

 inside front cover

 [image:]

 [image:]

 Spring Microservices in Action

 Second Edition

 John Carnell and Illary Huaylupo Sánchez

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Lesley Trites

 	
 Technical development editor:

 	
 Robert Wenner

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Deirdre Hiam

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Stephan Pirnbaum

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617296956

 dedication

 I dedicate this book to all women who are currently pursuing STEM careers.

 With hard work, everything is possible.

brief contents

 1 Welcome to the cloud, Spring

 2 Exploring the microservices world with Spring Cloud

 3 Building microservices with Spring Boot

 4 Welcome to Docker

 5 Controlling your configuration with the Spring Cloud Configuration Server

 6 On service discovery

 7 When bad things happen: Resiliency patterns with Spring Cloud and Resilience4j

 8 Service routing with Spring Cloud Gateway

 9 Securing your microservices

 10 Event-driven architecture with Spring Cloud Stream

 11 Distributed tracing with Spring Cloud Sleuth and Zipkin

 12 Deploying your microservices

 appendix A. Microservices architecture best practices

 appendix B. OAuth2 grant types

 appendix C. Monitoring your microservices

contents

 preface

 acknowledgments

 about this book

 about the authors

 About the cover illustration

 1 Welcome to the cloud, Spring

 1.1 The evolution towards a microservices architecture

 N-tier architecture

 What’s a monolithic architecture?

 What’s a microservice?

 Why change the way we build applications?

 1.2 Microservices with Spring

 1.3 What are we building?

 1.4 What is this book about?

 What you’ll learn in this book

 Why is this book relevant to you?

 1.5 Cloud and microservice-based applications

 Building a microservice with Spring Boot

 What exactly is cloud computing?

 Why the cloud and microservices?

 1.6 Microservices are more than writing the code

 1.7 Core microservice development pattern

 1.8 Microservice routing patterns

 1.9 Microservice client resiliency

 1.10 Microservice security patterns

 1.11 Microservice logging and tracing patterns

 1.12 Application metrics pattern

 1.13 Microservice build/deployment patterns

 2 Exploring the microservices world with Spring Cloud

 2.1 What is Spring Cloud?

 Spring Cloud Config

 Spring Cloud Service Discovery

 Spring Cloud LoadBalancer and Resilience4j

 Spring Cloud API Gateway

 Spring Cloud Stream

 Spring Cloud Sleuth

 Spring Cloud Security

 2.2 Spring Cloud by example

 2.3 How to build a cloud-native microservice

 Codebase

 Dependencies

 Config

 Backing services

 Build, release, run

 Processes

 Port binding

 Concurrency

 Disposability

 Dev/prod parity

 Logs

 Admin processes

 2.4 Making sure our examples are relevant

 2.5 Building a microservice with Spring Boot and Java

 Setting up the environment

 Getting started with the skeleton project

 Booting your Spring Boot application: Writing the bootstrap class

 3 Building microservices with Spring Boot

 3.1 The architect’s story: Designing the microservice architecture

 Decomposing the business problem

 Establishing service granularity

 Defining the service interfaces

 3.2 When not to use microservices

 Complexity when building distributed systems

 Server or container sprawl

 Application type

 Data transactions and consistency

 3.3 The developer’s tale: Building a microservice with Spring Boot and Java

 Building the doorway into the microservice: The Spring Boot controller

 Adding internationalization into the licensing service

 Implementing Spring HATEOAS to display related links

 3.4 The DevOps story: Building for the rigors of runtime

 Service assembly: Packaging and deploying your microservices

 Service bootstrapping: Managing configuration of your microservices

 Service registration and discovery: How clients communicate with your microservices

 Communicating a microservice’s health

 3.5 Pulling the perspectives together

 4 Welcome to Docker

 4.1 Containers or virtual machines?

 4.2 What is Docker?

 4.3 Dockerfiles

 4.4 Docker Compose

 4.5 Integrating Docker with our microservices

 Building the Docker Image

 Creating Docker images with Spring Boot

 Launching the services with Docker Compose

 5 Controlling your configuration with the Spring Cloud Configuration Server

 5.1 On managing configuration (and complexity)

 Your configuration management architecture

 Implementation choices

 5.2 Building our Spring Cloud Configuration Server

 Setting up the Spring Cloud Config bootstrap class

 Using the Spring Cloud Config Server with a filesystem

 Setting up the configuration files for a service

 5.3 Integrating Spring Cloud Config with a Spring Boot client

 Setting up the licensing service Spring Cloud Config Service dependencies

 Configuring the licensing service to use Spring Cloud Config

 Wiring in a data source using Spring Cloud Config Server

 Directly reading properties using @ConfigurationProperties

 Refreshing your properties using Spring Cloud Config Server

 Using Spring Cloud Configuration Server with Git

 Integrating Vault with the Spring Cloud Config service

 Vault UI

 5.4 Protecting sensitive configuration information

 Setting up a symmetric encryption key

 Encrypting and decrypting a property

 5.5 Closing thoughts

 6 On service discovery

 6.1 Where’s my service?

 6.2 Service discovery in the cloud

 The architecture of service discovery

 Service discovery in action using Spring and Netflix Eureka

 6.3 Building our Spring Eureka service

 6.4 Registering services with Spring Eureka

 Eureka’s REST API

 Eureka dashboard

 6.5 Using service discovery to look up a service

 Looking up service instances with Spring Discovery Client

 Invoking services with a Load Balancer–aware Spring REST template

 Invoking services with Netflix Feign client

 7 When bad things happen: Resiliency patterns with Spring Cloud and Resilience4j

 7.1 What are client-side resiliency patterns?

 Client-side load balancing

 Circuit breaker 180Fallback processing

 Bulkheads

 7.2 Why client resiliency matters

 7.3 Implementing Resilience4j

 7.4 Setting up the licensing service to use Spring Cloud and Resilience4j

 7.5 Implementing a circuit breaker

 Adding the circuit breaker to the organization service

 Customizing the circuit breaker

 7.6 Fallback processing

 7.7 Implementing the bulkhead pattern

 7.8 Implementing the retry pattern

 7.9 Implementing the rate limiter pattern

 7.10 ThreadLocal and Resilience4j

 8 Service routing with Spring Cloud Gateway

 8.1 What is a service gateway?

 8.2 Introducing Spring Cloud Gateway

 Setting up the Spring Boot gateway project

 Configuring the Spring Cloud Gateway to communicate with Eureka

 8.3 Configuring routes in Spring Cloud Gateway

 Automated mapping of routes via service discovery

 Manually mapping routes using service discovery

 Dynamically reloading route configuration

 8.4 The real power of Spring Cloud Gateway: Predicate and Filter Factories

 Built-in Predicate Factories

 Built-in Filter Factories

 Custom filters

 8.5 Building the pre-filter

 8.6 Using the correlation ID in the services

 UserContextFilter: Intercepting the incoming HTTP request

 UserContext: Making the HTTP headers easily accessible to the service

 Custom RestTemplate and UserContextInterceptor: Ensuring that the correlation ID gets propagated

 8.7 Building a post-filter receiving correlation ID

 9 Securing your microservices

 9.1 What is OAuth2?

 9.2 Introduction to Keycloak

 9.3 Starting small: Using Spring and Keycloak to protect a single endpoint

 Adding Keycloak to Docker

 Setting up Keycloak

 Registering a client application

 Configuring O-stock users

 Authenticating our O-stock users

 9.4 Protecting the organization service using Keycloak

 Adding the Spring Security and Keycloak JARs to the individual services

 Configuring the service to point to our Keycloak server

 Defining who and what can access the service

 Propagating the access token

 Parsing a custom field in a JWT

 9.5 Some closing thoughts on microservice security

 Use HTTPS secure sockets layer (SSL) for all service communication

 Use a service gateway to access your microservices

 Zone your services into a public API and private API

 Limit the attack surface of your microservices by locking down unneeded network ports

