

 inside front cover

 [image:]

 The structure of the project described in this book; from creating and developing the project through to managing the final models in production.

 [image:]

 Delivering Machine Learning Projects

 From design to deployment

 Simon Thompson

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Review and production editor:

 	
 Aleksandar Dragosavljević

 	
 Copy editor:

 	
 Katie Petito

 	
 Technical proofreader:

 	
 Vojta Tuma

 	
 Typesetter:

 	
 Tamara Švelić Sabljić

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439023

 contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Introduction: Delivering machine learning projects is hard; let’s do it better

 1.1 What is machine learning?

 1.2 Why is ML important?

 1.3 Other machine learning methodologies

 1.4 Understanding this book

 1.5 Case study: The Bike Shop

 Summary

 2 Pre-project: From opportunity to requirements

 2.1 Pre-project backlog

 2.2 Project management infrastructure

 2.3 Project requirements

 Funding model

 Business requirements

 2.4 Data

 2.5 Security and privacy

 2.6 Corporate responsibility, regulation, and ethical considerations

 2.7 Development architecture and process

 Development environment

 Production architecture

 Summary

 3 Pre-project: From requirements to proposal

 3.1 Build a project hypothesis

 3.2 Create an estimate

 Time and effort estimates

 Team design for ML projects

 Project risks

 3.3 Pre-sales/pre-project administration

 3.4 Pre-project/pre-sales checklist

 3.5 The Bike Shop pre-sales

 3.6 Pre-project postscript

 Summary

 4 Getting started

 4.1 Sprint 0 backlog

 4.2 Finalize team design and resourcing

 4.3 A way of working

 Process and structure

 Heartbeat and communication plan

 Tooling

 Standards and practices

 Documentation

 4.4 Infrastructure plan

 System access

 Technical infrastructure evaluation

 4.5 The data story

 Data collection motivation

 Data collection mechanism

 Lineage

 Events

 4.6 Privacy, security, and an ethics plan

 4.7 Project roadmap

 4.8 Sprint 0 checklist

 4.9 Bike Shop: project setup

 Summary

 5 Diving into the problem

 5.1 Sprint 1 backlog

 5.2 Understanding the data

 The data survey

 Surveying numerical data

 Surveying categorical data

 Surveying unstructured data

 Reporting and using the survey

 5.3 Business problem refinement, UX, and application design

 5.4 Building data pipelines

 Data fusion challenges

 Pipeline jungles

 Data testing

 5.5 Model repository and model versioning

 Features, foundational models, and training regimes

 Overview of versioning

 Summary

 6 EDA, ethics, and baseline evaluations

 6.1 Exploratory data analysis (EDA)

 EDA objectives

 Summarizing and describing data

 Plots and visualizations

 Unstructured data

 6.2 Ethics checkpoint

 6.3 Baseline models and performance

 6.4 What if there are problems?

 6.5 Pre-modeling checklist

 6.6 The Bike Shop: Pre-modelling

 After the survey

 EDA implementation

 Summary

 7 Making useful models with ML

 7.1 Sprint 2 backlog

 7.2 Feature engineering and data augmentation

 Data augmentation

 7.3 Model design

 Design forces

 Overall design

 Choosing component models

 Inductive bias

 Multiple disjoint models

 Model composition

 7.4 Making models with ML

 Modeling process

 Experiment tracking and model repositories

 AutoML and model search

 7.5 Stinky, dirty, no good, smelly models

 Summary

 8 Testing and selection

 8.1 Why test and select?

 8.2 Testing processes

 Offline testing

 Offline test environments

 Online testing

 Field trials

 A/B testing

 Multi-armed bandits (MABs)

 Nonfunctional testing

 8.3 Model selection

 Quantitative selection

 Choosing With Comparable Tests

 Choosing with many tests

 Qualitative selection measures

 8.4 Post modelling checklist

 8.5 The Bike Shop: sprint 2

 Summary

 9 Sprint 3: system building and production

 9.1 Sprint 3 backlog

 9.2 Types of ML implementations

 Assistive systems: recommenders and dashboards

 Delegative systems

 Autonomous systems

 9.3 Nonfunctional review

 9.4 Implementing the production system

 Production data infrastructure

 The model server and the inference service

 User interface design

 9.5 Logging, monitoring, management, feedback, and documentation

 Model governance

 Documentation

 9.6 Pre-release testing

 9.7 Ethics review

 9.8 Promotion to production

 9.9 You aren’t done yet

 9.10 The Bike Shop sprint 3

 Summary

 10 Post project (sprint Ω)

 10.1 Sprint Ω backlog

 10.2 Off your hands and into production?

 Getting a grip

 ML technical debt and model drift

 Retraining

 In an emergency

 Problems in review

 10.3 Team post-project review

 10.4 Improving practice

 10.5 New technology adoption

 10.6 Case study

 10.7 Goodbye and good luck

 Summary

 references

 index

 front matter

 preface

 I can’t pin down a moment or weave a convincing anecdote that explains how I came to realize that writing a book about how to manage a machine-learning project would be a good thing to do. The gist of it is that sometime in 2019 I realized that I was talking to a lot of people who had started an ML project and were in trouble with it, and usually I knew why.

 There wasn’t one common malady or even a single theme, rather failures seemed to come from lots of different directions. Disparate as the failings of these projects were, there was a common cause at work here. The folks leading these projects were talented, clever, articulate, and skilled, but they were inexperienced.

 I was very lucky in the timing of my career. I got into ML when it was on the edge of applications. In the late 1990’s, ML was out there in the wild, and we could do real things with our three-layer perceptron’s and decision trees. It was much harder to deliver, algorithms needed to be coded by hand, data was vanishing rare, and everything ran sooooo slowly. Most of all, ML skills were as rare as the projects that needed them and applied ML was seen as R&D. For me this meant that I had the opportunity to develop and work on project after project. Most of them failed—but the ones that did come off really, really, really came off.

