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preface


  Computers have been trying hard to make sense of language in recent decades. Supported by disciplines like linguistics, computer science, statistics, and machine learning, the field of computational linguistics or natural language processing (NLP) has come into full bloom, supported by numerous scientific journals, conferences, and active industry participation. Big tech companies like Google, Facebook, IBM, and Microsoft appear to have prioritized their efforts in natural language analysis and understanding, and progressively offer datasets and helpful open source software for the natural language processing community. Currently, deep learning is increasingly dominating the NLP field.


  To someone who is eager to join this exciting field, the high pace at which new developments take place in the deep learning–oriented NLP community may seem daunting. There seems to be a large gap between descriptive, statistical, and more traditional machine learning approaches to NLP on the one hand, and the highly technical, procedural approach of deep learning neural networks on the other hand. This book aims to bridge this gap a bit, through a gentle introduction to deep learning for NLP. It targets students, linguists, computer scientists, practitioners, and all other people interested in artificial intelligence. Let’s refer to these groups of people as NLP engineers. When I was a student, lacking a systematic computational linguistics program in those days, I pretty much pieced together a personal—and necessarily incomplete—NLP curriculum. It was a tough job. My motivation for writing this book has been to make this journey a bit easier for aspiring NLP engineers, and to give you a head start by introducing you to the fundamentals of deep learning–based NLP.


  I sincerely believe that to become an NLP engineer with the ambition to produce innovative solutions, you need to possess advanced software development and machine learning skills. You need to fiddle with algorithms and come up with new variants yourself. Much like the 17th-century Dutch scientist Antonie van Leeuwenhoek, who designed and produced his own microscopes for experimentation, the modern-day NLP engineer creates their own digital instruments for studying and analyzing language. Whenever an NLP engineer succeeds in building a model of natural language that “adheres to the facts,” that is, is observationally adequate, not only industrial (that is, practical) but also scientific progress has been made. I invite you to adopt this mindset, to continuously observe how humans process language, and to contribute to the wonderful field of NLP, where, in spite of algorithmic progress, so many topics are still open!
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about this book


  This book will give you a thorough introduction to deep learning applied to a variety of language analysis tasks, supported by actual hands-on code. Explicitly linking the evergreens of computational linguistics (such as part-of-speech tagging, textual similarity, topic labeling, and Question Answering) to deep learning will help you become a proficient deep learning, natural language processing (NLP) expert. Beyond this, the book covers state-of-the-art approaches to challenging new problems.


  
Who should read this book


  The intended audience for this book is anyone working in NLP: computational linguists, software engineers, and students. The field of machine learning–based NLP is vast and comprises a daunting number of formalisms and approaches. With deep learning entering the stage, many are eager to get their feet wet but may shy away from the highly technical nature of deep learning and the fast pace of this field—new approaches, software, and papers emerge on a daily basis. This book will bring you up to speed.


  This book is not for those who wish to become proficient in deep learning in a general manner, readers in need of an introduction to NLP, or anyone desiring to master Keras, the deep learning Python library we use. Manning offers two books that fill these gaps and can be read as companions to this book: Natural Language Processing in Action (Hobson Lane, Cole Howard, and Hannes Hapke, 2019; www.manning.com/books/natural-language-processing-in-action) and Deep Learning with Python (François Chollet, 2021: www.manning.com/books/deep-learning-with-python-second-edition). If you want a quick and thorough introduction to Keras, visit https://keras.io/getting_started/intro_to_keras_for_engineers.


  
How this book is organized: A road map


  Part 1, consisting of chapters 1, 2, and 3, introduces the history of deep learning, the basic architectures of deep learning for NLP and their implementation in Keras, and how to represent text for deep learning using embeddings and popular embedding strategies.


  Part 2, consisting of chapters 4, 5, and 6, focuses on assessing textual similarity with deep learning, processing long sequences with memory-equipped models for Question Answering, and then applying such memory models to other NLP.


  Part 3, consisting of chapters 7, 8, 9, and 10, starts by introducing neural attention, then moves on to the concept of multitask learning, using Transformers, and finally getting hands-on with BERT and inspecting the embeddings it produces.


