

 The Art of Unit Testing, Second Edition: with examples in C#

 Roy Osherove

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Photographs in this book were created by Martin Evans and Jordan Hochenbaum, unless otherwise noted. Illustrations were created by Martin Evans, Joshua Noble, and Jordan Hochenbaum. Fritzing (fritzing.org) was used to create some of the circuit diagrams.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Nermina Miller
Copyeditor: Linda Recktenwald
Proofreader: Elizabeth Martin
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617290893

 Printed in the United States of America

Dedication

 To Tal, Itamar, Aviv, and Ido. My family.

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword to the Second Edition

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. The basics of unit testing

 Chapter 2. A first unit test

 2. Core techniques

 Chapter 3. Using stubs to break dependencies

 Chapter 4. Interaction testing using mock objects

 Chapter 5. Isolation (mocking) frameworks

 Chapter 6. Digging deeper into isolation frameworks

 3. The test code

 Chapter 7. Test hierarchies and organization

 Chapter 8. The pillars of good unit tests

 4. Design and process

 Chapter 9. Integrating unit testing into the organization

 Chapter 10. Working with legacy code

 Chapter 11. Design and testability

 Tools and frameworks

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword to the Second Edition

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. The basics of unit testing

 1.1. Defining unit testing, step by step

 1.1.1. The importance of writing good unit tests

 1.1.2. We’ve all written unit tests (sort of)

 1.2. Properties of a good unit test

 1.3. Integration tests

 1.3.1. Drawbacks of nonautomated integration tests compared to automated unit tests

 1.4. What makes unit tests good

 1.5. A simple unit test example

 1.6. Test-driven development

 1.7. The three core skills of successful TDD

 1.8. Summary

 Chapter 2. A first unit test

 2.1. Frameworks for unit testing

 2.1.1. What unit testing frameworks offer

 2.1.2. The xUnit frameworks

 2.2. Introducing the LogAn project

 2.3. First steps with NUnit

 2.3.1. Installing NUnit

 2.3.2. Loading up the solution

 2.3.3. Using the NUnit attributes in your code

 2.4. Writing your first test

 2.4.1. The Assert class

 2.4.2. Running your first test with NUnit

 2.4.3. Adding some positive tests

 2.4.4. From red to green: passing the tests

 2.4.5. Test code styling

 2.5. Refactoring to parameterized tests

 2.6. More NUnit attributes

 2.6.1. Setup and teardown

 2.6.2. Checking for expected exceptions

 2.6.3. Ignoring tests

 2.6.4. NUnit’s fluent syntax

 2.6.5. Setting test categories

 2.7. Testing results that are system state changes instead of return values

 2.8. Summary

 2. Core techniques

 Chapter 3. Using stubs to break dependencies

 3.1. Introducing stubs

 3.2. Identifying a filesystem dependency in LogAn

 3.3. Determining how to easily test LogAnalyzer

 3.4. Refactoring your design to be more testable

 3.4.1. Extract an interface to allow replacing underlying implementation

 3.4.2. Dependency injection: inject a fake implementation into a unit under test

 3.4.3. Inject a fake at the constructor level (constructor injection)

 3.4.4. Simulating exceptions from fakes

 3.4.5. Injecting a fake as a property get or set

 3.4.6. Injecting a fake just before a method call

 3.5. Variations on refactoring techniques

 3.5.1. Using Extract and Override to create fake results

 3.6. Overcoming the encapsulation problem

 3.6.1. Using internal and [InternalsVisibleTo]

