Groovy script with Java

 Running a compiled Groovy program is identical to running a compiled Java program, with the added requirement of having the embeddable groovy-all-*.jar file in your JVM’s classpath, which will ensure that all of Groovy’s third-party dependencies will be resolved automatically at runtime. Make sure you add the directory in which your compiled program resides to the classpath, too. You then run the program in the same way you’d run any other Java program, with the java command:[9]

 9 You should replace the .jar version (shown here as 2.4.0) with the version of Groovy you’ve installed. Also, the command line as shown applies to Windows shells. The equivalent on UNIX would be: > java –cp $GROOVY_HOME/embeddable/groovy-all-2.4.0.jar:classes Gold

 java –cp %GROOVY_HOME%/embeddable/groovy-all-2.4.0.jar;classes Gold
found golden ratio with fibo(23) as
46368 / 28657 = 1.6180339882
__________|________________

 Note that the .class file extension for the main class shouldn’t be specified when running with the java command.

 All this may seem like a lot of work if you’re used to building and running your Java code with Ant at the touch of a button. We agree, which is why the developers of Groovy have made sure you can do all of this easily in an Ant script.

 Groovy comes with a groovyc Ant task that works pretty much like the javac task. See the details under www.groovy-lang.org/groovyc.html#_ant_task. But there’s more! The groovy Ant task allows you to hook into the Ant build with whatever Groovy code you like. See http://docs.groovy-lang.org/next/html/documentation/#_the_groovy_ant_task.

 When it comes to integrating Groovy into a larger project setup, there are even more options. One is using the Groovy Maven integration. A second option is to rely on the Groovy-based Gradle build system that we introduce in the “Gradle for Project Automation” section in chapter 20. A very lightweight option for dependency resolution is using Groovy’s @Grab annotation as covered in “Using Grapes” in section 2.3.5. Groovy projects of any size are developed with IDE help anyway, and they all support the transparent cross-compile of Groovy and Java sources as we’ll discuss next.

1.5. Groovy IDE and editor support

 Depending on how you use Groovy—from command-line scripts through mediumsized all-Groovy applications up to multilanguage enterprise projects—you face very different needs for development support. On the small scale, a decent text editor is fine; however, on the large scale, you need the full story, including integrated cross-language unit testing, refactoring, debugging, and profiling support like all leading IDEs provide. This applies to literally all languages, but for Groovy, there’s an additional consideration.

 The Groovy compiler is by default very lenient when it comes to compile-time checking of code. It must be, because in a dynamic language, new methods[10] may become available at runtime that the compiler cannot foresee. Therefore, it cannot shield you from mistyped method names. But the IDE can warn you. It can highlight unknown method names and even apply so-called type inference to give better warnings and type-inferred code completion.

 10 This applies to more than just method names, but we’ll keep it short at the start.

 That’s why IDE support is even more valuable for Groovy than it is for other programming languages. Some commonly used IDEs and text editors for Groovy are listed in the following sections. But this information is likely to be out of date as soon as it’s printed. Stay tuned for updates for your favorite IDE.

 Since Groovy 2.0, you can make the Groovy compiler behave more like you’d expect when using a traditional static language by enforcing type checking at compile time. This isn’t done by default, but it is easily activated by annotating your code with @TypeChecked or @CompileStatic. In chapter 3, we’ll dive into the details of typing in Groovy and explain the possible options, and we devote all of chapter 10 to static typing aspects of Groovy.

 1.5.1. IntelliJ IDEA plug-in

 JetBrains, the company behind IntelliJ IDEA, was the first to provide a compelling Groovy plug-in for its commercial IDE under the name JetGroovy, which today is bundled by default with their distribution (since version 8.0). The JetGroovy plug-in is now bundled with IDEA and split into two parts. The Groovy language support comes with the free open source IntelliJ IDEA Community Edition, and the Grails/Griffon support comes with the Ultimate Edition. No separate JetGroovy releases will be made. The development of this plug-in led to the first cross-language compiler for Groovy, which made bidirectional Java–Groovy compilation possible. JetBrains thankfully donated this compiler to the Groovy project and it has heavily influenced today’s Groovy compiler.

 Listing all the features of the IntelliJ Groovy plug-in would be a futile attempt. We wouldn’t even know where to start. It may be enough to say that any Groovy code is so tightly integrated that the lines with Java begin to blur. The screenshot in figure 1.7 shows a Groovy script that produces this book from docbook format to PDF. Note that the method getRepls() has no return type and is thus dynamically typed. It returns a map where both keys and values are strings. Now see how in the structure pane (left bottom) the return type is listed as Map<String,String>.

 Figure 1.7. The special Groovy support in IntelliJ IDEA uses type inference to provide type safety where the compiler can’t.

 [image:]

 This is type inference in action and it controls how code completion works in the trailing code and even how method calls on keys and values of that map are known to be of type String. As an example, in line.contains(key) the key must be a String, and because IntelliJ infers that it is, there’s no warning marker.

 Note that IntelliJ even understands the inferred type of args (it’s String[]), and therefore it knows the available methods. This allows the IDE to provide code completion for all the methods on args. Beyond the native language support, IntelliJ offers goodies for various Groovy-based frameworks like Grails, Griffon, Gradle, Gant, and, by the time you’re reading this, probably even more.

 1.5.2. NetBeans IDE plug-in

 NetBeans IDE[11] is an open source IDE sponsored by Oracle. Groovy support is a main focus for NetBeans since version 6.5. Since then, Groovy is part of the standard Java distribution of NetBeans IDE.

 11 See “NetBeans IDE—The Smarter and Faster Way to Code,” https://netbeans.org/features/.

 NetBeans 8.0, the current version, has good support for Groovy, Grails, Gradle, and Griffon. One of the compelling features of NetBeans IDE, besides it being open source, is the cross-language support for multiple languages, enabling one to easily combine Java, Groovy, JavaFx, and others in the same project. Furthermore, NetBeans IDE is always at the forefront of providing value-added services for the Groovy frameworks Grails and Griffon. The online documentation gives a good overview of the features. Also check out Geertjan Wielenga’s[12] blog and the quick-start guide.[13]

 12 Geertjan’s blog, “Random NetBeans Stuff,” can be found at https://blogs.oracle.com/geertjan/.

 13 At www.netbeans.org/kb/docs/java/groovy-quickstart.html you’ll find a document that gets you started with Groovy in NetBeans IDE.

 1.5.3. Eclipse plug-in

 The Groovy plug-in for Eclipse has a long tradition and has gone through a number of changes. Recently, its development has followed the approach of coercing the Groovy compiler into contributing to the Java model used by the Java Development Toolkit (JDT) to populate the workbench. This piggyback approach provides a deeply integrated developer experience for the Eclipse user and eliminates some pitfalls of traditional compilation approaches that have relied on stub generation. In fact, the compilation mechanism used by this plug-in has now been put into its own separate module so that it can be used outside of Eclipse with the Maven build tool.[14]

 14 For details and to download the latest Groovy Eclipse plug-in, see http://docs.groovy-lang.org/latest/html/documentation/tools-groovyeclipse.html.

