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Preface
      

      
      
      
      Looking back at the last year and a half, I can’t help but wonder: how on Earth did I manage to survive this? These were the
         busiest 18 months of my life! Ever since Manning asked Marko and me to write a book about Spark, I have spent most of my free
         time on Apache Spark. And that made this period all the more interesting. I learned a lot, and I can honestly say it was worth
         it.
      

      
      Spark is a super-hot topic these days. It was conceived in Berkeley, California, in 2009 by Matei Zaharia (initially as an
         attempt to prove the Mesos execution platform feasible) and was open sourced in 2010. In 2013, it was donated to the Apache
         Software Foundation, and it has been the target of lightning-fast development ever since. In 2015, Spark was one of the most
         active Apache projects and had more than 1,000 contributors. Today, it’s a part of all major Hadoop distributions and is used
         by many organizations, large and small, throughout the world in all kinds of applications.
      

      
      The trouble with writing a book about a project such as Spark is that it develops very quickly. Since we began writing Spark in Action, we’ve seen six minor releases of Spark, with many new, important features that needed to be covered. The first major release
         (version 2.0) came out after we’d finished writing most of the book, and we had to delay publication to cover the new features
         that came with it.
      

      
      Another challenge when writing about Spark is the breadth of the topic: Spark is more of a platform than a framework. You
         can use it to write all kinds of applications (in four languages!): batch jobs, real-time processing systems and web applications
         executing Spark jobs, processing structured data using SQL and unstructured data using traditional programming techniques,
         various machine learning and data-munging tasks, interacting with distributed file systems, various relational and no-SQL
         databases, real-time systems, and so on. Then there are the runtime aspects—installing, configuring, and running Spark—which
         are equally relevant.
      

      
      We tried to do justice to these important topics and make this book a thorough but gentle guide to using Spark. We hope you’ll
         enjoy it.
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About this Book
      

      
      
      
      Apache Spark is a general data processing framework. That means you can use it for all kinds of computing tasks. And that means any book on Apache Spark needs to cover a lot of different topics. We’ve tried to describe all aspects of using Spark:
         from configuring runtime options and running standalone and interactive jobs, to writing batch, streaming, or machine learning
         applications. And we’ve tried to pick examples and example data sets that can be run on your personal computer, that are easy
         to understand, and that illustrate the concepts well.
      

      
      We hope you’ll find this book and the examples useful for understanding how to use and run Spark and that it will help you
         write future, production-ready Spark applications.
      

      
      
      
Who should read this book
      

      
      Although the book contains lots of material appropriate for business users and managers, it’s mostly geared toward developers—or,
         rather, people who are able to understand and execute code. The Spark API can be used in four languages: Scala, Java, Python,
         and R. The primary examples in the book are written in Scala (Java and Python versions are available at the book’s website,
         www.manning.com/books/spark-in-action, and in our online GitHub repository at https://github.com/spark-in-action/first-edition), but we don’t assume any prior knowledge of Scala, and we explain Scala specifics throughout the book. Nevertheless, it
         will be beneficial if you have Java or Scala skills before starting the book. We list some resources to help with that in
         chapter 2.
      

      
      Spark can interact with many systems, some of which are covered in the book. To fully appreciate the content, knowledge of
         the following topics is preferable (but not required):
      

      
      
         
            
            
         
         
            
               	

                     
                     	SQL and JDBC (chapter 5)
                        
                     

                     
                     	Hadoop (HDFS and YARN, chapters 5 and 12)
                        
                     

                     
                     	Kafka (chapter 6)
                     

                     
                  

               
               	

                     
                     	Amazon EC2 (chapter 11)
                        
                     

                     
                     	Basics of linear algebra, and the ability to understand mathematical formulas (chapters 7 and 8)
                        
                     

                     
                     	Mesos (chapter 12)
                        
                     

                     
                  

               
            

         
      

      
      We’ve prepared a virtual machine to make it easy for you to run the examples in the book. In order to use it, your computer
         should meet the software and hardware prerequisites listed in chapter 1.
      

      
      
      
      
How this book is organized
      

      
      This book has 14 chapters, organized in 4 parts. Part 1 introduces Apache Spark and its rich API. An understanding of this information is important for writing high-quality Spark
         programs and is an excellent foundation for the rest of the book:
      

      
      

      
         
         	
Chapter 1 roughly describes Spark’s main features and compares them with Hadoop’s MapReduce and other tools from the Hadoop ecosystem.
            It also includes a description of the spark-in-action virtual machine, which you can use to run the examples in the book.
            
         

         
         	
Chapter 2 further explores the virtual machine, teaches you how to use Spark’s command-line interface (the spark-shell), and uses several examples to explain resilient distributed datasets (RDDs): the central abstraction in Spark.
            
         

         
         	In chapter 3, you’ll learn how to set up Eclipse to write standalone Spark applications. Then you’ll write an application for analyzing
            GitHub logs and execute the application by submitting it to a Spark cluster.
            
         

         
         	
Chapter 4 explores the Spark core API in more detail. Specifically, it shows how to work with key-value pairs and explains how data
            partitioning and shuffling work in Spark. It also teaches you how to group, sort, and join data, and how to use accumulators
            and broadcast variables.
            
         

         
      

      
      In part 2, you’ll get to know other components that make up Spark, including Spark SQL, Spark Streaming, Spark MLlib, and Spark GraphX:
      

      
      

      
         
         	
Chapter 5 introduces Spark SQL. You’ll learn how to create and use DataFrames, how to use SQL to query DataFrame data, and how to load
            data to and save it from external data sources. You’ll also learn about optimizations done by Spark’s SQL Catalyst optimization
            engine and about performance improvements introduced with the Tungsten project.
            
         

         
         	Spark Streaming, one of the more popular Spark family members, is introduced in chapter 6. You’ll learn about discretized streams, which periodically produce RDDs as a streaming application is running. You’ll also
            learn how to save computation state over time and how to use window operations. We’ll examine ways of connecting to Kafka
            and how to obtain good performance from your streaming jobs. We’ll also talk about structured streaming, a new concept included
            in Spark 2.0.
            
         

         
         	
Chapters 7 and 8 are about machine learning, specifically about the Spark MLlib and Spark ML sections of the Spark API. You’ll learn about
            machine learning in general and about linear regression, logistic regression, decision trees, random forests, and k-means
            clustering. Along the way, you’ll scale and normalize features, use regularization, and train and evaluate machine learning
            models. We’ll explain API standardizations brought by Spark ML.
            
         

         
         	
Chapter 9 explores how to build graphs with Spark’s GraphX API. You’ll transform and join graphs, use graph algorithms, and implement
            the A* search algorithm using the GraphX API.
            
         

         
      

      
      Using Spark isn’t just about writing and running Spark applications. It’s also about configuring Spark clusters and system
         resources to be used efficiently by applications. Part 3 explains the necessary concepts and configuration options for running Spark applications on Spark standalone, Hadoop YARN,
         and Mesos clusters:
      

      
      

      
         
         	
Chapter 10 explores Spark runtime components, Spark cluster types, job and resource scheduling, configuring Spark, and the Spark web
            UI. These are concepts common to all cluster managers Spark can run on: the Spark standalone cluster, YARN, and Mesos. The
            two local modes are also explained in chapter 10.
            
         

         
         	You’ll learn about the Spark standalone cluster in chapter 11: its components, how to start it and run applications on it, and how to use its web UI. The Spark History server, which keeps
            details about previously run jobs, is also discussed. Finally, you’ll learn how to use Spark’s scripts to start up a Spark
            standalone cluster on Amazon EC2.
            