 3.6.2. Using the [Conditional] attribute

 3.6.3. Using #if and #endif with conditional compilation

 3.7. Summary

 Chapter 4. Interaction testing using mock objects

 4.1. Value-based vs. state-based vs. interaction testing

 4.2. The difference between mocks and stubs

 4.3. A simple handwritten mock example

 4.4. Using a mock and a stub together

 4.5. One mock per test

 4.6. Fake chains: stubs that produce mocks or other stubs

 4.7. The problems with handwritten mocks and stubs

 4.8. Summary

 Chapter 5. Isolation (mocking) frameworks

 5.1. Why use isolation frameworks?

 5.2. Dynamically creating a fake object

 5.2.1. Introducing NSubstitute into your tests

 5.2.2. Replacing a handwritten fake object with a dynamic one

 5.3. Simulating fake values

 5.3.1. A mock, a stub, and a priest walk into a test

 5.4. Testing for event-related activities

 5.4.1. Testing an event listener

 5.4.2. Testing whether an event was triggered

 5.5. Current isolation frameworks for .NET

 5.6. Advantages and traps of isolation frameworks

 5.6.1. Traps to avoid when using isolation frameworks

 5.6.2. Unreadable test code

 5.6.3. Verifying the wrong things

 5.6.4. Having more than one mock per test

 5.6.5. Overspecifying the tests

 5.7. Summary

 Chapter 6. Digging deeper into isolation frameworks

 6.1. Constrained and unconstrained frameworks

 6.1.1. Constrained frameworks

 6.1.2. Unconstrained frameworks

 6.1.3. How profiler-based unconstrained frameworks work

 6.2. Values of good isolation frameworks

 6.3. Features supporting future-proofing and usability

 6.3.1. Recursive fakes

 6.3.2. Ignored arguments by default

 6.3.3. Wide faking

 6.3.4. Nonstrict behavior of fakes

 6.3.5. Nonstrict mocks

 6.4. Isolation framework design antipatterns

 6.4.1. Concept confusion

 6.4.2. Record and replay

 6.4.3. Sticky behavior

 6.4.4. Complex syntax

 6.5. Summary

 3. The test code

 Chapter 7. Test hierarchies and organization

 7.1. Automated builds running automated tests

 7.1.1. Anatomy of a build script

 7.1.2. Triggering builds and integration

 7.2. Mapping out tests based on speed and type

 7.2.1. The human factor when separating unit from integration tests

 7.2.2. The safe green zone

 7.3. Ensuring tests are part of source control

 7.4. Mapping test classes to code under test

 7.4.1. Mapping tests to projects

 7.4.2. Mapping tests to classes

 7.4.3. Mapping tests to specific unit of work method entry points

 7.5. Cross-cutting concerns injection

 7.6. Building a test API for your application

 7.6.1. Using test class inheritance patterns

 7.6.2. Creating test utility classes and methods

 7.6.3. Making your API known to developers

 7.7. Summary

 Chapter 8. The pillars of good unit tests

 8.1. Writing trustworthy tests

 8.1.1. Deciding when to remove or change tests

 8.1.2. Avoiding logic in tests

 8.1.3. Testing only one concern

 8.1.4. Separate unit from integration tests

 8.1.5. Assuring code review with code coverage

 8.2. Writing maintainable tests

 8.2.1. Testing private or protected methods

 8.2.2. Removing duplication

 8.2.3. Using setup methods in a maintainable manner

 8.2.4. Enforcing test isolation

 8.2.5. Avoiding multiple asserts on different concerns

 8.2.6. Comparing objects

 8.2.7. Avoiding overspecification

 8.3. Writing readable tests

 8.3.1. Naming unit tests

 8.3.2. Naming variables

 8.3.3. Asserting yourself with meaning

 8.3.4. Separating asserts from actions

 8.3.5. Setting up and tearing down

 8.4. Summary

 4. Design and process

 Chapter 9. Integrating unit testing into the organization