  
About the code


  The code we develop in this book is somewhat generic. Keras is a dynamic library, and while I was writing the book, some things changed, including the now-exclusive dependency of Keras on TensorFlow as a backend (a Keras backend is low-level code for performing efficient neural network computations). The changes are limited, but occasionally you may need to adapt the syntax of your code if you're using the latest Keras version (version 2.0 and above).


  In the book, we draw pragmatic inspiration from public domain, open source code and reuse code snippets that are handy. Specific sources include the following:


  
    	
      The Keras source code base, which contains many examples addressing NLP

    


    	
      The code accompanying the companion book Deep Learning with Python

    


    	
      Popular and excellent open source websites like https://adventuresinmachinelearning.com and https://machinelearningmastery.com

    


    	
      Blogs like http://karpathy.github.io

    


    	
      Coder communities like Stack Overflow

    

  


  The emphasis of the book is more on outlining algorithms and code and less on achieving academic state-of-the-art results. However, starting from the basic solutions and approaches outlined throughout the book, and backed up by the many practical code examples, you will be empowered to reach better results.


  This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Code annotations accompany many of the listings, highlighting important concepts.


  You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/deep-learning-for-natural-language-processing. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/deep-learning-for-natural-language-processing, and from GitHub at https://github.com/stephanraaijmakers/deeplearningfornlp.


  
liveBook discussion forum


  Purchase of Deep Learning for Natural Language Processing includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/deep-learning-for-natural-language-processing/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


  
about the author


  Stephan Raaijmakers received his education as a computational linguist at Leiden University, the Netherlands. He obtained his PhD on machine learning–based NLP from Tilburg University. He has been working since 2000 at TNO, the Netherlands Organisation for Applied Scientific Research, an independent organization founded by law in 1932, aimed at enabling business and government to apply scientific knowledge, contributing to industrial innovation and societal welfare. Within TNO, he has worked on many machine learning–intensive projects dealing with language. Stephan is also a professor of communicative AI at Leiden University (LUCL, Leiden University Centre for Linguistics). His chair focuses on deep learning–based approaches to human-machine dialogue.


  
about the cover illustration


  The figure on the cover of Deep Learning for Natural Language Processing, titled “Paisan de dalecarlie,” or “Peasant, Dalecarlia,” is from an image held by the New York Public Library in the Miriam and Ira D. Wallach Division of Art, Prints and Photographs: Picture Collection. Each illustration is finely drawn and colored by hand.


  In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.


  
Part 1. Introduction


  Part 1 introduces the history of deep learning, relating it to other forms of machine learning–based natural language processing (NLP; chapter 1). Chapter 2 discusses the basic architectures of deep learning for NLP and their implementation in Keras. Chapter 3 discusses how to represent text for deep learning using embeddings and focuses on Word2Vec and Doc2Vec, two popular embedding strategies.


  
1 Deep learning for NLP


  This chapter covers


  
    	
Taking a short road trip through machine learning applied to NLP


    	
Learning about the historical roots of deep learning


    	
Introducing vector-based representations of language

  


  Language comes naturally to humans but has historically been hard for computers to grasp. This book addresses the application of recent, cutting-edge deep learning techniques to automated language analysis. In the last decade, deep learning has emerged as the vehicle of the latest wave in artificial intelligence (AI). Results have consistently redefined the state of the art for a plethora of data analysis tasks in a variety of domains. For an increasing number of deep learning algorithms, better- than-human (human-parity or superhuman) performance has been reported: for instance, speech recognition in noisy conditions and medical diagnosis based on images. Current deep learning–based natural language processing (NLP) outperforms all pre-existing approaches by a large margin. What exactly makes deep learning so suitable for these intricate analysis tasks, in particular language processing? This chapter presents some of the background necessary to answer this question and guides you through a selection of important topics in machine learning for NLP.


  We first examine a few main approaches to machine learning: the neural perceptron, support vector machines, and memory-based learning. After that, we look at historical developments leading to deep learning and address vector representations: encoding data (notably, textual) with numerical representations suitable for processing by neural networks.


  Let’s start by discussing a few well-known machine learning–based NLP algorithms in some detail, illustrated with a handful of practical examples to whet your appetite. After that, we present the case for deep learning–based NLP.