         

         
         	
Chapter 12 goes through the specifics of setting up, configuring, and using YARN and Mesos clusters to run Spark applications.
            
         

         
      

      
      Part 4 covers higher-level aspects of using Spark:
      

      
      

      
         
         	
Chapter 13 brings it all together and explores a Spark streaming application for analyzing log files and displaying the results on a
            real-time dashboard. The application implemented in chapter 13 can be used as a basis for your own future applications.
            
         

         
         	
Chapter 14 introduces H2O, a scalable and fast machine-learning framework with implementations of many machine-learning algorithms,
            most notably deep learning, which Spark lacks; and Sparkling Water, H2O’s package that enables you to start and use an H2O
            cluster from Spark. Through Sparkling Water, you can use Spark’s Core, SQL, Streaming, and GraphX components to ingest, prepare,
            and analyze data, and transfer it to H2O to be used in H2O’s deep-learning algorithms. You can then transfer the results back
            to Spark and use them in subsequent computations.
            
         

         
      

      
      Appendix A gives you instructions for installing Spark. Appendix B provides a short overview of MapReduce. And appendix c is a short primer on linear algebra.
      

      
      
      
      
About the code
      

      
      All source code in the book is presented in a mono-spaced typeface like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out key concepts, and numbered
         bullets are sometimes used in the text to provide additional information about the code.
      

      
      Source code in Scala, Java, and Python, along with the data files used in the examples, are available for download from the
         publisher’s website at www.manning.com/books/spark-in-action and from our online repository at https://github.com/spark-in-action/first-edition. The examples were written for and tested with Spark 2.0.
      

      
      
      
      
Author Online
      

      
      Purchase of Spark in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the lead author and from other users. To access the forum and subscribe to it, point your
         web browser to www.manning.com/books/spark-in-action. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
         rules of conduct on the forum.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
         readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
         whose contribution to the Author Online forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
         questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s
         website as long as the book is in print.
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         him.
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         for SV Group’s IBM Enterprise Content Management team.
      

      
      

About the Cover
      

      
      
      
      The figure on the cover of Spark in Action is captioned “Hollandais” (a Dutchman). The illustration is taken from a collection of dress costumes from various countries
         by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand.
      

      
      The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and
         regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or
         in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.
      

      
      The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It’s now hard to
         tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
         cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.
      

      
      At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
         computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
         by Grasset de Saint-Sauveur’s pictures.
      

      
      
      
      


Part 1. First steps
      

      
      
      We begin this book with an introduction to Apache Spark and its rich API. Understanding the information in part 1 1 is important for writing high-quality Spark programs and is an excellent foundation for the rest of the book.
      

      
      Chapter 1 roughly describes Spark’s main features and compares them with Hadoop’s MapReduce and other tools from the Hadoop ecosystem.
         It also includes a description of the spark-in-action virtual machine we’ve prepared for you, which you can use to run the
         examples in the book.
      

      
      Chapter 2 further explores the VM, teaches you how to use Spark’s command-line interface (spark-shell), and uses several examples to explain resilient distributed datasets (RDDs)—the central abstraction in Spark.
      

      
      In chapter 3, you’ll learn how to set up Eclipse to write standalone Spark applications. Then you’ll write such an application to analyze
         GitHub logs and execute the application by submitting it to a Spark cluster.
      

      
      Chapter 4 explores the Spark core API in more detail. Specifically, it shows you how to work with key-value pairs and explains how
         data partitioning and shuffling work in Spark. It also teaches you how to group, sort, and join data, and how to use accumulators and broadcast variables.
      

      
      
      
      
      


Chapter 1. Introduction to Apache Spark
      

      
      This chapter covers

      
      

      
         
         	What Spark brings to the table
            
         

         
         	Spark components
            
         

         
         	Spark program flow
            
         

         
         	Spark ecosystem
            
         

         
         	Downloading and starting the spark-in-action virtual machine
            
         

         
      

      
      Apache Spark is usually defined as a fast, general-purpose, distributed computing platform. Yes, it sounds a bit like marketing
         speak at first glance, but we could hardly come up with a more appropriate label to put on the Spark box.
      

      
      Apache Spark really did bring a revolution to the big data space. Spark makes efficient use of memory and can execute equivalent
         jobs 10 to 100 times faster than Hadoop’s MapReduce. On top of that, Spark’s creators managed to abstract away the fact that
         you’re dealing with a cluster of machines, and instead present you with a set of collections-based APIs. Working with Spark’s
         collections feels like working with local Scala, Java, or Python collections, but Spark’s collections reference data distributed on many nodes. Operations
         on these collections get translated to complicated parallel programs without the user being necessarily aware of the fact,
         which is a truly powerful concept.
      

      
      In this chapter, we first shed light on the main Spark features and compare Spark to its natural predecessor: Hadoop’s MapReduce.
         Then we briefly explore Hadoop’s ecosystem—a collection of tools and languages used together with Hadoop for big data operations—to
         see how Spark fits in. We give you a brief overview of Spark’s components and show you how a typical Spark program executes
         using a simple “Hello World” example. Finally, we help you download and set up the spark-in-action virtual machine we prepared
         for running the examples in the book.
      

      
      We’ve done our best to write a comprehensive guide to Spark architecture, its components, its runtime environment, and its
         API, while providing concrete examples and real-life case studies. By reading this book and, more important, by sifting through
         the examples, you’ll gain the knowledge and skills necessary for writing your own high-quality Spark programs and managing
         Spark applications.
      

      
      
      
1.1. What is Spark?
      

      
      Apache Spark is an exciting new technology that is rapidly superseding Hadoop’s MapReduce as the preferred big data processing
         platform. Hadoop is an open source, distributed, Java computation framework consisting of the Hadoop Distributed File System
         (HDFS) and MapReduce, its execution engine. Spark is similar to Hadoop in that it’s a distributed, general-purpose computing
         platform. But Spark’s unique design, which allows for keeping large amounts of data in memory, offers tremendous performance
         improvements. Spark programs can be 100 times faster than their MapReduce counterparts.
      

      
      Spark was originally conceived at Berkeley’s AMPLab by Matei Zaharia, who went on to cofound Databricks, together with his
         mentor Ion Stoica, as well as Reynold Xin, Patrick Wendell, Andy Konwinski, and Ali Ghodsi. Although Spark is open source,
         Databricks is the main force behind Apache Spark, contributing more than 75% of Spark’s code. It also offers Databricks Cloud,
         a commercial product for big data analysis based on Apache Spark.
      

      
      By using Spark’s elegant API and runtime architecture, you can write distributed programs in a manner similar to writing local
         ones. Spark’s collections abstract away the fact that they’re potentially referencing data distributed on a large number of
         nodes. Spark also allows you to use functional programming methods, which are a great match for data-processing tasks.
      

      
      By supporting Python, Java, Scala, and, most recently, R, Spark is open to a wide range of users: to the science community
         that traditionally favors Python and R, to the still-widespread Java community, and to people using the increasingly popular
         Scala, which offers functional programming on the Java virtual machine (JVM).
      

      
      Finally, Spark combines MapReduce-like capabilities for batch programming, real-time data-processing functions, SQL-like handling
         of structured data, graph algorithms, and machine learning, all in a single framework. This makes it a one-stop shop for most
         of your big data-crunching needs. It’s no wonder, then, that Spark is one of the busiest and fastest-growing Apache Software
         Foundation projects today.
      