 10 Event-driven architecture with Spring Cloud Stream

 10.1 The case for messaging, EDA, and microservices

 Using a synchronous request-response approach to communicate state change

 Using messaging to communicate state changes between services

 Downsides of a messaging architecture

 10.2 Introducing Spring Cloud Stream

 10.3 Writing a simple message producer and consumer

 Configuring Apache Kafka and Redis in Docker

 Writing the message producer in the organization service

 Writing the message consumer in the licensing service

 Seeing the message service in action

 10.4 A Spring Cloud Stream use case: Distributed caching

 Using Redis to cache lookups

 Defining custom channels

 11 Distributed tracing with Spring Cloud Sleuth and Zipkin

 11.1 Spring Cloud Sleuth and the correlation ID

 Adding Spring Cloud Sleuth to licensing and organization

 Anatomy of a Spring Cloud Sleuth trace

 11.2 Log aggregation and Spring Cloud Sleuth

 A Spring Cloud Sleuth/ELK Stack implementation in action

 Configuring Logback in our services

 Defining and running ELK Stack applications in Docker

 Configuring Kibana

 Searching for Spring Cloud Sleuth trace IDs in Kibana

 Adding the correlation ID to the HTTP response with Spring Cloud Gateway

 11.3 Distributed tracing with Zipkin

 Setting up the Spring Cloud Sleuth and Zipkin dependencies

 Configuring the services to point to Zipkin

 Configuring a Zipkin server

 Setting tracing levels

 Using Zipkin to trace transactions

 Visualizing a more complex transaction

 Capturing messaging traces

 Adding custom spans

 12 Deploying your microservices

 12.1 The architecture of a build/deployment pipeline

 12.2 Setting up O-stock’s core infrastructure in the cloud

 Creating the PostgreSQL database using Amazon RDS

 Creating the Redis cluster in Amazon

 12.3 Beyond the infrastructure: Deploying O-stock and ELK

 Creating an EC2 with ELK

 Deploying the ELK Stack in the EC2 instance

 Creating an EKS cluster

 12.4 Your build/deployment pipeline in action

 12.5 Creating our build/deploy pipeline

 Setting up GitHub

 Enabling our services to build in Jenkins

 Understanding and generating the pipeline script

 Creating the Kubernetes pipeline scripts

 12.6 Closing thoughts on the build/deployment pipeline

 appendix A. Microservices architecture best practices

 appendix B. OAuth2 grant types

 appendix C. Monitoring your microservices

 index

 front matter

preface

 This book is part of a dream to contribute to the development of the field I am most passionate about—computer science, and particularly, software development. These fields show their extraordinary importance in the interconnected and global present. We see the incredible transformations of these disciplines every day, in all areas of human activities. But why write about microservices architecture when there are a lot of other topics to write about?

 The word “microservices” has a lot of interpretations. But in this book, I define a microservice as a distributed, loosely coupled software service that carries out a small number of well-defined tasks. Microservices crept up as an alternative to monolithic applications to help combat the traditional problems of complexity in a large code base by decomposing that down into small, well-defined pieces.

 During my 13 years of experience, I have dedicated myself to software development, working with different languages and different types of software architectures. When I started, I used architectures that today are practically obsolete. The contemporary world forces us to update continually, and innovation in the software development field advances at an accelerated pace. Because of this search for up-to-date knowledge and practices, I decided to get involved in the world of microservices some years ago. Since then, it is the architecture I have used the most because of the advantages it provides (advantages such as scalability, speed, and maintainability). Successfully venturing into the microservices field prompted me to take on the task of writing this book as an opportunity to systematize and share what I have learned.

 As a software developer, I discovered how important it is to continually research and apply new knowledge to development. Before undertaking this book, I decided to share my findings and started publishing microservices articles on the blog platform of a software development company I worked for in Costa Rica, my home country. While I was writing these articles, I realized I had found a new passion and purpose in my professional career. A few months after writing one of my articles, I received an email from Manning Publications, offering me the opportunity to write the second edition of this book that I share with you today.

 The first edition of this book was written by John Carnell, a consummate professional with many years of software development experience. I wrote this second edition from this basis, combined with my own interpretation and understanding. The second edition of Spring Microservices in Action will allow you to implement diverse design patterns that will help you create a successful microservices architecture using Spring. It’s a framework that offers out-of-the-box solutions for many of the common development problems you will run into as a microservice developer. Now, let’s start this incredible journey into the world of microservices with Spring.

acknowledgments

 I am deeply grateful for the opportunity to work on this book, which has allowed me to share my knowledge and to learn at the same time. I am also grateful to Manning Publications for trusting my work and allowing me to share it with so many people; most importantly, to Michael Stephens for offering me this fantastic opportunity; to John Carnell for his support, work, and knowledge; to Robert Wenner, my technical development editor, for his valuable contributions; and to Lesley Trites, my editor, for accompanying me throughout the process with her valuable help.

 I would also like to thank Stephan Pirnbaum and John Guthrie, who, as my technical reviewers, checked my work and ensured the book’s overall quality. Thanks go also to my project editor, Deirdre Hiam; my copyeditor, Frances Buran; my proofreader, Katie Tennant; my reviewing editor, Aleks Dragosavljevic; and to all the reviewers (Aditya Kumar, Al Pezewski, Alex Lucas, Arpit Khandelwal, Bonnie Malec, Christopher Kardell, David Morgan, Gilberto Taccari, Harinath Kuntamukkala, Iain Campbell, Kapil Dev S, Konstantin Eremin, Krzysztof Kamyczek, Marko Umek, Matthew Greene, Philippe Vialatte, Pierre-Michel Ansel, Ronald Borman, Satej Kumar Sahu, Stephan Pirnbaum, Tan Wee, Todd Cook, and Víctor Durán)—your suggestions helped make this a better book.

 I want to thank my mom, dad, and my entire family, who supported me and encouraged me to pursue my dreams, and who, by their dedication to work as an example, helped me become the professional I am today. My gratitude also goes out to Eli, who was always by my side on those long days of work, and to my friends, who always trusted me and encouraged me throughout this process.

 Last, but not least, I thank each and every one of you for buying this book and allowing me to share my knowledge with you. I hope you enjoy reading it as much as I did writing it. I hope it becomes a valuable contribution to your professional careers.

about this book

 Spring Microservices in Action, Second Edition, is written for the practicing Java/Spring developer who needs hands-on advice and examples of how to build and operationalize microservice-based applications. When we wrote this book, we wanted to maintain the same central idea as in the first edition. We wanted it to be based on core microservice patterns aligned with Spring Boot and Spring Cloud’s latest practices and examples. In almost every chapter, you will find specific microservice design patterns, along with examples of the Spring Cloud implementations.

Who should read this book

 	
 You are a Java developer who has some experience (1–3 years) with building distributed applications.

 	
 You have some background (1+ years) with Spring.

 	
 You are interested in learning how to build microservice-based applications.

 	
 You are interested in how you can leverage microservices for building cloud-based applications.

 	
 You want to know if Java and Spring are relevant technologies for building microservice-based applications.

 	
 You are interested in seeing what goes into deploying a microservice-based application to the cloud.

How this book is organized: A roadmap

 This book consists of 12 chapters and 3 appendixes:

 	
 Chapter 1 introduces you to why microservices architecture is an important and relevant approach to building applications, especially cloud-based applications.

 	
 Chapter 2 walks you through the Spring Cloud technologies that we’ll use and provides a guide on how to build cloud-native microservices following the twelve-factor application best practices. This chapter also walks you through how to build your first REST-based microservice using Spring Boot.

 	
 Chapter 3 shows you how to look at your microservices through the eyes of an architect, application engineer, or DevOps engineer and provides a guide on how to implement some of the microservice best practices in your first REST-based microservice.

 	
 Chapter 4 walks you through the container world, highlighting the main differences between containers and virtual machines (VMs). This chapter also shows you how to containerize your microservices using several Maven plugins and Docker commands.