 The rare wins kept me in work and kept my career going. In turn, this paid the mortgage and filled the freezer. With hindsight, I can say now that it was the failures that were the most valuable. I had the luxury of failure and learning, which isn’t often afforded to people today. I also got the opportunity to join communities of people going through the same thing, and we would all get really drunk and tell each other sad (and funny) stories of catastrophe. A bunch of practices and behaviors became common knowledge in the clique of AI researchers working in big western companies in those days. I sat on the fringes and had the luck of being able to pick this all up and then use it.

 Having had the luck of getting enough experience to steer an ML project or ten to success, it would be dumb not to share it. ML and AI are technologies that can be used for good, hopefully helping to confront climate change, pandemics, and economic woes. Maybe by sharing knowledge about how to manage ML projects I can help someone else do a couple of projects that make the world a better place!

 Two events really prompted the push that took the book from an idea into the real world. First, Andy Rossiter, who was my boss at the time, told me that my team needed to have a methodology to tell customers how we would tackle their problems. I realized that I couldn’t really point at one, so I’d have to write one. That probably wouldn’t have gone all that far if it wasn’t for the second event—the CoVID-19 pandemic—that meant that I stopped spending hours travelling about and started to have some time to commit to writing something.

 So, here it is. Thank you for buying it. I hope you find it useful and most of all I hope you will share any ideas or thoughts you have for how it should be improved so that I can do better next time.

 acknowledgments

 Anyone who’s written a book knows it’s an unreasonably hard thing to do. I’ve needed a lot of help. Doug Rudder, my editor, and the team at Manning exceeded expectations and helped me transform a huge random mess of a manuscript into something I hope is much more useful to readers..

 I don’t think that anyone who hasn’t worked with Manning can really know just how much value they add. This book could be a lot better if someone else wrote it, but without the work that everyone at Manning put in, it would be immeasurably worse.

 Manning arranged an extensive reviewing process that provided me with anonymized feedback, of course, I don’t know who did which review, but every review was immense: Andrei Paleyes, Chris Fry, Darrin Bishop, Florian Roscheck, Igor Vieira, João Dinis Ferreira, Kay Engelhardt, Khai Win, Kumar Abhishek, Lakshminarayanan AS, Laurens Meulman, Maria Ana, Marvin Schwarze, Mattia Di Gangi, Maxim Volgin, Ricardo Di Pasquale, Richard Dze, Richard Vaughan, Sanket Naik, Sriram Macharla, Vatsal Desai, Vojta Tuma, William Jamir Silva. The amount of work, attention to detail and honest, direct input that you provided was just amazing.

 Thank you, if and when we meet up collar me for a beer or beverage of your choice. I owe you one for sure.

 I have been very fortunate to have some amazing mentors in my career, and one of the most important things I think that anyone can do is to find some people who will help you as you develop your skills and abilities.

 Professor Max Bramer gave me an amazing start in machine learning when he took me on as a PhD student, I had four brilliant years of exploring everything that ML could offer in the mid-1990s, and that changed my life.

 Paul O’Brien took a similar risk when he recruited me at BT Labs, Paul is my professional role-model, the manager and mentor I aspire to be. Literally, whenever I have a problem at work I think “what would Paul do”.

 The other thing that everyone needs is colleagues who will indulge your ideas and peculiar thinking, point out where you are wrong, and share their own thoughts. For this I would like to particularly thank Rob Claxton who spent hundreds of hours talking to me on any and every topic to do with Data Science, AI and ML. There were many other people at BT, The Turing Institute, and MIT who were prepared to let me test their patience and gave me time I didn’t deserve, but the conversations I’ve had with Rob over the last twenty odd years were (and are) intellectually formative for me.

 When I was writing this book, I was generally bad-tempered, preoccupied, and generally insufferable. My wife, Buffy, and my daughter, Arwen, put up with this nonsense sometimes, but mostly told me to stop it. Which was what I needed.

 Buffy and Arwen, I love you very much.

 Thank you everyone.

about this book

 This book sets out to provide a step-by-step prescriptive guide to implementing a machine learning project. It is built from a large body of work that has emerged since the 1990’s which addresses the challeges that ML developers face.

 The approaches documented in this book are not original, although some are unpublished because I’ve tried to codify best practice as well as academic publication. I’ve tried to provide references where I can, but I am sure I have missed some. In any case, please take it as read that where there are no references there is no claim of invention or novelty – it’s just I can’t find an attribution, apologies if I have slighted you.

 There are lots of technical books on AI and ML so this book doesn’t seek to fill that gap. If you do not have a good grasp of these topics, then the following list of texts are good places to start before attempting to apply this methodology:

 	
 Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig, Pearson, 2016. This textbook is used as the backbone of most undergraduate AI courses and provides an overview of the key concerns of AI as a topic. This is a great place to start.

 	
 Hands on Machine Learning with Scikit-Learn, Keras, and TensorFlow, Aurelien Geron, O’Reilly, 2019. This book focuses on practical applications of a selection of ML techniques but covers most of the ground that a practitioner will need for an overview of the field. This book is good for readers who are from a software background and are less interested in the mathematical aspects of ML.

 	
 Probabilistic Machine Learning: An Introduction, Kevin Patrick Murphy, MIT Press, 2021. This book provides a comprehensive modern treatment of the core aspects of AI and machine learning. It’s suitable for readers who want to understand the underpinnings and mechanics of the techniques and who have a mathematical bent.

 The books listed provide expositions on the techniques and problems that AI has developed and tried to resolve respectively. In contrast, this book brings together the tools and approaches that are required to deliver an AI project, and gives a perspective on how to handle commercial challenges and delivery in a commercial environment.

 How this book is organized: A roadmap

 In each chapter, apart from this one, the content is presented in a structured manner with the goal of achieving accuracy and conciseness.

 	
 Chapter 1 provides a description of the core concepts and motivations that have been in my mind when writing the book and hopefully will allow the reader to get a picture of what the book is trying to communicate and how it can help.