      
      But some applications aren’t appropriate for Spark. Because of its distributed architecture, Spark necessarily brings some
         overhead to the processing time. This overhead is negligible when handling large amounts of data; but if you have a dataset
         that can be handled by a single machine (which is becoming ever more likely these days), it may be more efficient to use some
         other framework optimized for that kind of computation. Also, Spark wasn’t made with online transaction processing (OLTP)
         applications in mind (fast, numerous, atomic transactions). It’s better suited for online analytical processing (OLAP): batch
         jobs and data mining.
      

      
      
      1.1.1. The Spark revolution
      

      
      Although the last decade saw Hadoop’s wide adoption, Hadoop is not without its shortcomings. It’s powerful, but it can be
         slow. This has opened the way for newer technologies, such as Spark, to solve the same challenges Hadoop solves, but more
         efficiently. In the next few pages, we’ll discuss Hadoop’s shortcomings and how Spark answers those issues.
      

      
      The Hadoop framework, with its HDFS and MapReduce data-processing engine, was the first that brought distributed computing
         to the masses. Hadoop solved the three main problems facing any distributed data-processing endeavor:
      

      
      

      
         
         	
Parallelization— How to perform subsets of the computation simultaneously
            
         

         
         	
Distribution— How to distribute the data
            
         

         
         	
Fault tolerance— How to handle component failure
            
         

         
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      Appendix A describes MapReduce in more detail.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      On top of that, Hadoop clusters are often made of commodity hardware, which makes Hadoop easy to set up. That’s why the last
         decade saw its wide adoption.
      

      
      
      
      1.1.2. MapReduce’s shortcomings
      

      
      Although Hadoop is the foundation of today’s big data revolution and is actively used and maintained, it still has its shortcomings,
         and they mostly pertain to its Map-Reduce component. MapReduce job results need to be stored in HDFS before they can be used
         by another job. For this reason, MapReduce is inherently bad with iterative algorithms.
      

      
      Furthermore, many kinds of problems don’t easily fit MapReduce’s two-step paradigm, and decomposing every problem into a series
         of these two operations can be difficult. The API can be cumbersome at times.
      

      
      Hadoop is a rather low-level framework, so myriad tools have sprung up around it: tools for importing and exporting data,
         higher-level languages and frameworks for manipulating data, tools for real-time processing, and so on. They all bring additional
         complexity and requirements with them, which complicates any environment. Spark solves many of these issues.
      

      
      
      
      1.1.3. What Spark brings to the table
      

      
      Spark’s core concept is an in-memory execution model that enables caching job data in memory instead of fetching it from disk
         every time, as MapReduce does. This can speed the execution of jobs up to 100 times,[1] compared to the same jobs in Map-Reduce; it has the biggest effect on iterative algorithms such as machine learning, graph
         algorithms, and other types of workloads that need to reuse data.
      

      
         1 
            

See “Shark: SQL and Rich Analytics at Scale” by Reynold Xin et al., http://mng.bz/gFry.
            

         

      

      
      Imagine you have city map data stored as a graph. The vertices of this graph represent points of interest on the map, and
         the edges represent possible routes between them, with associated distances. Now suppose you need to find a spot for a new
         ambulance station that will be situated as close as possible to all the points on the map. That spot would be the center of
         your graph. It can be found by first calculating the shortest path between all the vertices and then finding the farthest point distance (the maximum distance to any other vertex) for each vertex, and finally finding the vertex with the smallest farthest point
         distance. Completing the first phase of the algorithm, finding the shortest path between all vertices, in a parallel manner
         is the most challenging (and complicated) part, but it’s not impossible.[2]

      
         2 
            

See “A Scalable Parallelization of All-Pairs Shortest Path Algorithm for a High Performance Cluster Environment” by T. Srinivasan
               et al., http://mng.bz/5TMT.
            

         

      

      
      In the case of MapReduce, you’d need to store the results of each of these three phases on disk (HDFS). Each subsequent phase
         would read the results of the previous one from disk. But with Spark, you can find the shortest path between all vertices
         and cache that data in memory. The next phase can use that data from memory, find the farthest point distance for each vertex,
         and cache its results. The last phase can go through this final cached data and find the vertex with the minimum farthest
         point distance. You can imagine the performance gains compared to reading and writing to disk every time.
      

      
      Spark performance is so good that in October 2014 it won the Daytona Gray Sort contest and set a world record (jointly with
         TritonSort, to be fair) by sorting 100 TB in 1,406 seconds (see http://sortbenchmark.org).
      

      
      
      
Spark’s ease of use
      

      
      The Spark API is much easier to use than the classic MapReduce API. To implement the classic word-count example from appendix A as a MapReduce job, you’d need three classes: the main class that sets up the job, a Mapper, and a Reducer, each 10 lines long, give or take a few.
      

      
      By contrast, the following is all it takes for the same Spark program written in Scala:
      

      
      val spark = SparkSession.builder().appName("Spark wordcount")
val file = spark.sparkContext.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
    .map(word => (word, 1)).countByKey()
counts.saveAsTextFile("hdfs://...")

      
      Figure 1.1. shows this graphically.
      

      
      
      
      Figure 1.1. A word-count program demonstrates Spark’s conciseness and simplicity. The program is shown implemented in Hadoop’s MapReduce
         framework on the left and as a Spark Scala program on the right.
      

      
      [image: ]

      
      
      Spark supports the Scala, Java, Python, and R programming languages, so it’s accessible to a much wider audience. Although
         Java is supported, Spark can take advantage of Scala’s versatility, flexibility, and functional programming concepts, which
         are a much better fit for data analysis. Python and R are widespread among data scientists and in the scientific community,
         which brings those users on par with Java and Scala developers.
      

      
      Furthermore, the Spark shell (read-eval-print loop [REPL]) offers an interactive console that can be used for experimentation
         and idea testing. There’s no need for compilation and deployment just to find out something isn’t working (again). REPL can
         even be used for launching jobs on the full set of data.
      

      
      Finally, Spark can run on several types of clusters: Spark standalone cluster, Hadoop’s YARN (yet another resource negotiator),
         and Mesos. This gives it additional flexibility and makes it accessible to a larger community of users.
      

      
      
      
      
Spark as a unifying platform
      

      
      An important aspect of Spark is its combination of the many functionalities of the tools in the Hadoop ecosystem into a single
         unifying platform. The execution model is general enough that the single framework can be used for stream data processing,
         machine learning, SQL-like operations, and graph and batch processing. Many roles can work together on the same platform,
         which helps bridge the gap between programmers, data engineers, and data scientists. And the list of functions that Spark
         provides is continuing to grow.
      

      
      
      
      
Spark anti-patterns
      

      
      Spark isn’t suitable, though, for asynchronous updates to shared data[3] (such as online transaction processing, for example), because it has been created with batch analytics in mind. (Spark streaming
         is simply batch analytics applied to data in a time window.) Tools specialized for those use cases will still be necessary.
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See “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing“ by Matei Zaharia et al.,
               http://mng.bz/57uJ.
            

         

      

      
      Also, if you don’t have a large amount of data, Spark may not be required, because it needs to spend some time setting up
         jobs, tasks, and so on. Sometimes a simple relational database or a set of clever scripts can be used to process data more
         quickly than a distributed system such as Spark. But data has a tendency to grow, and it may outgrow your relational database
         management system (RDBMS) or your clever scripts rather quickly.
      