 	
 Chapter 5 introduces you to how to manage the configuration of your microservices using Spring Cloud Config. Spring Cloud Config helps guarantee that your service configurations are centralized in a single repository, versioned, and repeatable across all instances of your services.

 	
 Chapter 6 introduces you to the service discovery routing pattern. You will learn how to use Spring Cloud and Netflix’s Eureka service to abstract the location of your services away from the clients consuming them. You’ll also learn how to implement client-side load balancing using the Spring Cloud LoadBalancer and a Netflix Feign client.

 	
 Chapter 7 is about protecting the consumers of your microservices when one or more microservice instances are down or in a degraded state. This chapter demonstrates how to use Spring Cloud and Resilience4j to implement the circuit breaker, fallback, and bulkhead patterns.

 	
 Chapter 8 covers the service gateway routing pattern. Using Spring Cloud Gateway, we build a single entry point to call all our microservices. We will demonstrate how to use the Spring Cloud Gateway filters to build policies that can be enforced against all services flowing through the service gateway.

 	
 Chapter 9 covers how to implement service authentication and authorization using Keycloak. In this chapter, we cover some basic principles of OAuth2 and how to use Spring and Keycloak to protect your microservices architecture.

 	
 Chapter 10 looks at how we can introduce asynchronous messaging into our microservices using Spring Cloud Stream and Apache Kafka. This chapter also shows you how to use Redis to cache lookups.

 	
 Chapter 11 shows how to implement common logging patterns like log correlation, log aggregation, and tracing with Spring Cloud Sleuth, Zipkin, and the ELK Stack.

 	
 Chapter 12 is the cornerstone project for this book. We take the services we have built throughout the book and deploy them to an Amazon Elastic Kubernetes Service (Amazon EKS). We also discuss how to automate the build and deployment of your microservices using tools like Jenkins.

 	
 Appendix A shows additional microservices architecture best practices and explains the Richardson Maturity Model.

 	
 Appendix B contains supplemental material on OAuth2. OAuth2 is an extremely flexible authentication model, and this chapter provides a brief overview of the different ways in which you can use OAuth2 to protect your application and its corresponding microservices.

 	
 Appendix C covers how to monitor your Spring Boot microservices using several technologies such as Spring Boot Actuator, Micrometer, Prometheus, and Grafana.

 In general, developers should read chapters 1, 2, and 3, which provide essential information about best practices and about implementing microservices using Spring Boot with Java 11. If you’re a reader who’s new to Docker, we highly recommend reading chapter 4 carefully because it briefly introduces all the Docker concepts used throughout the book.

 The rest of the book discusses several microservice patterns, such as service discovery, distributed tracing, API Gateway, and more. The approach of this book is to read the chapters in order and follow the code examples for the chapters. But in case someone wants to skip the examples, they can download the code from the GitHub repository at https://github.com/ihuaylupo/manning-smia.

About the code

 This book contains code in almost every chapter, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. All code examples are available in my GitHub repository at https://github.com/ihuaylupo/manning-smia.

 Each chapter has a different folder in the repository. Note also that all the code in this book is built to run with Java 11 using Maven as the main build tool and Docker as the container tool. In the README.md file for each chapter, you can find the following information:

 	
 A brief introduction to the chapter

 	
 The tools required for the initial configuration

 	
 A “how to use” section

 	
 The build command for the examples

 	
 The run command for the examples

 	
 Contact and contributing information

 One of the core concepts we followed throughout the entire book is that the code examples in each chapter should be able to run completely independent of any of the other chapters. What does this mean? You should be able to grab the code from chapter 10, for example, and run it without following the examples in the previous chapters. You’ll see that for every service built in each chapter there is a corresponding Docker image. Each chapter uses Docker Compose to execute the Docker images in order to guarantee that you have a reproducible run-time environment for each chapter.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of Spring Microservices in Action, Second Edition, includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/book/spring-microservices-in-action-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 John Carnell is a software architect and leads the Developer Engagement team for Genesys Cloud. John spends the majority of his day teaching Genesys Cloud customers and internal developers how to deliver cloud-based contact center and telephony solutions and best practices for cloud-based development. He works hands-on building telephony-based microservices using the AWS platform. His day-to-day job is to design and build microservices across a number of technology platforms including Java, Clojure, and Go. John is a prolific speaker and writer. He regularly speaks at local user groups and was a regular speaker on “The No Fluff Just Stuff Software Symposium.” Over the last 20 years, John has authored, coauthored, and functioned as a technical reviewer for a number of Java-based technology books and industry publications. John holds a BA from Marquette University and an MBA from the University of Wisconsin in Oshkosh. John is a passionate technologist who constantly explores new technologies and programming languages. When John is not speaking, writing, or coding, he lives in Cary, North Carolina, with his wife, Janet, his three children (Christopher, Agatha, and Jack), and yes, his dog, Vader.

 Illary Huaylupo Sánchez is a software engineer who graduated from Cenfotec University and holds an MBA focused on IT management from the Latin American University of Science and Technology (ULACIT) in Costa Rica. Her knowledge of software development is quite extensive. She has experience working with Java and other programming languages such as Python, C#, Node.js, and with other technologies such as various databases, frameworks, cloud services, and more. Currently, Illary works as a Senior Software Engineer at Microsoft, San Jose, Costa Rica, where she spends most of her time researching and developing a variety of trendy and up-to-date projects. In her professional portfolio, we also find that she has 12 years of experience as an Oracle Certified Developer and has worked as a Senior Software Engineer in large companies such as IBM, Gorilla Logic, Cargill, and BAC Credomatic (a prestigious Latin American bank). Illary likes challenges and is always willing to learn new programming languages and new technologies. During her free time, she likes to play the bass guitar and spend time with her family and friends. Illary can be reached at illaryhs@gmail.com.

About the cover illustration

 The figure on the cover of Spring Microservices in Action is captioned a “A Man from Croatia.” This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs, published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist who spent many years studying the botany, geology, and ethnography of many parts of the Austrian Empire, as well as the Veneto, the Julian Alps, and the western Balkans, inhabited in the past by peoples of the Illyrian tribes. Hand drawn illustrations accompany the many scientific papers and books that Hacquet published. The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of the eastern Alpine and northwestern Balkan regions just 200 years ago.

 This was a time when the dress codes of two villages separated by a few miles identified people uniquely as belonging to one or the other, and when members of a social class or trade could be easily distinguished by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another, and today the inhabitants of the picturesque towns and villages in the Slovenian Alps or Balkan coastal towns are not readily distinguishable from the residents of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on costumes from two centuries ago, brought back to life by illustrations such as this one.

1 Welcome to the cloud, Spring

 This chapter covers

 	
Understanding microservices architectures

 	
Understanding why companies use microservices

 	
Using Spring, Spring Boot, and Spring Cloud for building microservices

 	
Understanding the cloud and cloud-based computing models

 Implementing any new architecture is not an easy task; it comes with many challenges such as application scalability, service discovery, monitoring, distributed tracing, security, management, and more. This book will introduce you to the world of microservices in Spring, teach you how to tackle all those challenges, and show you the trade-offs to consider when considering microservices for your business applications. As you go, you’ll learn how to build microservice applications using technologies such as Spring Cloud, Spring Boot, Swagger, Docker, Kubernetes, ELK (Elasticsearch, Logstash, and Kibana), Stack, Grafana, Prometheus, and more.

 If you are a Java developer, this book will provide a smooth migration path from building traditional Spring applications to microservice applications that can be deployed to the cloud. This book uses practical examples, diagrams, and descriptive texts to provide further details of how to implement microservice architectures.

 In the end, you will have learned how to implement technologies and techniques such as client load balancing, dynamic scaling, distributed tracing, and more, to create flexible, modern, and autonomous microservice-based business applications with Spring Boot and Spring Cloud. You will also be able to create your own build/deployment pipelines to achieve continuous delivery and integration with your business by applying technologies such as Kubernetes, Jenkins, and Docker.