 9.1. Steps to becoming an agent of change

 9.1.1. Be prepared for the tough questions

 9.1.2. Convince insiders: champions and blockers

 9.1.3. Identify possible entry points

 9.2. Ways to succeed

 9.2.1. Guerrilla implementation (bottom up)

 9.2.2. Convincing management (top down)

 9.2.3. Getting an outside champion

 9.2.4. Making progress visible

 9.2.5. Aiming for specific goals

 9.2.6. Realizing that there will be hurdles

 9.3. Ways to fail

 9.3.1. Lack of a driving force

 9.3.2. Lack of political support

 9.3.3. Bad implementations and first impressions

 9.3.4. Lack of team support

 9.4. Influence factors

 9.5. Tough questions and answers

 9.5.1. How much time will unit testing add to the current process?

 9.5.2. Will my QA job be at risk because of unit testing?

 9.5.3. How do we know unit tests are actually working?

 9.5.4. Is there proof that unit testing helps?

 9.5.5. Why is the QA department still finding bugs?

 9.5.6. We have lots of code without tests: where do we start?

 9.5.7. We work in several languages: is unit testing feasible?

 9.5.8. What if we develop a combination of software and hardware?

 9.5.9. How can we know we don’t have bugs in our tests?

 9.5.10. My debugger shows that my code works; why do I need tests?

 9.5.11. Must we do TDD-style coding?

 9.6. Summary

 Chapter 10. Working with legacy code

 10.1. Where do you start adding tests?

 10.2. Choosing a selection strategy

 10.2.1. Pros and cons of the easy-first strategy

 10.2.2. Pros and cons of the hard-first strategy

 10.3. Writing integration tests before refactoring

 10.4. Important tools for legacy code unit testing

 10.4.1. Isolate dependencies easily with unconstrained isolation frameworks

 10.4.2. Use JMockit for Java legacy code

 10.4.3. Use Vise while refactoring your Java code

 10.4.4. Use acceptance tests before you refactor

 10.4.5. Read Michael Feathers’s book on legacy code

 10.4.6. Use NDepend to investigate your production code

 10.4.7. Use ReSharper to navigate and refactor production code

 10.4.8. Detect duplicate code (and bugs) with Simian and TeamCity

 10.5. Summary

 Chapter 11. Design and testability

 11.1. Why should I care about testability in my design?

 11.2. Design goals for testability

 11.2.1. Make methods virtual by default

 11.2.2. Use interface-based designs

 11.2.3. Make classes nonsealed by default

 11.2.4. Avoid instantiating concrete classes inside methods with logic

 11.2.5. Avoid direct calls to static methods

 11.2.6. Avoid constructors and static constructors that do logic

 11.2.7. Separate singleton logic from singleton holders

 11.3. Pros and cons of designing for testability

 11.3.1. Amount of work

 11.3.2. Complexity

 11.3.3. Exposing sensitive IP

 11.3.4. Sometimes you can’t

 11.4. Alternatives to designing for testability

 11.4.1. Design arguments and dynamically typed languages

 11.5. Example of a hard-to-test design

 11.6. Summary

 11.7. Additional resources

 Tools and frameworks

 A.1. Isolation frameworks

 A.1.1. Moq

 A.1.2. Rhino Mocks

 A.1.3. Typemock Isolator

 A.1.4. JustMock

 A.1.5. Microsoft Fakes (Moles)

 A.1.6. NSubstitute

 A.1.7. FakeItEasy

 A.1.8. Foq

 A.1.9. Isolator++

 A.2. Test frameworks

 A.2.1. Mighty Moose (a.k.a. ContinuousTests) continuous runner

 A.2.2. NCrunch continuous runner

 A.2.3. Typemock Isolator test runner

 A.2.4. CodeRush test runner

 A.2.5. ReSharper test runner

 A.2.6. TestDriven.NET runner

 A.2.7. NUnit GUI runner

 A.2.8. MSTest runner

 A.2.9. Pex

 A.3. Test APIs

 A.3.1. MSTest API—Microsoft’s unit testing framework

 A.3.2. MSTest for Metro Apps (Windows Store)

