

 [image: cover]

Spark in Action

 Petar Zečević

 Marko Bonaći

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Marina Michaels
Technical development editor: Andy Hicks
Project editor: Karen Gulliver
Copyeditor: Tiffany Taylor
Proofreader: Elizabeth Martin
Technical proofreaders: Michiel Trimpe
Robert Ormandi
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617292606

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Dedication

 To my mother in heaven.

 P.Z.

 To my dear wife Suzana and our twins, Frane and Luka.

 M.B.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover

 1. First steps

 Chapter 1. Introduction to Apache Spark

 Chapter 2. Spark fundamentals

 Chapter 3. Writing Spark applications

 Chapter 4. The Spark API in depth

 2. Meet the Spark family

 Chapter 5. Sparkling queries with Spark SQL

 Chapter 6. Ingesting data with Spark Streaming

 Chapter 7. Getting smart with MLlib

 Chapter 8. ML: classification and clustering

 Chapter 9. Connecting the dots with GraphX

 3. Spark ops

 Chapter 10. Running Spark

 Chapter 11. Running on a Spark standalone cluster

 Chapter 12. Running on YARN and Mesos

 4. Bringing it together

 Chapter 13. Case study: real-time dashboard

 Chapter 14. Deep learning on Spark with H2O

 Appendix A. Installing Apache Spark

 Appendix B. Understanding MapReduce

 Appendix C. A primer on linear algebra

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover

 1. First steps

 Chapter 1. Introduction to Apache Spark

 1.1. What is Spark?

 1.1.1. The Spark revolution

 1.1.2. MapReduce’s shortcomings

 1.1.3. What Spark brings to the table

 1.2. Spark components

 1.2.1. Spark Core

 1.2.2. Spark SQL

 1.2.3. Spark Streaming

 1.2.4. Spark MLlib

 1.2.5. Spark GraphX

 1.3. Spark program flow

 1.4. Spark ecosystem

 1.5. Setting up the spark-in-action VM

 1.5.1. Downloading and starting the virtual machine

 1.5.2. Stopping the virtual machine

 1.6. Summary

 Chapter 2. Spark fundamentals

 2.1. Using the spark-in-action VM

 2.1.1. Cloning the Spark in Action GitHub repository

 2.1.2. Finding Java

 2.1.3. Using the VM’s Hadoop installation

 2.1.4. Examining the VM’s Spark installation

 2.2. Using Spark shell and writing your first Spark program

 2.2.1. Starting the Spark shell

 2.2.2. The first Spark code example

 2.2.3. The notion of a resilient distributed dataset

 2.3. Basic RDD actions and transformations

 2.3.1. Using the map transformation

 2.3.2. Using the distinct and flatMap transformations

 2.3.3. Obtaining RDD’s elements with the sample, take, and takeSample operations

 2.4. Double RDD functions

 2.4.1. Basic statistics with double RDD functions

 2.4.2. Visualizing data distribution with histograms

 2.4.3. Approximate sum and mean

 2.5. Summary

 Chapter 3. Writing Spark applications

 3.1. Generating a new Spark project in Eclipse

 3.2. Developing the application

 3.2.1. Preparing the GitHub archive dataset

 3.2.2. Loading JSON

 3.2.3. Running the application from Eclipse

 3.2.4. Aggregating the data

 3.2.5. Excluding non-employees

 3.2.6. Broadcast variables

 3.2.7. Using the entire dataset

 3.3. Submitting the application

 3.3.1. Building the uberjar

 3.3.2. Adapting the application

 3.3.3. Using spark-submit

 3.4. Summary

 Chapter 4. The Spark API in depth

 4.1. Working with pair RDDs

 4.1.1. Creating pair RDDs

 4.1.2. Basic pair RDD functions

 4.2. Understanding data partitioning and reducing data shuffling

 4.2.1. Using Spark’s data partitioners

 4.2.2. Understanding and avoiding unnecessary shuffling

 4.2.3. Repartitioning RDDs

 4.2.4. Mapping data in partitions

 4.3. Joining, sorting, and grouping data

 4.3.1. Joining data

 4.3.2. Sorting data

 4.3.3. Grouping data

 4.4. Understanding RDD dependencies

 4.4.1. RDD dependencies and Spark execution

 4.4.2. Spark stages and tasks

 4.4.3. Saving the RDD lineage with checkpointing

