

 [image: cover]

 SOA Governance in Action:
REST and WS-* Architectures

 Jos Dirksen

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 [image:]

	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

	 Development editor: Scott Meyers
Technical proofreader: Niek Palm
 Copyeditor: Linda Recktenwald
 Proofreader: Melody Dolab
 Typesetter: Marija Tudor
 Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Dedication

 To my wife Brigitte, my daughter Sophie, and my parents

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introduction

 Chapter 1. Introducing SOA governance

 Chapter 2. Setting up the SOA governance environment

 Chapter 3. Using a case study to understand SOA governance

 2. Design-time policies

 Chapter 4. Service design and documentation policies

 Chapter 5. Security policies

 Chapter 6. Testing, performance, and the cloud

 3. Runtime policies

 Chapter 7. Using tools for runtime governance

 Chapter 8. Lifecycle support and discovering resources

 Chapter 9. Integrating SOA governance tools with existing tools and technologies

 Appendix Installing tools, libraries, and frameworks

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Introduction

 Chapter 1. Introducing SOA governance

 1.1. What is SOA governance?

 1.1.1. Definition of service-oriented architecture

 1.1.2. Introducing governance

 1.1.3. Defining SOA governance

 1.2. How using SOA governance can help

 1.2.1. Keeping track of how services are used

 1.2.2. Keeping uniformity among services

 1.3. Common pitfalls when introducing SOA governance

 1.4. Requirements of an SOA governance solution

 1.4.1. Creating and maintaining policies

 1.4.2. Applying policies at design time

 1.4.3. Applying policies at runtime

 1.5. Getting started with SOA governance

 1.6. Getting an overview of the available policies

 1.6.1. Design and documentation policies

 1.6.2. Security policies

 1.6.3. Testing and performance policies

 1.7. SOA governance and open source

 1.7.1. Where is open source at the moment?

 1.7.2. Open source tools

 1.8. Summary

 Chapter 2. Setting up the SOA governance environment

 2.1. Architecture of the SOA governance environment

 2.1.1. Services architecture

 2.2. Setting up the Eclipse environment

 2.3. Introducing the traffic avoidance example

 2.4. Configuring the general services and database

 2.4.1. The data model used in this service

 2.4.2. Setting up the data access layer

 2.4.3. Setting up the logic layer

 2.5. Checking out and configuring the REST services

 2.5.1. Overview of the REST layer

 2.5.2. Implementation of the REST layer

 2.5.3. Testing the REST layer

 2.6. Checking out and configuring the SOAP services

 2.6.1. Overview of the WS-* layer

 2.6.2. The WSDL-based contract for this service

 2.6.3. Implementation of the WS-* layer

 2.6.4. Testing the WS-* remoting layer

 2.7. Setting up the SOA registry

 2.7.1. Running the SOA registry for the first time

 2.7.2. Registering a service manually in the registry

 2.7.3. Accessing the WSO2 Governance Registry

 2.8. Setting up the BAM application

 2.8.1. Installing BAM tools and checking out the code from SVN

 2.8.2. Attaching an event sender to the service

 2.8.3. Setting up the widget to visualize the statistics

 2.9. Summary

 Chapter 3. Using a case study to understand SOA governance

 3.1. Getting to know OpenGov

 3.1.1. The organizational chart of OpenGov

 3.1.2. The stakeholders of OpenGov

 3.2. Explaining SOA governance using OpenGov products

 3.2.1. GovForms: permit registration

 3.2.2. GovTraffic: the traffic avoidance system

 3.2.3. GovMobile: registering your complaint using mobile devices

 3.2.4. GovPortal: information about city services

 3.2.5. GovData: OpenGov’s open data portal

 3.3. Overview of the available services

 3.4. Defining policies for the OpenGov organization

 3.4.1. Service design and documentation policies

 3.4.2. Security policies

 3.4.3. Performance and testing-related policies

 3.5. Summary

 2. Design-time policies

 Chapter 4. Service design and documentation policies

 4.1. Complying with the self-documenting service policy

 4.1.1. Documenting a REST-based service

 4.1.2. Documenting a WS-* based service

 4.1.3. Adding documentation to the service repository

 4.2. Following existing standards and definitions

 4.2.1. Including an existing XML schema in a WSDL

 4.2.2. Using an existing XML schema in a REST resource

 4.2.3. Using a REST-based search definition

 4.3. Creating a reusable service

 4.3.1. Define the correct level of granularity

 4.3.2. Decoupling the transport layer from the logical layer

 4.3.3. Service discovery

 4.3.4. Versioning, documentation, and using standards

 4.4. How to version services

 4.4.1. Versioning a WS-* based service

 4.4.2. Versioning a REST service

 4.5. Summary

 Chapter 5. Security policies

 5.1. Encrypting a communications channel for sensitive data

 5.1.1. Using HTTPS with Jetty

 5.1.2. Using HTTPS and client-side SSL with Jetty

 5.2. Validating message integrity and non-repudiation