  
1.1 A selection of machine learning methods for NLP


  Let’s start with a quick (and necessarily incomplete) tour of machine learning–based NLP (see figure 1.1). Current natural language processing heavily relies on machine learning. Machine learning has its roots in statistics, building among others on the seminal work by Thomas Bayes and Pierre-Simon Laplace in the 18th and 19th centuries and the least-squares methods for curve approximation by Legendre in 1812. The field of neural computing started with the work of McCulloch and Pitts in 1943, who put forward a formal theory (and logical calculus) of neural networks. It would take until 1950 before learning machines were proposed by Alan Turing.


  
    [image: ]


    Figure 1.1 Machine learning for NLP. A first look at neural machine learning, plus background on support vector machines and memory-based learning.

  


  All machine learning algorithms that perform classification (labeling) share a single goal: to arrive at linear separability of data that is labeled with classes: labels that indicate a (usually exclusive) category to which a data point belongs. Data points presented to a machine learning algorithm typically consist of vector representations of descriptive traits. These representations constitute a so-called input space. The subsequent processing, manipulation, and abstraction of the input space during the learning stage of a self-learning algorithm yields a feature space. Some of this processing can be done external to the algorithm: raw data can be converted to features as part of a preprocessing stage, which technically creates an input space consisting of features. The output space consists of class labels that separate the various data points in a dataset based on the class boundaries. The essence of deep learning, as we will see, is to learn abstract representations in the feature space. Figure 1.2 illustrates how deep learning mediates between inputs and outputs: through abstract representations derived from the input data.


  
    [image: ]


    Figure 1.2 From input space to output space (labels). Deep learning constructs inter-mediate, abstract representations of input data, mapping an input space to a feature space. Through this mapping, it learns to relate input to output: to map the input space to an output space (encoding class labels or other interpretations of the input data).

  


  Training a machine learning component involves learning boundaries between classes, which may depend on complex functions. The burden of learning class separability can be alleviated by smart feature preprocessing. Learning the class boundaries occurs by performing implicit or explicit transformations on linearly inseparable input spaces. Figure 1.3 shows a non-linear class boundary: a line separating objects in two classes that cannot be modeled by a linear function f(x) = ax + b. The function corresponding to this line is a non-linear classifier. A real-world example would be a bowl of multicolored marbles mixed in such a way that they cannot be separated from each other by means of a straight plate (like a flat scoop).


  
    [image: ]


    Figure 1.3 Non-linear classifier. The two classes (indicated with circles and triangles) cannot be separated with a linear line.

  


  A linear function that separates classes with a straight line is a linear classifier and would produce a picture like figure 1.4.
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    Figure 1.4 Linear classifier. The two classes (indicated with circles and triangles) can be separated with a straight line.

  


  We now briefly address three types of machine learning approaches that have had major uptake in NLP:


  
    	
      The single-layer perceptron and its generalization to the multilayer perceptron

    


    	
      Support vector machines

    


    	
      Memory-based learning

    

  


  While there is a lot more to the story, these three types embody, respectively, the neural or cognitive, eager, and lazy types of machine learning. All of these approaches relate naturally to the deep learning approach to natural language analysis, which is the main topic of this book.


  
1.1.1 The perceptron


  In 1957, the first implementation of a biologically inspired machine learning component was realized: Rosenblatt’s perceptron. This device, implemented on physical hardware, allowed the processing of visual stimuli represented by a square 400 (20 by 20) array of photosensitive cells. The weights of this network were set by electromotors driving potentiometers. The learning part of this perceptron was based on a simple one-layer neural network, which effectively became the archetype of neural networks (see figure 1.5).


  
    [image: ]


    Figure 1.5 Rosenblatt’s perceptron: the fruit fly of neural machine learning. It represents a single neuron receiving several inputs and generating (by applying a threshold) a single output value.

  


  Suppose you have a vector of features that describe aspects of a certain object of interest, like the words in a document, and you want to create a function from these features to a binary label (for instance, you want to decide if the document conveys a positive or negative sentiment). The single-layer perceptron is capable of doing this. It produces a binary output y (0 or 1) from a weighted combination of input values x1...xn, based on a threshold θ and a bias b:


  
    [image: ]

  


  The weights w1, ...wn are learned from annotated training data consisting of input vectors labeled with output labels. The thresholded unit is called a neuron. It receives the summed and weighted input v. So, assume we have the set of weights and associated inputs shown in table 1.1.