 	
 Chapter 2 outlines the steps for establishing a common understanding of the project among the client, oneself, and the organization, whether the organization is separate from the client’s or within a different department. You will learn how to organize the process, collaborate with the client to establish requirements, gain insight into the client’s data, and determine the necessary tools.

 	
 Chapter 3 covers the process of creating a project hypothesis that can be understood by your team and stakeholders this includes the process of creating estimates that will allow the project to be appropriately funded and resourced and also the work that needs to be done in order to get the project formally agreed and running. You will learn what needs to be understood to start the project, who needs to understand it and who needs to agree.

 	
 Chapter 4 introduces the work that is required for sprint 0. This sprint contains the activities that get the work on the project underway and onboards the team into the project. In chapter 4 you will learn about what is required to enable a team to start work and become productive on an ML project.

 	
 Chapter 5 covers the first part of sprint 1. This work requires that a technical team is in place and has access to the systems and information that’s needed to make progress. In this chapter the focus is on getting the data that the team will need to create a machine learning model into an environment that can be used to support modelling.

 	
 Chapter 6 completes the work of sprint 1 utilizing the data pipelines to gain an understanding of the clients data and to construct the first prototype models. You will learn what kinds of data exploration are required and the steps that are needed to set the foundation for the team to successfully start building models.

 	
 Chapter 7 starts the work on sprint 2, focusing on the process of building useful models using a structured and systematic process and identifying the models that will be taken forward for detailed evaluation and selection for integration into the production system. In Chapter 7 you will learn what structures and process a modelling team should adopt.

 	
 Chapter 8 completes sprint 2 with instructions for structured testing and selection of models in both online and offline environments and includes a discussion of the traps and pitfalls that are often encountered when evaluating models. You will learn what to look out for when ML models are evaluated and compared and how you the process of doing these comparisons should be managed.

 	
 Chapter 9 delves into the implementation of Sprint 3, detailing the process of integrating the chosen models into the production system and deploying them for use. It also highlights the important considerations that must be made for providing user-friendly interfaces. Here you will learn what is takes to move models from interesting experiments to being part of a running system in an organization.

 	
 Finally in chapter 10 the implications & required practices of managing a machine learning system in production are described. The objective of chapter 10 is to show what kind of processes and structures need to be set up and run in order to sustain an ML project as an engine for value.

 LiveBook discussion forum

 Purchase of Managing Machine Learning Projects includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/managing-machine-learning-projects/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 [image:]

 Simon Thompson has spent 25 years developing AI systems, usually but not always using machine learning. He led the AI research program at BT Labs in the UK, helped pioneer Big Data technology in the company, and managed an applied research practice for nearly a decade. His teams delivered projects that used Bayesian machine learning, deep networks, and good old-fashioned decision trees and association rule mining to provide insight on telecoms networks, customer service, and business processes at a big corporation. Simon left BT in 2019 and now works in consultancy. At the moment, he and his team are busily delivering machine learning projects as a consultant to banks, insurance companies, and in manufacturing using cloud AI platforms, large language models, and vector databases. Simon is a family man and loves his garden and dogs. You can follow him @AISimonThompson on Twitter or look him up on LinkedIn.

 about the cover illustration

 The figure on the cover of Managing Machine Learning Projects, titled “Le Marchand De Coco,” or “Hot chocolate vendor,” is taken from a book by Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 1 Introduction: Delivering machine learning projects is hard; let’s do it better

 This chapter covers:

 	Describing the structure and objectives of this book

 	Defining what machine learning is

 	Explaining why machine learning is important

 	Exploring why machine learning projects are different

 	Listing other approaches to machine learning development

 This book describes an end-to-end process for delivering a machine learning (ML) project to solve a business problem that’s big enough and difficult enough to need a team. The rapid surge of interest in ML and the sudden change in ML’s capability with the development of practical deep neural networks documented by LeCun et al. [1] and other advanced methods such as MCMC algorithms discussed by Carpenter et al. [2] means that there are a lot of new opportunities for ML projects. So, a lot of people are going to be managing these projects, and this is a guidebook for them.

 Why is a guidebook needed specifically for ML projects? It’s claimed by Gartner that 85% of ML projects fail [3], although tracking down the precise origin and evidence for this claim is more work than this author is willing to put in! Even so, it’s clear from scholarly studies that there are “challenges to these steps of the machine-learning development workflow” and “practitioners face issues at each stage of the development process”. For example, see the work by Paleyes and co-authors [4]. As the difficulties of developing and deploying ML systems are becoming clearer, there are increasing concerns that ML is being applied unethically and harmfully [5]. Fundamentally, ML projects have a different development process (model building from data) from normal software projects, have different needs in terms of organization and infrastructure, and deliver outputs (ML models) that have to be handled differently from normal programs.

 One driving idea behind the book is that doing ML projects is a bit like going on a roller coaster ride. The brightly painted roller coaster is what everyone focuses on, but riding it only takes three minutes. To ride it, you have to get everyone in the car, drive for an hour, park, walk to the ticket office, get tickets, and queue for the ride. The point is that to have fun, you have to prepare. After the ride, what then? Well, then you get to the real point of the ride. You get to sit with your kids and eat ice cream and talk about how good it was and what you are going to do next and why. If the before and after parts of the process aren’t good, then the fun part (the ML in the ML project) doesn’t happen.

 This book focuses on the preparation required to use ML, the work necessary to use the results, and the safeguards to prevent ML from going astray. After all, if you fall off the roller coaster, then it would have been better if you had stayed in bed that morning.

 This book is largely nontechnical; it aims to help people understand what needs to be done and what the problems are, but it does not provide much detail on delivery. In some parts of the book, there are technical examples and explanations. These are there to provide guidance when it wasn’t possible to avoid being a bit technical. However, these examples can be safely skipped by nontechnical readers without missing out on the main themes and concepts in the text.

 It helps to have some idea of what SQL is and some basic math skills, but even if you don’t know or don’t care about these things, the book should still be largely accessible to you. On the other hand, it’s expected that most readers will have a deep knowledge of ML and data science and are reading this because they are interested in the softer skills and project practices that can help them apply their AI magic.