 5.2.1. Applying WS-Security to SOAP messages

 5.2.2. Using HMAC for message integrity and non-repudiation

 5.3. Using a centralized identity system

 5.3.1. Installing the authentication provider

 5.3.2. Configuring the authentication provider

 5.3.3. Creating the authentication façade

 5.3.4. Creating the authentication filter

 5.4. Using OAuth to allow other services to access your service

 Registering a Consumer with the Service Provider

 Get a Request Token from the Service Provider

 Redirecting, Logging in, and Authorizing the Consumer

 Getting an Access Token and Accessing a Protected Resource on the Provider

 Using the Access Token to Access a Protected Resource

 5.5. Reusing existing authorization services

 5.5.1. Configuring the OpenAM entitlement service

 5.5.2. Creating an authorization filter

 5.6. Summary

 Chapter 6. Testing, performance, and the cloud

 6.1. How to test your service

 6.1.1. Logic layer and data layer testing

 6.1.2. Remoting layer testing

 6.1.3. Integration testing

 6.2. Using quality management tools

 6.2.1. Running a maven build for Sonar

 6.3. Developing for the cloud

 6.3.1. Different types of cloud services

 6.3.2. Requirements for the cloud provider

 6.3.3. Creating a service that can run in the Amazon cloud

 6.4. Summary

 3. Runtime policies

 Chapter 7. Using tools for runtime governance

 7.1. Runtime governance

 7.1.1. Gadget

 7.1.2. Gadget server

 7.1.3. Event producer

 7.1.4. Event service

 7.1.5. Event processor

 7.2. Monitor performance and service usage

 7.2.1. Average response time

 7.2.2. Report usage based on service

 7.2.3. Report usage based on location

 7.2.4. Number of requests per time period

 7.3. Security and documentation

 7.3.1. Failed authentication and authorization

 7.3.2. Documentation compliance

 7.4. Summary

 Chapter 8. Lifecycle support and discovering resources

 8.1. Defining the lifecycle of a service

 8.1.1. Standard service lifecycle

 8.1.2. OpenGov service lifecycle

 8.2. Creating a custom view for the policy

 Defining the Policy Format

 Linking the Media Type

 Creating the Logic

 Creating the Pages

 Deploying the Custom Pages

 8.3. Defining the lifecycle of a policy

 8.4. Discovery of a service and a policy in the service repository

 8.4.1. Searching the repository from the web application

 8.4.2. Searching the repository from the repository client

 8.5. Visualizing the information from the registry

 8.5.1. Creating a gauge that shows the documentation percentage

 8.5.2. Creating a pie chart that shows the lifecycle stages

 8.6. Summary

 Chapter 9. Integrating SOA governance tools with existing tools and technologies

 9.1. Enterprise integration

 9.1.1. Provisioning a WSDL from the repository

 9.1.2. Provisioning the configuration from the repository

 9.1.3. Sending events from Mule

 9.1.4. Loading the Mule configuration from the repository

 9.1.5. Sending events to Nagios from the Bamos event server

 9.2. BPM engine integration

 9.2.1. Monitoring average task execution

 9.2.2. Monitoring which processes are started

 9.3. Language integration

 9.3.1. C#

 9.3.2. Ruby

 9.3.3. Python

 9.4. What you should remember from this book

 9.5. Summary

 Appendix Installing tools, libraries, and frameworks

 A.1. Java

 A.1.1. Adding JAVA_HOME in Windows

 A.1.2. Adding JAVA_HOME in Linux

 A.2. Maven

 A.3. Eclipse

 A.4. Cassandra

 A.5. WSO2 Governance Registry

 A.6. WSO2 Gadget Server

 A.7. OpenAM

 A.7.1. Downloading and installing Tomcat

 A.7.2. Downloading and installing OpenAM

 A.8. soapUI

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 A few years ago, I wrote a book with a colleague about open source ESBs (Enterprise Service Buses), Open Source ESBs in Action (Manning, 2008). In that book we wrote about using open source tools to integrate applications and expose legacy systems
 as services. In the years that followed, ESBs were seen as one of the cornerstones of developing Service Oriented Architectures
 (SOAs). In 2008, when people talked about SOA, especially in the enterprise world, they meant the traditional SOAP-over-HTTP-based
 services. Everyone was doing this, the big vendors promoted it, and it finally looked like we had a way to create services
 that could be used by other departments and multiple users.

 Over the next couple of years I wrote many services myself and was part of many projects that tried to use SOA concepts to
 create reusable services. What I noticed was that every company and every department had their own standards, tools, technologies,
 and a set of principles they used to determine how a service should be written. For one project we created a RESTful service
 using Scala without writing any documentation; for another project, we meticulously documented each element and operation
 of a SOAP/HTTP-based service. But the goals for both projects were the same: we wanted to create a service that would have
 a long life, would be used by many consumers, and was easy to maintain and possibly extend.