 4.5. Using accumulators and broadcast variables to communicate with Spark executors

 4.5.1. Obtaining data from executors with accumulators

 4.5.2. Sending data to executors using broadcast variables

 4.6. Summary

 2. Meet the Spark family

 Chapter 5. Sparkling queries with Spark SQL

 5.1. Working with DataFrames

 5.1.1. Creating DataFrames from RDDs

 5.1.2. DataFrame API basics

 5.1.3. Using SQL functions to perform calculations on data

 5.1.4. Working with missing values

 5.1.5. Converting DataFrames to RDDs

 5.1.6. Grouping and joining data

 5.1.7. Performing joins

 5.2. Beyond DataFrames: introducing DataSets

 5.3. Using SQL commands

 5.3.1. Table catalog and Hive metastore

 5.3.2. Executing SQL queries

 5.3.3. Connecting to Spark SQL through the Thrift server

 5.4. Saving and loading DataFrame data

 5.4.1. Built-in data sources

 5.4.2. Saving data

 5.4.3. Loading data

 5.5. Catalyst optimizer

 Examining the execution plan

 Taking advantage of partition statistics

 5.6. Performance improvements with Tungsten

 5.7. Summary

 Chapter 6. Ingesting data with Spark Streaming

 6.1. Writing Spark Streaming applications

 6.1.1. Introducing the example application

 6.1.2. Creating a streaming context

 6.1.3. Creating a discretized stream

 6.1.4. Using discretized streams

 6.1.5. Saving the results to a file

 6.1.6. Starting and stopping the streaming computation

 6.1.7. Saving the computation state over time

 6.1.8. Using window operations for time-limited calculations

 6.1.9. Examining the other built-in input streams

 6.2. Using external data sources

 6.2.1. Setting up Kafka

 6.2.2. Changing the streaming application to use Kafka

 6.3. Performance of Spark Streaming jobs

 6.3.1. Obtaining good performance

 6.3.2. Achieving fault-tolerance

 6.4. Structured Streaming

 6.4.1. Creating a streaming DataFrame

 6.4.2. Outputting streaming data

 6.4.3. Examining streaming executions

 6.4.4. Future direction of structured streaming

 6.5. Summary

 Chapter 7. Getting smart with MLlib

 7.1. Introduction to machine learning

 7.1.1. Definition of machine learning

 7.1.2. Classification of machine-learning algorithms

 7.1.3. Machine learning with Spark

 7.2. Linear algebra in Spark

 7.2.1. Local vector and matrix implementations

 7.2.2. Distributed matrices

 7.3. Linear regression

 7.3.1. About linear regression

 7.3.2. Simple linear regression

 7.3.3. Expanding the model to multiple linear regression

 7.4. Analyzing and preparing the data

 7.4.1. Analyzing data distribution

 7.4.2. Analyzing column cosine similarities

 7.4.3. Computing the covariance matrix

 7.4.4. Transforming to labeled points

 7.4.5. Splitting the data

 7.4.6. Feature scaling and mean normalization

 7.5. Fitting and using a linear regression model

 7.5.1. Predicting the target values

 7.5.2. Evaluating the model’s performance

 7.5.3. Interpreting the model parameters

 7.5.4. Loading and saving the model

 7.6. Tweaking the algorithm

 7.6.1. Finding the right step size and number of iterations

 7.6.2. Adding higher-order polynomials

 7.6.3. Bias-variance tradeoff and model complexity

 7.6.4. Plotting residual plots

 7.6.5. Avoiding overfitting by using regularization

 7.6.6. K-fold cross-validation

 7.7. Optimizing linear regression

 7.7.1. Mini-batch stochastic gradient descent

 7.7.2. LBFGS optimizer

 7.8. Summary

 Chapter 8. ML: classification and clustering

 8.1. Spark ML library

 8.1.1. Estimators, transformers, and evaluators

 8.1.2. ML parameters

 8.1.3. ML pipelines

 8.2. Logistic regression

 8.2.1. Binary logistic regression model

 8.2.2. Preparing data to use logistic regression in Spark

 8.2.3. Training the model

 8.2.4. Evaluating classification models

 8.2.5. Performing k-fold cross-validation

 8.2.6. Multiclass logistic regression

 8.3. Decision trees and random forests

 8.3.1. Decision trees

 8.3.2. Random forests

 8.4. Using k-means clustering