  Table 1.1 Weighted input


  
    
      
      
    

    
      
        	
          Weight 1

        

        	
          3

        
      


      
        	
          Weight 2

        

        	
          5

        
      


      
        	
          Weight 3

        

        	
          7

        
      


      
        	
          Input 1

        

        	
          10

        
      


      
        	
          Input 2

        

        	
          20

        
      


      
        	
          Input 3

        

        	
          30

        
      

    
  


  Then their summed and weighted output would be
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  This simplistic network is able to learn a specific set of functions that address the class of linearly separable problems: problems that are separable in input space with a linear function. Usually, these are the easier problems in classification. It is quite common for data to be heavily entangled. Consider undoing a knot in two separate ropes. Some knots are easy and can be undone in one step. Other knots need many more steps. This is the business of machine learning algorithms: undoing the intertwining of data objects living in different classes. For NLP, the single-layer perceptron nowadays plays a marginal role, but it underlies several derived algorithms that strive for simplicity, such as online learning (Bottou 1998).


  A practical example of a perceptron classifier is the following. We set out to build a document classifier that categorizes raw texts as being broadly about either atheism or medical topics. The popular 20 newsgroups dataset (http://qwone.com/~jason/20Newsgroups), one of the most widely used datasets for building and evaluating document classifiers, consists of newsgroup (Usenet) texts distributed over 20 hand-assigned topics. Here is what we do:


  
    	
      Make a subselection for two newsgroups of interest: alt.atheism and sci.med.

    


    	
      Train a simple perceptron on a vector representation of the documents in these two classes. A vector is nothing more than a container (an ordered list of a finite dimension) for numerical values.


      The vector representation is based on a statistical representation of words called TF.IDF, which we discuss in section 1.3.2. For now, just assume TF.IDF is a magic trick that turns documents into vectors that can be fed to a machine learning algorithm.

    

  


  Don’t worry if you don’t completely understand the following listing right now. It’s here to give you an idea of what the code looks like for a basic perceptron.


  Listing 1.1 A simple perceptron-based document classifier

  from sklearn.linear_model import Perceptron                          ①
from sklearn.datasets import fetch_20newsgroups                      ②
 
categories = ['alt.atheism', 'sci.med']                              ③
 
train = fetch_20newsgroups(å
subset='train',categories=categories, shuffle=True)                  ④
 
perceptron = Perceptron(max_iter=100)                                ⑤
 
from sklearn.feature_extraction.text import CountVectorizer          ⑥
cv = CountVectorizer()
X_train_counts = cv.fit_transform(train.data)
 
from sklearn.feature_extraction.text import TfidfTransformer         ⑦
tfidf_tf = TfidfTransformer()
X_train_tfidf = tfidf_tf.fit_transform(X_train_counts)
 
perceptron.fit(X_train_tfidf,train.target)                           ⑧
 
test_docs = ['Religion is widespread, even in modern times', 'His kidneyå
failed','The pope is a controversial leader', 'White blood cells fightå
off infections','The reverend had a heart attack in church']         ⑨
 
X_test_counts = cv.transform(test_docs)                              ⑩
X_test_tfidf = tfidf_tf.transform(X_test_counts)
 
pred = perceptron.predict(X_test_tfidf)                              ⑪
 
for doc, category in zip(test_docs, pred):                           ⑫
    print('%r => %s' % (doc, train.target_names[category]))


  ① Import a basic perceptron classifier from sklearn.


  ② Import a routine for fetching the 20 newsgroups dataset from sklearn.


  ③ Limit the categories of the dataset.


  ④ Obtain documents for our category selection.


  ⑤ Our perceptron is defined. It will be trained for 100 iterations.


  ⑥ The familiar CountVectorizer is fit on our training data.


  ⑦ Load, fit, and deploy a TF.IDF transformer from sklearn. It computes TF.IDF representations of our count vectors.


  ⑧ The perceptron is trained on the TF.IDF vectors.


  ⑨ Our test data


  ⑩ The test data is vectorized first to count vectors and then to TF.IDF vectors.


  ⑪ The perceptron is applied to the test documents.


  ⑫ The results are printed.