 A.3.3. NUnit API

 A.3.4. xUnit.net

 A.3.5. Fluent Assertions helper API

 A.3.6. Shouldly helper API

 A.3.7. SharpTestsEx helper API

 A.3.8. AutoFixture helper API

 A.4. IoC containers

 A.4.1. Autofac

 A.4.2. Ninject

 A.4.3. Castle Windsor

 A.4.4. Microsoft Unity

 A.4.5. StructureMap

 A.4.6. Microsoft Managed Extensibility Framework

 A.5. Database testing

 A.5.1. Use integration tests for your data layer

 A.5.2. Use TransactionScope to roll back changes to data

 A.6. Web testing

 A.6.1. Ivonna

 A.6.2. Team System web test

 A.6.3. Watir

 A.6.4. Selenium WebDriver

 A.6.5. Coypu

 A.6.6. Capybara

 A.6.7. JavaScript testing

 A.7. UI testing (desktop)

 A.8. Thread-related testing

 A.8.1. Microsoft CHESS

 A.8.2. Osherove.ThreadTester

 A.9. Acceptance testing

 A.9.1. FitNesse

 A.9.2. SpecFlow

 A.9.3. Cucumber

 A.9.4. TickSpec

 A.10. BDD-style API frameworks

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword to the Second Edition

 The year must have been 2009. I was speaking at the Norwegian Developers Conference in Oslo. (Ah, Oslo in June!) The event was held in a huge sports arena. The conference organizers divided the bleachers into sections, built stages in front of them, and draped them with thick black cloth in order to create eight different session “rooms.” I remember I was just about finished with my talk, which was about TDD, or SOLID, or astronomy, or something, when suddenly, from the stage next to me, came this loud and raucous singing and guitar playing.

 The drapes were such that I was able to peer around them and see the fellow on the stage next to mine, who was making all the noise. Of course, it was Roy Osherove.

 Now, those of you who know me know that breaking into song in the middle of a technical talk about software is something that I might just do, if the mood struck me. So as I turned back to my audience, I thought to myself that this Osherove fellow was a kindred spirit, and I’d have to get to know him better.

 And getting to know him better is just what I did. In fact, he made a significant contribution to my most recent book The Clean Coder and spent three days with me co-teaching a TDD class. My experiences with Roy have all been very positive, and I hope there are many more.

 I predict that your experience with Roy, in the reading of this book, will be very positive as well because this book is something special.

 Have you ever read a Michener novel? I haven’t; but I’ve been told that they all start at “the atom.” The book you’re holding isn’t a James Michener novel, but it does start at the atom—the atom of unit testing.

 Don’t be misled as you thumb through the early pages. This is not a mere introduction to unit testing. It starts that way, and if you’re experienced you can skim those first chapters. As the book progresses, the chapters start to build on each other into a rather startling accumulation of depth. Indeed, as I read the last chapter (not knowing it was the last chapter) I thought to myself that the next chapter would be dealing with world peace—because, I mean, where else can you go after solving the problem of introducing unit testing into obstinate organizations with old legacy systems?

 This book is technical—deeply technical. There’s a lot of code. That’s a good thing. But Roy doesn’t restrict himself to the technical. From time to time he pulls out his guitar and breaks into song as he tells anecdotes from his professional past or waxes philosophical about the meaning of design or the definition of integration. He seems to relish in regaling us with stories about some of the things he did really badly in the deep, dark past of 2006.

 Oh, and don’t be too concerned that the code is all in C#. I mean, who can tell the difference between C# and Java anyway? Right? And besides, it just doesn’t matter. He may use C# as a vehicle to communicate his intent, but the lessons in this book also apply to Java, C, Ruby, Python, PHP, or any other programming language (except, perhaps COBOL).

 If you’re a newcomer to unit testing and test-driven development, or if you’re an old hand at it, you’ll find this book has something for you. So get ready for a treat as Roy sings you the song “The Art of Unit Testing.”

 And Roy, please tune that guitar!