      
      
      
      
      
      
1.2. Spark components
      

      
      Spark consists of several purpose-built components. These are Spark Core, Spark SQL, Spark Streaming, Spark GraphX, and Spark
         MLlib, as shown in figure 1.2.
      

      
      
      
      Figure 1.2. Main Spark components and various runtime interactions and storage options
      

      
      [image: ]

      
      
      These components make Spark a feature-packed unifying platform: it can be used for many tasks that previously had to be accomplished with several different frameworks. A brief description
         of each Spark component follows.
      

      
      
      1.2.1. Spark Core
      

      
      Spark Core contains basic Spark functionalities required for running jobs and needed by other components. The most important
         of these is the resilient distributed dataset (RDD),[4] which is the main element of the Spark API. It’s an abstraction of a distributed collection of items with operations and transformations applicable to the dataset. It’s resilient because it’s capable of rebuilding datasets in case of node failures.
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RDDs are explained in chapter 2. Because they’re the fundamental abstraction of Spark, they’re also covered in detail in chapter 4.
            

         

      

      
      Spark Core contains logic for accessing various filesystems, such as HDFS, GlusterFS, Amazon S3, and so on. It also provides
         a means of information sharing between computing nodes with broadcast variables and accumulators. Other fundamental functions,
         such as networking, security, scheduling, and data shuffling, are also part of Spark Core.
      

      
      
      
      1.2.2. Spark SQL
      

      
      Spark SQL provides functions for manipulating large sets of distributed, structured data using an SQL subset supported by
         Spark and Hive SQL (HiveQL). With DataFrames introduced in Spark 1.3, and DataSets introduced in Spark 1.6, which simplified handling of structured data and enabled radical performance optimizations, Spark
         SQL became one of the most important Spark components. Spark SQL can also be used for reading and writing data to and from
         various structured formats and data sources, such as JavaScript Object Notation (JSON) files, Parquet files (an increasingly
         popular file format that allows for storing a schema along with the data), relational databases, Hive, and others.
      

      
      Operations on DataFrames and DataSets at some point translate to operations on RDDs and execute as ordinary Spark jobs. Spark SQL provides a query optimization
         framework called Catalyst that can be extended by custom optimization rules. Spark SQL also includes a Thrift server, which
         can be used by external systems, such as business intelligence tools, to query data through Spark SQL using classic JDBC and
         ODBC protocols.
      

      
      
      
      1.2.3. Spark Streaming
      

      
      Spark Streaming is a framework for ingesting real-time streaming data from various sources. The supported streaming sources
         include HDFS, Kafka, Flume, Twitter, ZeroMQ, and custom ones. Spark Streaming operations recover from failure automatically,
         which is important for online data processing. Spark Streaming represents streaming data using discretized streams (DStreams), which periodically create RDDs containing the data that came in during the last time window.
      

      
      Spark Streaming can be combined with other Spark components in a single program, unifying real-time processing with machine
         learning, SQL, and graph operations. This is something unique in the Hadoop ecosystem. And since Spark 2.0, the new Structured
         Streaming API makes Spark streaming programs more similar to Spark batch programs.
      

      
      
      
      1.2.4. Spark MLlib
      

      
      Spark MLlib is a library of machine-learning algorithms grown from the MLbase project at UC Berkeley. Supported algorithms
         include logistic regression, naïve Bayes classification, support vector machines (SVMs), decision trees, random forests, linear
         regression, and k-means clustering.
      

      
      Apache Mahout is an existing open source project offering implementations of distributed machine-learning algorithms running
         on Hadoop. Although Apache Mahout is more mature, both Spark MLlib and Mahout include a similar set of machine-learning algorithms.
         But with Mahout migrating from MapReduce to Spark, they’re bound to be merged in the future.
      

      
      Spark MLlib handles machine-learning models used for transforming datasets, which are represented as RDDs or DataFrames.
      

      
      
      
      1.2.5. Spark GraphX
      

      
      Graphs are data structures comprising vertices and the edges connecting them. GraphX provides functions for building graphs,
         represented as graph RDDs: EdgeRDD and VertexRDD. GraphX contains implementations of the most important algorithms of graph theory, such as page rank, connected components,
         shortest paths, SVD++, and others. It also provides the Pregel message-passing API, the same API for large-scale graph processing
         implemented by Apache Giraph, a project with implementations of graph algorithms and running on Hadoop.
      

      
      
      
      
      
1.3. Spark program flow
      

      
      Let’s see what a typical Spark program looks like. Imagine that a 300 MB log file is stored in a three-node HDFS cluster.
         HDFS automatically splits the file into 128 MB parts (blocks, in Hadoop terminology) and places each part on a separate node of the cluster[5] (see figure 1.3). Let’s assume Spark is running on YARN, inside the same Hadoop cluster.
      

      
         5 
            

Although it’s not relevant to our example, we should probably mention that HDFS replicates each block to two additional nodes
               (if the default replication factor of 3 is in effect).
            

         

      

      
      
      
      Figure 1.3. Storing a 300 MB log file in a three-node Hadoop cluster
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      A Spark data engineer is given the task of analyzing how many errors of type OutOfMemoryError have happened during the last two weeks. Mary, the engineer, knows that the log file contains the last two weeks of logs
         of the company’s application server cluster. She sits at her laptop and starts to work.
      

      
      She first starts her Spark shell and establishes a connection to the Spark cluster. Next, she loads the log file from HDFS (see figure 1.4) by using this (Scala) line:
      

      
      val lines = sc.textFile("hdfs://path/to/the/file")

      
      
      
      Figure 1.4. Loading a text file from HDFS
      

      
      [image: ]

      
      
      To achieve maximum data locality,[6] the loading operation asks Hadoop for the locations of each block of the log file and then transfers all the blocks into
         RAM of the cluster’s nodes. Now Spark has a reference to each of those blocks (partitions, in Spark terminology) in RAM. The sum of those partitions is a distributed collection of lines from the log file referenced
         by an RDD. Simplifying, we can say that RDDs allow you to work with a distributed collection the same way you would work with
         any local, nondistributed one. You don’t have to worry about the fact that the collection is distributed, nor do you have
         to handle node failures yourself.
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Data locality is honored if each block gets loaded in the RAM of the same node where it resides in HDFS. The whole point is
               to try to avoid having to transfer large amounts of data over the wire.
            

         

      

      
      In addition to automatic fault tolerance and distribution, the RDD provides an elaborate API, which allows you to work with
         a collection in a functional style. You can filter the collection; map over it with a function; reduce it to a cumulative
         value; subtract, intersect, or create a union with another RDD, and so on.
      

      
      Mary now has a reference to the RDD, so in order to find the error count, she first wants to remove all the lines that don’t
         have an OutOfMemoryError substring. This is a job for the filter function, which she calls like this:
      

      
      val oomLines = lines.filter(l => l.contains("OutOfMemoryError")).cache()

      
      After filtering the collection so it contains the subset of data that she needs to analyze (see figure 1.5), Mary calls cache on it, which tells Spark to leave that RDD in memory across jobs. Caching is the basic component of Spark’s performance improvements
         we mentioned before. The benefits of caching the RDD will become apparent later.
      