  This produces the following results:

  Religion is widespread, even in modern times => alt.atheism
 
His kidney failed => sci.med
 
The pope is a controversial leader => alt.atheism
 
White blood cells fight off infections => sci.med
 
The reverend had a heart attack in church => sci.med


  Apparently, these few short texts can be linearly separated by a simple, weight-based algorithm. This example is a huge simplification: the topics chosen are quite distinct. In real life, linear algorithms fall short in separating topics that overlap and share similar vocabulary.


  The multilayer perceptron (MLP) generalizes the single-layer model of the original perceptron to a model with at least three layers: an input layer, one or more hidden representational layers, and an output layer (figure 1.6). 
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    Figure 1.6 A multilayer perceptron (MLP) with an input layer, one hidden layer (h1...hn), and an output layer. Multidimensional input is processed by neurons x1...xn. These neurons are like singular perceptrons, the difference being that instead of thresholding their activation and producing a label, they send their activations to neurons in the hidden layer. Finally, the threshold function f(x) gathers all the input and predicts an output y. Every connection between input and neurons, and between neurons, is weighted, and weights are learned during training the perceptron.

  


  
1.1.2 Support vector machines


  As mentioned, machine learning algorithms that perform classification (the labeling of objects with classes) attempt to arrive at linear boundaries between data points. Recall figure 1.4 for such a linear boundary. Imagine seeing two objects (like an orange and an apple) on a plate, one of which partially obscures the other. If you close one eye, you lose 3D stereovision, and you cannot separate the two objects in 2D. If you open both eyes, you can separate the two objects. Support vector machines (SVMs) routinely perform this migration to a higher dimension, separating objects in this space. Their secret weapon: kernels (figure 1.7).
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    Figure 1.7 From 2D to 3D with a kernel. The kernel leads to linear separability in 3D of the two data points, which are linearly inseparable in 2D. The hyperplane in 3D can be described with a linear function.

  


  An SVM is a binary classifier that implicitly maps data in feature space to higher dimensions in which data becomes separable by a linear plane called a hyperplane. This mapping is implicit and is carried out by a kernel function. This is a function that transforms the original input space to an alternative representation that implicitly has a higher dimensionality, with the aim of disentangling the data and making it linearly separable. But this transformation is implicit in the sense that it takes the form of a similarity function applied to two feature vectors, just computing their distance. This is called the kernel trick.


  You should already be familiar with the dot product of two vectors. If not, please see https://en.wikipedia.org/wiki/Dot_product for a refresher. To recap, the standard dot product of two vectors a and b is the sum of the cross-product of the two vectors:

  def dot_product(a,b):
  return sum( [a[i]*b[i] for i in range(len(a))])


  So, a dot product is just a multiplicative operation on two vectors that produces a single number. Kernels are generalizations of this dot product between vectors: they compute the dot product between altered versions of these vectors. The nature of the alteration is specified by a kernel function. Generally speaking, a kernel function takes two vectors, mixes in a constant (a kernel parameter), and adds some kernel-specific ingredients to produce a specific form of a dot product of the two vectors.


  Let’s return to our orange and apple. The objects are described by pairs of coordinates (x,y) since the table they’re lying on is a flat XY-plane. Like other types of kernels, the polynomial kernel maps lower-dimensional spaces to higher-dimensional ones. You may recall from high school math that a polynomial function produces a value using addition, subtraction, multiplication, or positive exponentiation only, like y = 4x2 + 10. Polynomial kernels work on two input values (vectors of numeric values) and (usually) a constant. They compute a result using a polynomial.


  For instance, a simple quadratic kernel K that uses a constant c and addresses the two two-dimensional XY-vectors describing our orange and apple


  x = (x1,x2)


  and


  y = (y1,y2)


  looks like this:


  K(x, y) = (c + xTy)2 = (c + x1y1 + x2y2)2 = c2 + x12y12 + x22y22 + 2cx1y1 + 2cx2y2 + 2x1y1x2y2


  Notice the superscripted T: that is vector transposition (swapping columns and rows), necessary for vector multiplication. What does the kernel do? It computes a product between two vectors. This product is a number expressing a relation between the two input vectors. But the tedious expansion of this kernel shows that we actually operate in a six- (not even a three-!) dimensional space. Count the factors separated by the plus sign in the result; we have six such factors. In this case, the kernel function K implicitly computes its dot product between the following vectors
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  since the result is the product of these two vectors. But it never explicitly created these vectors. The whole point of this kernel trick is that, hopefully, in the higher-dimensional space that is the playground of the kernel, things become easier to separate than in the entangled input space. Kernels do not explicitly represent this space; they implicitly work in it. You can imagine that for long vectors and large exponents of the polynomial, this kernel trick quickly becomes a practical advantage!