 ROBERT C. MARTIN (UNCLE BOB) CLEANCODER.COM

Foreword to the First Edition

 When Roy Osherove told me that he was working on a book about unit testing, I was very happy to hear it. The testing meme has been rising in the industry for years, but there has been a relative dearth of material available about unit testing. When I look at my bookshelf, I see books that are about test-driven development specifically and books about testing in general, but until now there has been no comprehensive reference for unit testing—no book that introduces the topic and guides the reader from first steps to widely accepted best practices. The fact that this is true is stunning. Unit testing isn’t a new practice. How did we get to this point?

 It’s almost a cliché to say that we work in a very young industry, but it’s true. Mathematicians laid the foundations of our work less than 100 years ago, but we’ve only had hardware fast enough to exploit their insights for the last 60 years. There was an initial gap between theory and practice in our industry, and we’re only now discovering how it has impacted our field.

 In the early days, machine cycles were expensive. We ran programs in batches. Programmers had a scheduled time slot, and they had to punch their programs into decks of cards and walk them to the machine room. If your program wasn’t right, you lost your time, so you desk-checked your program with pencil and paper, mentally working out all of the scenarios, all of the edge cases. I doubt the notion of automated unit testing was even imaginable. Why use the machine for testing when you could use it to solve the problems it was meant to solve? Scarcity kept us in the dark.

 Later, machines became faster and we became intoxicated with interactive computing. We could just type in code and change it on a whim. The idea of desk-checking code faded away, and we lost some of the discipline of the early years. We knew programming was hard, but that just meant that we had to spend more time at the computer, changing lines and symbols until we found the magical incantation that worked.

 We went from scarcity to surplus and missed the middle ground, but now we’re regaining it. Automated unit testing marries the discipline of desk-checking with a newfound appreciation for the computer as a development resource. We can write automated tests, in the language we develop in, to check our work—not just once, but as often as we’re able to run them. I don’t think there is any other practice that’s quite as powerful in software development.

 As I write this, in 2009, I’m happy to see Roy’s book come into print. It’s a practical guide that will help you get started and also serve as a great reference as you go about your testing tasks. The Art of Unit Testing isn’t a book about idealized scenarios. It teaches you how to test code as it exists in the field, how to take advantage of widely used frameworks, and, most importantly, how to write code that’s far easier to test.

 The Art of Unit Testing is an important title that should have been written years ago, but we weren’t ready then. We are ready now. Enjoy.

 MICHAEL FEATHERS

Preface

 One of the biggest failed projects I worked on had unit tests. Or so I thought. I was leading a group of programmers creating a billing application, and we were doing it in a fully test-driven manner—writing the test, then writing the code, seeing the test fail, making the test pass, refactoring, and starting all over again.

 The first few months of the project were great. Things were going well, and we had tests that proved that our code worked. But as time went by, requirements changed. We were forced to change our code to fit those new requirements, and when we did, tests broke and had to be fixed. The code still worked, but the tests we wrote were so brittle that any little change in our code broke them, even though the code was working fine. It became a daunting task to change code in a class or method because we also had to fix all the related unit tests.

 Worse yet, some tests became unusable because the people who wrote them left the project and no one knew how to maintain the tests or what they were testing. The names we gave our unit testing methods weren’t clear enough, and we had tests relying on other tests. We ended up throwing out most of the tests less than six months into the project.

 The project was a miserable failure because we let the tests we wrote do more harm than good. They took more time to maintain and understand than they saved us in the long run, so we stopped using them. I moved on to other projects, where we did a better job writing our unit tests, and we had some great successes using them, saving huge amounts of debugging and integration time. Since that first failed project, I’ve been compiling best practices for unit tests and using them on subsequent projects. I find a few more best practices with every project I work on.

 Understanding how to write unit tests—and how to make them maintainable, readable, and trustworthy—is what this book is about, no matter what language or integrated development environment (IDE) you work with. This book covers the basics of writing a unit test, moves on to the basics of interaction testing, and introduces best practices for writing, managing, and maintaining unit tests in the real world.