 In addition, you can download a special bundled version of Eclipse with Groovy and Grails support called the Groovy and Grails Tool Suite, found at http://spring.io/tools.

 1.5.4. Groovy support in other editors

 Although they don’t claim to be full-featured development environments, a lot of all-purpose editors provide support for programming languages in general and Groovy in particular.

 The cross-platform JEdit editor comes with a plug-in for Groovy that supports executing Groovy scripts and code snippets. A syntax-highlighting configuration is available separately. More details are available at http://plugins.jedit.org/plugins/?Groovy.

 For Mac users, there’s the popular TextMate editor with its Windows equivalent simply called E. It comes with a Groovy and Grails bundle that you can install from MacroMate’s bundle repository.

 UltraEdit can easily be customized to provide syntax highlighting for Groovy and to start or compile scripts from within the editor. Any output goes to an integrated output window. A small sidebar lets you jump to class and method declarations in the file. It supports smart indentation and brace matching for Groovy. Besides the Groovy support, it’s a feature-rich, quick-starting, all-purpose editor.

1.6. Summary

 We hope that by now we’ve convinced you that you really want Groovy in your life. As a modern language built on the solid foundation of Java, with a great community of millions of users, and with corporate backing, Groovy has something to offer everyone, in whatever way they interact with the Java platform.

 With a clear idea of why Groovy was developed and what drives its design, you should be able to see where features fit into the bigger picture as each is introduced in the coming chapters. Keep in mind the principles of Java integration and feature richness, making common tasks simpler and your code more expressive.

 Once you have Groovy installed, you can run it both directly as a script and after compilation into classes. If you’ve been feeling energetic, you may even have installed a Groovy plug-in for your favorite IDE. With this preparatory work complete, you’re ready to see (and try!) more of the language itself. In the next chapter, we’ll take you on a whistle-stop tour of Groovy’s features to give you a better feeling for the shape of the language, before we examine each element in detail for the remainder of part 1.

 Chapter 2. Overture: Groovy basics

 This chapter covers

 	What Groovy code looks like

 	Quickstart examples

 	Groovy’s dynamic nature

 Do what you think is interesting, do something that you think is fun and worthwhile, because otherwise you won’t do it well anyway.

 Brian Kernighan

 This chapter follows the model of an overture in classical music, in which the initial movement introduces the audience to a musical topic. Classical composers weave euphonious patterns that are revisited, extended, varied, and combined later in the performance. In a way, overtures are the whole symphony en miniature.

 In this chapter, we introduce many basic constructs of the Groovy language. First though, we cover two things you need to know about Groovy to get started: code appearance and assertions. Throughout the chapter, we provide examples to jumpstart you with the language, but only a few aspects of each example will be explained in detail—just enough to get you started. If you struggle with any of the examples, revisit them after having read the whole chapter.

 An overture allows you to make yourself comfortable with the instruments, the sound, the volume, and the seating. So lean back, relax, and enjoy the Groovy symphony.

2.1. General code appearance

 Computer languages tend to have an obvious lineage in terms of their look and feel. For example, a C programmer looking at Java code might not understand a lot of the keywords but would recognize the general layout in terms of braces, operators, parentheses, comments, statement terminators, and the like. Groovy allows you to start out in a way that’s almost indistinguishable from Java and transition smoothly into a more lightweight, suggestive, idiomatic style as your knowledge of the language grows. We’ll look at a few of the basics—how to comment-out code, places where Java and Groovy differ, places where they’re similar, and how Groovy code can be briefer because it lets you leave out certain elements of syntax.

 Groovy is indentation-unaware, but it’s good engineering practice to follow the usual indentation schemes for blocks of code. Groovy is mostly unaware of excessive whitespace, with the exception of line breaks that end the current statement and single-line comments. Let’s look at a few aspects of the appearance of Groovy code.

 2.1.1. Commenting Groovy code

 Single-line comments and multiline comments are exactly like those in Java, with an additional option for the first line of a script:

 #!/usr/bin/env groovy
// some line comment
/* some multi
 line comment */

 Here are some guidelines for writing comments in Groovy:

 	The #! shebang comment is allowed only in the first line. The shebang allows UNIX shells to locate the Groovy bootstrap script and run code with it.

 	
// denotes single-line comments that end with the current line.

 	Multiline comments are enclosed in /* ... */ markers.

 	Javadoc-like comments in /** ... */ markers are treated the same as other multiline comments, but are processed by the groovydoc Ant task.

 Other parts of Groovy syntax are similarly Java friendly.

 2.1.2. Comparing Groovy and Java syntax

 Most Groovy code—but not all—appears exactly as it would in Java. This often leads to the false conclusion that Groovy’s syntax is a superset of Java’s syntax. Despite the similarities, neither language is a superset of the other. Groovy currently doesn’t support multiple initialization and iteration statements in the classic for(init1,init2;test;inc1,inc2) loop. As you’ll see in listing 2.1, the language semantics can be slightly different even when the syntax is valid in both languages. For example, the == operator can give different results depending on which language is being used.

 Beside those subtle differences, the overwhelming majority of Java’s syntax is part of the Groovy syntax. This applies to:

 	The general packaging mechanism.

 	Statements (including package and import statements).

 	Class, interface, enum, field, and method definitions including nested classes, except for special cases with nested class definitions inside methods or other deeply nested blocks.

 	Control structures.

 	Operators, expressions, and assignments.

 	Exception handling.

 	Declaration of literals, with the exception of literal array initialization where the Java syntax would clash with Groovy’s use of braces. Groovy uses a shorter bracket notation for declaring lists instead.

 	Object instantiation, referencing and dereferencing objects, and calling methods.

 	Declaration and use of generics and annotations.

 The added value of Groovy’s syntax includes the following:

 	Ease access to Java objects through new expressions and operators.

 	Allow more ways of creating objects using literals.

 	Provide new control structures to allow advanced flow control.

 	Use annotations to generate invisible code, the so-called AST transformations that are described in chapter 9.

 	Introduce new datatypes together with their operators and expressions.

 	A backslash at the end of a line escapes the line feed so that the statement can proceed on the following line.

 	Additional parentheses force Groovy to treat the enclosed content as an expression. We’ll use this feature in section 4.3 when we cover more of the details about maps.

 Overall, Groovy looks like Java, except more compact and easier to read thanks to these additional syntax elements. One interesting aspect that Groovy adds is the ability to leave things out.

 2.1.3. Beauty through brevity

 Groovy allows you to leave out some elements of syntax that are always required in Java. Omitting these elements often results in code that’s shorter and more expressive. Compare the Java and Groovy code for encoding a string for use in a URL. For Java:

 java.net.URLEncoder.encode("a b", "UTF-8");

 For Groovy:

 URLEncoder.encode 'a b', 'UTF-8'

 By leaving out the package prefix, parentheses, and semicolon, the code boils down to the bare minimum.