 In the next section, we describe the basic concepts of ML and how they can be applied to set the scene for those new to the arena. Any readers who are already familiar with ML concepts and technology are free to skip forward to section 1.4, where the rest of the book is introduced or beyond to start on the meat of the book. For other readers, section 1.2 introduces some basic terminology and then after that, in section 1.3 the significance of ML and issues and challenges with ML that motivate a special approach to ML projects are described. In section 1.4, we’ll outline other approaches that have been tried for developing software and ML systems. Finally, the roadmap for the rest of the book is presented as well as the case study that illustrates how to use the tools and approaches advocated.

 So, onward to learning about ML and the need for a special approach to ML projects, or off to chapter 2 and the start of the project!

 1.1 What is machine learning?

 Machine learning (ML) is a set of algorithms that we can use to create (learn) models from data. The model can be expressed in lots of ways, e.g., a set of if/then/else statements, a decision tree, or a set of parameters or weights for a neural network. The ML algorithm generates a model from the data that is fed into it:

 MACHINE LEARNING + DATA = MODEL

 Models are approximations. You might imagine a model that associates having four legs and being hairy with a dog. Of course, that’s far too general a description to be useful. Much more information is required to create a model that captures the difference between dogs and cats or the commonalities between Great Danes and Chihuahuas. In this case, the model is combined with partial data about the entity (e.g., leg count, hair, size, etc.) and an inference about the missing bit of data (the type or entity), which the ML algorithm can extract:

 MODEL + (partial) DATA = INFERENCE

 When humans build models manually, they choose the association rules or the network parameters, so the amount of experimentation that they can do is limited. The advantage of an ML approach is that the machine can check a large number of parameters or associations. Machines can search over millions or billions of different settings and links quickly and cheaply. The human’s advantage (for instance, a statistician or an epidemiologist) is that they know what they are doing. Often, this ability to apply common sense and a wider knowledge of the world means the models chosen and created by humans are superior to the models learned by machines. It also means that humans can build models without needing to access large amounts of data. Recently, though, ML has gained importance because using the huge computing power that’s now available to process abundant supplies of data is much, much cheaper and easier than devising the models by hand.

 Figure 1.1 shows a schematic of the sort of system that ML developers are building. On the left of the figure, data enters the system, it’s processed and transformed, and fed to ML algorithms, which creates models. These are integrated into applications and human-driven processes. On the right of the figure, the inferences created from the models affect human users.

 Before data is consumed by the models, it needs to be processed. This normally means that it must be cleaned and assembled into examples that can be passed into the models. Once that’s done, the models can consume it. Sometimes we can use a single model, but as figure 1.1 illustrates, it’s also common for a set of models to be produced and chained together to create the inferences that we require, and these models need to be managed and governed by a support team of operators. Occasionally, the models’ output is reviewed by a supervising human who makes decisions about how they will affect their ultimate consumers. In other scenarios, the model results are mediated by another system and then consumed by users more directly.

 [image:]

 Figure 1.1 The kind of system that ML projects attempt to deliver

 ML algorithms can learn models from data sets that are too complex to be dealt with by humans, and they can be integrated into systems that are extremely useful (e.g., systems that power many aspects of modern life such as internet searches, data networks, and movie recommenders). Everyone seems to agree that ML can be an important technology to revolutionize our economy and our society. Yet, ML can be hard to apply, and there are many issues that can trip up a team working on an ML project. To shed some more light on specific problems that can cause issues for an ML team, the next section explores the promises and pitfalls of ML in more detail.

 1.2 Why is ML important?

 What’s so exciting and promising about ML? In the last few years, there have been transformative results in ML R&D, which have led to the development of machines that can:

 	
 Write text that is hard or impossible to distinguish from human efforts such at the output of large language models like GPT-3 [6].

 	
 Demonstrate revolutionary performance in deriving the shape of proteins as with Alphafold-2 [7].

 	
 Outplay all humans at all board games as per the work from DeepMind on AlphaZero [8].

 Also, ML has created models that can create novel and relevant images when given text prompts as seen with the DALL-E model [9]. These advances are seen by many as signposts, indicating the potential of ML technology, and there is a widespread expectation that more seismic innovations are just round the corner. At the same time, many commentators have noted that there are still gaps between the promise and hype of ML and the reality of what the models can do, Gary Marcus being a prominent example [10]. Importantly, the way that the models work and the mistakes they make can create deep ethical problems [11][5].

 It’s worth noting that ML isn’t just the preserve of a few technology gurus in Silicon Valley and the great universities of the world. You can download off-the-shelf models and libraries for free and then easily use them. This allows programmers (increasingly, nonprogrammers as well) to build ML components into their projects. Now there are ML-powered tools that identify safety risks in factories, select new music that suits a consumer’s taste, or check email grammar. These all make small but tangible and valuable contributions to many people’s lives and happiness. It’s likely that every few minutes of the day ML makes some sort of difference to our lives.

 Technologists find this all to be amazing, but unsurprisingly, there are some problems that have arisen as the technology is applied in the real world. Models can be used to do things that they are not suited to, such as deciding if people are likely criminals based on the way they look and determining how long criminals should stay in prisons. This kind of application is so problematic that entire books are devoted to explaining in detail all of its aspects [11]. It’s safe to say that using an algorithm to determine the course of a person’s life is not a good idea.

 It’s easy to find stories of ML producing disappointing results when real applications were tried. A good example is to look at the huge effort that the ML community put into producing tools for treating COVID-19. One study [12] looked at 232 models that were developed but found that just two were of sufficient quality to warrant further testing. Similar stories can be found about systems that were intended to interpret medical images or diagnose cancers. Even Elon Musk is reported to have said that building a self-driving car has turned out to be much harder than he thought [13].