  In the transformed space created by the kernel trick, two classes are at best separated with maximally wide boundaries (called maximum margins). The data points determining the slope of these boundaries are called support vectors. See figure 1.8.
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    Figure 1.8 Maximum margins of an SVM. The support vectors are the points on the dashed lines.

  


  Learning weights that optimize the margins with the least error (as measured on some held-out test data) is the job an SVM has to solve during training. After training, the support vectors and various weights plus biases constitute the model. New input is projected onto the support vectors and, depending which side it lands on, receives a positive or negative label (recall that SVMs are binary classifiers). So, SVMs throw away a lot of their training data and keep only some of it: the support vectors. They can be called eager forms of machine learning.


  The connection between kernel-based machine learning and neural network–based learning is briefly discussed in the book Deep Learning with Python (Chollet 2017). It is based on the intuition that hidden layers in neural networks act like kernels in disentangling linearly inseparable input data layer by layer, step by step. 


  
1.1.3 Memory-based learning


  Unlike the eager types of machine learning that build compact and representative models of their training data, memory-based learning (MBL; Daelemans and van den Bosch 2005) is a form of lazy learning. It does not compress training data into generalizations but instead keeps all training data available in memory. During classification, the actual processing of the training takes place: input data is matched with training data by the application of similarity or distance measures. Similar to SVMs, distance functions between vectors compute similarities. But here, we work on explicit vectors, and we do not perform any dimensionality tricks.


  A well-known distance function is the IB1 metric, a simplified version of which is shown in the following listing.


  Listing 1.2 IB1 distance metric

  def IB1(a,b):
  return sum( [delta(a[i],b[i]) for i in range(len(a))])
 
def delta(x,y):
   if x==y:
     return 0
   if x!=y:
     return 1


  This metric computes the distance between two feature vectors based on feature value overlap: exact similarity for symbolic (non-numerical) values. Most MBL algorithms extend these distance metrics with feature weighting (such as information-gain-based weighting) or exemplar weighting (Daelemans and van den Bosch 2005). They partition the search space for matching in sets consisting of training items with the same distance to the current test item. For instance, sets of distances d1, d2 ,... can be found first, after which the algorithm computes the most frequent class in those sets. It then votes over all classes to determine the most probable label for the test item. The k parameter addresses the number of distance sets to take into account, which is why MBL often is k-nearest distances classification rather than k-nearest neighbor classification.


  MBL has interesting advantages for NLP. Keeping all original training data available for classification allows handling exceptions in language. For instance, in certain languages, morphological operations on words, such as diminutive formation, can be arranged in pockets of exceptions: small families of subregularities. In Dutch, for instance, we encounter these:


  
    	
      gat => gaatje (“small hole”)

    


    	
      pad => paadje (“small path”)

    


    	
      blad => blaadje (“small leaf”)

    

  


  Notice the extra vowel in the diminutive form, and the diminutive suffix -je. We also have a subfamily of patterns like these:


  
    	
      kat => katje (“small cat”)

    


    	
      rat => ratje (“small rat”)

    


    	
      schat => schatje (“(my) dear”)

    


    	
      schot => schotje (“small fence”)

    


    	
      schip => scheepje (“small ship”)

    


    	
      schaap => schaapje (“small sheep”)

    


    	
      guit => guitje (“little maverick”)

    

  


  While schat is phonetically quite similar to gat (-ch- is pronounced similarly to -g-), it is inflected analogous to other words prefixed with sch-. But schip does not follow this pattern.


  The benefit of using a memory-based learner for highly exceptional data is that exceptions can, in principle, always be retrieved for labeling a similar exceptional input case. Memory-based learners have perfect memory: they store everything. But eager machine learning models tend to “compile away” these exceptions. They are after string regularities rather than exceptions. Editing away these exceptions from training data has been found detrimental to generalization accuracy (the ability to handle new, unseen cases outside of the training data) of the resulting classifier (Daelemans et al., 1999). Apparently, it is beneficial to keep the subregularities of pockets of exceptions. One of the challenges for deep learning, an “eager” form of machine learning, will be to handle these subregularities in a similar vein. 