1.1 The evolution towards a microservices architecture

 Software architecture refers to all the fundamental parts that establish the structure, operation, and interaction between the software components. This book explains how to create a microservice architecture that consists of loosely coupled software services that carry out a small number of well-defined tasks and communicate using messages over a network. Let’s start by considering the differences between microservices and some other common architectures.

1.1.1 N-tier architecture

 One common type of enterprise architecture is the multi-layered or n-tier architecture. With this design, an applications is divided into multiple layers, each with their own responsibilities and functions, such as UI, services, data, testing, and so forth. For example, as you create your application, you make a specific project or solution for the UI, then another one for the services, another for the data layer, and so on. In the end, you will have several projects that, combined, create an entire application. For large enterprise systems, n-tier applications have many advantages, including these:

 	
 N-tier applications offer good separation of concerns, making it possible to consider areas like UI (user interface), data, and business logic separately.

 	
 It’s easy for teams to work independently on different components of n-tier applications.

 	
 Because this is a well-understood enterprise architecture, it’s relatively easy to find skilled developers for n-tier projects.

 N-tier applications also have drawbacks, such as these:

 	
 You must stop and restart the entire application when you want to make a change.

 	
 Messages tend to pass up and down through the layers, which can be inefficient.

 	
 Once it’s deployed, refactoring a large n-tier application can be difficult.

 Although some of the topics we’ll discuss in this book relate directly to n-tier applications, we will focus more directly on distinguishing microservices from another common architecture, often called the monolith.

1.1.2 What’s a monolithic architecture?

 Many small-to-medium web-based applications are built using a monolithic architectural style. In a monolithic architecture, an application is delivered as a single deployable software artifact. All of the UI, business, and database access logic are packaged together into a unique application and deployed to an application server. Figure 1.1 shows the basic architecture of this application.

 [image:]

 Figure 1.1 Monolithic applications force multiple development teams to synchronize their delivery date because their code needs to be built, tested, and deployed as an entire unit.

 While an application might be deployed as a single unit of work, often there are multiple development teams working on a single application. Each development team is responsible for their own discrete piece of the application that usually targets specific customers. For example, imagine a scenario where we have an in-house, custom-built customer relations management (CRM) application that involves the coordination of multiple teams, including UI/UX, customer, data warehouse, and financial players, or more.

 Although monolithic applications are sometimes described in negative terms by proponents of microservices architecture, these are often a great choice. Monoliths are easier to build and deploy than more complex architectures like n-tier or microservices. If your use case is well defined and unlikely to change, it can be a good decision to start with a monolith.

 When an application begins to increase in size and complexity, however, monoliths can become difficult to manage. Each change to a monolith can have a cascading effect on other parts of the application, which may make it time consuming and expensive, especially in a production system. Our third option, the microservices architecture, offers the potential of greater flexibility and maintainability.

1.1.3 What’s a microservice?

 The concept of a microservice initially crept into the software development community’s consciousness as a direct response to many of the challenges of trying to scale (both technically and organizationally) large monolithic applications. A microservice is a small, loosely coupled, distributed service. Microservices let you take an extensive application and decompose it into easy-to-manage components with narrowly defined responsibilities. Microservices help combat the traditional problems of complexity in a large codebase by decomposing it down into small, well-defined pieces.

 The key concepts you need to embrace as you think about microservices are decomposing and unbundling. The functionality of your applications should be entirely independent of one another. If we take the CRM application mentioned previously and decompose it into microservices, it might look something like figure 1.2.

 [image:]

 Figure 1.2 Using a microservice architecture, a CRM application is decomposed into a set of completely independent microservices, allowing each development team to move at its own pace.

 Figure 1.2 shows how each team completely owns their service code and service infrastructure. They can build, deploy, and test independently of each other because their code, source control repository, and infrastructure (app server and database) are now entirely independent of the different parts of the application. To recap, a microservice architecture has the following characteristics:

 	
 Application logic is broken down into small-grained components with well-defined, coordinate boundaries of responsibility.

 	
 Each component has a small domain of responsibility and is deployed independently of the others. A single microservice is responsible for one part of a business domain.

 	
 Microservices employ lightweight communication protocols such as HTTP and JSON (JavaScript Object Notation) for exchanging data between the service consumer and service provider.

 	
 Because microservice applications always communicate with a technology-neutral format (JSON is the most common), the underlying technical implementation of the service is irrelevant. This means that an application built using a microservice approach can be constructed with multiple languages and technologies.

 	
 Microservices—by their small, independent, and distributed nature—allow organizations to have smaller development teams with well-defined areas of responsibility. These teams might work toward a single goal, such as delivering an application, but each team is responsible only for the services on which they’re working.

 Figure 1.3 compares a monolithic design with a microservices approach for a typical small e-commerce application.

 [image:]

 Figure 1.3 Comparing monolithic and microservices architectures

1.1.4 Why change the way we build applications?

 Companies that used to serve local markets are suddenly finding that they can reach out to a global customer base. However, with a broader global customer base also comes worldwide competition. More competition impacts the way developers need to think about building applications. For example:

 	
 Complexity has gone way up. Customers expect that all parts of an organization know who they are. But “siloed” applications that talk to a single database and don’t integrate with other applications are no longer the norm. Today’s applications need to communicate with multiple services and databases, residing not only inside a company’s data center but also within external internet service providers.

 	
 Customers want faster delivery. Customers no longer want to wait for the next annual release of a software package. Instead, they expect the features in a software product to be unbundled so that new functionality can be released quickly in a matter of weeks (or even days).

 	
 Customers also demand reliable performance and scalability. Global applications make it extremely difficult to predict how many transactions are going to be handled by an application and when that transaction volume is going to hit. Applications need to scale up quickly across multiple servers, then scale back down seamlessly when the volume has passed.

 	
 Customers expect their applications to be available. Because customers are one click away from a competitor, a company’s applications must be highly resilient. Failures or problems in one part of the application shouldn’t bring down the entire application.

 To meet these expectations, we, as application developers, have to embrace the enigma that to build highly scalable and highly redundant applications, we need to break our applications into small services that can be built and deployed independently of one another. If we “unbundle” our applications into smaller services and move these away from a single monolithic artifact, we can build systems that are

 	
 Flexible—Decoupled services can be composed and rearranged to quickly deliver new functionality. The smaller the unit of code that one is working with, the less complicated it is to change and the less time it takes to test and deploy the code.

 	
 Resilient—Decoupled services mean an application is no longer a single “ball of mud,” where a degradation in one part of the application causes the entire application to fail. Failures can be localized to a small part of the application and contained before the entire application shuts down. This also enables the application to degrade gracefully in case of an unrecoverable error.

 	
 Scalable—Decoupled services can easily be distributed horizontally across multiple servers, making it possible to scale the features/services appropriately. With a monolithic application, where all the logic for the application is intertwined, the entire application needs to scale back, even if only a small part of the application is the bottleneck. With small services, scaling is localized and much more cost effective.

 To this end, we begin our discussion of microservices. Keep the following in mind as we start our journey:

 Small, Simple, and Decoupled Services = Scalable, Resilient, and Flexible Applications

 It’s important to understand that systems and organizations can benefit from a microservices approach. To obtain benefits in the organization, we can apply Conway’s law in reverse. This law indicates several points that can improve the communication and structure of a company.

 Conway’s law (which first appeared in April, 1968, written by Melvin R. Conway in the article, “How Do Committees Invent”) states that “Organizations which design systems . . . are constrained to produce designs which are copies of the communication structures of these organizations.” Basically, what that indicates is that the way teams communicate within the team and with other teams is directly reflected in the code they produce.

 If we apply Conway’s law in reverse (also known as inverse Conway maneuver) and design the company structure based on a microservice architecture, the communication, stability, and organizational structure of our applications improve by creating loosely coupled and autonomous teams to implement the microservices.