      
      
      
      Figure 1.5. Filtering the collection to contain only lines containing the OutOfMemoryError string
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      Now she is left with only those lines that contain the error substring. For this simple example, we’ll ignore the possibility
         that the OutOfMemoryError string might occur in multiple lines of a single error. Our data engineer counts the remaining lines and reports the result as the number of out-of-memory errors that occurred in the last two weeks:
      

      
      val result = oomLines.count()

      
      Spark enabled her to perform distributed filtering and counting of the data with only three lines of code. Her little program
         was executed on all three nodes in parallel.
      

      
      If she now wants to further analyze lines with OutOfMemoryErrors, and perhaps call filter again (but with other criteria) on an oomLines object that was previously cached in memory, Spark won’t load the file from HDFS again, as it would normally do. Spark will
         load it from the cache.
      

      
      
      
      
1.4. Spark ecosystem
      

      
      We’ve already mentioned the Hadoop ecosystem, consisting of interface, analytic, cluster-management, and infrastructure tools.
         Some of the most important ones are shown in figure 1.6.
      

      
      
      
      Figure 1.6. Basic infrastructure, interface, analytic, and management tools in the Hadoop ecosystem, with some of the functionalities
         that Spark incorporates or makes obsolete
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      Figure 1.6 is by no means complete.[7] You could argue that we failed to add one tool or another, but a complete list of tools would be hard to fit in this section.
         We believe, though, that this list represents a good subset of the most prominent tools in the Hadoop ecosystem.
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If you’re interested, you can find a (hopefully) complete list of Hadoop-related tools and frameworks at http://hadoopecosystemtable.github.io.
            

         

      

      
      If you compare the functionalities of Spark components with the tools in the Hadoop ecosystem, you can see that some of the
         tools are suddenly superfluous. For example, Apache Giraph can be replaced by Spark GraphX, and Spark MLlib can be used instead of Apache Mahout. Apache Storm’s capabilities overlap greatly with those of Spark Streaming, so in many cases
         Spark Streaming can be used instead.
      

      
      Apache Pig and Apache Sqoop aren’t needed any longer, because the same functionalities are covered by Spark Core and Spark
         SQL. But even if you have legacy Pig workflows and need to run Pig, the Spork project enables you to run Pig on Spark.
      

      
      Spark has no means of replacing the infrastructure and management of the Hadoop ecosystem tools (Oozie, HBase, and ZooKeeper),
         though. Oozie is used for scheduling different types of Hadoop jobs and now even has an extension for scheduling Spark jobs.
         HBase is a distributed and scalable database, which is something Spark doesn’t provide. ZooKeeper provides fast and robust
         implementation of common functionalities many distributed applications need, like coordination, distributed synchronization,
         naming, and provisioning of group services. It is used for these purposes in many other distributed systems, too.
      

      
      Impala and Drill can coexist alongside Spark, especially with Drill’s coming support for Spark as an execution engine. But
         they’re more like competing frameworks, mostly spanning the features of Spark Core and Spark SQL, which makes Spark feature-richer
         (pun not intended).
      

      
      We said earlier that Spark doesn’t need to use HDFS storage. In addition to HDFS, Spark can operate on data stored in Amazon
         S3 buckets and plain files. More exciting, it can also use Alluxio (formerly Tachyon), which is a memory-centric distributed
         filesystem, or other distributed filesystems, such as GlusterFS.
      

      
      Another interesting fact is that Spark doesn’t have to run on YARN. Apache Mesos and the Spark standalone cluster are alternative
         cluster managers for Spark. Apache Mesos is an advanced distributed systems kernel bringing distributed resource abstractions.
         It can scale to tens of thousands of nodes with full fault tolerance (we’ll visit it in chapter 12). Spark Standalone is a Spark-specific cluster manager that is used in production today on multiple sites.
      

      
      So if we switch from MapReduce to Spark and get rid of YARN and all the tools that Spark makes obsolete, what’s left of the
         Hadoop ecosystem? To put it another way: Are we slowly moving toward a new big data standard: a Spark ecosystem?
      

      
      
      
      
1.5. Setting up the spark-in-action VM
      

      
      In order to make it easy for you to set up a Spark learning environment, we prepared a virtual machine (VM) that you’ll be
         using throughout this book. It will allow you to run all the examples from the book without surprises due to different versions
         of Java, Spark, or your OS. For example, you could have problems running the Spark examples on Windows; after all, Spark is
         developed on OS X and Linux, so, understandably, Windows isn’t exactly in the focus. The VM will guarantee we’re all on the
         same page, so to speak.
      

      
      The VM consists of the following software stack:

      
      

      
         
         	
64-bit Ubuntu OS, 14.04.4 (nicknamed Trusty)— Currently the latest version with long-term support (LTS).
            
         

         
         	
Java 8 (OpenJDK)— Even if you plan on only using Spark from Python, you have to install Java, because Spark’s Python API communicates with Spark
            running in a JVM.
            
         

         
         	
Hadoop 2.7.2— Hadoop isn’t a hard requirement for using Spark. You can save and load files from your local filesystem, if you’re running
            a local cluster, which is the case with our VM. But as soon as you set up a truly distributed Spark cluster, you’ll need a
            distributed filesystem, such as Hadoop’s HDFS. Hadoop installation will also come in handy in chapter 12 for trying out the methods of running Spark on YARN, Hadoop’s execution environment.
            
         

         
         	
Spark 2.0— We included the latest Spark version at the time this book was finished. You can easily upgrade the Spark version in the VM,
            if you wish to do so, by following the instructions in chapter 2.
            
         

         
         	
Kafka 0.8.2— Kafka is a distributed messaging system, used in chapters 6 and 13.
            
         

         
      

      
      We chose Ubuntu because it’s a popular Linux distribution and Linux is the preferred Spark platform. If you’ve never worked
         with Ubuntu before, this could be your chance to start. We’ll guide you, explaining commands and concepts as you progress
         through the chapters.
      

      
      Here we’ll explain only the basics: how to download, start, and stop the VM. We’ll go into more details about using it in
         the next chapter.
      

      
      
      1.5.1. Downloading and starting the virtual machine
      

      
      To run the VM, you’ll need a 64-bit OS with at least 3 GB of free memory and 15 GB of free disk space. You first need to install
         these two software packages for your platform:
      

      
      

      
         
         	
Oracle VirtualBox— Oracle’s free, open source hardware virtualization software (www.virtualbox.org)
            
         

         
         	
Vagrant— HashiCorp’s software for configuring portable development environments (www.vagrantup.com/downloads.html)
            
         

         
      

      
      When you have these two installed, create a folder for hosting the VM (called, for example, spark-in-action), and enter it.
         Then download the Vagrant box metadata JSON file from our online repository. You can download it manually or use the wget command on Linux or Mac:
      

      
      $ wget https://raw.githubusercontent.com/spark-in-action/first-edition/
[image: ] master/spark-in-action-box.json

      
      Then issue the following command to download the VM itself:

      
      $ vagrant box add spark-in-action-box.json

      
      The Vagrant box metadata JSON file points to the Vagrant box file. The command will download the 5 GB VM box (this will probably
         take some time) and register it as the manning/spark-in-action Vagrant box. To use it, initialize the Vagrant VM in the current
         directory by issuing this command:
      

      
      $ vagrant init manning/spark-in-action

      
      Finally, start the VM with the vagrant up command (this will also allocate approximately 10 GB of disk space):
      

      
      $ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Checking if box 'manning/spark-in-action' is up to date...
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
...