 One thing I know is that developers and architects want to create good services, but what is almost always missing is a solid
 set of rules and standards to follow when developing a service. In our projects we often create a set of coding standards
 that are enforced through an IDE plugin, as well as some coding guidelines and dos and don’ts. While that assures the quality
 of the code, it isn’t enough to create an easy-to-use service. For this you also need a set of rules, a set of principles
 that determines how your client interacts with your service. In other words, it is good to have a set of policies that help
 you define the contract of your service.

 And what happens after a service is in production? I know from experience that measuring who is using a service and garnering
 insight into the business processes using your service can give you valuable information. This information can help you determine
 where to focus your development, where to add resources, and much more.

 What I needed was a form of SOA governance. I wanted a set of policies we could use while creating the service (design-time
 governance) and a way to measure how our services were being used (runtime governance). Most books on SOA governance focus
 on the process, which is also very important, but they often lack practical examples. This book tries to provide you both
 with a set of guidelines for and practical examples of how to apply SOA governance.

 I hope this book will show you that getting started with SOA governance isn’t that hard and that it provides many advantages—and
 that there are plenty of open source tools that can help you take the first steps.

Acknowledgments

 Writing a book is a long and difficult effort. I couldn’t have done this without the support and hard work of many others.
 There are many people I’d like to thank:

	Michael Stephens at Manning who helped me with the initial proposal. Without his help this book wouldn’t have seen the light
 of day.

 	My technical proofreader, Niek Palm, who worked tirelessly during the holiday period to meticulously work through the examples
 and the content. I appreciate that he always spoke his mind, and didn’t always agree with me or with what I’d written.

 	My copyeditor Linda Rechtenwald for her hard work translating my non-native written English to readable text. You wouldn’t
 believe how many times she corrected my errors.

 	Katie Tennant and Melody Dolab for proofreading the book and making my work easier by ensuring that everything was consistent.

 	All the other people at Manning who helped me get this book published. Thanks for believing in this book and helping me all
 along the way.

 	I’d also like to thank my development editors who guided me through the many stages of the book: Scott Meyers, Jeff Bleiel,
 and Dean DeChambeau.

 	Thanks to the following reviewers who read the manuscript at various stages of development. Your valuable and sometimes critical
 comments made this a better book: Alberto Lagna, Andy Verberne, Barry Polley, David Dossot, Hemant Bedekar, Jason Coates,
 Javier Carro, Jeroen Benckhuijsen, Padmavathy Ramesh, Roy Prins, Sander Rossel, Senaka L. Fernando, Tijs Rademakers, and Tray
 Scates.

 	Thanks to the guys at WSO2 for creating such great 100% open source products.

 	Special thanks to Edwin Damen and Jac Speelman at JPoint (my employer), for giving me the time to finish the last couple of
 chapters, instead of sending me out to clients.

 	A final thank-you to my wife who, once again, had to endure many long days and evenings without me while I sat at my laptop.
 And I couldn’t have done this without my daughter who always succeeds in cheering me up when I’m down.

About this Book

 Welcome to SOA Governance in Action. The main goal of this book is to introduce you to SOA governance and provide you with a set of guidelines and policies you
 can use to get started introducing SOA governance to your organization.

 The book is divided into three parts. In the first part you’ll be introduced to the theory behind SOA governance and you’ll
 set up an environment that you can experiment with. In the second and third parts of the book, we look at and discuss various
 concepts you can use to start governing your SOA.

Audience

 This book is intended for software developers and architects who want to better understand SOA governance and use it to create
 great services.

 The focus of this book is on the practical side of SOA governance. It shows you how to apply the principles of SOA governance
 to your own services and organization. There are many great books published that also cover SOA governance, but none that
 focus on the practical side of things.

 Even though this book has many examples using Java, XML, and JSON, you don’t have to be an expert in these technologies to
 benefit from this book. If you’ve got a basic understanding of programming, you’ll be able to read the examples and implement
 them using the technology of your choice.

 Experience with SOA, or with governance, is helpful but isn’t required for this book.

Roadmap

 This book is divided into three parts:

	In the first part of the book, you’ll get an introduction to SOA concepts and governance tools, as well as the environment
 and policies that we’re going to discuss.

 	In the second part, we look at the policies you can use during the development phase.

 	In the last part of the book, we focus on how to work with SOA governance when your services are deployed and running.

The first part consists of the following chapters:

	
Chapter 1 starts with an introduction to SOA Governance. It includes a simple explanation of SOA and an explanation of governance.
 In this chapter you’ll see why SOA Governance is important and what problems SOA governance solves. This chapter also describes
 how open source tools can help you get started with SOA governance.

 	
Chapter 2 shows you how to set up a complete SOA governance environment where you can experiment with the examples from this book.
 This chapter also includes an example of the basic architecture that we’ll use throughout this book for REST and WS-*-based
 services.

 	
Chapter 3 presents a scenario that we’ll use throughout the book—a fictional company that provides a number of applications and services
 to its customers. This company faces a number of problems that we’ll use as input to define a set of policies. In later chapters
 you’ll see how to use various open source tools to comply with these policies.