1.2 Microservices with Spring

 Spring has become the most popular development framework for building Java-based applications. At its core, Spring is based on the concept of dependency injection. A dependency injection framework allows you to more efficiently manage large Java projects by externalizing the relationship between objects within your application through convention (and annotations) rather than hardcoding those objects to “know” about each other. Spring sits as an intermediary between the different Java classes of your application and manages their dependencies. Spring essentially lets you assemble your code like a set of Lego bricks that snap together.

 What’s impressive about the Spring framework, and a testament to its development community, is its ability to stay relevant and to reinvent itself. The Spring developers quickly saw that many development teams were moving away from monolithic applications where the application’s presentation, business, and data access logic were packaged together and deployed as a single artifact. Instead, they noticed that development teams were moving to highly distributed models where small services can be quickly deployed to the cloud. In response to this shift, the Spring developers launched two projects: Spring Boot and Spring Cloud.

 Spring Boot is a re-envisioning of the Spring framework. While it embraces core features of Spring, Spring Boot strips away many of the “enterprise” features found in Spring and instead delivers a framework geared toward Java-based, REST-oriented (Representational State Transfer) microservices. With a few simple annotations, a Java developer can quickly build a REST service that can be packaged and deployed without the need for an external application container.

 note While we cover REST in more detail in chapter 3, the core concept behind REST is that your services should embrace the use of HTTP verbs (GET, POST, PUT, and DELETE) to represent the core actions of the service and should use a lightweight, web-oriented data serialization protocol, such as JSON, for requesting and receiving data from the service.

 The key features of Spring Boot include the following:

 	
 An embedded web server to avoid complexity in deploying the application: Tomcat (default), Jetty, or Undertow.

 This is one essential component of Spring Boot; the chosen web server is part of the deployable JAR. For Spring Boot applications, the only requisite to deploy the app is to have Java installed on the server.

 	
 A suggested configuration to start quickly with a project (starters).

 	
 An automatic configuration for Spring functionally—whenever it’s possible.

 	
 A wide range of features ready for production (such as metrics, security, status verification, externalized configuration, and more).

 Using Spring Boot offers the following benefits for our microservices:

 	
 Reduces development time and increases efficiency and productivity

 	
 Offers an embedded HTTP server to run web applications

 	
 Allows you to avoid writing a lot of boilerplate code

 	
 Facilitates integration with the Spring Ecosystem (includes Spring Data, Spring Security, Spring Cloud, and more)

 	
 Provides a set of various development plugins

 Because microservices have become one of the more common architectural patterns for building cloud-based applications, the Spring development community gives us Spring Cloud. The Spring Cloud framework makes it simple to operationalize and deploy microservices to a private or public cloud. Spring Cloud wraps several popular cloud-management microservice frameworks in a common framework. It makes the use and deployment of these technologies as easy as is annotating your code. We cover the different components within Spring Cloud in the next chapter.

1.3 What are we building?

 This book offers a step-by-step guide on creating a complete microservices architecture using Spring Boot, Spring Cloud, and other useful and modern technologies. Figure 1.4 shows a high-level overview of some of the services and technology integrations that we will use throughout the book.

 [image:]

 Figure 1.4 High-level overview of the services and technologies that we’ll use in this book

 Figure 1.4 describes a client request to update and retrieve the organization’s information in the microservice architecture that we will create. To start the request, the client first needs to authenticate with Keycloak to get an access token. Once the token is obtained, the client makes a request to the Spring Cloud API Gateway. The API Gateway service is the entry point to our entire architecture; this service communicates with the Eureka service discovery to retrieve the locations of the organization and licensing services and then calls the specific microservice.

 Once the request arrives at the organization service, it validates the access token against Keycloak to see if the user has permission to continue the process. Once validated, the organization service updates and retrieves its information from the organization database and sends it back to the client as an HTTP response. As an alternative path, once the organization information is updated, the organization service adds a message to the Kafka topic so the licensing service is aware of the change.

 When the message arrives at the licensing service, Redis stores the specific information in Redis’s in-memory database. Throughout this process, the architecture uses distributed tracing from Zipkin, Elasticsearch, and Logstash to manage and display the logs and employs Spring Boot Actuator, Prometheus, and Grafana to expose and display the application metrics.

 As we move forward, we will see topics such as Spring Boot, Spring Cloud, Elasticsearch, Logstash, Kibana, Prometheus, Grafana, and Kafka, among others. All these technologies may sound complicated, but we will see how to create and integrate the different components that make up the diagram in figure 1.4 as we progress through the book.

1.4 What is this book about?

 The scope of this book is broad. It covers everything from basic definitions to more complex implementations to create a microservices architecture.

1.4.1 What you’ll learn in this book

 This book is about building microservice-based applications using a variety of Spring projects, such as Spring Boot and Spring Cloud, which can be deployed locally in a private cloud run by your company or in a public cloud such as Amazon, Google, or Azure. This book covers the following topics:

 	
 What a microservice is, best practices, and design considerations that go into building a microservice-based application

 	
 When you shouldn’t build a microservice-based application

 	
 How to build microservices using the Spring Boot framework

 	
 The core operational patterns to support microservice applications, particularly a cloud-base application

 	
 What Docker is and how to integrate it with a microservice-based application

 	
 How you can use Spring Cloud to implement the operational patterns described later in this chapter

 	
 How to create application metrics and visualize these in a monitoring tool

 	
 How to achieve distributed tracing with Zipkin and Sleuth

 	
 How to manage application logs with the ELK Stack

 	
 How to take what you’ve learned and build a deployment pipeline that can be used to deploy your services locally, to a private internally managed cloud, or to a public cloud provider

 By the time you’re done reading this book, you should have the knowledge needed to build and deploy a Spring Boot microservice. You’ll also understand the key design decisions needed to operationalize your microservices. You’ll realize how service configuration management, service discovery, messaging, logging and tracing, and security all fit together to deliver a robust microservice environment. Finally, you’ll see how your microservices can be deployed using different technologies.

1.4.2 Why is this book relevant to you?

 I suspect that if you have reached this point, it is because you

 	
 Are a Java developer or have a strong grasp of Java

 	
 Have a background in Spring

 	
 Are interested in learning how to build microservice-based applications

 	
 Are interested in how to use microservices to build cloud-based applications

 	
 Want to know if Java and Spring are relevant technologies for building microservice-based applications

 	
 Want to know what the cutting-edge technologies are to achieve a microservice architecture

 	
 Are interested in seeing what goes into deploying a microservice-based application to the cloud

 This book offers a detailed guide on how to implement a microservices architecture in Java. It provides descriptive and visual information and a lot of hands-on code examples to give you a programmatic guide on how to implement this architecture using the latest versions of different Spring projects like Spring Boot and Spring Cloud.

 Additionally, this book provides an introduction to the microservice patterns, best practices, and infrastructure technologies that go hand in hand with this type of architecture, simulating a real-world application development environment. Let’s shift gears for a moment and walk through building a simple microservice using Spring Boot.

1.5 Cloud and microservice-based applications

 In this section, we’ll see how to create a microservice using Spring Boot and learn why the cloud is relevant to microservice-based applications.

1.5.1 Building a microservice with Spring Boot

 This section will not provide a detailed walk-through of much of the code you’ll use to create microservices, but is just a brief introduction on how to create a service to show you how easy it is to use Spring Boot. For this, we’re going to create a simple REST service for “Hello World” with one main endpoint that uses the GET HTTP verb. This service endpoint will receive request parameters and URL parameters (also known as path variables). Figure 1.5 shows what the REST service will do and the general flow of how a Spring Boot microservice processes a user’s request.

 [image:]

 Figure 1.5 Spring Boot abstracts away the common REST microservice tasks (routing to business logic, parsing HTTP parameters from the URL, mapping JSON to and from Java objects) and lets the developer focus on the business logic for the service. This figure shows three different ways to pass parameters to our controller.

 This example is by no means exhaustive or even illustrative of how you should build a production-level microservice, but it should cause you to pause because of how little code it takes to write it. We won’t go through how to set up the project build files or the details of the code until chapter 2. If you’d like to see the Maven pom.xml file and the actual code, you can find it in the chapter 1 section of the downloadable code.