 What then are the drivers of ML project complexity and challenge? As for software projects, ML projects have to understand and accommodate the challenges of working in a domain, whether that’s a business selling bikes, oncology, or epidemiology. In addition to these problems, an application’s domain ML project is complicated because it handles and manipulates complex data resources, sophisticated models, and the code to orchestrate them. When it comes to complexity and challenge, it’s good to keep these points in mind:

 	
 ML systems are dependent on data, in particular, on the structure and quality of the data assets that they use to create the models employed in the resulting system. Modern data assets are huge and wildly complex. Practices and processes for understanding and handling data assets that are complex, noisy, large scale, and riddled with personal and confidential data are required by teams that are going to deliver. The data needs to be understood and handled at the system level and at the statistical or value levels. We need to engineer it and understand what it means.

 	
 ML projects create and use models.The properties of the models that are created need to be measured and understood by the team, and this understanding must inform the design process of the system into which the models are embedded. We need to make the models, but also, we need to evaluate them (technically and in a business context), and we need to manage their lifecycle.

 	
 ML systems should be developed to align with scientific, stakeholder, and societal requirements as recommended by Wixom and co-authors [14]. Both business and broad ethical considerations must be woven into the process of developing an ML system.

 Figure 1.2 shows how these three concerns can be represented as a Venn diagram. This diagram is helpful because we can use it to map out the work and responsibilities in an ML project.

 [image:]

 Figure 1.2 Drivers of complexity in an ML project: the domain, the data, and the models

 The challenges that an ML project brings are one thing, but in addition to addressing these, there are tasks that should be done to ensure that we deliver a timely, efficient, and high-quality outcome. In this book, four needs are identified:

 	
 Identify risk and opportunity in the project as quickly and as practically possible. The ability to understand project risk in a ML delivery requires work and time.

 	
 Enable the team to react and adapt to problems fast. Teams need to cope with unexpected problems and need to be able to change course as user requirements become clearer during the project. Being able to pivot to deal with unexpected model performance problems is critical.

 	
 Tie the customer into the process. Building engagement and sponsorship, and eliciting feedback and information makes a project useful and effective for any business.

 	
 Deliver everything that is required to run and maintain the system. The teams building ML systems think that they are delivering a system, but they also must provide everything needed to understand, use, run, and maintain the system. In particular, appropriate documentation and record-keeping is required if the system is going to impact the lives and happiness of human beings, and of course, appropriate documentation is required by the teams that will have to run and maintain the code and models when your team has moved on.

 In summary, ML projects have turned out to be hard to handle, and ML models are approximate, hard to interpret, and hard to develop. They don’t give the right answers most of the time, and they are robust and appropriate for some applications but not others. There is more uncertainty and risk in an ML project than in normal software development. Also, ML systems are heavily dependent on large-scale data resources. Data is collected by people with agendas, whether they know that or not, and so it’s riddled with bias. The way that humans interact with ML systems can create loops and spirals of behavior that the original designers find surprising. Handling large data resources reliably and efficiently is problematic and can be challenging for teams used to running software projects.

 To tackle these issues, we require a different and tailored approach to using ML. Failing to approach ML projects in the right way risks failure or worse and creates something that visits harm on others. Not only is this an impossible position for a professional person to get into, but there are tough new laws with penalties, especially in China [15] and the European Union (EU) [16] for people who do so.

 Following the processes described in this book doesn’t guarantee that your project will succeed (and it won’t prevent you from constructing a system that’s harmful). Hopefully, the steps that are laid out in the book will help, as will an understanding of how each of these steps should be strung together with the other and used to deliver the end product. In the next two sections, how we arrived at the structure of the work outlined in the book is explained, including references to how other people have structured similar projects.

 1.3 Other machine learning methodologies

 People have created software systems for more than 50 years, and for a great chunk of that time, they’ve built ML systems as well. It’s therefore worth checking what other people have done. For many years, software development was planned and organized around predictions of the complexity and work required to deliver a project. We call this approach waterfall. Essentially the idea is that the required information was gathered, and this was transformed into a design. The design was then changed into a work program for the programmers, and next, the programmers wrote the code and submitted it to testing. Finally, the system was accepted by the users—the waterfall.

 As software systems became more complex and less limited by the fundamentals of the hardware that it ran on (because that hardware got a lot faster), the value of the waterfall approach dried up. The ultimate users of waterfall-developed systems found that the software was irrelevant to their real needs because they were disconnected from the process that produced it. There were other problems too, including the inability of project managers to correctly estimate complexity and cost because they were too distanced from the implementation activity itself.

 The significant costs of following the prescriptions of structured waterfall methodologies, coupled with a lack of evidence that these practices delivered clear value, led to the widespread disillusionment with “big requirements upfront” approaches. In turn, this led to a reevaluation of the waterfall approach as a more iterative methodology with “uphill feedback” at each stage (Royce 1970) and the development of and exploration of new approaches: Spiral (Boehm 1986), based on plan-do-study-act cycles developed to support decision making under pressure, and V models. The most widely adopted and popular of these approaches is known as agile development (Beck et al 2001).

 Agile emphasizes the early delivery of working software, collaboration with customers (“individuals and interactions” instead of “processes”), and the acceptance of change. Change and discovery during the project is held to be better managed by this approach because the customer rapidly has something useful rather than a raft of features and components that can’t be used without further development.

 A further evolution of agile thinking is the idea of DevOps (Ebert 2016), which is an attempt to build a bridge between developers (dev) and the support teams that operate the software (ops). The insight driving DevOps is that the operations team is a group of experts, more in touch with software than any other part of an organization. A major barrier to using this software is the cost of the mismatch between the dev teams’ understanding of the production environment and reality. This cost is borne by both the dev team (trying to achieve its goal of delivering software) and the ops team (trying to achieve its aim of faultless business continuity).

 Figure 1.3 illustrates the key activities in a DevOps project, which supports rapid and adaptive software development. A DevOps team develops automation around the processes of developing and delivering software. This allows them to focus on the development itself as the project matures. Information flow into the project activities is promoted by reducing the cost and risk of changing the software later in its development cycle. Typically, this is when (late in the project) users and stakeholders realize what it’s actually going to do and how it’s going to create value. Having flexibility at this point has a disproportionate impact on the quality of the delivered software.