 8.4.1. K-means clustering

 8.5. Summary

 Chapter 9. Connecting the dots with GraphX

 9.1. Graph processing with Spark

 9.1.1. Constructing graphs using GraphX API

 9.1.2. Transforming graphs

 9.2. Graph algorithms

 9.2.1. Presentation of the dataset

 9.2.2. Shortest-paths algorithm

 9.2.3. Page rank

 9.2.4. Connected components

 9.2.5. Strongly connected components

 9.3. Implementing the A* search algorithm

 9.3.1. Understanding the A* algorithm

 9.3.2. Implementing the A* algorithm

 9.3.3. Testing the implementation

 9.4. Summary

 3. Spark ops

 Chapter 10. Running Spark

 10.1. An overview of Spark’s runtime architecture

 10.1.1. Spark runtime components

 10.1.2. Spark cluster types

 10.2. Job and resource scheduling

 10.2.1. Cluster resource scheduling

 10.2.2. Spark job scheduling

 10.2.3. Data-locality considerations

 10.2.4. Spark memory scheduling

 10.3. Configuring Spark

 10.3.1. Spark configuration file

 10.3.2. Command-line parameters

 10.3.3. System environment variables

 10.3.4. Setting configuration programmatically

 10.3.5. The master parameter

 10.3.6. Viewing all configured parameters

 10.4. Spark web UI

 10.4.1. Jobs page

 10.4.2. Stages page

 10.4.3. Storage page

 10.4.4. Environment page

 10.4.5. Executors page

 10.5. Running Spark on the local machine

 10.5.1. Local mode

 10.5.2. Local cluster mode

 10.6. Summary

 Chapter 11. Running on a Spark standalone cluster

 11.1. Spark standalone cluster components

 11.2. Starting the standalone cluster

 11.2.1. Starting the cluster with shell scripts

 11.2.2. Starting the cluster manually

 11.2.3. Viewing Spark processes

 11.2.4. Standalone master high availability and recovery

 11.3. Standalone cluster web UI

 11.4. Running applications in a standalone cluster

 11.4.1. Location of the driver

 11.4.2. Specifying the number of executors

 11.4.3. Specifying extra classpath entries and files

 11.4.4. Killing applications

 11.4.5. Application automatic restart

 11.5. Spark History Server and event logging

 11.6. Running on Amazon EC2

 11.6.1. Prerequisites

 11.6.2. Creating an EC2 standalone cluster

 11.6.3. Using the EC2 cluster

 11.6.4. Destroying the cluster

 11.7. Summary

 Chapter 12. Running on YARN and Mesos

 12.1. Running Spark on YARN

 12.1.1. YARN architecture

 12.1.2. Installing, configuring, and starting YARN

 12.1.3. Resource scheduling in YARN

 12.1.4. Submitting Spark applications to YARN

 12.1.5. Configuring Spark on YARN

 12.1.6. Configuring resources for Spark jobs

 12.1.7. YARN UI

 12.1.8. Finding logs on YARN

 12.1.9. Security considerations

 12.1.10. Dynamic resource allocation

 12.2. Running Spark on Mesos

 12.2.1. Mesos architecture

 12.2.2. Installing and configuring Mesos

 12.2.3. Mesos web UI

 12.2.4. Mesos resource scheduling

 12.2.5. Submitting Spark applications to Mesos

 12.2.6. Running Spark with Docker

 12.3. Summary

 4. Bringing it together

 Chapter 13. Case study: real-time dashboard

 13.1. Understanding the use case

 13.1.1. The overall picture

 13.1.2. Understanding the application’s components

 13.2. Running the application

 13.2.1. Starting the application in the spark-in-action VM

 13.2.2. Starting the application manually

 13.3. Understanding the source code

 13.3.1. The KafkaLogsSimulator project

 13.3.2. The StreamingLogAnalyzer project

 13.3.3. The WebStatsDashboard project

 13.3.4. Building the projects

 13.4. Summary

 Chapter 14. Deep learning on Spark with H2O

 14.1. What is deep learning?

 14.2. Using H2O with Spark

 14.2.1. What is H2O?

 14.2.2. Starting Sparkling Water on Spark

 14.2.3. Starting the H2O cluster

 14.2.4. Accessing the Flow UI

 14.3. Performing regression with H2O’s deep learning

 14.3.1. Loading data into an H2O frame

 14.3.2. Building and evaluating a deep-learning model using the Flow UI

 14.3.3. Building and evaluating a deep-learning model using the Sparkling Water API