  
1.2 Deep learning


  Deep learning is one of the most vibrant buzz phrases of the past 5 years. Deep learning by itself is nothing new: in the strictest sense, it is a neural network with lots of internal or hidden layers and specific filtering operations. Deep learning deploys constructive ways of dealing with large quantities of information organized in many layers of representations. While deep learning in its essential form was invented in the 1960s of the previous century, it took three decades before it was finally ready to use. In this section, we shed some light on why this happened (see figure 1.9 for the setup).
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    Figure 1.9 Deep learning: some historical background

  


  But first: which problem does deep learning solve for NLP? Deep learning can be seen as a very effective statistical technique for working with (very) many parameters. It can effectively handle millions of parameters, each one encoding an aspect of input data. Layers in deep learning act as transformations that—step by step—accommodate input data with the labels we assign to that data; they disentangle the spaghetti of input data so that labels can be assigned more easily. The fact that we can stack many such declutter steps on top of each other is a major forte of deep learning. For language, deep learning provides two types of advantages:


  
    	
      The repeated application of data decluttering steps proves good for NLP, but this is not specific for language; it applies to virtually every modality deep learning is applied to.

    


    	
      Deep learning has facilities for handling sequential information with memory operators and buffers. This is important for language, and in this respect, deep learning is a form of stateful machine learning, as opposed to the other, usually stateless types of machine learning models. These models also usually perform just a single disentanglement step (like SVMs).

    

  


  Central to deep learning is the learning of hierarchical representations of data. Under a vertical interpretation of a multilayer neural network, every “lower” layer feeds into a “higher” layer. Layers can be seen as complex functions processing a set of inputs and weights. These weights encode the importance of the information stored in the network. Networks receive their inputs in a dedicated input layer and process that input


  layer by layer, sending it upward into the network.


   Output layers, finally, produce an outcome: the label the model assigns to its input. Usually, the network produces probabilities for a set of possible outcomes. The outcome with the highest probability then constitutes the final output label. All layers except input and output layers are hidden layers, as they cannot be readily observed. As mentioned, hidden layers in neural networks disentangle linearly inseparable input data layer by layer, step by step. Figure 1.10 shows a generic deep learning network.
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    Figure 1.10 Deep learning networks: general architecture

  


  During training, weights are estimated and fine-tuned between neurons, which are the basic processing units of a neural network. Every layer keeps a record of the weights for the neurons that feed into that layer. Estimating weights is the essential business of neural networks.


  Since the layers in a neural network are hierarchically organized (stacked), the representations they produce can be interpreted as hierarchical representations as well, going from specific (close to the input layer) to more abstract (close to the output layer). In general, it is hard to come up with human-understandable interpretations of these representations. Yet, in the field of image analysis, the weights associated with the layers of deep learning networks have been shown to encode interpretable concepts. They can be visualized, and the lower layers appear to encode pixels, whereas higher layers represent edges, corners, and even concepts like facial objects (see Lee 2010).


  In 1965, presumably the first reference to such hierarchical representation learning was published by Ivakhnenko and Lapa (see Ivakhnenko and Lapa 1965). Their work describes a group method of data handling (GMDH)—a method for producing outputs by layers feeding into each other, based on the following formula:


  Y(x1,...,xn) = a0 + Σin= 1 aixi + Σin= 1 Σjn= 1 aijxixj + Σin= 1 Σjn= 1 Σkn= 1 aijkxixjxk + ...



  This intimidating formula describes nothing but a function Y that computes a complex sum of weighted combinations (groups) of input values xi, with every factor a being a weight or coefficient. This value can be compared with a desired value (an output), and then the weights can be adjusted to closely approximate this “true” value. Notice that we have a one-dimensional weight or coefficient matrix ai, a two-dimensional one aij, a three-dimensional one aijk, and so on. The weight matrices are usually referred to as polynomial models. The complex function can be represented by a sequence of quadratic terms (polynomials) addressing just two values, like this:


  Y(xi, xj) = a0 + a1xi + a2xj + a3xi2 + a4xj2 + a5xiyj + ...