      
      If you have several network interfaces on your machine, you’ll be asked to choose one of them for connecting it to the VM.
         Choose the one with an access to the internet. For example:
      

      
      ==> default: Available bridged network interfaces:
1) 1x1 11b/g/n Wireless LAN PCI Express Half Mini Card Adapter
2) Cisco Systems VPN Adapter for 64-bit Windows
==> default: When choosing an interface, it is usually the one that is
==> default: being used to connect to the internet.
    default: Which interface should the network bridge to? 1
==> default: Preparing network interfaces based on configuration...
...

      
      
      
      1.5.2. Stopping the virtual machine
      

      
      You’ll learn how to use the VM in the next chapter. For now, we’ll only show you how to stop it. To power off the VM, issue
         the following command:
      

      
      $ vagrant halt

      
      This will stop the machine but preserve your work. If you wish to completely remove the VM and free up its space, you need
         to destroy it:
      

      
      $ vagrant destroy

      
      You can also remove the downloaded Vagrant box, which was used to create the VM, with this command:

      
      $ vagrant box remove manning/spark-in-action

      
      But we hope you won’t feel the need for that for quite some time.

      
      
      
      
      
1.6. Summary
      

      
      

      
         
         	Apache Spark is an exciting new technology that is rapidly superseding Hadoop’s MapReduce as the preferred big data processing
            platform.
            
         

         
         	Spark programs can be 100 times faster than their MapReduce counterparts.
            
         

         
         	Spark supports the Java, Scala, Python, and R languages.
            
         

         
         	Writing distributed programs with Spark is similar to writing local Java, Scala, or Python programs.
            
         

         
         	Spark provides a unifying platform for batch programming, real-time data-processing functions, SQL-like handling of structured
            data, graph algorithms, and machine learning, all in a single framework.
            
         

         
         	Spark isn’t appropriate for small datasets, nor should you use it for OLTP applications.
            
         

         
         	The main Spark components are Spark Core, Spark SQL, Spark Streaming, Spark MLlib, and Spark GraphX.
            
         

         
         	RDDs are Spark’s abstraction of distributed collections.
            
         

         
         	Spark supersedes some of the tools in the Hadoop ecosystem.
            
         

         
         	You’ll use the spark-in-action VM to run the examples in this book.
            
         

         
      

      
      
      
      
      
      
      


Chapter 2. Spark fundamentals
      

      
      This chapter covers

      
      

      
         
         	Exploring the spark-in-action VM
            
         

         
         	Managing multiple Spark versions
            
         

         
         	Getting to know Spark’s command line interface (spark-shell)
            
         

         
         	Playing with simple examples in spark-shell
            
         

         
         	Exploring RDD actions and transformations and double functions
            
         

         
      

      
      It’s finally time to get down to business. In this chapter, you’ll start using the VM we prepared for you and write your first
         Spark programs. All you need is a laptop or a desktop machine with a usable internet connection and the prerequisites described
         in chapter 1.
      

      
      To avoid overwhelming you this early in the book with various options for running Spark, for now you’ll be using the so-called
         Spark standalone local cluster. Standalone means Spark is using its own cluster manager (rather than Mesos or Hadoop’s YARN). Local means the whole system is running locally—that is, on your laptop or a desktop machine. We’ll talk extensively about Spark
         running modes and deployment options in the second part of the book. Strap in: things are about to get real!
      

      
      Rest assured, we aren’t assuming any prior Spark or Scala knowledge; in this chapter, you’ll start slowly and progress step-by-step,
         tutorial style, through the process of setting up prerequisites, downloading and installing Spark, and playing with simple
         code examples in spark-shell (used for accessing Spark from the command prompt).
      

      
      Although we intend to explain all the Scala specifics throughout the book, we don’t have the illusion that you can learn Scala
         using a book about Spark. Therefore, it might be beneficial to get a dedicated Scala book, such as Nilanjan Raychaudhuri’s
         Scala in Action (Manning, 2013). Or you can use the second edition of Programming in Scala (Artima Inc., 2010), an excellent book by Martin Odersky, father of the Scala programming language. Another awesome, readily
         available resource we can recommend is Twitter’s online Scala School (http://twitter.github.io/scala_school). As you come across a new Scala topic, look it up in your book or online, because that will make it much easier to put things
         into perspective—especially Scala topics that you need more details on (than we have room to provide).
      

      
      We hope you’ve followed our instructions from the last chapter and successfully set up the spark-in-action VM. If for some
         reason you can’t use the VM, check out appendix B for instructions on installing Spark.
      

      
      You’ll now use the spark-in-action VM for writing and executing your first Spark program. We guess you’re eager to start,
         so let’s get to it!
      

      
      
      
2.1. Using the spark-in-action VM
      

      
      To start using the VM, change to the folder where you put Vagrantfile, and, if it’s not already running, start the machine with the following command:
      

      
      $ vagrant up

      
      When the command finishes, you can log in to the VM. Open an SSH connection to the machine, either by issuing Vagrant’s ssh command
      

      
      $ vagrant ssh

      
      or by using your favorite SSH program (such as ssh on Linux and Mac, or Putty, Kitty, or MobaXTerm if you’re running on Windows)
         to connect directly to 192.168.10.2, which is the IP address we configured for the spark-in-action VM. Both methods should
         present the same login prompt. Enter username spark and password spark, and you should be greeted with the following prompt:
      

      
      Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-85-generic x86_64)
... several omitted lines ...
spark@spark-in-action:~$

      
      You’re in. The first step is behind you!

      
      
      
      2.1.1. Cloning the Spark in Action GitHub repository
      

      
      Before doing anything else, clone our Spark in Action GitHub repository into your home directory by issuing the following command (Git is already installed in the VM):
      

      
      $ git clone https://github.com/spark-in-action/first-edition

      
      This creates the first-edition folder in your home directory.

      
      
      
      2.1.2. Finding Java
      

      
      We configured the spark user’s PATH so that you can easily invoke Java, Hadoop, and Spark commands from wherever you’re positioned in the VM. Let’s first see
         where Java is installed. The which command shows the location of the executable file specified, if it can be found in the current PATH:
      

      
      $ which java
/usr/bin/java

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Code formatting and notation
         
         We’ve established the following notation and formatting rules to distinguish commands entered into the terminal from those
            entered into the Spark shell, from terminal and the Spark-shell outputs. Terminal commands start with a dollar sign, while
            code entered into the Spark-shell starts with scala>:
         

         
         $ terminal command
terminal output
scala> a line of code
spark shell output

         
         

      
         
            
         
         
            
               	
            

         
      

      
      That’s the default location for system-wide user programs, so it’s hardly surprising. But the file is a symbolic link, which you can trace to Java’s real install location:
      

      
      spark@spark-in-action:~$ ls -la /usr/bin/java
lrwxrwxrwx 1 root root 22 Apr 19 18:36 /usr/bin/java -> /etc/alternatives
[image: ] /java
spark@spark-in-action:~$ ls -la /etc/alternatives/java
lrwxrwxrwx 1 root root 46 Apr 19 18:36 /etc/alternatives/java -> /usr/lib/
[image: ] jvm/java-8-openjdk-amd64/jre/bin/java

      
      So, the Java install location is /usr/lib/jvm/java-8-openjdk-amd64. The JAVA_HOME variable, which is important for running Hadoop and Spark, has also been set up for you:
      

      
      $ echo $JAVA_HOME
/usr/lib/jvm/java-8-openjdk-amd64/jre

      
      
      

      
         
            
         
         
            
               	
            

         
      

      
         
         Symbolic links
         
         A symbolic link (or symlink) is a reference to a file or a folder. It behaves as though you have access to the same file or folder from two different
            places in your filesystem. The symlink isn’t a copy; it’s a reference to the target folder (in the case of a folder symlink) with the ability to navigate inside, as if it were the target folder. Every change you make inside the symlink is applied
            directly to the target folder and reflected in the symlink. If you were to edit a file symlink using the vi editor, for example,
            you would be editing the target file, and the changes would be visible in both places.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
      
      2.1.3. Using the VM’s Hadoop installation
      

      
      With the spark-in-action VM, you also get a fully functioning Hadoop installation. You’ll need it for reading and writing
         files to and from the HDFS and for running YARN later in the book.
      