 [image:]

 Figure 1.3 A generic DevOps production and delivery process (modeled after Ebert, 2016; redrawn and amended by the author)

 Some attempts at providing specific guidance for ML and AI systems development were made in the past. For example, KADS (born, 1990) was a pan-European effort to develop a common engineering methodology in the late 1980s and early 1990s. We used knowledge engineering at that time to create rule-based reasoning systems to make decisions in complex domains. This kind of system turned out to be less practical than it was hoped to be, and because ML systems are different, it makes KADS more or less obsolete.

 A more relevant effort was CRISP-DM, which was a data mining methodology developed from 1997 to approximately 2007. Data mining used early ML technology, where patterns are extracted from data to create insights about what is going on. In a 2007 poll, CRISP-DM was cited as the methodology most used by data-mining practitioners (Piatentsk-Shapiro 2007).

 In recent years, many in the ML community have adopted approaches inspired by agile and DevOps under the banner of MLOps. Additionally, work such as that described in Machine Learning as the High Interest Credit Card of Technical Debt (Sculley et al 2014), articulated some of the problems with ML system development. The ML community has responded by developing approaches that draw on the DevOps style of system development but aimed specifically at ML projects. One example is outlined in an online booklet, Machine Learning System Design (MLSD) (Huyen 2020) which provides information for people who want to become ML engineers. MLSD provides a structure and information on the tasks that are required to create a production ML system. The booklet explains the different perspectives and considerations that we should apply when developing a production system by contrasting the needs of research implementations. An overview of design considerations (performance requirements and compute requirements) is also included. The main part of the booklet describes four phases (figure 1.4):

 	
 Project setup is the process of figuring out as much detail as possible about the problem at hand. The methods of doing this are couched as a discussion in a technical interview, and the source of information is seen as the interviewer. Goals, user experience, performance constraints, evaluation, personalization, and project constraints (people, compute power, and infrastructure) are identified as significant elements to be considered.

 	
 The data pipeline element considers privacy and bias, storage, preprocessing, and availability.

 	
 Modelling is considered in terms of model selection, training, debugging, hyperparameter tuning and scaling (in the sense of covering a large amount of training data).

 	
 Serving is framed in terms of the evaluation of the model and the assumptions that we need to understand when running the model in the field.

 [image:]

 Figure 1.4 ML project flow as described in Huyen and Hopper (2020). Figure redrawn and adapted by the author. Arrows represent dependency relations rather than workflow.

 Another attempt to describe this kind of methodology is given in the book, Machine Learning Engineering (MLE) (Burkov 2020), which provides a comprehensive review of ML engineering best practices and design patterns.

 MLSD and MLE share significant commonalities, both represent the modeling process as being iterative and requiring re-entry into other parts of the development lifecycle. Both books [18, 19] can be seen as MLOps; they are agile and adaptive and emphasize automation in the form of pipeline development. In addition, these approaches take advantage of a range of tools that support the objective of automation. Version control is used for code, models, and features; automated pipelines are used to move and transform data and to test and deploy models.

 Recently there has been work on approaches that emphasize the role of documentation, especially with respect to the lineage and provenance of data and models. One example, the publication of Model Cards/Model Reports, was developed for some models published by Google and Hugging Face. An evolution of this was the development process advocated by the TeleManagement Forum (TM Forum), which provides for the maintenance of a chain of custody to assure that models are understood and controlled [20]. These practices emphasize the need to document the models produced, enabling them to be chosen and used appropriately and easily in the future.

 1.4 Understanding this book

 As described in section 1.3, DevOps (iterative development supported by automation), strong documentation, and careful ethical evaluation and process control are important and are widely adopted approaches to ML development. As such, they feature heavily in this book. In addition to seeing how we can use these tools to create models with ML, the book addresses:

 	
 Commissioning and running projects, including estimating project cost and duration.

 	
 Working with and organizing a team to deliver the project.

 	
 Dealing with the data assets that underpin the project, constructing data pipelines, dealing with diverse data gathered for varied purposes, and setting up and running exploratory data analysis.

 	
 Evaluating ML models and making decisions about which ones to use (if you are thinking “the best ones,” then prepare for a surprise).

 	
 Moving ML models from development and testing to production.

 	
 Using ML models in applications.

 The book uses the conventions of an agile development project [17] to explain the structure of the work. Each chunk of work (figure 1.5) is described as a sprint, and the list of tasks in each chapter is called a backlog. The backlog list is followed by information detailing the structure and approach of each subtask with additional explanations to help the engineer undertaking the work.

 [image:]

 Figure 1.5 The structure of the project described in this book; from creating and developing the project through to managing the final models in production.

 At the end of each of the sprints, a checklist is provided to enable teams to work together to ensure that all tasks are completed. The checklist flags the documentation requirements for the tasks in a particular project phase, ensuring that a growing portfolio of documentation detailing the progress that the team makes is assembled. These documents are valuable assets, providing a way for information to be shared and reused. Additionally, the documentation supports the maintenance and governance of the system in production.

 Interspersed through the book, there’s a case study (The Bike Shop) with a narrative that’s intended to illustrate the process and the application of the techniques and tasks described. Some chapters (chapter 2, chapter 5, and chapter 7) don’t refer to the case study because they are the start of a sprint, and the relevant narrative appears in the next chapter instead.

 Most of the project steps are intended to be viewed as iterative and adaptive, and as can be seen from figure 1.5, it’s expected that some of the steps in the project may produce findings that require work to be redone. In particular, the process of EDA, modeling, evaluation, and integration described in chapters 5-8 are, in practice, iterative. It’s assumed that there will be false starts and repetitions due to discovery and adaption. For example, the modeling process may lead to the discovery of data features that weren’t exposed by the EDA process. This means that more or different data is required.