 The support for optional parentheses is based on the disambiguation and precedence rules as summarized in the Groovy Language Specification (GLS). Although these rules are unambiguous, they’re not always intuitive. Omitting parentheses can lead to misunderstandings, even though the compiler is happy with the code. We prefer to include the parentheses for all but the most trivial situations. The compiler doesn’t try to judge your code for readability—you must do this yourself.

 Groovy automatically imports the packages groovy.lang.*, groovy.util.*, java.lang.*, java.util.*, java.net.*, and java.io.*, as well as the classes java.math.BigInteger and BigDecimal. As a result, you can refer to the classes in these packages without specifying the package names. We’ll use this feature throughout the book, and we’ll use fully qualified class names only for disambiguation or for pointing out their origin. Note that Java automatically imports java.lang.*, but nothing else.

 There are other elements of syntax that are optional in Groovy too:

 	In chapter 7, we’ll talk about optional return statements.

 	Even the ubiquitous dot becomes optional when the chaining method is called. For example, in combination with optional parentheses, the following code is legal in Groovy: buy best of stocks, which is short for buy(best).of(stocks). Chapter 7 has the full description of these so-called command chains.

 	Where Java demands type declarations, they either become optional in Groovy or can be replaced by def to indicate that you don’t care about the type.

 	Groovy makes type casts optional.

 	You don’t need to add the throws clause to your method signature when your method potentially throws a checked exception.

 This section has given you enough background to make it easier to concentrate on each individual feature in turn. We’re still going through them quickly rather than in great detail, but you should be able to recognize the general look and feel of the code. With that under your belt, we can look at the principal tool you’re going to use to test each new piece of the language: assertions.

2.2. Probing the language with assertions

 If you’ve worked with Java 1.4 or later, you’re probably familiar with assertions. They test whether everything is right with the world as far as your program is concerned. Usually they live in your code to make sure you don’t have any inconsistencies in your logic, for performing tasks such as checking preconditions at the beginning and postconditions and invariants at the end of a method, or for ensuring that method arguments are valid. In this book we’ll use them to demonstrate the features of Groovy. Just as in test-driven development, where the tests are regarded as the ultimate demonstration of what a unit of code should do, the assertions in this book demonstrate the results of executing particular pieces of Groovy code. We use assertions to show not only what code can be run, but the result of running the code. This section will prepare you for reading the code examples in the rest of the book, explaining how assertions work in Groovy and how you’ll use them.

 Although assertions may seem like an odd place to start learning a language, they’re our first port of call because you won’t understand any of the examples until you understand assertions. Groovy provides assertions with the assert keyword. The following listing makes some simple assertions.

 Listing 2.1. Using assertions

 assert(true)
assert 1 == 1
def x = 1
assert x == 1
def y = 1; assert y == 1

 Let’s go through the lines one by one.

 assert(true)

 This introduces the assert keyword and shows that you need to provide an expression that you’re asserting will be true.[1]

 1 Groovy’s meaning of truth encompasses more than a simple Boolean value, as you’ll see in “The Groovy truth” in chapter 6.

 assert 1 == 1

 This demonstrates that assert can take full expressions, not just literals or simple variables. Unsurprisingly, 1 equals 1. Exactly like Ruby or Scala but unlike Java, the == operator denotes equality, not identity. The parentheses were left out as well, because they’re optional for top-level statements.

 def x = 1
assert x == 1

 This defines the variable x, assigns it the numeric value 1, and uses it inside the asserted expression. Note that nothing was revealed about the type of x. The def keyword means “dynamically typed.”

 def y = 1; assert y == 1

 This is the typical style when asserting the program status for the current line. It uses two statements on the same line, separated by a semicolon. The semicolon is Groovy’s statement terminator. As you’ve seen before, it’s optional when the statement ends with the current line.

 What happens if an assertion fails? Let’s see![2] For example:

 2 This code is one of the few listings that isn’t executed as part of the book production.

 [image:]

 prints to the console (yes, really!):

 [image:]

 Pause and think about the language features required to provide such a sophisticated error message. You’ll see more examples of Groovy’s “power assert” feature when we discuss unit testing in chapter 17.

 Assertions serve multiple purposes:

 	They can be used to reveal the current program state, as they’re used in the examples in this book. The one-line assertion in the previous example reveals that the variable y now has the value 1.

 	They often make good replacements for line comments, because they reveal assumptions and verify them at the same time. The assertion reveals that, at this point, it’s assumed that y has the value 1. Comments may go out of date without anyone noticing—assertions are always checked for correctness. They’re like tiny unit tests sitting inside the real code.

 	

 Real-life example

 One real-life example of the value of assertions is in your hands right now (or on your screen). This book is constructed such that all listings and the assertions they contain are maintained outside the actual text and linked into the text via file references. With the help of a little Groovy script, all the listings are evaluated before the normal production process even begins. For instance, the assertions in listing 2.1 were evaluated and found to be correct. If an assertion fails, the whole process stops with an error message.

 The fact that you’re reading a production copy of this book means the production process wasn’t stopped and all assertions succeeded. This should give you confidence in the correctness of the Groovy examples provided. For the first edition, we did the same with MS Word using Scriptom (chapter 20) to control MS Word, and AntBuilder (chapter 11) to help with the building side. As we said before, the features of Groovy work best when they’re used together.

 	

 Most of the examples use assertions—one part of the expression will use the feature being described, and another part will be simple enough to understand on its own. If you have difficulty understanding an example, try breaking it up, thinking about the language feature being discussed and what you’d expect the result to be given your description, and then looking at what you’ve said the result will be, as checked at runtime by the assertion. Figure 2.1 breaks up a more complicated assertion into its constituent parts.

 Figure 2.1. A complex assertion, broken up into its constituent parts

 [image:]

 This is an extreme example—you’ll often perform the steps in separate statements and then make the assertion itself short. The principle is the same, however: there’s code that has functionality you’re trying to demonstrate, and there’s code that’s trivial and can be easily understood without knowing the details of the topic at hand.

 In case assertions don’t convince you or you mistrust an asserted expression in this book, you can usually replace it with output to the console. A hypothetical assertion such as

 assert x == 'hey, this is really the content of x'

 can be replaced by

 println x

 which prints the value of x to the console. Throughout the book, we often replace console output with assertions for the sake of having self-checking code. This isn’t a common way of presenting code in books,[3] but we feel it keeps the code and the results closer—and it appeals to our test-driven nature.

 3 This was a genuine innovation in the first edition of this book, which was found so useful by other authors that they copied the concept. We don’t mind. Everything that advances our profession is welcome.