 14.4. Performing classification with H2O’s deep learning

 14.4.1. Loading and splitting the data

 14.4.2. Building the model through the Flow UI

 14.4.3. Building the model with the Sparkling Water API

 14.4.4. Stopping the H2O cluster

 14.5. Summary

 Appendix A. Installing Apache Spark

 Prerequisites: installing the JDK

 Setting the JAVA_HOME environment variable

 Downloading, installing, and configuring Spark

 spark-shell

 Appendix B. Understanding MapReduce

 Appendix C. A primer on linear algebra

 Matrices and vectors

 Matrix addition

 Scalar multiplication

 Matrix multiplication

 Identity matrix

 Matrix inverse

 Main Spark components, various runtime interactions, and storage options

 RDD example dependencies

 Typical steps in a machine-learning project

 A Spark standalone cluster with an application in cluster-deploy mode

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Looking back at the last year and a half, I can’t help but wonder: how on Earth did I manage to survive this? These were the
 busiest 18 months of my life! Ever since Manning asked Marko and me to write a book about Spark, I have spent most of my free
 time on Apache Spark. And that made this period all the more interesting. I learned a lot, and I can honestly say it was worth
 it.

 Spark is a super-hot topic these days. It was conceived in Berkeley, California, in 2009 by Matei Zaharia (initially as an
 attempt to prove the Mesos execution platform feasible) and was open sourced in 2010. In 2013, it was donated to the Apache
 Software Foundation, and it has been the target of lightning-fast development ever since. In 2015, Spark was one of the most
 active Apache projects and had more than 1,000 contributors. Today, it’s a part of all major Hadoop distributions and is used
 by many organizations, large and small, throughout the world in all kinds of applications.

 The trouble with writing a book about a project such as Spark is that it develops very quickly. Since we began writing Spark in Action, we’ve seen six minor releases of Spark, with many new, important features that needed to be covered. The first major release
 (version 2.0) came out after we’d finished writing most of the book, and we had to delay publication to cover the new features
 that came with it.

 Another challenge when writing about Spark is the breadth of the topic: Spark is more of a platform than a framework. You
 can use it to write all kinds of applications (in four languages!): batch jobs, real-time processing systems and web applications
 executing Spark jobs, processing structured data using SQL and unstructured data using traditional programming techniques,
 various machine learning and data-munging tasks, interacting with distributed file systems, various relational and no-SQL
 databases, real-time systems, and so on. Then there are the runtime aspects—installing, configuring, and running Spark—which
 are equally relevant.

 We tried to do justice to these important topics and make this book a thorough but gentle guide to using Spark. We hope you’ll
 enjoy it.

Acknowledgments

 Our technical proofreader, Michiel Trimpe, made countless valuable suggestions. Thanks, too, to Robert Ormandi for reviewing
 chapter 7. We would also like to thank the reviewers of Spark in Action, including Andy Kirsch, Davide Fiorentino, lo Regio, Dimitris Kouzis-Loukas, Gaurav Bhardwaj, Ian Stirk, Jason Kolter, Jeremy
 Gailor, John Guthrie, Jonathan Miller, Jonathan Sharley, Junilu Lacar, Mukesh Kumar, Peter J. Krey Jr., Pranay Srivastava,
 Robert Ormandi, Rodrigo Abreu, Shobha Iyer, and Sumit Pal.

 We want to thank the people at Manning who made this book possible: publisher Marjan Bace and the Manning reviewers and the
 editorial team, especially Marina Michaels, for guidance on writing a higher-quality book. We would also like to thank the
 production team for their work in ushering the project through to completion.