 Integration may expose an unexpected model property, which requires a restart and repeat of modeling. The ordering and detail of the tasks in the EDA phase and in the modeling and evaluation phases are designed to minimize this and to expose issues as early as possible. It’s also designed to enable the project leader (you) and your team to communicate what’s happening to your stakeholders, reassuring them that you made the best possible efforts to avoid an unexpected dead end and reset of the project.

 The objective of using this book allows you to determine what needs to be done at each step of a significant ML project and gives you some support in doing it. Hopefully, it will also provide you with a guide to how much time you’ll need, a way of justifying the activities and expenses to project sponsors, and a method for discerning how to accommodate the necessary adaptation and iteration.

 1.5 Case study: The Bike Shop

 To bring this book to life, we include discussions around an example based on real-world data and real-world project experience. Anonymized and reimagined, it’s described next.

 A chain of bike stores (The Bike Shop) manages its sales and inventory data using disparate systems. Sales is managed by a software as a service (SaaS) system, whereas the inventory is managed by an off-the-shelf inventory system, which is run using a server cluster managed by The Bike Store’s IT team. By moving the data from these two systems into a single cloud database, The Bike Store management team hopes to generate insight and create a business case to justify this, based simply on co-hosting the data and providing a dashboard interface that allows business users to consume it. However, they have the idea that applying ML to their business will yield a large benefit, but they have little idea of exactly how that is to be achieved.

 At the end of each chapter, the story of how you as the project lead for The Bike Shop’s ML initiative, manage the ML system is narrated from your perspective. This includes:

 	
 Building the proposal and estimating the costs.

 	
 Structuring and setting up the team.

 	
 Accessing the systems and data to figure out what’s in the data.

 	
 Determining what ML can do with the data.

 	
 Understanding how the users will use the outcome.

 	
 Choosing the models to use and setting up to build the models.

 	
 Building the models and integrating them into a production system.

 In the next chapter, this journey begins.

 Summary

 	
 The explosion of data and computing in the last 10 years proves that machine learning (ML) has become an important technology.

 	
 There have been problems in terms of both successfully delivering ML projects and the negative impacts that these can have when they are delivered.

 	
 ML projects are different because they depend on complex data, require the team to produce and manage models created from the data, and need to be carefully aligned with the needs of the users and stakeholders.

 	
 A successful ML project drives out risk from requirements and data, captures nonfunctional and functional requirements, and develops capabilities for handling and evaluating models.

 	
 The ML project needs to be aligned with the needs of society and stakeholders throughout its lifecycle to avoid undesirable outcomes.

 	
 We can borrow ideas from agile software and the DevOps community to help us develop the projects.

 2 Pre-project: From opportunity to requirements

 This chapter covers:

 	Understanding the project type and the stakeholders’ expectations of scale and structure

 	Setting up a pre-sales/pre-project process

 	Understanding requirements for model performance

 	Understanding data assets

 	Understanding the project’s general requirements

 	Coming to grips with the tools and infrastructure to deliver successfully

 Project success and failure are defined by the pre-project/presales activity that surrounds it. The challenge is to move from knowing that there’s an opportunity to get paid for an ML project to a job that you can use to pay your mortgage. The purpose of this chapter is to lay out the activities and actions that need to happen to understand if an ML project is possible and if it’s useful. Then, we need to determine what effort is required to get it done and by whom.

 It’s tempting to gold plate these activities because we can do all of them in deep, deep detail. Unfortunately, we live in a competitive world and, sometimes, it’s difficult for organizations to invest time or money in projects before they are agreed. Realistically, we need to understand that the organizational commitment that’s needed to support deep dives into customer data or access to high-performance servers won’t exist until the ink dries on the contracts. At that point, it becomes everyone’s job to make the project happen. Before that, it’s all just theory. So, the work that we do before funding is secured and time can be allocated is just a shadow of what happens later.

 A strong focus on this process reduces the risk that you and the team are taking on. Failure to understand the project’s business requirements puts your team at risk, misdirecting their efforts, and in all likelihood, you’ll bid too low to provide the resources that are required for delivery. Failure to understand the available data resources means that it’s impossible to determine how to approach the project with ML or to judge the prospects for success. Furthermore, failure to understand security, privacy, or ethical considerations means exposing you, your team, and your organization to embarrassment and liabilities. Looking at all of these facets of the project now allows you to make some timely and effective decisions that could make life a lot better later.

 In some ways, these issues arise for any project. Some specific risks for ML projects, however, must be addressed:

 	
 It’s often easy to develop ML models, but developing models that have the right properties to solve a particular business problem is much harder.

 	
 Poor quality or inaccessible data introduces considerable friction, and until the data is obtained, project progress typically stalls.

 	
 Data sourcing and usage constraints may mean that it’s unethical or illegal to use the results of the project. For example, if the origin of personal data is unknown, using it may violate consumers privacy, and the owners of the data may not consent to its use.

 	
 It’s hard to predict the performance of ML algorithms in learning models a priori. Despite the team’s best efforts, results may be disappointing.

 	
 Misunderstanding or not anticipating the IT architecture, which deploys the ML system in production, can mean that the results of the project will be unusable.

 Work to mitigate these issues is described later in this chapter and in chapter 3. As promised in chapter 1, the following pre-project backlog provides a list of tasks that are required to deliver pre-project activity. After that, we describe the work required to set up this activity and then discuss what’s needed to understand the requirements that the client outlines. Subsequent sections tackle understanding the data resources, security and privacy, ethics, and the IT architecture.

2.1 Pre-project backlog

 Table 2.1 provides a summary of the activities required to create the outcome for a successful pre-project. We can use this list as a pre-sale (PS) backlog. Each item can be a ticket in a system like Jira or GitLab, which then allows us to track progress, which prevents forgotten tasks. Using a ticketing system to track progress comes in handy because it will be easy to determine when a meeting should be run and to see who was responsible for each task and what they did.

 Table 2.1 Pre-sale backlog for pre-projects

 	
 Ticket No.

 	
 Item

 	
 PS1

 	
 Set up a project backlog/task board and use it.

 	
 PS2

 	
 Create a document repository and make it available to the project team.