The second part contains the following chapters:

	
Chapter 4 looks at the policies related to service design and documentation. This chapter will show how you can make your services
 self-documenting and how to correctly version your services.

 	
Chapter 5 stresses the importance of taking security into account during the design phase of a project. This chapter explains how tools
 can help you implement security-related policies such as centralizing authentication and authorization.

 	
Chapter 6 discusses how testing and SOA Governance work together. You’ll see how you can test all the layers from a service using different
 tools and technologies. You’ll also see how you can create a service that can easily run in the cloud. For this last example,
 we’ll use Amazon as the cloud provider.

The last part consists of the following chapters:

	
Chapter 7 shows how you can use the Bamos runtime governance environment to monitor your services in real time. It provides a number
 of examples on how you can visualize key metrics of your service landscape.

 	
Chapter 8 looks at how a service and a policy both have a lifecycle. You’ll be introduced to a standard lifecycle you can use for services
 and for policies. This chapter also shows how the WSO2 registry can help you keep track of all the services and policies used
 in your organization or department.

 	
Chapter 9 discusses how you can integrate the tools and technologies shown in this book with your existing components and services.
 It includes examples to get you started in a number of languages and also shows you how to integrate with ESBs and BPM engines.

The appendix contains installation instructions for the tools used throughout the book. If you work through chapter 2, you’ll see references to the appendix on how to install specific components.

Code conventions and downloads

 All the code in the examples used in this book is presented in a monospaced font like this. This code, except for the code in chapter 9, is written in Java. Even though Java is used for the code samples, all the concepts that are explained also apply to other
 languages. For longer lines of code, a wrapping character may be used to keep the code technically correct while conforming
 to the limitations of a printed page.

 Annotations accompany many of the code listings and numbered cueballs are used if longer explanations are needed. Longer listings
 of code examples appear under clear listing headers; shorter listings appear between lines of text.

 The source code for all of the examples in the book is available for download from the publisher’s website at www.manning.com/SOAGovernanceinAction. You can also download the latest sources from the Google code project. How to get the latest code is explained in the appendix.

Software and hardware requirements

 The examples in this book use various tools and libraries. Each chapter explains which specific tool is used to implement
 a policy or show a concept. The appendix explains all the tools that you will need and how to install them. The easiest way
 to play around and experiment with the examples in this book is by configuring an Eclipse installation. The appendix also
 explains how to install and configure Eclipse to work with the examples from this book.

Author Online

 Purchase of SOA Governance in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/SOAGovernanceinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try ask the author some challenging questions
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of SOA Governance in Action is captioned “A Fisherman.” The illustration is taken from a 19th-century edition of Sylvain Maréchal’s four-volume compendium
 of regional dress customs published in France. Each illustration is finely drawn and colored by hand. The rich variety of
 Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated
 from each other, people spoke different dialects and languages. On the streets or in the countryside, it was easy to identify
 where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Introduction

 In the first part of this book I’ll talk about the theory behind SOA governance and help you set up an environment you can
 use to play around and experiment with the concepts explained in this book. I’ll explain what SOA governance is by looking
 at the following subjects:

	What is SOA and what is governance?

 	What are the advantages and disadvantages of SOA governance?

 	How can tools and open source help in applying SOA governance?

After this introduction we’ll take a look at how you can set up an environment that you can use to experiment with. This environment
 contains all the tools you need for a minimal SOA governance solution. I’ll also show you, based on a complete case study,
 how the various tools and components work together.

 The last subject in this first part deals with the case study that we’ll work with throughout the book. First, I’ll introduce
 an organization with multiple departments that provides a number of applications to its customers. Based on this case study,
 we’ll arrive at a set of policies that are important for this organization. In the rest of the book I’ll show you how you
 can use various tools and techniques to implement services that comply with these policies.

Chapter 1. Introducing SOA governance

 This chapter covers

	The core concepts of SOA governance

 	Why SOA governance is important

 	What roles tooling and open source play in SOA governance

 	How SOA governance can be applied on the organization level

Service-oriented architecture, or SOA, governance involves the process of creating a set of guidelines with which your services
 need to comply. When you apply good SOA governance practices, you can create high-quality services that can be easily used
 by your consumers and that behave exactly as expected. With SOA governance it’s easier to create new services, upgrade existing
 ones, and monitor the customer and business use of your services.

 When people first hear about SOA governance, they often think of large organizations, heavy processes, and lots of paperwork
 that pretty much prevents you, as a developer, from getting any work done. If you’ve read any of the books that have SOA governance in the title, this view will be somewhat confirmed. SOA governance, especially the governance part, sounds heavy and restrictive, and this can quickly scare people. But don’t worry; as you’ll see in this book, applying
 SOA governance principles is easy and not so different from the normal way you design or monitor the services you’ve created.