 Assertions have a few more interesting features that can influence your programming style, and we’ll return to them in section 6.2.4 where we’ll cover them in more depth. Now that we’ve explained the tool you’ll be using to put Groovy under the microscope, you can start seeing some of the features in use.

2.3. Groovy at a glance

 Like many languages, Groovy has a language specification that breaks down code into statements, expressions, and so on. Learning a language from such a specification tends to be a dry experience and doesn’t take you far toward the goal of writing useful Groovy code in the shortest possible amount of time. Instead, we’ll present simple examples of typical Groovy constructs that make up most Groovy code: classes, scripts, beans, strings, regular expressions, numbers, lists, maps, ranges, closures, loops, and conditionals.

 Take this section as a broad but shallow overview. It won’t answer all your questions, but it’ll allow you to start experimenting with Groovy on your own. We encourage you to play with the language. If you wonder what would happen if you were to tweak the code in a certain way, try it! You learn best by experience. We promise to give detailed explanations in later, in-depth chapters.

 2.3.1. Declaring classes

 Classes are the cornerstone of object-oriented programming (OOP), because they define the blueprints from which objects are created.

 Listing 2.2 contains a simple Groovy class named Book, which has an instance variable title, a constructor that sets the title, and a getter method for the title. Note that everything looks much like Java, except there’s no accessibility modifier: methods are public by default.

 Listing 2.2. A simple Book class

 class Book {
 private String title
 Book (String theTitle) {
 title = theTitle
 }
 String getTitle(){
 return title
 }
}

 Please save this code in a file named Book.groovy, because we’ll refer to it in the next section.

 The code isn’t surprising. Class declarations look much the same in most object-oriented languages. The details and nuts and bolts of class declarations will be explained in chapter 7.

 2.3.2. Using scripts

 Scripts are text files, typically with an extension of *.groovy, that can be executed from the command shell like this:

 > groovy myfile.groovy

 Note that this is very different from Java. In Groovy, you’re executing the source code! An ordinary Java class is generated for you and executed behind the scenes. But from a user’s perspective, it looks like you’re executing plain Groovy source code.[4]

 4 Any Groovy code can be executed this way as long as it can be run; that is, it’s either a script, a class with a main method, a Runnable, or a Groovy or JUnit test case.

 Scripts contain Groovy statements without an enclosing class declaration. Scripts can even contain method definitions outside of class definitions to better structure the code. You’ll learn more about scripts in chapter 7. Until then, take them for granted.

 Listing 2.3 shows how easy it is to use the Book class in a script. You create a new instance and call the getter method on the object by using Java’s dot syntax. Then you define a method to read the title backward.

 Listing 2.3. Using the Book class from a script

 Book gina = new Book('Groovy in Action')

assert gina.getTitle() == 'Groovy in Action'
assert getTitleBackwards(gina) == 'noitcA ni yvoorG'

String getTitleBackwards(book) {
 String title = book.getTitle()
 return title.reverse()
}

 Note how you’re able to invoke the method getTitleBackwards before it’s declared. Behind this observation is a fundamental difference between Groovy and scripting languages such as Ruby. A Groovy script is fully constructed—that is, parsed, compiled, and generated—before execution. Section 7.2 has more details about this.

 Another important observation is that you can use Book objects without explicitly compiling the Book class! The only prerequisite for using the Book class is that Book.groovy must reside on the classpath. The Groovy runtime system will find the file, compile it transparently into a class, and yield a new Book object. Groovy combines the ease of scripting with the merits of object orientation.

 This inevitably leads to the question of how to organize larger script-based applications. In Groovy, the preferred way isn’t to mesh numerous script files together, but instead to group reusable components into classes such as Book. Remember that such a class remains fully scriptable; you can modify Groovy code, and the changes are instantly available without further action.

 It was pretty simple to write the Book class and the script that used it. Indeed, it’s hard to believe that it can be any simpler—but it can, as you’ll see next.

 2.3.3. GroovyBeans

 JavaBeans are ordinary Java[5] classes that expose properties. What is a property? That’s not easy to explain, because it’s not a single standalone concept. It’s made up from a naming convention. If a class exposes methods with the naming scheme getName() and setName(name), then the concept describes name as a property of that class. The get and set methods are called accessor methods. (Some people make a distinction between accessor and mutator methods, but we don’t.) Boolean properties can use an is prefix instead of get, leading to method names such as isAdult.

 5 This is prior to Java 8 where a new concept of properties as first-class citizens comes bundled with JavaFX 8.

 A GroovyBean is a JavaBean defined in Groovy. In Groovy, working with beans is much easier than in Java. Groovy facilitates working with beans in three ways:

 	Generating the accessor methods

 	Allowing simplified access to all JavaBeans (including GroovyBeans)

 	Simplifying registration of event handlers together with annotations that declare a property as bindable

 The following listing shows how the Book class boils down to a one-liner defining the title property. This results in the accessor methods getTitle() and setTitle(title) being generated.

 Listing 2.4. Defining the BookBean class as a GroovyBean

 [image:]

 We also demonstrate how to access the bean in the standard way with accessor methods, as well as in the simplified way, where property access reads like direct field access.

 Note that listing 2.4 is a fully valid script and can be executed as is, even though it contains a class declaration and additional code. You’ll learn more about this construction in chapter 7.

 Also note that groovyBook.title is not a field access. Instead, it’s a shortcut for the corresponding accessor method. It’d work even if you’d explicitly declared the property longhand with a getTitle() method.

 More information about methods and beans will be given in chapter 7.

 2.3.4. Annotations

 In Groovy, you can define and use annotations just like in Java, which is a distinctive feature among JVM languages. Beyond that, Groovy also uses annotations to mark code structures for special compiler handling. Let’s have a look at one of those annotations that comes with the Groovy distribution: @Immutable.

 A Groovy bean can be marked as immutable, which means that the class becomes final, all its fields become final, and you cannot change its state after construction. Listing 2.5 declares an immutable FixedBean class, calls the constructor in two different ways, and asserts that you have a standard implementation of equals() that supports comparison by content. With the help of a little try-catch, you assert that changing the state isn’t allowed.

 Listing 2.5. Defining the immutable FixedBean and exercising it

 [image:]

 It must be said that proper immutability isn’t easily achieved without such help and the annotation does actually much more than what you see in listing 2.5: it adds a correct hashCode() implementation and enforces defensive copying for access to all properties that aren’t immutable by themselves.

 Immutable types are always helpful for a clean design but they’re indispensable for concurrent programming: an increasingly important topic that we’ll cover in chapter 18.

 The @Immutable annotation is only one of many that can enhance your code with additional characteristics. In the next section we’ll briefly cover the @Grab annotation, in chapter 8 we’ll look at @Category and @Mixin, and in chapter 9 we’ll cover the full range of other annotations that come with the GDK.