      
      Hadoop is installed in the folder /usr/local/hadoop. But that is a symlink again, pointing to /opt/hadoop-2.7.2, which is
         where the Hadoop binaries are located.
      

      
      Many HDFS shell commands are available in Hadoop, mimicking the usual filesystem commands (for creating, copying, moving files
         and folders, and so on). They’re issued as arguments to the hadoop fs command. For example, to list the files and folders in the /user HDFS folder, you use the following:
      

      
      $ hadoop fs -ls /user
Found 1 items
drwxr-xr-x   - spark supergroup          0 2016-04-19 18:49 /user/spark

      
      We don’t have the time or space here to explain other Hadoop commands, but you can find the complete Hadoop filesystem command
         reference in the official documentation: http://mng.bz/Y9FP.
      

      
      The last command (hadoop fs -ls) works because the spark-in-action VM is configured to automatically start HDFS daemon processes during its startup, so the
         command can connect to HDFS and query the filesystem. HDFS startup is done by invoking a single script (note that Hadoop’s
         sbin directory isn’t on the spark user’s PATH):
      

      
      $ /usr/local/hadoop/sbin/start-dfs.sh

      
      If you wish to stop HDFS daemons, you can invoke the equivalent stop-dfs.sh script:
      

      
      $ /usr/local/hadoop/sbin/stop-dfs.sh

      
      You should note that the spark user has full access rights (read/write/execute [rwx]) to the /usr/local/hadoop directory, so you won’t have to fiddle with
         sudo every time you need to make a change (for example, to a configuration file) or start or stop the daemons.
      

      
      
      
      
      2.1.4. Examining the VM’s Spark installation
      

      
      When installing Spark, you download the appropriate Spark archive from the Spark downloads page (https://spark.apache.org/downloads.html) and unpack it to the folder of your choice. In the spark-in-action VM, similar to Hadoop, Spark is available from the /usr/local/spark
         folder, which is a symlink pointing to /opt/spark-2.0.0-bin-hadoop2.7, where the Spark binary archive was unpacked. As the
         folder name suggests, the installed version is 2.0, prebuilt for Hadoop 2.7 or higher, which is what we needed for this VM.
      

      
      Instead of downloading a prebuilt version, you can build Spark yourself. Please see appendix B for details. The examples in this book were tested with Spark 2.0.0 (the latest version at the time of writing), so make
         sure you install that version.
      

      
      
      
Managing Spark releases
      

      
      Because new versions of Spark are flying out every couple of months, you need a way to manage them so you can have multiple
         versions installed and easily choose which one to use. By using a symlink in the described way, regardless of the current
         version of Spark, you can always use /usr/local/spark to reference a Spark installation in all of your programs, scripts,
         and configuration files. You switch versions by deleting the symlink and creating a new one, pointing to the root installation
         folder of the Spark version you want to work with.
      

      
      For example, after unpacking several Spark versions, your /opt folder might contain the following folders:

      
      $ ls /opt | grep spark
spark-1.3.0-bin-hadoop2.4
spark-1.3.1-bin-hadoop2.4
spark-1.4.0-bin-hadoop2.4
spark-1.5.0-bin-hadoop2.4
spark-1.6.1-bin-hadoop2.6
spark-2.0.0-bin-hadoop2.7

      
      To switch from the current version of 2.0 back to 1.6.1, for example, you would remove the current symlink (you would need
         to use sudo here because the spark user doesn’t have the rights for changing the /usr/local folder)
      

      
      $ sudo rm -f /usr/local/spark

      
      and then create a new one pointing to version 1.6.1:

      
      $ sudo ln -s /opt/spark-1.6.1-bin-hadoop2.4 /usr/local/spark

      
      The idea is to always refer to the current Spark installation the same way, using the spark symlink.
      

      
      
      
      
Other Spark installation details
      

      
      Many Spark scripts require the SPARK_HOME environment variable to be set. It’s already set up for you in the VM, and it points to the spark symlink, as you can check yourself:
      

      
      $ export | grep SPARK
declare -x SPARK_HOME="/usr/local/spark"

      
      Spark’s bin and sbin directories have been added to the spark user’s PATH. The spark user is also the owner of the files and folders under /usr/local/spark, so you can change them as necessary without using
         sudo.
      

      
      
      
      
      
      
2.2. Using Spark shell and writing your first Spark program
      

      
      In this section, you’ll start the Spark shell and use it to write your first Spark example program. So what is this Spark
         shell all about?
      

      
      There are two different ways you can interact with Spark. One way is to write a program in Scala, Java, or Python that uses
         Spark’s library—that is, its API (more on programs in chapter 3). The other is to use the Scala shell or the Python shell.
      

      
      The shell is primarily used for exploratory data analysis, usually for one-off jobs, because a program written in the shell is discarded after you exit the shell. The other common shell-usage scenario
         is testing and developing Spark applications. It’s much easier to test a hypothesis in a shell (for example, probe a dataset
         and experiment) than to write an application, submit it to be executed, write results to an output file, and then analyze
         that output.
      

      
      Spark shell is also known as Spark REPL, where the REPL acronym stands for read-eval-print loop. It reads your input, evaluates it, prints the result, and then does it all over again—that is, after a command returns a
         result, it doesn’t exit the scala> prompt; it stays ready for your next command (thus loop).
      

      
      
      2.2.1. Starting the Spark shell
      

      
      You should be logged in to the VM as the spark user by now. As we said earlier, Spark’s bin directory is in the spark user’s PATH, so you should be able to start the Spark shell by entering the following:
      

      
      $ spark-shell
Spark context Web UI available at http://10.0.2.15:4040
Spark context available as 'sc' (master = local[*], app id = local-1474054368520).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.0.0
      /_/

Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_72-internal)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

      
      And boom! You have a running spark-shell on your machine.

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      To write Python programs in the Spark Python shell, type pyspark.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      In previous Spark versions, Spark logged all the detailed INFO messages to the console and cluttered the view. That was toned down in later versions, but now those messages, which may
         be valuable, are no longer available. Let’s correct that.
      

      
      You’ll make spark-shell print only errors, but you’ll maintain the complete log in the logs/info.log file (relative to the
         Spark root) for troubleshooting. Exit the shell by typing :quit (or pressing Ctrl-D) and create a log4j.properties file in the conf subfolder, like this:
      

      
      $ nano /usr/local/spark/conf/log4j.properties

      
      nano is a text editor for UNIX-like systems, available in Ubuntu by default. You are, of course, free to use any other text editor.
         Copy the contents of the following listing into the newly created log4j.properties file.
      