 Governance isn’t something exclusive to IT, as you’ll see in this chapter. It’s applied throughout the industry. Let me give
 you an example of what happens in the aviation industry. In this industry governance is the most important way to make sure
 that airplanes are safe and don’t drop out of the sky on a regular basis. In the aviation industry everything from construction,
 to maintenance, to flight monitoring happens under the strictest regulations. Every screw and bolt needs to be accounted for,
 and even the smallest component of the plane is validated and exhaustively tested before it can be used. For this the industry
 uses a strict set of governance guidelines to control and validate that the aircraft is constructed in a safe and controllable
 manner using materials they know the exact properties of. The services and applications you’re developing most likely won’t
 cause airplane crashes or nuclear explosions, but having a good set of guidelines, or policies as I’ll call them, is important to make sure your services comply with the guidelines defined by your organization and behave
 as you expect.

 When you look at the organizational part of SOA governance, you have to deal with various administrative processes and follow
 regulations, and all this doesn’t have much to do with actual software development. But this is only one part—and an important
 one—of SOA governance. During this phase the policies will be defined that you as a software developer will have to follow.
 Many people think that you only need SOA governance when you have heavy, traditional, SOAP-based architectures, where you
 follow the various web service standards (I’ll call these WS-*). This isn’t the case; regardless of the technology you use
 for creating your SOA, be it REST-based or WS-* based, you need some sort of governance to assure that all your services follow
 the same security, quality, and performance requirements mandated by your organization.

 In this first chapter we’ll dive directly into the details of SOA governance. I’ll explain why SOA governance is important
 and what the benefits are when you have SOA governance in place, and I’ll give an overview of how you can deal with SOA governance
 in a practical and pragmatic manner. In the following chapters I’ll show you how to start using it.

1.1. What is SOA governance?

 To understand what SOA governance is, you first have to look a bit deeper at what SOA is and what governance is. We’ll start
 with the definition of SOA.

 1.1.1. Definition of service-oriented architecture

 Let’s start by looking at what Wikipedia has to say about this. Although not an authority on the subject of SOA, it gives
 a good idea of what a lot of people think about when talking about SOA.

	

Definition

 “Service-oriented architecture (SOA) is a flexible set of design principles used during the phases of systems development
 and integration in computing. A system based on a SOA architecture will provide a loosely-coupled suite of services that can
 be used within multiple separate systems from several business domains.”

 Wikipedia: http://en.wikipedia.org/wiki/Service-oriented_architecture

	

What you see in this quote is that it focuses on only the technical aspect of SOA; it talks about service design principles,
 systems development, and integration. Although this is an important part of SOA, there’s more to it. When we talk about SOA
 we should look at it from a couple of different angles (including the technical angle). To really define SOA we should look
 at more than just the technical aspect. When I talk about SOA, I include the following different views:

	
Business view— This view focuses on the value and advantages SOA offers for the business. This is an important view because ultimately you
 adopt a SOA architecture to improve the way you do business. From this perspective it’s important to be able to quickly create
 new products, adapt to changes in the market, reduce costs, and improve the return on investment (ROI).

 	
IT view— This view shows how SOA can help IT quickly adapt to changes. Using SOA, the IT department can save costs by reusing services
 and can better determine who needs to be billed for the usage. By correctly applying SOA, IT can optimize the way it provides
 services to the business.

 	
Technical view— The final view is the one also referenced in the Wikipedia quote. The services provided to the business need to be designed
 following a set of SOA best practices. There needs to be a solid technical architecture from which services can be provided, and standards
 need to be defined and followed.

In figure 1.1, you see a simple use case where an organization wants to make it easy for its customers to request access to a specific
 service for which they need an API key.

 Figure 1.1. The various views of SOA combine to provide a product to a customer.

 [image:]

 You can compare this with the process you have to go through to get an API key for the services Google provides. The business
 point of view here is that the business wants to provide this functionality to its users to get as many users as possible.
 More users means more custom mashups, and in the case of Google, ultimately more advertisement revenue. From the IT point
 of view, the department wants to provide a simple set of reusable services, so that the next time the business wants to make
 some small changes or to provide another product to their customers, they can do so as quickly and efficiently as possible.
 And finally, from a technical viewpoint, for this scenario you need to provide the actual implementation of the services provided.
 And you want to do this following best practices and standards.

	

 SOA != WS-* + SOAP + UDDI + WSDLs

 As you’ve probably read from the table of contents or the introduction to this chapter, when I talk about SOA or services
 in general in this book, I don’t necessarily mean the traditional web services stack. Even though SOA is often equated with
 using the standards-based WS-* stack, this is only one possible solution. When you look at what’s currently deployed in the
 enterprise, you mostly see the traditional WS-* approach. In the Web 2.0 space, to give it a name, you see the opposite. When
 web services first became popular, you saw a rise of public APIs based on SOAP, WSDLs, and XML. The last couple of years,
 though (especially in the public space), these types of services have pretty much all disappeared or have been replaced with
 REST-based services. A similar trend is going on in the enterprise space. It’s not as drastic as on the internet, but in the
 enterprise the value of a REST architecture has been accepted. We’re now slowly moving to a situation where the best solution
 is used for a problem. This doesn’t mean the WS-* stack is going anywhere soon. What you’ll see is these two architectural
 types running side by side. In this book we’ll look at both WS-* and REST and show how governance can be applied to these
 kinds of services.