 Most Groovy annotations, like @Immutable, instruct the compiler to execute an AST transformation. The acronym AST stands for abstract syntax tree, which is a representation of the code that the Groovy parser creates and the Groovy compiler works on to generate the bytecode. In between, AST transformations can modify that AST to sneak in new method implementations or add, delete, or modify any other code structure. This approach is also called compile-time metaprogramming and isn’t limited to the transformations that come with the GDK. You can also provide your own transformations!

 2.3.5. Using grapes

 Before continuing we should cover one of the other annotations that you’ll see in numerous places in the rest of the book. The @Grab annotation is used to explicitly define your external library dependencies within a script. We sometimes use the term grapes as friendly shorthand for our external Groovy library dependencies. In the Java world, you might store your dependent libraries in a lib directory and add that to your classpath and IDE settings, or you might capture that information in an Ivy, Maven, or Gradle build file. Groovy provides an additional alternative that’s very handy for making scripts self-contained. The following listing shows how you might use it.

 Listing 2.6. Grabbing external libraries

 @Grab('commons-lang:commons-lang:2.4')
import org.apache.commons.lang.ClassUtils

class Outer {
 class Inner {}
}

assert !ClassUtils.isInnerClass(Outer)
assert ClassUtils.isInnerClass(Outer.Inner)

 Here the use of the commons lang library is declared. It’s used to make some assertions about two classes, ensuring that one of them is an inner class. At compile time and runtime that library will be downloaded if needed and added to the classpath. More details about @Grab and numerous related annotations can be found in appendix E.

 2.3.6. Handling text

 Just as in Java, character data is mostly handled using the java.lang.String class. But Groovy provides some tweaks to make that easier, with more options for string literals and some helpful operators.

GStrings

 In Groovy, string literals can appear in single or double quotes. The double-quoted version allows the use of placeholders, which are automatically resolved as required. This is a GString, and that’s also the name of the class involved. The following code demonstrates a simple variable expansion, although that’s not all GStrings can do:

 def nick = 'ReGina'
def book = 'Groovy in Action, 2nd ed.'
assert "$nick is $book" == 'ReGina is Groovy in Action, 2nd ed.'

 Chapter 3 provides more information about strings, including more options for GStrings, how to escape special characters, how to span string declarations over multiple lines, and the methods and operators available on strings. As you’d expect, GStrings are pretty neat.

Regular expressions

 If you’re familiar with the concept of regular expressions, you’ll be glad to hear that Groovy supports them at the language level. If this concept is new to you, you can safely skip this section for the moment. You’ll find a full introduction to the topic in chapter 3.

 Groovy makes it easy to declare regular expression patterns, and provides operators for applying them. Figure 2.2 declares a pattern with the slashy // syntax and uses the =~ find operator to match the pattern against a given string. The first example ensures that the string contains a series of digits; the second example replaces every digit with an x.

 Figure 2.2. Regular expression support in Groovy through operators and slashy strings

 [image:]

 Note that replaceAll is defined on java.lang.String and takes two string arguments. It becomes apparent that '12345' is a java.lang.String, as is the expression /\d/.

 Chapter 3 explains how to declare and use regular expressions and goes through the ways to apply them.

 2.3.7. Numbers are objects

 Hardly any program can do without numbers, whether for calculations or (more frequently) for counting and indexing. Groovy numbers have a familiar appearance, but unlike in Java, they’re first-class objects rather than primitive types.

 In Java, you cannot invoke methods on primitive types. If x is of primitive type int, you cannot write x.toString(). On the other hand, if y is an object, you cannot use 2*y.

 In Groovy, both are possible. You can use numbers with numeric operators, and you can also call methods on number instances. For example:

 def x = 1
def y = 2
assert x + y == 3
assert x.plus(y) == 3
assert x instanceof Integer

 The variables x and y are objects of type java.lang.Integer. Thus, you can use the plus method, but you can just as easily use the + operator.

 This is surprising and a major lift to object orientation on the Java platform. Whereas Java has a small but ubiquitous part of the language that isn’t object oriented at all, Groovy makes a point of using objects for everything. You’ll learn more about how Groovy handles numbers in chapter 3.

 2.3.8. Using lists, maps, and ranges

 Many languages, including Java, only have direct support for a single collection type—an array—at the syntax level and have language features that only apply to that type. In practice, other collections are widely used, and there’s no reason why the language should make it harder to use those collections than arrays. Groovy makes collection handling simple, with added support for operators, literals, and extra methods beyond those provided by the Java standard libraries.

Lists

 Java supports indexing arrays with a square bracket syntax, which we’ll call the subscript operator. In Groovy the same syntax can be used with lists—instances of java.util.List—which allows adding and removing elements, changing the size of the list at runtime, and storing items that aren’t necessarily of a uniform type. In addition, Groovy allows lists to be indexed outside their current bounds, which again can change the size of the list. Furthermore, lists can be specified as literals directly in your code.

 The example in figure 2.3 declares a list of Roman numerals and initializes it with the first seven numbers.

 Figure 2.3. An example list where the content for each index is the Roman numeral for that index

 [image:]

 The list is constructed such that each index matches its representation as a Roman numeral. Working with the list looks like you’re working with an array, but in Groovy, the manipulation is more expressive, and the restrictions that apply to arrays are gone:

 [image:]

 Note that there was no list item with index 8 when you assigned a value to it. You indexed the list outside the current bounds. We’ll look at the list datatype in more detail in section 4.2.

Simple maps

 A map is a storage type that associates a key with a value. Maps store and retrieve values by key; lists retrieve them by numeric index.

 Unlike Java, Groovy supports maps at the language level, allowing them to be specified with literals and providing suitable operators to work with them. It does so with a clear and easy syntax. The syntax for maps looks like an array of key–value pairs, where a colon separates keys and values. That’s all it takes.

 The example in figure 2.4 stores descriptions of HTTP[6] return codes in a map.

 6 The server returns these codes with every response. Your browser typically shows the mapped descriptions for codes above 400.

 Figure 2.4. An example map where HTTP return codes map to their respective messages

 [image:]

 You can see the map declaration and initialization, the retrieval of values, and the addition of a new entry. All of this is done with a single method call explicitly appearing in the source code—and even that’s only checking the new size of the map:

 def http = [
 100 : 'CONTINUE',
 200 : 'OK',
 400 : 'BAD REQUEST'
]
assert http[200] == 'OK'
http[500] = 'INTERNAL SERVER ERROR'
assert http.size() == 4

 Note how the syntax is consistent with that used to declare, access, and modify lists. The differences between using maps and lists are minimal, so it’s easy to remember both. This is a good example of the Groovy language designers taking commonly required operations and making programmers’ lives easier by providing a simple and consistent syntax. Section 4.3 gives more information about maps and their rich feature set.

Ranges

 Although ranges don’t appear in the standard Java libraries, most programmers have an intuitive idea of what a range is—effectively a start point and an end point, with an operation to move between the two in discrete steps. Again, Groovy provides literals to support this useful concept, along with other language features such as the for statement, which understands ranges.