Acknowledgments

 A big thank you to Michael Stephens and Nermina Miller at Manning, who were patient with me every step of the long way it took to write this book. Thanks also to everyone else at Manning who worked on the second edition in production and behind the scenes.

 Thank you Jim Newkirk, Michael Feathers, Gerard Meszaros, and many others, who provided me with inspiration and the ideas that made this book what it is. And a special thank you to Uncle Bob Martin for agreeing to write the foreword to the second edition.

 The following reviewers read the manuscript at various stages during its development. I’d like to thank them for providing valuable feedback: Aaron Colcord, Alessandro Campeism, Alessandro Gallo, Bill Sorensen, Bruno Sonnino, Camal Cakar, David Madouros, Dr. Frances Buontempo, Dror Helper, Francesco Goggi, Iván Pazmiño, Jason Hales, João Angelo, Kaleb Pederson, Karl Metivier, Martin Skurla, Martyn Fletcher, Paul Stack, Philip Lee, Pradeep Chellappan, Raphael Faria, and Tim Sloan. Thanks also to Rickard Nilsson, who did a technical proofread of the final manuscript shortly before it went to press.

 A final word of thanks to the early readers of the book in Manning’s Early Access Program for their comments in the online forum. You helped shape the book.

About this Book

 One of the smartest things I ever heard anyone say about learning (and I forget who it was), is that to truly learn something, teach it. Writing the first edition of this book. and publishing it in 2009, was nothing short of a true learning experience for me. I initially wrote the book because I got tired of answering the same questions over and over again. But there were other reasons too. I wanted to try something new; I wanted to try an experiment; I wondered what I could learn from writing a book—any book. Unit testing was what I was good at. I thought. The curse is that the more experience you have, the more stupid you feel.

 There are parts of the first edition that today I do not agree with—for example, that a unit refers to a method. That’s not true at all. A unit is a unit of work, as I discuss in chapter 1 of this second edition. It can be as small as a method, or as big as several classes (possibly assemblies) ... and there are other things as well that have changed, as you will learn below.

What’s new in the second edition

 In this second edition, I added material about constrained versus unconstrained isolation frameworks, and a new chapter 6 on what makes for a good isolation framework and how frameworks like Typemock work under the covers.

 I no longer use RhinoMocks. Stay away from it. It is dead. At least for now. I use NSubstitute for examples of Isolation Framework Basics, and I also recommend FakeItEasy. I am still not crazy about MOQ, for reasons detailed in chapter 6.

 I added more techniques to the chapter about implementing unit testing at the organizational level.

 There are plenty of design changes in the code I show in the book. Mostly I stopped using property setters and am mostly using constructor injection. Some discussion of SOLID principles is added, but just enough to make it whet your appetite on the subject.

 The build related sections of chapter 7 also contain new information. I learned a lot since the first book about build automation and patterns.

 I recommend against setup methods, and give alternative ideas on getting the same functionality out of your tests. I also use newer versions of Nunit so some of the newer Nunit APIs changed in the book.

 In chapter 10, the tools relating to legacy code were updated.

 Having worked with Ruby for the past three years along side .NET, gave me more perspective about design and testability arguments, reflected in chapter 11. The tools and frameworks appendix was updated with new tools, and old tools were removed.

Who should read this book

 The book is for anyone who writes code and is interested in learning best practices for unit testing. All the examples are written in C# using Visual Studio, so .NET developers will find the examples particularly useful. But the lessons I teach apply equally to most, if not all, object-oriented and statically typed languages (VB.NET, Java, and C++, to name a few). If you’re an architect, developer, team lead, QA engineer (who writes code), or novice programmer, this book should suit you well.

Roadmap

 If you’ve never written a unit test, it’s best to read this book from start to finish so you get the full picture. If you have experience, you should feel comfortable jumping into the chapters as you see fit. The book is divided into four parts.