	

Before looking a bit deeper at the governance part, I’ll quickly summarize what the advantages are that can be gained by correctly
 applying SOA. The following list shows some of the advantages SOA offers.

Advantages of SOA

	
Business agility/reduced time to market— This is one of the main advantages a company hopes to achieve when applying SOA principles. With more agility a company can
 better respond to changes in the market and quickly launch new products and services. Note that this doesn’t only apply to
 internal applications and services; with all the REST and cloud services available today, it’s much easier for businesses
 to quickly create products and reuse functionality.

 	
Reduced costs— This is one of the other main business reasons. When everything was going well, for instance, during the dot-com boom, money
 wasn’t that hot an issue. Technology companies and IT departments received all the funding they wanted, whether the business,
 or the venture capitalists, really knew what to expect. With SOA, businesses want to reduce costs by reuse, standards-based
 development, and a clear view of what services are available and the functionality they provide.

 	
Improved reuse of services— If the services are better defined, and a clear inventory of the services is kept, it’s much easier to start reusing existing
 services. This is once again an example of where SOA is not just about internal services but also about reusing existing services
 on the web. In this last category you can think about the cloud-based services provided by Amazon, Microsoft’s Azure platform,
 and Salesforce. A nice overview of available services can be found at http://www.programmableweb.com/.

 	
Improved software quality— A SOA contains a set of defined standards and best practices. It tells you how to build services, what to do, and what not
 to do. This will lead to a higher quality of software. Another advantage is that because you’re reusing existing services
 you don’t have to reinvent the wheel every time, assuming the service you’re reusing is being well maintained.

 	
Better interoperability— Whether you’re building a REST-based service or a WS-* based service, in both cases you have a well-defined contract, based
 on standards to help you in the interoperability area.

Now that we’ve looked a bit at what SOA is, let’s look at the governance part of the concept.

 1.1.2. Introducing governance

 Most people have probably heard the term governance in one way or the other. Usually when people talk about governance they mean corporate governance. Corporate governance defines
 a set of rules, laws, policies, and regulations that affect how a corporation should be run. Corporate governance should make
 sure that corporations are run correctly, efficiently, and responsibly. Well-executed corporate governance makes sure that
 all the stakeholders in a corporation are represented properly.

Corporate Governance

 When you look back at the last couple of years, you’ve seen a lot of things go wrong in this area. The crisis in the financial
 market, various stock market scandals, and large corporations going bankrupt are all examples. This, however, doesn’t mean
 corporate governance has failed; what this means is that even though you can define all the processes, regulations, and laws,
 you still need some way to enforce and control the policies in place.

IT Governance

 Another area where governance has become more important the last decade or so is in the area of IT governance. During the
 big dot-com bubble and the Y2K problems, IT spending went through the roof. It was hard for the business to see where the
 money was going and what IT was doing. The goal of IT governance is to minimize the risks of IT projects and make sure that
 IT provides actual business value. If you consider that, depending on who you believe, almost two-thirds of all IT projects
 fail, you’ll understand the need for a good governance body. A more reasonable percentage was given by Standish Group International
 and is shown in figure 1.2.

 Figure 1.2. Failed projects in 1995, 2004, 2006, and 2009

 [image:]

	

 The Enron scandal

 One of the main reasons governance has become an important part of how a business operates is because of the scandals at the
 beginning of the last decade. The most prominent was the Enron scandal. Enron, which was an energy corporation from Houston,
 at its peak had a value of $111 billion; a year later it filed for bankruptcy. In the nineties the energy market in California
 was deregulated, and Enron quickly became one of the largest energy companies in the United States. But in 2001 investigations
 were initiated to look into the financial position of Enron, and all kinds of fraudulent practices were discovered. For instance,
 Enron stored its debts in foreign accounts and used its political influence to raise the price of energy. To makes matters
 even worse, high-ranking Enron executives sold most of their stock when the shares were at $90, the highest the shares reached.
 They did this because they knew Enron was accruing massive losses. On the other hand, the public was encouraged to buy Enron
 stock, which within a few months dropped to 30 cents per share. The Enron executives were charged with bank fraud, securities
 fraud, wire fraud, money laundering, conspiracy, and insider trading. As a result of the Enron scandal, the federal government
 passed the Sarbanes-Oxley act (SOX for short), which forces companies to follow a set of policies with regard to reporting
 information to their investors and mandates that companies have strict internal financial control mechanisms in place.