 Petar Zečević

 I’d like to thank my wife for her continuous support and patience in all my endeavors. I owe thanks to my parents, for raising
 me with love and giving me the best learning environment possible. And finally, I’d like to thank my company, SV Group, for
 providing the resources and time necessary for me to write this book.

 Marko Bonači

 I’d like to thank my co-author, Petar. Without his perseverance, this book would not have been written.

About this Book

 Apache Spark is a general data processing framework. That means you can use it for all kinds of computing tasks. And that means any book on Apache Spark needs to cover a lot of different topics. We’ve tried to describe all aspects of using Spark:
 from configuring runtime options and running standalone and interactive jobs, to writing batch, streaming, or machine learning
 applications. And we’ve tried to pick examples and example data sets that can be run on your personal computer, that are easy
 to understand, and that illustrate the concepts well.

 We hope you’ll find this book and the examples useful for understanding how to use and run Spark and that it will help you
 write future, production-ready Spark applications.

Who should read this book

 Although the book contains lots of material appropriate for business users and managers, it’s mostly geared toward developers—or,
 rather, people who are able to understand and execute code. The Spark API can be used in four languages: Scala, Java, Python,
 and R. The primary examples in the book are written in Scala (Java and Python versions are available at the book’s website,
 www.manning.com/books/spark-in-action, and in our online GitHub repository at https://github.com/spark-in-action/first-edition), but we don’t assume any prior knowledge of Scala, and we explain Scala specifics throughout the book. Nevertheless, it
 will be beneficial if you have Java or Scala skills before starting the book. We list some resources to help with that in
 chapter 2.

 Spark can interact with many systems, some of which are covered in the book. To fully appreciate the content, knowledge of
 the following topics is preferable (but not required):

 	

 	SQL and JDBC (chapter 5)

 	Hadoop (HDFS and YARN, chapters 5 and 12)

 	Kafka (chapter 6)

 	

 	Amazon EC2 (chapter 11)

 	Basics of linear algebra, and the ability to understand mathematical formulas (chapters 7 and 8)

 	Mesos (chapter 12)

 We’ve prepared a virtual machine to make it easy for you to run the examples in the book. In order to use it, your computer
 should meet the software and hardware prerequisites listed in chapter 1.

How this book is organized

 This book has 14 chapters, organized in 4 parts. Part 1 introduces Apache Spark and its rich API. An understanding of this information is important for writing high-quality Spark
 programs and is an excellent foundation for the rest of the book:

 	
Chapter 1 roughly describes Spark’s main features and compares them with Hadoop’s MapReduce and other tools from the Hadoop ecosystem.
 It also includes a description of the spark-in-action virtual machine, which you can use to run the examples in the book.

 	
Chapter 2 further explores the virtual machine, teaches you how to use Spark’s command-line interface (the spark-shell), and uses several examples to explain resilient distributed datasets (RDDs): the central abstraction in Spark.

 	In chapter 3, you’ll learn how to set up Eclipse to write standalone Spark applications. Then you’ll write an application for analyzing
 GitHub logs and execute the application by submitting it to a Spark cluster.

 	
Chapter 4 explores the Spark core API in more detail. Specifically, it shows how to work with key-value pairs and explains how data
 partitioning and shuffling work in Spark. It also teaches you how to group, sort, and join data, and how to use accumulators
 and broadcast variables.

 In part 2, you’ll get to know other components that make up Spark, including Spark SQL, Spark Streaming, Spark MLlib, and Spark GraphX:

 	
Chapter 5 introduces Spark SQL. You’ll learn how to create and use DataFrames, how to use SQL to query DataFrame data, and how to load
 data to and save it from external data sources. You’ll also learn about optimizations done by Spark’s SQL Catalyst optimization
 engine and about performance improvements introduced with the Tungsten project.

 	Spark Streaming, one of the more popular Spark family members, is introduced in chapter 6. You’ll learn about discretized streams, which periodically produce RDDs as a streaming application is running. You’ll also
 learn how to save computation state over time and how to use window operations. We’ll examine ways of connecting to Kafka
 and how to obtain good performance from your streaming jobs. We’ll also talk about structured streaming, a new concept included
 in Spark 2.0.