      
      
      
      Listing 2.1. Contents of Spark’s log4j.properties file
      

      # set global logging severity to INFO (and upwards: WARN, ERROR, FATAL)
log4j.rootCategory=INFO, console, file

# console config (restrict only to ERROR and FATAL)
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.threshold=ERROR
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss}
[image: ] %p %c{1}: %m%n

# file configlog4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=logs/info.log
log4j.appender.file.MaxFileSize=5MB
log4j.appender.file.MaxBackupIndex=10
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss}
[image: ] %p %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
log4j.logger.org.apache.spark=WARN
log4j.logger.org.apache.hadoop=WARN

      
      Exit nano by pressing Ctrl-X and then Y, confirming that you wish to save the file, and press Enter if you’re asked for the
         file’s name.
      

      
      
         
            
         
         
            
               	
            

         
      

      log4j

      
      
      Although it has been superseded by the logback library and is almost two decades old, log4j is still one of the most widely
         used Java logging libraries, due to the simplicity of its design.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Then use the same command as before to start the Spark shell:
      

      
      $ spark-shell

      
      As you can see in the output, you’re provided with the Spark context in the form of the sc variable and the SQL context as sqlContext. The Spark context is the entry point for interacting with Spark. You use it for things like connecting to Spark from an
         application, configuring a session, managing job execution, loading or saving a file, and so on.
      

      
      
      
      2.2.2. The first Spark code example
      

      
      It’s time for your first Spark example. Suppose you want to find out how many third-party libraries that Spark uses are licensed
         under the BSD license (acronym for Berkeley Software Distribution). Luckily, Spark comes with a file named LICENSE, located
         in the Spark root directory. The LICENSE file contains the list of all libraries used by Spark and the licenses they’re provided
         under. Lines in the file, which names packages licensed under the BSD license, contain the word BSD. You could easily use
         a Linux shell command to count those lines, but that’s not the point. Let’s see how you can ingest that file and count the
         lines using the Spark API:
      

      
      [image: ]

      
      You now know the total number of lines in the file. What good does that do? You need to find out the number of lines BSD appears
         in. The idea is to run the licLines collection through a filter that sifts out the lines that don’t contain BSD:

      
      [image: ]

      
      
      

      
         
            
         
         
            
               	
            

         
      

      
         
         Function literals
         
         If you’ve never used Scala, you may be wondering what the snippet with the fat arrow (=>) means [image: ]. That is a Scala function literal; it defines an anonymous function that takes a string and returns true or false, depending on whether line contains the “BSD” substring.
         

         
         The fat arrow basically designates the transformation that a function does on the left side of the expression, converting
            it to the right side, which is then returned. In this case, String (line) is transformed into a Boolean (the result of contains), which is then returned as the function’s result.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      The filter function evaluates the fat-arrow function on each element of the licLines collection (each line) and returns a new collection, bsdLines, that has only those elements for which the fat-arrow function returned true.
      

      
      The fat-arrow function you use for filtering lines is anonymous, but you could also define the equivalent named function,
         like this
      

      
      scala> def isBSD(line: String) = { line.contains("BSD") }
isBSD: (line: String)Boolean

      
      or store (a reference to) the function definition in a variable

      
      scala> val isBSD = (line: String) => line.contains("BSD")
isBSD: String => Boolean = <function1>

      
      and then use it in place of the anonymous function:

      
      scala> val bsdLines1 = licLines.filter(isBSD)
bsdLines1: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[5] at filter
[image: ] at <console>:25
scala> bsdLines1.count
res1: Long = 34

      
      To print the lines containing BSD to the console, you call println for each line:
      

      
      scala> bsdLines.foreach(bLine => println(bLine))
BSD-style licenses
The following components are provided under a BSD-style license. See
[image: ] project link for details.
     (BSD 3 Clause) netlib core (com.github.fommil.netlib:core:1.1.2 -
[image: ] https://github.com/fommil/netlib-java/core)
     (BSD 3 Clause) JPMML-Model (org.jpmml:pmml-model:1.1.15 -
[image: ] https://github.com/jpmml/jpmml-model)
     (BSD 3-clause style license) jblas (org.jblas:jblas:1.2.4 -
[image: ] http://jblas.org/)
     (BSD License) AntLR Parser Generator (antlr:antlr:2.7.7 -
[image: ] http://www.antlr.org/)
...

      
      To accomplish the same thing with less typing, you can also use a shortcut version:
      

      
      scala> bsdLines.foreach(println)

      
      
      
      2.2.3. The notion of a resilient distributed dataset
      

      
      Although licLines and bsdLines feel and look like ordinary Scala collections (filter and foreach methods are available in ordinary Scala collections, too), they aren’t. They’re distributed collections, specific to Spark,
         called resilient distributed datasets or RDDs.
      

      
      The RDD is the fundamental abstraction in Spark. It represents a collection of elements that is

      
      

      
         
         	
Immutable (read-only)
            
         

         
         	
Resilient (fault-tolerant)
            
         

         
         	
Distributed (dataset spread out to more than one node)
            
         

         
      

      
      RDDs support a number of transformations that do useful data manipulation, but they always yield a new RDD instance. Once
         created, RDDs never change; thus the adjective immutable. Mutable state is known to introduce complexity, but besides that, having immutable collections allows Spark to provide important
         fault-tolerance guarantees in a straightforward manner.
      

      
      The fact that the collection is distributed on a number of machines (execution contexts, JVMs) is transparent[1] to its users, so working with RDDs isn’t much different than working with ordinary local collections like plain old lists,
         maps, sets, and so on. To summarize, the purpose of RDDs is to facilitate parallel operations on large datasets in a straightforward
         manner, abstracting away their distributed nature and inherent fault tolerance.
      

      
         1 
            

Well, almost transparent. In order to optimize computation and thus gain performance benefits, there are ways to control dataset
               partitioning (how the RDD is distributed among nodes in a cluster) and persistence options. We’ll talk about both features
               extensively later in the book.
            

         

      

      
      RDDs are resilient because of Spark’s built-in fault recovery mechanics. Spark is capable of healing RDDs in case of node failure. Whereas other
         distributed computation frameworks facilitate fault tolerance by replicating data to multiple machines (so it can be restored
         from healthy replicas once a node fails), RDDs are different: they provide fault tolerance by logging the transformations
         used to build a dataset (how it came to be) rather than the dataset itself. If a node fails, only a subset of the dataset
         that resided on the failed node needs to be recomputed.
      

      
      For example, in the previous section, the process of loading the text file yielded the licLines RDD. Then you applied the filter function to licLines, which produced the new bsdLines RDD. Those transformations and their ordering are referred to as RDD lineage. It represents the exact recipe for creating the bsdLines RDD, from start to finish. We’ll talk more about RDD lineage in later chapters. For now, let’s see what else you can do with
         RDDs.
      

      
      
      
      
      
      
2.3. Basic RDD actions and transformations
      

      
      There are two types of RDD operations: transformations and actions. Transformations (for example, filter or map) are operations that produce a new RDD by performing some useful data manipulation on another RDD. Actions (for example, count or foreach) trigger a computation in order to return the result to the calling program or to perform some actions on an RDD’s elements.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Laziness of Spark transformations
         
         It’s important to understand that transformations are evaluated lazily, meaning computation doesn’t take place until you invoke an action. Once an action is triggered on an RDD, Spark examines
            the RDD’s lineage and uses that information to build a “graph of operations” that needs to be executed in order to compute
            the action. Think of a transformation as a sort of diagram that tells Spark which operations need to happen and in which order
            once an action gets executed.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      In this section, you’ll be introduced to a number of other important RDD operations, such as map
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