  (In GMDH networks, every neuron has two inputs and produces a polynomial value from these two values.) The coefficients a can be learned from training data through simple methods such as least squares (https://en.wikipedia.org/wiki/Least_squares). GMDH networks optimize themselves by minimizing an external quality criterion: they select subsets of polynomial functions and estimate their coefficients. In 1971, Ivakhnenko presented the first deep eight-layer network based on GMDH (see Ivakhnenko 1971).


  Yet this memorable fact did not coincide with the official launch of deep learning. The simplistic methods for weight tuning by GMDH were not scalable to large-scale training. It took a while before more scalable weight-tuning methods like backpropagation came into being: while invented around 1970, they found their way into neural nets not before the late 1980s. (See section 2.4 of Deep Learning with Python [Chollet 2017] for an introduction to backpropagation.)


  But even with backpropagation, neural networks suffered from various practical problems, including the notorious vanishing gradient issue. This problem arises during the training of a network. The crucial ingredient of backpropagation is the stepwise minimization of the error function of a neural network by taking partial derivatives of the error function of the network, differentiating for all weights, and moving stepwise toward its minimum. Gradients are a generalization of the one-variable partial derivative of a function. Setting a partial derivative to zero finds a local maximum or minimum of a function. If this function is an error function that computes the error a network makes for predicting certain output based on weights, we can look for weight adjustments that push the error function ever closer to its minimum. This procedure is called gradient descent, and it’s the driving force behind backpropagation. Backpropagation has built up an impressive track record and underlies the majority of neural network results.


  However, for deep and complex networks with millions of weights, weight adjustments can easily become too tiny to be useful: they vanish, and gradient descent is no longer effective. Backpropagation deploys the so-called chain rule from calculus to compute the weight adaptations per layer. The chain rule is an algorithm for computing derivatives of functions that are applied to functions. Essentially, this is what happens when we apply activation functions to the output of layers (which themselves apply activation functions to the output of the layers that feed into them, and so on).


  As mentioned, gradient descent uses composed derivatives by working across layers and their respective activation functions and, accordingly, makes weight updates that move the network closer to perfection. Activation functions with gradients in intervals capped by small numbers (say, between 0 and 1) result in weight adaptations that are small by nature, and repeated multiplication of these small numbers with the chain rule leads to thinning and, eventually, evaporation of values. This means the weight adaptations (which are computed from the topmost layer of the network, just under the output layer) never reach the layers close to the input layer, which subsequently do not get trained.


  So, how did deep learning escape this conundrum? There are at least a couple of solutions that have alleviated the problem. The most prominent is the use of a feature selection/data reconstruction cycle, as put forward by restricted Boltzmann machines (RBMs). RBMs are complete networks that learn probability distributions from data. They can be stacked on top of each other, as layers, where every layer is a separate RBM sending its hidden layer data as input to the next layer and not through inter-layer connections between hidden layers. This setup allows for layer-wise training of networks and eliminates much of the vanishing gradient problem since gradients don’t need to travel far down the network: they are confined to separate layers. A similar idea—multilevel hierarchies of recurrent neural networks—was coined earlier by Jürgen Schmidhuber (1992). Sequential, recurrent models like LSTMs have also been found to be relatively insusceptible to vanishing gradients.


  In addition to all this, a new type of activation function has become popular in deep learning: the rectified linear unit (ReLU). A ReLU is a very simple non-linear function that computes a maximum of two values, one of which is the input to a neuron.


  Specifically,

  ReLU(x) = max(0,x)


  So, ReLU(x) just returns which is bigger: zero or x. It eliminates all values of x less than zero.


  Now, if we apply this function to every neuron in our network, only those with positive values promote their values:


  y = ReLU(Σi (weighti × inputi) + bias)


  This formula expresses the effect of ReLU applied to a sum (Σ) of inputs multiplied by weights, augmented with a bias term. Figure 1.11 shows how this works.
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    Figure 1.11 ReLU operations at work on the final hidden layer output of a neural net. Negative values are squashed to zero by the ReLU operations.

  


  The ReLU function is differentiable almost everywhere except exactly 0, and its derivative is quite simple,


  ReLU'(x) = 1 if x > 0 and 0 else


  which has beneficial effects on the speed and scalability of the network computations during backpropagation.


  A traditional activation function is the sigmoid function:
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