 	
Chapters 7 and 8 are about machine learning, specifically about the Spark MLlib and Spark ML sections of the Spark API. You’ll learn about
 machine learning in general and about linear regression, logistic regression, decision trees, random forests, and k-means
 clustering. Along the way, you’ll scale and normalize features, use regularization, and train and evaluate machine learning
 models. We’ll explain API standardizations brought by Spark ML.

 	
Chapter 9 explores how to build graphs with Spark’s GraphX API. You’ll transform and join graphs, use graph algorithms, and implement
 the A* search algorithm using the GraphX API.

 Using Spark isn’t just about writing and running Spark applications. It’s also about configuring Spark clusters and system
 resources to be used efficiently by applications. Part 3 explains the necessary concepts and configuration options for running Spark applications on Spark standalone, Hadoop YARN,
 and Mesos clusters:

 	
Chapter 10 explores Spark runtime components, Spark cluster types, job and resource scheduling, configuring Spark, and the Spark web
 UI. These are concepts common to all cluster managers Spark can run on: the Spark standalone cluster, YARN, and Mesos. The
 two local modes are also explained in chapter 10.

 	You’ll learn about the Spark standalone cluster in chapter 11: its components, how to start it and run applications on it, and how to use its web UI. The Spark History server, which keeps
 details about previously run jobs, is also discussed. Finally, you’ll learn how to use Spark’s scripts to start up a Spark
 standalone cluster on Amazon EC2.

 	
Chapter 12 goes through the specifics of setting up, configuring, and using YARN and Mesos clusters to run Spark applications.

 Part 4 covers higher-level aspects of using Spark:

 	
Chapter 13 brings it all together and explores a Spark streaming application for analyzing log files and displaying the results on a
 real-time dashboard. The application implemented in chapter 13 can be used as a basis for your own future applications.

 	
Chapter 14 introduces H2O, a scalable and fast machine-learning framework with implementations of many machine-learning algorithms,
 most notably deep learning, which Spark lacks; and Sparkling Water, H2O’s package that enables you to start and use an H2O
 cluster from Spark. Through Sparkling Water, you can use Spark’s Core, SQL, Streaming, and GraphX components to ingest, prepare,
 and analyze data, and transfer it to H2O to be used in H2O’s deep-learning algorithms. You can then transfer the results back
 to Spark and use them in subsequent computations.

 Appendix A gives you instructions for installing Spark. Appendix B provides a short overview of MapReduce. And appendix c is a short primer on linear algebra.

About the code

 All source code in the book is presented in a mono-spaced typeface like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out key concepts, and numbered
 bullets are sometimes used in the text to provide additional information about the code.

 Source code in Scala, Java, and Python, along with the data files used in the examples, are available for download from the
 publisher’s website at www.manning.com/books/spark-in-action and from our online repository at https://github.com/spark-in-action/first-edition. The examples were written for and tested with Spark 2.0.

Author Online

 Purchase of Spark in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the lead author and from other users. To access the forum and subscribe to it, point your
 web browser to www.manning.com/books/spark-in-action. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the Author Online forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s
 website as long as the book is in print.

About the Authors

 Petar Zečević has been working in the software industry for more than 15 years. He started as a Java developer and has since worked on
 many projects as a full-stack developer, consultant, analyst, and team leader. He currently occupies the role of CTO for SV
 Group, a Croatian software company working for large Croatian banks, government institutions, and private companies. Petar
 organizes monthly Apache Spark Zagreb meetups, regularly speaks at conferences, and has several Apache Spark projects behind
 him.

 Marko Bonači has worked with Java for 13 years. He works for Sematext as a Spark developer and consultant. Before that, he was team lead
 for SV Group’s IBM Enterprise Content Management team.

About the Cover

 The figure on the cover of Spark in Action is captioned “Hollandais” (a Dutchman). The illustration is taken from a collection of dress costumes from various countries
 by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand.

 The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and
 regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or
 in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It’s now hard to
 tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Grasset de Saint-Sauveur’s pictures.

Part 1. First steps

 We begin this book with an introduction to Apache Spark and its rich API. Understanding the information in part 1 1 is important for writing high-quality Spark programs and is an excellent foundation for the rest of the book.

 Chapter 1 roughly describes Spark’s main features and compares them with Hadoop’s MapReduce and other tools from the Hadoop ecosystem.
 It also includes a description of the spark-in-action virtual machine we’ve prepared for you, which you can use to run the
 examples in the book.