 Part 1 takes you from zero to 60 in writing unit tests. Chapters 1 and 2 cover the basics, such as how to use a testing framework (NUnit), and introduce the basic automated test attributes, such as [Test] and [TestCase]. They also introduce the ideas of asserts, ignoring tests, unit-of-work testing, the three end result types of a unit test, and the three types of tests you need for them: value tests, state-based tests, and interaction tests.

 Part 2 discusses advanced techniques for breaking dependencies: mock objects, stubs, isolation frameworks, and patterns for refactoring your code to use them. Chapter 3 introduces the idea of stubs and shows how to manually create and use them. Chapter 4 introduces interaction testing with handwritten mock objects. Chapter 5 merges these two concepts and shows how isolation frameworks combine these two ideas and allow them to be automated. Chapter 6 dives deeper into understanding constrained and unconstrained isolation frameworks and how they work under the covers.

 Part 3 talks about ways to organize test code, patterns for running and refactoring its structure, and best practices when writing tests. Chapter 7 discusses test hierarchies, how to use test infrastructure APIs, and how to combine tests in the automated build process. Chapter 8 discusses best practices in unit testing for creating maintainable, readable, and trustworthy tests.

 Part 4 talks about how to implement change in an organization and how to work on existing code. Chapter 9 discusses problems and solutions you’d encounter when trying to introduce unit testing into an organization. It also identifies and answers some questions you might be asked. Chapter 10 talks about introducing unit testing into existing legacy code. It identifies a couple of ways to determine where to begin testing and discusses some tools for testing untestable code. Chapter 11 discusses the loaded topic of designing for testability and the alternatives that exist today.

 The appendix has a list of tools you might find useful in your testing efforts.

Code conventions and downloads

 You can download the source code for this book from GitHub at https://github.com/royosherove/aout2 or the book’s site at www.ArtOfUnitTesting.com, as well as from the publisher’s website at www.manning.com/TheArtofUnitTestingSecondEdition.

 All source code in listings or in the text is in a fixed-width font like this to separate it from ordinary text. In listings, bold code indicates code that has changed from the previous example or that will change in the next example. In many listings, the code is annotated to point out the key concepts and numbered bullets refer to explanations that follow in the text.

Software requirements

 To use the code in this book, you need at least Visual Studio C# Express (which is free) or a more advanced version of it (that costs money). You’ll also need NUnit (an open source and free framework) and other tools that will be referenced where they’re relevant. All the tools mentioned are either free, open source, or have trial versions you can use freely as you read this book.

Author Online

 The purchase of The Art of Unit Testing, Second Edition includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and other users. To access and subscribe to the forum, point your browser to www.manning.com/TheArtofUnitTestingSecondEdition. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other projects by Roy Osherove

 Roy is also the author of these books:

 	
Beautiful Builds: Growing Readable, Maintainable Automated Build Processes is available at http://BeautifulBuilds.com.

 	
Notes to a Software Team Leader: Growing Self-Organizing Teams is available at http://TeamLeadSkills.com.

 Other resources:

 	A blog for team leaders related to this book is available at http://5whys.com.

 	An online video TDD Master Class by Roy is available at http://TddCourse.Osherove.com.

 	Many free videos about unit testing are available at http://ArtOfUnitTesting.com and http://Osherove.com/Videos.

 	Roy is continuously training and consulting around the world. You can contact him at http://contact.osherove.com to book training at your own company.

 	And you can follow him on Twitter at @RoyOsherove.

About the Cover Illustration

 The figure on the cover of The Art of Unit Testing, Second Edition is a Japonais en costume de cérémonie, a Japanese man in ceremonial dress. The illustration is taken from James Prichard’s Natural History of Man, a book of hand-colored lithographs published in England in 1847. It was found by our cover designer in an antique shop in San Francisco.

 Prichard began the research for his study of the natives of the world in 1813. By the time his work was published 34 years later, he had gathered much of the available research about various peoples and nations, and his work became an important foundation for modern ethnological science. Included in Prichard’s history were portraits of different human races and tribes in their native dress, taken from original drawings of many artists, most based on first-hand studies.