 Note You can retrieve all the source code for chapter 1 from the GitHub repository for the book at https://github.com/ihuaylupo/manning-smia/tree/master/chapter1.

 For this example, we have a single Java class called Application, which you’ll find in the class file, com/huaylupo/spmia/ch01/SimpleApplication/Application.java. We will use this class to expose a REST endpoint called /hello. The following listing shows the code for the Application class.

 Listing 1.1 Hello World with Spring Boot: a (very) simple Spring microservice

 import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@SpringBootApplication ❶
@RestController ❷
@RequestMapping(value="hello") ❸
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @GetMapping(value="/{firstName}") ❹
 public String helloGET(
 @PathVariable("firstName") String firstName, ❺
 @RequestParam("lastName") String lastName) { ❺
 return String.format(
 "{\"message\":\"Hello %s %s\"}", ❻
 firstName, lastName);
 }
}

class HelloRequest{ ❼

 private String firstName;
 private String lastName;

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

}

 ❶ Tells Spring Boot that this class is the entry point for the Spring Boot service

 ❷ Tells Spring Boot to expose the code in this class as a Spring RestController

 ❸ Prefaces all URLs exposed in this application with a /hello prefix

 ❹ Exposes an endpoint as a GET-based REST that takes two parameters in its firstName (via @PathVariable) and lastName (via @RequestParam)

 ❺ Maps the firstName and lastName parameters to the two variables passed into the hello function

 ❻ Returns a simple JSON string that we manually build (in chapter 2, we won’t create any JSON)

 ❼ Contains the fields of the JSON structure sent by the user

 In listing 1.1, you’re basically exposing one endpoint with a GET HTTP verb that takes two parameters (firstName and lastName) on the URL: one from the path variable (@PathVariable) and another one as the request parameter (@RequestParam). The endpoint returns a simple JSON string that has a payload containing the message "Hello firstName lastName". To call the GET endpoint /hello/illary?lastName=huaylupo on your service, the return call would be

 {“message”:”Hello illary huaylupo”}

 Let’s start the Spring Boot application. In order to do this, let’s execute the following command on the command line. This Maven command uses a Spring Boot plugin defined in the pom.xml file to start the application using an embedded Tomcat server. Once you execute the mvn spring-boot:run command and everything starts correctly, you should see what’s shown in figure 1.6 in your command-line window.

 mvn spring-boot:run

 Note If you are running the command from the command line, make sure you are in the root directory. The root directory is the one that contains the pom.xml file. Otherwise, you will run into this error: No plugin found for prefix 'spring-boot' in the current project and in the plugin groups.

 Java vs. Groovy and Maven vs. Gradle

 The Spring Boot framework supports both Java and the Groovy programming languages. Spring Boot also supports both Maven and Gradle build tools. Gradle introduces a Groovy-based DSL (domain specific language) to declare the project configuration instead of an XML file like Maven. Although Gradle is powerful, flexible, and top-rated, Maven is still used by the Java developer community. This book, therefore, only contains examples in Maven to keep it manageable and the material focused, and it is intended to reach the largest audience possible.

 [image:]

 Figure 1.6 The Spring Boot service communicates the service port via the console.

 To execute the services, you need to use a browser-based REST tool. You’ll find many tools, both graphical and command-line, for invoking REST-based services. For this book, we will use Postman (https://www.getpostman.com/). Figures 1.7 and 1.8 show two different Postman calls to the endpoints with the results returned from the services.

 [image:]

 Figure 1.7 The response from the GET /hello endpoint shows the data you’ve requested represented as a JSON payload.

 Figure 1.8 shows a brief example of how to make a call using the POST HTTP verb. It is essential that we mention this is only for demonstration purposes. In the following chapters, you’ll see that the POST method is preferred when it involves creating new records in our service.

 [image:]

 Figure 1.8 The response from the POST /hello endpoint shows the request and the response data represented as a JSON payload.

 This simple example code doesn’t demonstrate the full power of Spring Boot, nor the best practices to create a service. But what it shows is that you can write a full HTTP JSON REST-based service with route-mapping of the URL and parameters in Java with a few lines of code. Although Java is a powerful language, it has acquired a reputation for being wordy compared with other languages. With Spring, however, we can accomplish a lot with just a few lines of code. Next, let’s walk through why and when a microservice approach is justified for building applications.

1.5.2 What exactly is cloud computing?

 Cloud computing is the delivery of computing and virtualized IT services—databases, networking, software, servers, analytics, and more—through the internet to provide a flexible, secure, and easy-to-use environment. Cloud computing offers significant advantages in the internal management of a company, such as low initial investment, ease of use and maintenance, and scalability, among others.

 The cloud computing models let the user choose the level of control over the information and services that these provide. These models are known by their acronyms, and are generically referred to as XaaS —an acronym that means anything as a service. The following lists the most common cloud computing models. Figure 1.9 shows the differences between these models.

 	
 Infrastructure as a Service (IaaS)—The vendor provides the infrastructure that lets you access computing resources such as servers, storage, and networks. In this model, the user is responsible for everything related to the maintenance of the infrastructure and the scalability of the application.

 IaaS platforms include AWS (EC2), Azure Virtual Machines, Google Compute Engine, and Kubernetes.

 	
 Container as a Service (CaaS)—An intermediate model between the IaaS and the PaaS, it refers to a form of container-based virtualization. Unlike an IaaS model, where a developer manages the virtual machine to which the service is deployed, with CaaS, you deploy your microservices in a lightweight, portable virtual container (such as Docker) to a cloud provider. The cloud provider runs the virtual server the container is running on, as well as the provider’s comprehensive tools for building, deploying, monitoring, and scaling containers.

 CaaS platforms include Google Container Engine (GKE) and Amazon’s Elastic Container Service (ECS). In chapter 11, we’ll see how to deploy the microservices you’ve built to Amazon ECS.

 	
 Platform as a Service (PaaS)—This model provides a platform and an environment that allow users to focus on the development, execution, and maintenance of the application. The applications can be created with tools that are provided by the vendor (for example, operating system, database management systems, technical support, storage, hosting, network, and more). Users do not need to invest in a physical infrastructure, nor spend time managing it, allowing them to concentrate exclusively on the development of applications.

 PaaS platforms include Google App Engine, Cloud Foundry, Heroku, and AWS Elastic Beanstalk.

 	
 Function as a Service (FaaS)—Also known as serverless architecture, despite the name, this architecture doesn’t mean running specific code without a server. What it means is a way of executing functionalities in the cloud in which the vendor provides all the required servers. Serverless architecture allows us to focus only on the development of services without having to worry about scaling, provisioning, and server administration. Instead, we can solely concentrate on uploading our functions without handling any administration infrastructure.

 FaaS platforms include AWS (Lambda), Google Cloud Function, and Azure functions.

 	
 Software as a Service (SaaS)—Also known as software on demand, this model allows users to use a specific application without having to deploy or to maintain it. In most cases, the access is through a web browser. Everything is managed by the service provider: application, data, operating system, virtualization, servers, storage, and network. The user just hires the service and uses the software.

 SaaS platforms include Salesforce, SAP, and Google Business.

 [image:]

 Figure 1.9 The different cloud computing models come down to who’s responsible for what: user management or cloud vendor.

 Note If you’re not careful, FaaS-based platforms can lock your code into a cloud vendor platform because your code is deployed to a vendor-specific runtime engine. With a FaaS-based model, you might be writing your service using a general programming language (Java, Python, JavaScript, and so on), but you’re still tying yourself to the underlying vendor’s APIs and runtime engine that your function will be deployed to.

1.5.3 Why the cloud and microservices?

 One of the core concepts of a microservice architecture is that each service is packaged and deployed as its own discrete and independent artifact. Service instances should be brought up quickly, and each should be indistinguishable from another. When writing a microservice, sooner or later you’re going to have to decide whether your service is going to be deployed to one of the following:

 	
 Physical server—While you can build and deploy your microservices to a physical machine(s), few organizations do this because physical servers are constrained. You can’t quickly ramp up the capacity of a physical server, and it can become extremely costly to scale your microservice horizontally across multiple physical servers.