 The following code demonstrates the range literal format, along with how to find the size of a range, determine whether it contains a particular value, find its start and end points, and reverse it:

 def x = 1..10
assert x.contains(5)
assert !x.contains(15)
assert x.size() == 10
assert x.from == 1
assert x.to == 10
assert x.reverse() == 10..1

 These examples are limited because we’re only trying to show what ranges do on their own. Ranges are usually used in conjunction with other Groovy features. Over the course of this book, you’ll see a lot of range uses.

 So much for the usual datatypes. We’ll now come to closures, a concept that doesn’t exist in Java, but which Groovy uses extensively.

 2.3.9. Code as objects: closures

 The concept of closures isn’t a new one, but it has usually been associated with functional languages, allowing one piece of code to execute an arbitrary piece of code that has been specified elsewhere.

 In object-oriented languages, the Method Object pattern has often been used to simulate the same kind of behavior by defining types, the sole purpose of which is to implement an appropriate single-method interface. The instances of those types can subsequently be passed as arguments to methods, which then invoke the method on the interface.

 A good example is the java.io.File.list(FilenameFilter) method. The FilenameFilter interface specifies a single method, and its only purpose is to allow the list of files returned from the list method to be filtered while it’s being generated.

 Unfortunately, this approach leads to an unnecessary proliferation of types, and the code involved is often widely separated from the logical point of use. Java uses anonymous inner classes and, since Java 8, lambdas and method references to address these issues. Although similar in function, Groovy closures are much more versatile and powerful when it comes to reaching out to the caller’s scope and putting closures in a dynamic execution context. Groovy allows closures to be specified in a concise, clean, and powerful way, effectively promoting the Method Object pattern to a first-class position in the language.

 Because closures are a new concept to most Java programmers, it may take a little time to adjust. The good news is that the initial steps of using closures are so easy that you hardly notice what’s so new about them. The “aha-wow-cool” effect comes later, when you discover their real power.

 Informally, a closure can be recognized as a list of statements within braces, like any other code block. It optionally has a list of identifiers to name the parameters passed to it, with an -> marking the end of the list.

 It’s easiest to understand closures through examples. Figure 2.5 shows a simple closure that’s passed to the List.each method, called on a list [1, 2, 3].

 Figure 2.5. A simple example of a closure that prints the numbers 1, 2, and 3

 [image:]

 The List.each method takes a single parameter—a closure. It then executes that closure for each of the elements in the list, passing in that element as the argument to the closure. In this example, the main body of the closure is a statement to print whatever is passed to the closure, namely the parameter called entry.

 Let’s consider a slightly more complicated question: If n people are at a party and everyone clinks glasses with everybody else, how many clinks do you hear?[7] Figure 2.6 sketches this question for five people, where each line represents one clink.

 7 In computer terms: What is the maximum number of distinct connections in a dense network of n components?

 Figure 2.6. Five elements and their distinct connections, modeling five people (the circles) at a party clinking glasses with each other (the lines). Here there are 10 clinks.

 [image:]

 To answer this question, you can use Integer’s upto method, which does something for every Integer starting at the current value and going up to a given end value. You apply this method to the problem by imagining people arriving at the party one by one. As people arrive, they clink glasses with everyone who is already present. This way, everyone clinks glasses with everyone else exactly once.

 Listing 2.7 calculates the number of clinks. You keep a running total of the number of clinks, and when each guest arrives, you add the number of people already present (the guest number – 1). Finally, you test the result using Gauss’ formula[8] for this problem—with 100 people, there should be 4,950 clinks.

 8 Johann Carl Friedrich Gauss (1777–1855) was a German mathematician. At the age of seven, his teacher wanted to keep the kids busy by making them sum up the numbers from 1 to 100. Gauss discovered this formula and finished the task correctly and surprisingly quickly. There are differing reports on how the teacher reacted.

 Listing 2.7. Counting all the clinks at a party using a closure

 [image:]

 How does this code relate to Java? In Java, you’d have used a loop like the following code snippet. The class declaration and main method are omitted for the sake of brevity:

 // Java snippet
int totalClinks = 0;
int partyPeople = 100;
for(int guestNumber = 1;
 guestNumber <= partyPeople;
 guestNumber++) {
 int clinksWithGuest = guestNumber-1;
 totalClinks += clinksWithGuest;
}

 Note that guestNumber appears four times in the Java code but only twice in the Groovy version. Don’t dismiss this as a minor thing. The code should explain the programmer’s intention with the simplest possible means, and expressing behavior with two words rather than four is an important simplification.

 Also note that the upto method encapsulates and hides the logic of how to walk over a sequence of integers. That is, this logic appears only one time in the code (in the implementation of upto). Count the equivalent for loops in any Java project, and you’ll see the amount of structural duplication inherent in Java. But while code duplication itself is bad, it’s even more so an indicator for a lack of modularity! Groovy gives you more means to separate your code into its independent concerns such as how to walk a data structure and what to do at each step.

 The example has another subtle twist. The closure updates the totalClinks variable, which is defined in the outer scope. It can do so because it has access to the enclosing scope. That’s pretty tricky to do in Java, even with lambdas in Java 8.[9]

 9 Java pours “syntax vinegar” over such a construct to discourage programmers from using it.

 There’s much more to say about the great concept of closures, and we’ll do so in chapter 5.

 2.3.10. Groovy control structures

 Control structures allow a programming language to control the flow of execution through code. There are simple versions of everyday control structures like if-else, while, switch, and try-catch-finally in Groovy, just like in Java.

 In conditionals, null is treated like false, and so are empty strings, collections, and maps. The for loop has a

 for(i in x) { body }

 notation, where x can be anything that Groovy knows how to iterate through, such as an iterator, an enumeration, a collection, a range, a map—or literally any object, as explained in chapter 6. In Groovy, the for loop is often replaced by iteration methods that take a closure argument. The following listing gives an overview.

 Listing 2.8. Control structures

 [image:]

 [image:]

 The code in listing 2.8 should be self-explanatory. Groovy control structures are reasonably close to Java’s syntax, but we’ll go into more detail in chapter 6.

 That’s it for the initial syntax presentation. You’ve got your feet wet with Groovy and you should have the impression that it’s a nice mix of Java-friendly syntax elements with some new interesting twists.

 Now that you know how to write your first Groovy code, it’s time to explore how it gets executed on the Java platform.

2.4. Groovy’s place in the Java environment

 Behind the fun of Groovy looms the world of Java. We’ll examine how Groovy classes enter the Java environment to start with, how Groovy augments the existing Java class library, and how Groovy gets its groove: a brief explanation of the dynamic nature of Groovy classes.

 2.4.1. My class is your class

 Mi casa es su casa—my home is your home. That’s the Spanish way of expressing hospitality. Groovy and Java are just as generous with each other’s classes. So far, when talking about Groovy and Java, we’ve compared the appearance of the source code. But the connection to Java is much stronger. Behind the scenes, all Groovy code runs inside the JVM, and follows Java’s object model. Regardless of whether you write Groovy classes or scripts, they run as Java classes inside the JVM.