 Chapter 2 further explores the VM, teaches you how to use Spark’s command-line interface (spark-shell), and uses several examples to explain resilient distributed datasets (RDDs)—the central abstraction in Spark.

 In chapter 3, you’ll learn how to set up Eclipse to write standalone Spark applications. Then you’ll write such an application to analyze
 GitHub logs and execute the application by submitting it to a Spark cluster.

 Chapter 4 explores the Spark core API in more detail. Specifically, it shows you how to work with key-value pairs and explains how
 data partitioning and shuffling work in Spark. It also teaches you how to group, sort, and join data, and how to use accumulators and broadcast variables.

Chapter 1. Introduction to Apache Spark

 This chapter covers

 	What Spark brings to the table

 	Spark components

 	Spark program flow

 	Spark ecosystem

 	Downloading and starting the spark-in-action virtual machine

 Apache Spark is usually defined as a fast, general-purpose, distributed computing platform. Yes, it sounds a bit like marketing
 speak at first glance, but we could hardly come up with a more appropriate label to put on the Spark box.

 Apache Spark really did bring a revolution to the big data space. Spark makes efficient use of memory and can execute equivalent
 jobs 10 to 100 times faster than Hadoop’s MapReduce. On top of that, Spark’s creators managed to abstract away the fact that
 you’re dealing with a cluster of machines, and instead present you with a set of collections-based APIs. Working with Spark’s
 collections feels like working with local Scala, Java, or Python collections, but Spark’s collections reference data distributed on many nodes. Operations
 on these collections get translated to complicated parallel programs without the user being necessarily aware of the fact,
 which is a truly powerful concept.

 In this chapter, we first shed light on the main Spark features and compare Spark to its natural predecessor: Hadoop’s MapReduce.
 Then we briefly explore Hadoop’s ecosystem—a collection of tools and languages used together with Hadoop for big data operations—to
 see how Spark fits in. We give you a brief overview of Spark’s components and show you how a typical Spark program executes
 using a simple “Hello World” example. Finally, we help you download and set up the spark-in-action virtual machine we prepared
 for running the examples in the book.

 We’ve done our best to write a comprehensive guide to Spark architecture, its components, its runtime environment, and its
 API, while providing concrete examples and real-life case studies. By reading this book and, more important, by sifting through
 the examples, you’ll gain the knowledge and skills necessary for writing your own high-quality Spark programs and managing
 Spark applications.

1.1. What is Spark?

 Apache Spark is an exciting new technology that is rapidly superseding Hadoop’s MapReduce as the preferred big data processing
 platform. Hadoop is an open source, distributed, Java computation framework consisting of the Hadoop Distributed File System
 (HDFS) and MapReduce, its execution engine. Spark is similar to Hadoop in that it’s a distributed, general-purpose computing
 platform. But Spark’s unique design, which allows for keeping large amounts of data in memory, offers tremendous performance
 improvements. Spark programs can be 100 times faster than their MapReduce counterparts.

 Spark was originally conceived at Berkeley’s AMPLab by Matei Zaharia, who went on to cofound Databricks, together with his
 mentor Ion Stoica, as well as Reynold Xin, Patrick Wendell, Andy Konwinski, and Ali Ghodsi. Although Spark is open source,
 Databricks is the main force behind Apache Spark, contributing more than 75% of Spark’s code. It also offers Databricks Cloud,
 a commercial product for big data analysis based on Apache Spark.

 By using Spark’s elegant API and runtime architecture, you can write distributed programs in a manner similar to writing local
 ones. Spark’s collections abstract away the fact that they’re potentially referencing data distributed on a large number of
 nodes. Spark also allows you to use functional programming methods, which are a great match for data-processing tasks.

 By supporting Python, Java, Scala, and, most recently, R, Spark is open to a wide range of users: to the science community
 that traditionally favors Python and R, to the still-widespread Java community, and to people using the increasingly popular
 Scala, which offers functional programming on the Java virtual machine (JVM).

 Finally, Spark combines MapReduce-like capabilities for batch programming, real-time data-processing functions, SQL-like handling
 of structured data, graph algorithms, and machine learning, all in a single framework. This makes it a one-stop shop for most
 of your big data-crunching needs. It’s no wonder, then, that Spark is one of the busiest and fastest-growing Apache Software
 Foundation projects today.