	

	

 IT project failures

 In the previous sidebar I used Enron as an example of why governance within a company is needed. IT projects also have a tendency
 to go seriously wrong if there isn’t a good governance or control mechanism in place. One of the most talked-about examples
 is the Denver International Airport’s automated baggage system. This baggage system, created for the new airport, was designed
 to route all the passenger’s bags to and from aircraft without human intervention. Even though this system was eventually
 completed ($55 million over budget) it didn’t work. The carts that were used to automatically transfer the bags couldn’t cope
 with sharp corners, sensors lost track of where bags were in the system, and more problems were present in the system. All
 this caused the Denver airport to open 16 months late so that the system could be fixed and added a total of $560 million
 to the cost of the airport. After a couple of years, though, the system was abandoned completely. Another example is the automated
 fulfillment system developed for Sainsbury’s, a British supermarket. Sainsbury’s wanted a new system for its main distribution
 center. This barcode-based system was designed to save a huge amount of money and increase efficiency because a lot of human
 tasks could be automated. In the end though, the system, installed in 2003, failed because of apparent barcode-reading errors.
 After two years of bug fixing, Sainsbury’s wrote that the system worked as intended. In 2007, however, the complete system
 was scrapped. Total write off: £150 million.

	

If you ever need to set up IT governance, there are a number of frameworks that can guide you. I’ve listed a few of them in
 table 1.1 and provided links to additional information.

 Table 1.1. IT governance frameworks

	
 Name

 	
 Description

	ITIL
 	The Information Technology Infrastructure Library defines a set of best practices and concepts you can use to set up the IT
 governance processes within your organization. For instance, it defines best practices for security management, ICT infrastructure
 management, software asset management, and much more.
 More information can be found on the official ITIL website: http://www.itil-officialsite.com/home/home.asp.

	CMM
 	The Capability Maturity Model defines the level of maturity an organization is on with regard to software development. It
 defines five levels, where on level one (called initial) software development is done without any process and control and on level five (called optimizing) the software development process is already mature and only small parts can be optimized. Although it’s not specifically
 an IT governance framework, you can use CMM to measure the maturity of your current governance-related processes and best
 practices.
 Information on CMM can be found at http://www.sei.cmu.edu/cmmi/start/.

	COBIT
 	Control Objectives for Information and Related Technology is a framework that can help you set up IT governance for your organization.
 It provides tools, models, and methodologies for this. More information on COBIT can be found at the official COBIT website:
 http://www.isaca.org/Knowledge-Center/COBIT/Pages/Overview.aspx.

What you see in both corporate governance and IT governance is that governance will fail if not all the stakeholders are involved
 with the critical decision making. That’s the main reason why scandals such as Enron happen and why so many IT projects go
 wrong.

 1.1.3. Defining SOA governance

 The goal of applying governance to SOA is to get the most out of your SOA. You do this by listening to the stakeholders and,
 based on that information, defining a number of policies.

 This requires taking the following steps:

 1. Define the policies you want to apply.

 2. Apply these policies during design time.

 3. Monitor and enforce the policies during runtime.

 It’s important to know that SOA governance should be applied as an iterative approach. When you’ve executed these steps, you
 aren’t finished. Based on the information you learn from step 3 and other inputs, you might want to adjust the policies that
 you’ve defined.

 Let’s look a bit closer at the first item on the list.

Define the Policies you Want to Apply

 This step is mostly an organizational step where you get all the stakeholders together (for instance, in a SOA governance
 board) and, based on the strategy and goals of the company, coordinate and control the various SOA efforts. The organizational
 part of SOA, which is the subject here, is an important part of SOA governance. If there’s no backing from your stakeholders,
 it’s hard to apply SOA governance effectively and define the correct policies to implement and enforce. This means that besides
 the technical aspect of applying the policies you define, you also need to take into account the roles the process and the
 people play in regard to SOA governance. These concepts are sometimes called the three Ps: people, processes, and policies.

	
People— To effectively apply SOA governance you need to know who the business owners of your services are. Who is using your services,
 why are your services being used, and who is technically responsible for keeping your services up and running?

 	
Processes— What processes are in place to define your policies? Do you have life-cycle processes in place for your services? What business
 processes depend on your services? Is there a process in place to determine whether your services implement the defined policies?

 	
Policies— What policies are defined for your service, and how are they applied during design and runtime?

A number of books have been written on these specific topics that dive into the details of the process and people parts of
 SOA governance. This book focuses on the practical approach of SOA governance. I do look at the lifecycle of a service and
 the lifecycle of a policy, but I won’t dive into the details of the processes and people aspects.

 When the policies have been defined, you can look at how you apply those during design time. For instance, let’s assume your
 organization has defined the following policy regarding the documentation of your services:

 “All the services that are provided to external clients must have documentation explaining all the service operations. This
 documentation must explain what the operation does, must explain all the arguments the operation takes, and must describe
 the results of the operation. Furthermore, if there’s a logical sequence in which operations need to be called, this flow
 should be described as well.”

	

 What’s a policy?