 You can run Groovy classes inside the JVM in two ways:

 	You can use groovyc to compile *.groovy files to Java *.class files, put them on Java’s classpath, and retrieve objects from those classes via the Java classloader.

 	You can work with *.groovy files directly and retrieve objects from those classes via the Groovy classloader. In this case, no *.class files are generated, but rather class objects—that is, instances of java.lang.Class. In other words, when your Groovy code contains the expression new MyClass(), and there’s a MyClass.groovy file, it’ll be parsed, a class of type MyClass will be generated and added to the classloader, and your code will get a new MyClass object as if it had been loaded from a *.class file. (We hope the Groovy programmers will forgive this oversimplification.)

 These two methods of converting *.groovy files into Java classes are illustrated in figure 2.7. Either way, the resulting classes have the same format as classic Java classes. Groovy enhances Java at the source-code level but stays compatible at the bytecode level.

 Figure 2.7. Groovy code can be compiled using groovyc and then loaded with the normal Java classloader, or loaded directly with the Groovy classloader.

 [image:]

 2.4.2. GDK: the Groovy library

 Groovy’s strong connection to Java makes using Java classes from Groovy and vice versa exceptionally easy. Because they’re the same thing, there’s no gap to bridge. In the code examples, every Groovy object is instantly a Java object. Even the term Groovy object is questionable. Both are identical objects, living in the Java runtime.

 This has an enormous benefit for Java programmers, who can fully leverage their knowledge of the Java libraries. Consider a sample string in Groovy:

 'Hello World!'

 Because this is a java.lang.String, Java programmers know that they can use JDK’s String.startsWith method on it:

 if ('Hello World!'.startsWith('Hello')) {
 // Code to execute if the string starts with 'Hello'
}

 The library that comes with Groovy is an extension of the JDK library. It provides some new classes (for example, for easy database access and XML processing), but it also adds functionality to existing JDK classes. This additional functionality is referred to as the GDK,[10] and it provides significant benefits in consistency, power, and expressiveness.

 10 This is a bit of a misnomer because DK stands for development kit, which is more than just the library; it should also include supportive tools. We’ll use this acronym anyway, because it’s conventional in the Groovy community.

 	

 Still have to write Java code? Don’t get too comfortable...

 Going back to plain Java and the JDK after writing Groovy with the GDK can often be an unpleasant experience! It’s all too easy to become accustomed not only to the features of Groovy as a language, but also to the benefits it provides in making common tasks simpler within the standard library.

 	

 One example is the size method as used in the GDK. It’s available on everything that’s of some size: strings, arrays, lists, maps, and other collections. Behind the scenes, they’re all JDK classes. This is an improvement over the JDK, where you determine an object’s size in a number of different ways, as listed in table 2.1. We think you’d agree that the GDK solution is more consistent and easier to remember.

 Table 2.1. Ways of determining sizes in the JDK

 	
 Type

 	
 Determine the size in JDK via ...

 	
 Groovy

 	Array

 	length field

 	size() method

 	Array

 	java.lang.reflect.Array.getLength(array)

 	size() method

 	String

 	length() method

 	size() method

 	StringBuffer

 	length() method

 	size() method

 	Collection

 	size() method

 	size() method

 	Map

 	size() method

 	size() method

 	File

 	length() method

 	size() method

 	Matcher

 	groupCount() method

 	size() method

 Groovy can play this trick by funneling all method calls through a device called MetaClass. This allows a dynamic approach to object orientation, only part of which involves adding methods to existing classes. You’ll learn more about MetaClass in the next section.

 When describing the built-in datatypes later in the book, we also mention their most prominent GDK properties. Appendix C contains the complete list.

 To help you understand how Groovy objects can leverage the power of the GDK, we’ll next sketch how Groovy objects come into being.

 2.4.3. Groovy compiler lifecycle

 Although the Java runtime understands compiled Groovy classes without any problem, it doesn’t understand *.groovy source files. More work has to happen behind the scenes if you want to load *.groovy files dynamically at runtime.

 Some relatively advanced Java knowledge is required to fully appreciate this section. If you don’t already know a bit about classloaders, you may want to skip to the chapter summary and assume that magic pixies transform Groovy source code into Java bytecode at the right time. You won’t have as full an understanding of what’s going on, but you can keep learning Groovy without losing sleep. Alternatively, you can keep reading and not worry when things get tricky.

 Groovy syntax is line-oriented, but the execution of Groovy code is not. Unlike other scripting languages, Groovy code isn’t processed line-by-line in the sense that each line is interpreted separately.

 Instead, Groovy code is fully parsed, and a class is generated from the information that the parser has built. The generated class is the binding device between Groovy and Java, and Groovy classes are generated such that their format is identical to Java bytecode.

 Inside the Java runtime, classes are managed by a classloader. When a Java classloader is asked for a certain class, it usually loads the class from a *.class file, stores it in a cache, and returns it. Because a Groovy-generated class is identical to a Java class, it can also be managed by a classloader with the same behavior. The difference is that the Groovy classloader can also load classes from *.groovy files (and do parsing and class generation before putting it in the cache).

 Groovy can at runtime read *.groovy files as if they were *.class files. The class generation can also be done before runtime with the groovyc compiler. The compiler simply takes *.groovy files and transforms them into *.class files using the same parsing and class-generation mechanics.

Groovy class generation at work

 Suppose you have a Groovy script stored in a file named MyScript.groovy, and you run it via groovy MyScript.groovy. The following are the class-generation steps, as shown in figure 2.8:

 1. The file MyScript.groovy is fed into the Groovy parser.

 2. The parser generates an AST that fully represents all the code in the file.

 3. The Groovy class generator takes the AST and generates Java bytecode from it. Depending on the file content, this can result in multiple classes. Classes are now available through the Groovy classloader.

 4. The Java runtime is invoked in a manner equivalent to running java MyScript.

 Figure 2.8. Flowchart of the Groovy bytecode generation process when executed in the runtime environment or compiled into *.class files. Different options for executing Groovy code involve different targets for the bytecode produced, but the parser and class generator are the same in each case.

 [image:]

 Figure 2.8 also shows a second variant, when groovyc is used instead of groovy. This time, the classes are written into *.class files. Both variants use the same class-generation mechanism.

 All this is handled behind the scenes and makes working with Groovy feel like it’s an interpreted language, which it isn’t. Classes are always fully constructed before runtime and don’t change while running.[11]

 11 This doesn’t preclude replacing a class at runtime, when the *.groovy file changes.

 Given this description, you might legitimately ask how Groovy can be called a dynamic language if all Groovy code lives in the static Java class format. Groovy performs class construction and method invocation in a particularly clever way, as you’ll see.