 	
 Virtual machine images—One of the key benefits of microservices is their ability to quickly start up and shut down instances in response to scalability and service failure events. Virtual machines (VMs) are the heart and soul of the major cloud providers.

 	
 Virtual container—Virtual containers are a natural extension of deploying your microservices on a VM image. Rather than deploying a service to a full VM, many developers deploy their services as Docker containers (or equivalent container technology) to the cloud. Virtual containers run inside a VM, and using a virtual container, you can segregate a single VM into a series of self-contained processes that share the same image. A microservice can be packaged, and multiple instances of the service can then be quickly deployed and started in either an IaaS private or public cloud.

 The advantage of cloud-based microservice centers around the concept of elasticity. Cloud service providers allow you to quickly spin up new VMs and containers in a matter of minutes. If your capacity needs for your services drop, you can spin down containers to avoid additional costs. Using a cloud provider to deploy your microservices gives you significantly more horizontal scalability (adding more servers and service instances) for your applications.

 Server elasticity also means that your applications can be more resilient. If one of your microservices is having problems and is failing over, spinning up new service instances can keep your application alive long enough for your development team to gracefully resolve the issue.

 For this book, all the microservices and corresponding service infrastructure will be deployed to a CaaS-based cloud provider using Docker containers. This is a common deployment topology for microservices. The most common characteristics of CaaS cloud providers are as follows:

 	
 Simplified infrastructure management—CaaS cloud providers give you the ability to have more control over your services. New services can be started and stopped with simple API calls.

 	
 Massive horizontal scalability—CaaS cloud providers allow you to quickly and succinctly start one or more instances of a service. This capability means you can quickly scale services and route around misbehaving or failing servers.

 	
 High redundancy through geographic distribution—By necessity, CaaS providers have multiple data centers. By deploying your microservices using a CaaS cloud provider, you can gain a higher level of redundancy beyond using clusters in a data center.

 Why not PaaS-based microservices?

 Earlier in the chapter I discussed five types of cloud platforms—Infrastructure as a Service (IaaS), Container as a Service (CaaS), Platform as a Service (PaaS), Function as a Service (FaaS), and Software as a Service (SaaS). This book focuses specifically on building microservices using a CaaS approach. While certain cloud providers will let you abstract away the deployment infrastructure of your microservice, this book will teach you how to remain vendor independent and deploy all parts of the application (including the servers).

 For instance, Cloud Foundry, AWS Elastic Beanstalk, Google App Engine, and Heroku give you the ability to deploy your services without having to know about the underlying application container. These provide a web interface and command-line interface (CLI) to allow you to deploy your application as a WAR or JAR file. Setting up and tuning the application server and the corresponding Java container are abstracted away from you. While this is convenient, each cloud provider’s platform has different idiosyncrasies related to its individual PaaS solution.

 The services built in this book are packaged as Docker containers; the main reason is that Docker is deployable to all major cloud providers. In later chapters, we’ll see what Docker is and learn how to integrate Docker to run all the services and infrastructure used in this book.

1.6 Microservices are more than writing the code

 While the concepts around building individual microservices are easy to understand, running and supporting a robust microservice application (especially when running in the cloud) involves more than just writing the code for the service. Figure 1.10 shows some guidelines to consider while writing or building a microservice.

 [image:]

 Figure 1.10 Microservices are more than the business logic. You need to think about the environment where you’ll run the services and how the services will scale and be resilient.

 Writing a robust service includes considering several topics. Let’s walk through the items show in figure 1.10 in more detail:

 	
 Right-sized—How you ensure that your microservices are properly sized so that you don’t have a microservice take on too much responsibility. Remember, properly sized, a service allows you to make changes to an application quickly and reduces the overall risk of an outage to the entire application.

 	
 Location transparent—How you manage the physical details of service invocation. When in a microservice application, multiple service instances can quickly start and shut down.

 	
 Resilient—How you protect your microservice consumers and the overall integrity of your application by routing around failing services and ensuring that you take a “fail-fast” approach.

 	
 Repeatable—How you ensure that every new instance of your service brought up is guaranteed to have the same configuration and codebase as all the other service instances in production.

 	
 Scalable—How you establish a communication that minimizes the direct dependencies between your services and ensures that you can gracefully scale your microservices.

 This book takes a patterns-based approach as we look at these items in more detail. With a patterns-based approach, we’ll look at common designs that can be used across different technology implementations. While we’ve chosen to use Spring Boot and Spring Cloud to implement the patterns we’re going to use in this book, nothing will keep you from taking the concepts presented here and using these with other technology platforms. Specifically, we’ll cover the following microservice patterns:

 	

 	
Core development pattern

 	

 	
Routing patterns

 	

 	
Client resiliency patterns

 	

 	
Security patterns

 	

 	
Logging and tracing patterns

 	

 	
Application metrics patterns

 	

 	
Build and deployment pattern

 	

 It’s important to understand that there isn’t a formal definition of how to create a microservice. In the next section, you’ll see a list of common aspects you need to take into consideration while building a microservice.

1.7 Core microservice development pattern

 The core microservice development pattern addresses the basics of building a microservice. Figure 1.11 highlights the topics we’ll cover around basic service design.

 [image:]

 Figure 1.11 When designing your microservice, you need to think about how the service will be consumed and communicated with.

 The following patterns (shown in figure 1.11) show the basics of building a microservice:

 	
 Service granularity—How do you approach decomposing a business domain down into microservices so that each microservice has the right level of responsibility? Making a service too coarse-grained with responsibilities that overlap into different business-problems domains makes the service difficult to maintain and change over time. Making the service too fine-grained increases the overall complexity of the application and turns the service into a “dumb” data abstraction layer with no logic except for that needed to access the data store. Service granularity is covered in chapter 3.

 	
 Communication protocols—How will developers communicate with your service? The first step is to define whether you want a synchronous or asynchronous protocol. For synchronous, the most common communication is HTTP-based REST using XML (Extensible Markup Language), JSON (JavaScript Object Notation), or a binary protocol such as Thrift to send data back and forth to your microservices. For asynchronous, the most popular protocol is AMQP (Advanced Message Queuing Protocol) using a one-to-one (queue) or a one-to-many (topic) with message brokers such as RabbitMQ, Apache Kafka, and Amazon Simple Queue Service (SQS). In later chapters, we’ll learn about the communication protocols.

 	
 Interface design—What’s the best way to design the actual service interfaces that developers are going to use to call your service? How do you structure your services? What are the best practices? Best practices and interface design are covered in the next chapters.

 	
 Configuration management of service—How do you manage the configuration of your microservice so that it moves between different environments in the cloud? This can be managed with externalized configuration and profiles as seen in chapter 5.

 	
 Event processing between services—How do you decouple your microservice using events so that you minimize hardcoded dependencies between your services and increase the resiliency of your application? We’ll use an event-driven architecture with Spring Cloud Stream as covered in chapter 10.

1.8 Microservice routing patterns

 The microservice routing patterns deal with how a client application that wants to consume a microservice discovers the location of the service and is routed over to it. In a cloud-based application, it is possible to have hundreds of microservice instances running. To enforce security and content policies, it is required to abstract the physical IP address of those services and have a single point of entry for the service calls. How? The following patterns are going to answer that question:

 	
 Service discovery—With service discovery and its key feature, service registry, you can make your microservice discoverable so client applications can find them without having the location of the service hardcoded into their application. How? We explain this in chapter 6. Remember the service discovery is an internal service, not a client-facing service.

 Note that in this book, we use Netflix Eureka Service Discovery, but there are other service registries such as etcd, Consul, and Apache Zookeeper. Also, some systems do not have an explicit service registry. Instead these use an interservice communication infrastructure known as a service mesh.