 The lithographs from Prichard’s collection, like the other illustrations that appear on our covers, bring to life the richness and variety of dress and tribal customs of two centuries ago. Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitants of one continent from another, not to mention a country or region. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life of long ago—brought back to life by picture collections such as Prichard’s.

 Part 1. Getting started

 This part of the book covers the basics of unit testing.

 In chapter 1, I’ll define what a unit is and what “good” unit testing means, and I’ll compare unit testing with integration testing. Then we’ll look at test-driven development and its role in relation to unit testing.

 You’ll take a stab at writing your first unit test using NUnit in chapter 2. You’ll get to know NUnit’s basic API, how to assert things, and how to run the test in the NUnit test runner.

 Chapter 1. The basics of unit testing

 This chapter covers

 	Defining a unit test

 	Contrasting unit testing with integration testing

 	Exploring a simple unit testing example

 	Understanding test-driven development

 There’s always a first step: the first time you wrote a program, the first time you failed a project, and the first time you succeeded in what you were trying to accomplish. You never forget your first time, and I hope you won’t forget your first tests. You may have already written a few tests, and you may even remember them as being bad, awkward, slow, or unmaintainable. (Most people do.) On a more upbeat note, you may have had a great first experience with unit tests, and you’re reading this to see what more you might be missing.

 This chapter will first analyze the “classic” definition of a unit test and compare it to the concept of integration testing. This distinction is confusing to many. Then we’ll look at the pros and cons of unit testing versus integration testing and develop a better definition of a “good” unit test. We’ll finish with a look at test-driven development, because it’s often associated with unit testing. Throughout the chapter, I’ll also touch on concepts that are explained more thoroughly elsewhere in the book.

 Let’s begin by defining what a unit test should be.

1.1. Defining unit testing, step by step

 Unit testing isn’t a new concept in software development. It’s been floating around since the early days of the Smalltalk programming language in the 1970s, and it proves itself time and time again as one of the best ways a developer can improve code quality while gaining a deeper understanding of the functional requirements of a class or method.

 Kent Beck introduced the concept of unit testing in Smalltalk, and it has carried on into many other programming languages, making unit testing an extremely useful practice in software programming. Before I go any further, I need to define unit testing better. Here’s the classic definition, from Wikipedia. It’ll be slowly evolving throughout this chapter, with the final definition appearing in section 1.4.

 	

 Definition 1.0

 A unit test is a piece of a code (usually a method) that invokes another piece of code and checks the correctness of some assumptions afterward. If the assumptions turn out to be wrong, the unit test has failed. A unit is a method or function.

 	

 The thing you’ll write tests for is called the system under test (SUT).

 	

 Definition

 SUT stands for system under test, and some people like to use CUT (class under test or code under test). When you test something, you refer to the thing you’re testing as the SUT.

 	

 I used to feel (Yes, feel. There is no science in this book. Just art.) this definition of a unit test was technically correct, but over the past couple of years, my idea of what a unit is has changed. To me, a unit stands for “unit of work” or a “use case” inside the system.

 	

 Definition

 A unit of work is the sum of actions that take place between the invocation of a public method in the system and a single noticeable end result by a test of that system. A noticeable end result can be observed without looking at the internal state of the system and only through its public APIs and behavior. An end result is any of the following:

 	The invoked public method returns a value (a function that’s not void).

 	There’s a noticeable change to the state or behavior of the system before and after invocation that can be determined without interrogating private state. (Examples: the system can log in a previously nonexistent user, or the system’s properties change if the system is a state machine.)

 	There’s a callout to a third-party system over which the test has no control, and that third-party system doesn’t return any value, or any return value from that system is ignored. (Example: calling a third-party logging system that was not written by you and you don’t have the source to.)

OEBPS/OEBPS/Images/common.jpg

OEBPS/OEBPS/Images/logo.jpg

OEBPS/OEBPS/Images/common-01.jpg

OEBPS/cover.jpeg