Groovy is dynamic

 What makes dynamic languages so powerful is their dynamic method dispatch. Allow yourself some time to let this sink in. It’s not the dynamic typing that makes a dynamic language dynamic. It’s the dynamic method dispatch.

 In Grails, for example, you see statements like Album.findByArtist('Oscar Peterson') but the Album class has no such method! Neither has any superclass. No class has such a method! The trick is that method calls are funneled through an object called a MetaClass, which in this case recognizes that there’s no corresponding method in the bytecode of Album and therefore relays the call to its missingMethod handler. This knows about the naming convention of Grails’ dynamic finder methods and fetches your favorite albums from the database.

 But because Groovy is compiled to regular Java bytecode, how is the MetaClass called? Well, the bytecode that the Groovy class generator produces is necessarily different from what the Java compiler would generate—not in format but in content. Suppose a Groovy file contains a statement like foo(). Groovy doesn’t generate bytecode that reflects this method call directly, but does something like this:[12]

 12 The actual implementation involves a few more redirections.

 getMetaClass().invokeMethod(this, "foo", EMPTY_PARAMS_ARRAY)

 That way, method calls are redirected through the object’s MetaClass. This MetaClass can now do tricks with method invocations such as intercepting, redirecting, adding/removing methods at runtime, and so on. This principle applies to all calls from Groovy code, regardless of whether the methods are in other Groovy objects or are in Java objects. Remember: there’s no difference.

 	

 Tip

 The technically inclined may have fun running groovyc on some Groovy code and feeding the resulting class files into a decompiler such as Jad. Doing so gives you the Java code equivalent of the bytecode that Groovy generated.

 	

 Calling the MetaClass for every method call seems to imply a considerable performance hit, and, yes, this flexibility comes at the expense of runtime performance. But this hit isn’t quite as bad as you might expect, because the MetaClass implementation comes with some clever caching and shortcut strategies that allow the Java just-in-time compiler and the hot-spot technology to step in. When you need near-Java performance, you can even use @CompileStatic (see chapter 10) and the generated code is no longer calling into the MetaClass.

 A less obvious but perhaps more important consideration is the effect that Groovy’s dynamic nature has on the compiler. Notice that, for example, Album.findByArtist('Oscar Peterson') isn’t known at compile time but the compiler has to compile it anyway. Now if you’ve mistyped the method name by accident, a compiler cannot warn you. In fact, compilers have to accept almost any method call that you throw at them and the code will fail at runtime.[13] But don’t despair! What the compiler cannot do, other tools can. Your IDE can do more than the compiler because it has contextual knowledge of what you’re doing. It’ll warn you on method calls that it cannot resolve and, in the preceding case, it even gives you code completion and refactoring support for Grails’s dynamic finder methods.

 13 That is, the code fails at unit-test time, right?

 A way of using dynamic code is to put the source in a string and ask Groovy to evaluate it. You’ll see how this works in chapter 16. Such a string can be constructed literally or through any kind of logic. Be warned though: you can easily get overwhelmed by the complexity of dynamic code generation.

 Here is an example of concatenating two strings and evaluating the result:

 def code = '1 + '
code += System.getProperty('java.class.version')
assert code == '1 + 51.0'
assert 52.0 == evaluate(code)

 Note that code is an ordinary string! It happens to contain '1 + 51.0' when running the code with Java 7,[14] which is a valid Groovy expression (a script, actually). Instead of having a programmer write this expression (say, println 1 + 51.0), the program puts it together at runtime. The evaluate method finally executes it.

 14 You should expect 49.0 if running using JDK5, 50.0 using JDK6, and 52.0 if using JDK8.

 Wait—didn’t we claim that line-by-line execution isn’t possible, and code has to be fully constructed as a class? How can code be executed like this? The answer is simple. Remember the left path in figure 2.7? Class generation can transparently happen at runtime. The only new feature here is that the class-generation input can also be a string like code rather than the content of a *.groovy file.

 The ability to evaluate an arbitrary string of code is the distinctive feature of scripting languages. That means Groovy can operate as a scripting language although it’s a general-purpose programming language in itself.

Groovy can be static

 Does the dynamic support within Groovy worry you? Do you think it might add performance penalties to your execution? Or do you worry that you might have reduced IDE support when writing your programs? We already told you not to despair because of the excellent tool support available even for Groovy in its most dynamic form. But if you still aren’t reassured, you can force the Groovy compiler to do strict type checking (with elaborate type inference) by using the @TypeChecked annotation for pieces of code that you know to be free of dynamic features. The type checking mechanism is extensible so you can even provide stricter type checking than available in Java if you want.

 To see a glimpse of this feature, examine the following class definition:

 class Universe {
 @groovy.transform.TypeChecked
 int answer() { "forty two" }
}

 If you try to compile this you’ll get a compilation error:

 [Static type checking] - Cannot return value of type java.lang.String
on method returning type int

 Without the @TypeChecked annotation, the code would fail at runtime with a GroovyCastException. Chapter 10 has all the details.

2.5. Summary

 That’s it for our initial overview. Don’t worry if you don’t feel you’ve mastered everything we’ve covered—we’ll go over it all in detail in the upcoming chapters.

OEBPS/OEBPS/Images/01fig04_alt.jpg

OEBPS/OEBPS/Images/01fig05_alt.jpg

OEBPS/OEBPS/Images/01fig02.jpg

OEBPS/OEBPS/Images/01fig03.jpg

OEBPS/OEBPS/Images/common01.jpg

OEBPS/OEBPS/Images/01fig01.jpg

OEBPS/OEBPS/Images/logo.jpg

OEBPS/OEBPS/Images/common02.jpg

OEBPS/OEBPS/Images/01fig06_alt.jpg

OEBPS/OEBPS/Images/01fig07_alt.jpg

OEBPS/OEBPS/Images/021fig01_alt.jpg

OEBPS/OEBPS/Images/ch02ex08-0.jpg

OEBPS/OEBPS/Images/cover.jpg

OEBPS/OEBPS/Images/044fig01_alt.jpg

OEBPS/OEBPS/Images/02fig07.jpg

OEBPS/OEBPS/Images/ch02ex08-1.jpg

OEBPS/OEBPS/Images/02fig08.jpg

OEBPS/OEBPS/Images/02fig06.jpg

OEBPS/OEBPS/Images/02fig05.jpg

OEBPS/OEBPS/Images/033fig02_alt.jpg

OEBPS/OEBPS/Images/033fig01.jpg

OEBPS/OEBPS/Images/037fig01_alt.jpg

OEBPS/OEBPS/Images/02fig01.jpg

OEBPS/OEBPS/Images/02fig02_alt.jpg

OEBPS/OEBPS/Images/038fig01_alt.jpg

OEBPS/OEBPS/Images/041fig01_alt.jpg

OEBPS/OEBPS/Images/02fig03.jpg

OEBPS/OEBPS/Images/02fig04.jpg