OEBPS/OEBPS/Images/CH01_F11_Huaylupo.png
Web client

What is the right level
of responsibility the
~

service should have? granularity

How your client and
T service communicate
. Gar data back and forth

How you are going to
expose your service
endpoints to clients
Interface.

design
How you can use events
to communicate state
and data changes
between services

Configuration Event

How your services manage management processing

their application-specific
configuration so that the /

code and configuration are

lependent entif

OEBPS/OEBPS/Images/CH01_F10_Huaylupo.png
Right-sized: How do you make sure the service is

focused on one area of responsibility?

Location transparent: How do you manage the
physical location so service instances can be added
% and removed without impacting service clients?

Guidelines for
writing a
microservice

Resilient: How do you make sure when there is a
problem with a service, service clients fail fast?

Repeatable: How do you ensure that every time a new
| service instance is started it always has the same code
and configuration as existing instance(s)?

Scalable: How do you ensure that your
applications can scale quickly with minimal
dependencies between services?

OEBPS/OEBPS/Images/cover.jpeg
SECOND EDITION

John Carnell
Illary Huaylupo Sanchez

M MANNING

OEBPS/OEBPS/Images/CH01_F01_Huaylupo.png
Each team has their own areas of
responsibility with their own
requirements and delivery demands.

3

Funds team

[Continuous
e ntegration
pipeline

5=

Customer team

Single codebase

2

Data warehousing
team

f

UI/UX team

The entire application also has
knowledge of and access to all of
the data sources used within the
application.

Java application server

(JBoss, WebSphere, WebLogic, Tomcat)

WAR packaging

i
|
! MVC
|
—
! Spring services
i
|
|
|
|
|
|
|
|

Uoneaydde qom poseq-bunds

Funds
database

J

Customer Data warehouse
database database
a

S

OEBPS/OEBPS/Images/CH01_F06_Huaylupo.png
Embedded server Tomcat version

2i0] con,huayLupo. spaia. che1.Application Stating Application on IUlarys-HacBook-Proflocal with PID 3718
2 (/Users/iway Lupo/Documents,Personal/Manning/ code/mann ing-snia-chapterl/s mple-application/target/clasfes started by ihuaylupo in /Users,/ihuayiupo/Documents/Perso
31 Mannng/ code/mann - snsa-chapter,/siale-applicat on)

019-07-04 10:11 ™o k2 sin] con.huayLupo. spata.che1. Application No fictive profile set, falling back to default profiles: defaul
919-07-04 10:11:34.158 WO o . enbedded. toncat. ToncatwebServer Toscat initialized with port(s):
419-07-04 10:11:34,196 INFO =211 o.3pache catalins. core. Standardservice © Starting service (Toncat]
019-07-04 10:11:34.196 INFO sin] org.apache. catalina. core.StandardEngine : Starting Servlet engine: (Apache Toscat/9.0.17)
190704 10:11:34.280 INFO sin] 0.a.c.c.C. [Toncat] . [ocathost]. /) Initializing Spring esbedded WebAppLicationContext
20150704 10:11:34.200 INFO 22171 o.5.web. context, ContextLonder Root WebApplicationContext: initialization completed in 1277 ms
019-07-04 10:11 o 2in] 0,815, concurrent. ThreadPooUTaskExecutor Initializing ExecutorService 'applicationTaskExecutor’
84 10011134724 INFD sin) ois
$19-07-04 10:11:34.718 INFO 2in] con.husyLupo. spaia.cho1 AppLication Started Application in 2.09 seconds (W rumning for 5.044)

.M._.‘.v_..m.?. Toncat started on port(s): 8080 (http) with context path '

By default, the service listens
on port 8080 for incoming
HTTP requests.

OEBPS/OEBPS/Images/CH01_F07_Huaylupo.png
HTTP GET for the /hello/illary?lastName = huaylupo

GeT GET_Hell

» GET_Hello
http://localhost:8080/hellovillarylastName=huaylupo

Params ®

Query Params

xev VALUE

astName huaylupo

Body

Pretty

1-K
“message”: "Hello illary huaylupo”

} ¥ JSON payload returned

back from the service

OEBPS/OEBPS/Images/CH01_F05_Huaylupo.png
A client makes one HTTP request, using the GET
HTTP verb, and sends the name via pacnvariable
and the last name via requestraran.

>

HTTP GET request o the microservice
http://localhost:8080/hello/illary ?lastname=huaylupo

HTTP status: 200

-
{“message" : "Hello illary huaylupo"J
)

+ Once Spring Boot has

g identified the route, it

/
The client receives the will map any parameters

. defined inside the route
respone o yourseice L o methd cht il
. carry out the work.

failure of the call is returned

as an HTTP status code.
Once all of the data has
been mapped, Spring _
Boot will the

Hello microservice

-> JAVA object
mapping

JSON object
mapping

. Once the

Spring Boot will parse the
HTTP request and map the
route based on the HTTP
verb, the URL, and potential
parameters defined for the
URL. A route maps to a
method in a Spring

RestCon ler class.

For an HTTP PUT or POST, a
- JSON passed in the HTTP body
is mapped to a Java class.

logic is

business logic.

low of Spring Boot microservice

" executed, Spring Boot will
convert a Java object to JSON.

OEBPS/OEBPS/Images/CH01_F08_Huaylupo.png
_ HTTP POST for the /hello

_ Request JSON payload

in the HTTP body

JSON payload
— returned back from
the service

OEBPS/OEBPS/Images/CH01_F02_Huaylupo.png
microservice

——
Funds -
[
-_—

Funds team

Gustomer

 —
pipeline microservice

aseqejep
Jewoisny

Customer codebase

'
o

Customer team

[Continuous|
integration
pipeline

Data warehouse

—
microservice

aseqejep
asnoyesem
elea

-—
&
Data warehousing Data warehouse codebase

team
O mmmmm

]

Ul web

application

Invokes all business
*__— logic as REST-based

U7UX team UIIUX codebase
service calls

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F03_Huaylupo.png
Monolithic architecture o Microservices architecture
Application

— In this scenario the

The product,

order, and v services are separated,
account and each service contains
services the specific data access
are within layer. They can have a
the same Business shared database or
application. loaic individual databases.

service service

OEBPS/OEBPS/Images/CH01_F04_Huaylupo.png
Client

e,

Configuration service
repository

N

Organization database

Service discovery .
(Eureka)

=
L -—

Docker container

=

’ Organization service Logstash
/ Resiliencedj -
Y L —T AR . Docker container
| I I
! Servmasea(uway\ | i i
H (Spring Cloud ! i !
\ Gateway) ! | Subscribe !

Elasticsearch |
s

[=)
Keycloak Licensing Redis
server database

Docker container

)
i
i

Kibana

Prometheus Metrics |

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/IFC_F01_Huaylupo.png
Applications A and B
use the licensing Application C uses the
service to do work. inventory service.

)

[
.

pam—Y pam— pa—Y
Application A Application B Application G

The licensing service
calls the organi;
service to do some work.

License data source

The organization service
calls the inventory service
to do some work.

Organization data source

NAS (Wites to

Here’s where the fun begins. A ~
small change to the NAS causes a
performance problem in the
inventory service. Boom!
Everything goes tumbling down.

OEBPS/OEBPS/Images/CH01_F09_Huaylupo.png
On-premises laaS CaaS

Functions Functions Functions

Applications

Run times and containers Run times and containers Run times and containers

Operating systems and Operating systems and Operating systems and
management tools management tools management tools
Networking, storage, Networking, storage, Networking, storage,
and servers | and servers and servers

[J it
[Applications] [Applications
(J it

N\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

PaaS FaaS SaaS

Functions |
|

Applications |
|

Run times and containers i
|

|

|

|

|

|

|

|

|

|

|

|

|

Functions Functions

Applications Applications

un times and containers

|

Run times and containers

‘Operating systems and

Operating systems and
management tools

i

Networking, storage, i Networking, storage,
i
|

‘Operating systems and

il

management tools

management tools
Networking, storage,
and servers and servers

() usermanagement [} Managed by vendor

and servers