 In this book I’ll often talk about policies. When I talk about a policy, I mean a policy as defined by OASIS in its SOA Reference
 Model (you can find more on this model here: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm). You can read the complete definition if you follow this link, but I’ll summarize the most important parts here. A policy
 consists of three parts: the policy assertion, the policy owner, and policy enforcement. The assertion of a policy could be,
 for instance, “All the messages are encrypted.” This assertion can be measured; it’s either true or false. The second part
 of a policy is its owner. In the previous example, a service consumer can make this assertion and enforce it independent of
 the provider. Finally, a policy may be enforced; this can be done technically, but it can also be done through reviews.

	

In the second section of the book I’ll elaborate on specific policies regarding documentation, but for now this small summary
 will suffice.

Apply these Policies During Design Time

 During design time you have to take these policies into account and provide an adequate design. Let’s look back at the aviation
 example from the introduction to this chapter. Design-time policies also apply to the aviation industry. When an airplane
 is being designed, it has to comply with all different kinds of government legislation and safety protocols. For instance,
 it must have multiple backups for the primary system, it should emit only so much CO2, and it must be able to land on just two engines.

 Let’s assume you’re working at the IT department of your hometown and you’re asked to create a service that allows the clients
 to retrieve a list of all the provided building permits for a specific area. Because this is a public service you decide to
 use a REST-based service for this (the technical type of service to provide in a specific scenario could also be a specific
 policy). Now you need to make sure you can fill in the requirements of the policy for this service. An example of the supplied
 documentation could be the following (which could be provided on the city’s website as a simple HTML document):

 Name: City of Seaford: Building Permits service.
Description: This document describes the operations provided by the City of
 Seaford to its residents. This service can be used to retrieve
 information about the currently approved building permits for a specific
 region within the city limits.
URI: {serviceURI}/permits?postalCode=?{postalCode}&range={range}
Method: GET
Example: http://api.seaford.org/services/public/permits?postalCode=90210
 [image:] &range=300
Description: This URI can be used to find a set of permits that match the
 provided search criteria.
Arguments: {postalCode} the postal code that serves as the center of the
 search region. If no postal code, or a postal code outside the city, is
 provided, this search will yield no results. {range} the range in yards
 to search for. If a negative range is used no results will be returned.
 If no range is provided, the search will default to a one-mile radius.
Result: The result of this operation will be a list of permit resources. The
 media type of this resource is application/vnd.seaford.org.permit+xml.
Links: In the returned list of permits you'll find a number of links to
 resources. These possible links are described below.
Self: Points to the permit resource itself. This resource is of the type
 application/vnd.seaford.org.permit+xml.
Location: Points to the exact location of this permit. This resource is of
 the type application/vnd.seaford.org.location+xml.
Owner: Points to the owner of the permit. This resource is of the type
 application/vnd.seaford.org.permit.owner+xml.
Status: Shows the current status of this permit. This resource is of the type
 application/vnd.seaford.org.permit.status+xml.

 If you had decided to do this service as a WS-* based service, you would have annotated the WSDL with the correct information
 on the provided operations. You can find more on this subject starting in chapter 4.

Monitor and Enforce the Policies During Runtime

 The third part of SOA governance deals with enforcing and checking the policies at runtime. If you just spend time defining
 policies but have no means of checking whether they’re followed, it’s little use defining the policies in the first place.
 For this you need a mechanism to check whether the policies you defined are followed. For an airplane, you want to measure
 the fuel consumption to see whether it’s within defined parameters, to check whether the backup systems are functioning, and
 so on.

 To make it clearer, we’ll have a quick look at a simple security policy: “All calls to the publicly provided services should
 be made over a secure channel.”

 This is a simple security policy, and you’ll probably know how to comply with this service. If you look back at the previous
 service we discussed, the service providing information on permits, you’ll see that this service should comply with the policy
 you defined. At design time you don’t have to worry about this policy, whether you’re running securely or not; your service
 interface and implementation don’t have to comply with this policy. This is a policy you have to enforce at runtime. Following this particular policy isn’t that hard. If you can force all the calls to
 your service to be done over HTTPS, you’ll comply with this policy. What you can see in figure 1.3 is that by using Apache as a filter, you can make sure all calls are done over HTTPS.

 Figure 1.3. A basic implementation showing how you can make sure all the calls to the publicly provided service are done over a secure
 channel

 [image:]

 You could also configure Apache in such a way that calls made over normal HTTP are redirected to HTTPS, making sure you comply
 with the requirements set out by the policy.

OEBPS/01fig03.jpg
Apache webserver

Service container

OEBPS/01fig02.jpg
Percentage

2004

2006

2009

OEBPS/arrow.jpg

OEBPS/m.jpg

OEBPS/01fig01_alt.jpg
Customers

I

L

(" Provide API "\
access)

Register
customer

APl senvice)

CRM system hey
generator

—_— e)

Business service provided to
the customer

Process that implements the
business service

Technical services that are
used in the process steps

Applications provide the
technical services

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/cover.jpg
Jos Dirksen

L | ETYTIn