 	
 PS3

 	
 Establish a risk register to determine what’s the unknown diligence and estimate what’s required to mitigate that.

 	
 PS4

 	
 Create an organizational model to support your knowledge of the customer and the customer’s challenges.

 Undertake an organizational analysis by mapping project stakeholders to the organizational chart and the impact to specific business units (if affected) and to business priorities (increased revenue, decreased costs, growth of market, etc.).

 	
 PS5

 	
 Understand the system architecture and nonfunctional constraints.

 	
 PS6

 	
 Get a data sample and document what is known about the data resources: statistical, nonfunctional (scale, speed, history, etc.), and system properties (where it is, what infrastructure it lives on, what it does).

 	
 PS7

 	
 Check and document security and privacy requirementsace and include as project assumptions.

 	
 PS8

 	
 Check and document corporate social responsibility and ethical requirements, then challenge, provide feedback, and include as project assumptions.

 Create PDIA and AIA documents.

 	
 PS9

 	
 Develop a high-level delivery architecture. The architecture should cover dev, test, and production components (sometimes also pre-production/staging) and should be able to support the customer’s nonfunctional requirements such as availability, resilience, security, and throughput.

 Qualify this architecture with the appropriate stakeholders for feedback, if possible.

 Document key aspects of the architecture as assumptions for the project.

 	
 PS10

 	
 Understand the business problem: use a consensus to build a project hypothesis, validated by the customer and the delivery team.

 Ensure that this clearly communicated and documented in any contractual agreement.

 	
 PS11

 	
 Undertake project diligence. Will the stakeholders be available? Is the data available and manageable? What team members are available and what skills do they have?

 	
 PS12

 	
 Create an estimate of the work for a model project, delivering on the required project hypothesis, taking into account the available team and the scale of the work that is needed.

 Ensure that all project risks are accounted for in your estimate.

 	
 PS13

 	
 Create a plan for team design and resourcing and share it with the customer.

 	
 PS14

 	
 Run a review meeting and go through a checklist to ensure that the presales process is properly completed.

 We cover tickets PS1 through PS9 in this chapter, which deals with identifying and documenting the requirements for the project. We cover tickets PS10 to PS14 in chapter 3, which uses those requirements to create estimates and proposals. This secures the funding and gets the project ready to go. The first thing to undertake is PS1.

 Project management infrastructure tickets: PS1

 	
 Set up a project backlog/task board and use it.

 We can implement this ticket using Jira, GitLab, GitHub, Microsoft ADO, or many other options. As soon as you have done that, you can sign off on PS1! Congratulations, you’ve started the pre-project work. PS2 and PS3 are up next. By setting up a project management infrastructure (building on the ticketing system), you make it easier to progress with everything else.

 2.2 Project management infrastructure

 PS2 and PS3 are the tickets that set up the project management infrastructure, bringing it into use. As such, they’re a good place to start. As a reminder, they’re listed here.

 Project management infrastructure tickets: PS2

 	
 Create a project document repository, and make it available to the project team.

 Project management infrastructure tickets: PS3

 	
 Establish a risk register to determine what’s the unknown diligence and estimate what’s required to mitigate that.

 The first step, as per PS2, in completing the pre-sales process is to create a shared project document repository, where we can keep the documentation covering the presales activity. We might use the repository for the whole project, although customer data retention and management requirements may mean that we migrate it to another, customer-owned, and standardized repository. Even so, the information gathered at this step will be useful through the end of the delivery and probably beyond, and being organized about documentation from now on is crucial.

 One thing to remember is that your organization likely has a document retention policy; this may require deleting the documentation after a particular period or at the end of the project. Alternatively, it may mean that the documentation is archived so that it can be found later. Although it is important to check retention policies, the information gathered is likely to be your organization’s property. If pre-sales fail, and there is no project proper, then these documents are still useful if the customer returns with another project in the future.

 Importantly, in all cases, the documentation you develop and capture now supports the evolution of your team and your working practice. By doing this, you are capturing value from day one, and you are also helping yourself in the future. It’s common to think, “Oh, I came across a problem like that before and then we decided…” If, in the future, you can remember that and pull out the documents, you’ll find that you’ve got a real advantage.

 The other thing to do on day one is to set up a risk register. Determining what might go wrong and what’s unknown is a key step in creating a project that is manageable. This is a way to prevent important issues from being forgotten, and it’s a way to establish the difference that the work on the project is making. As you move an identified risk from live to retired, problems are solved, and they are solved by you and the team.

 We can handle risk items by turning them into questions to be explored. If the project’s objectives are substantially defined in terms of questions that need to be answered, it’s substantially less risky. This approach exposes uncertainty that we need to deal with before establishing business value. Exposing questions in this way also informs customers of the value of the exploration that needs to be done.

 Setting up a project risk register sounds like a complex and fancy thing, but it’s actually simple. A risk register is a document identified and versioned in your repository (of course!). It records all the project’s risks and actions. If the actions are successful, the risk register also records that we mitigated the risks and discharged them from the register.

 In the project proper, the identification and management of risks is part of the project’s heartbeat (more about this soon) and managed in a weekly meeting with the key project stakeholders. All parties accept the entry of new risks into the register and agree that they are dealt with or not.

 In the pre-sales process, risks are managed closely by the presales team. At this stage, risks are also the concern of the project team because assessing and controlling the project’s risks defines the estimates that the team provides. This also underpins the client’s decision on whether to adopt the team’s proposal.

 2.3 Project requirements

 Having set up a working project infrastructure with the ticketing system, document repository, and the risk register, the real work starts. PS4 and PS5 call for developing the project’s requirements.

 Requirements ticket: PS4

 	
 Create an organizational model to support your knowledge of the customer and the customers challenges.

OEBPS/OEBPS/Images/IFC.png

OEBPS/OEBPS/Images/01-02.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/01-05.png

OEBPS/OEBPS/Images/Simon_Thompson_PhotoA.jpg

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/01-03.png

OEBPS/OEBPS/Images/01-01.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/01-04.png