 But some applications aren’t appropriate for Spark. Because of its distributed architecture, Spark necessarily brings some
 overhead to the processing time. This overhead is negligible when handling large amounts of data; but if you have a dataset
 that can be handled by a single machine (which is becoming ever more likely these days), it may be more efficient to use some
 other framework optimized for that kind of computation. Also, Spark wasn’t made with online transaction processing (OLTP)
 applications in mind (fast, numerous, atomic transactions). It’s better suited for online analytical processing (OLAP): batch
 jobs and data mining.

 1.1.1. The Spark revolution

 Although the last decade saw Hadoop’s wide adoption, Hadoop is not without its shortcomings. It’s powerful, but it can be
 slow. This has opened the way for newer technologies, such as Spark, to solve the same challenges Hadoop solves, but more
 efficiently. In the next few pages, we’ll discuss Hadoop’s shortcomings and how Spark answers those issues.

 The Hadoop framework, with its HDFS and MapReduce data-processing engine, was the first that brought distributed computing
 to the masses. Hadoop solved the three main problems facing any distributed data-processing endeavor:

 	
Parallelization— How to perform subsets of the computation simultaneously

 	
Distribution— How to distribute the data

 	
Fault tolerance— How to handle component failure

 	

 Note

 Appendix A describes MapReduce in more detail.

 	

 On top of that, Hadoop clusters are often made of commodity hardware, which makes Hadoop easy to set up. That’s why the last
 decade saw its wide adoption.

 1.1.2. MapReduce’s shortcomings

 Although Hadoop is the foundation of today’s big data revolution and is actively used and maintained, it still has its shortcomings,
 and they mostly pertain to its Map-Reduce component. MapReduce job results need to be stored in HDFS before they can be used
 by another job. For this reason, MapReduce is inherently bad with iterative algorithms.

 Furthermore, many kinds of problems don’t easily fit MapReduce’s two-step paradigm, and decomposing every problem into a series
 of these two operations can be difficult. The API can be cumbersome at times.

 Hadoop is a rather low-level framework, so myriad tools have sprung up around it: tools for importing and exporting data,
 higher-level languages and frameworks for manipulating data, tools for real-time processing, and so on. They all bring additional
 complexity and requirements with them, which complicates any environment. Spark solves many of these issues.

 1.1.3. What Spark brings to the table

 Spark’s core concept is an in-memory execution model that enables caching job data in memory instead of fetching it from disk
 every time, as MapReduce does. This can speed the execution of jobs up to 100 times,[1] compared to the same jobs in Map-Reduce; it has the biggest effect on iterative algorithms such as machine learning, graph
 algorithms, and other types of workloads that need to reuse data.

 1

See “Shark: SQL and Rich Analytics at Scale” by Reynold Xin et al., http://mng.bz/gFry.

 Imagine you have city map data stored as a graph. The vertices of this graph represent points of interest on the map, and
 the edges represent possible routes between them, with associated distances. Now suppose you need to find a spot for a new
 ambulance station that will be situated as close as possible to all the points on the map. That spot would be the center of
 your graph. It can be found by first calculating the shortest path between all the vertices and then finding the farthest point distance (the maximum distance to any other vertex) for each vertex, and finally finding the vertex with the smallest farthest point
 distance. Completing the first phase of the algorithm, finding the shortest path between all vertices, in a parallel manner
 is the most challenging (and complicated) part, but it’s not impossible.[2]

 2

See “A Scalable Parallelization of All-Pairs Shortest Path Algorithm for a High Performance Cluster Environment” by T. Srinivasan
 et al., http://mng.bz/5TMT.

 In the case of MapReduce, you’d need to store the results of each of these three phases on disk (HDFS). Each subsequent phase
 would read the results of the previous one from disk. But with Spark, you can find the shortest path between all vertices
 and cache that data in memory. The next phase can use that data from memory, find the farthest point distance for each vertex,
 and cache its results. The last phase can go through this final cached data and find the vertex with the minimum farthest
 point distance. You can imagine the performance gains compared to reading and writing to disk every time.

 Spark performance is so good that in October 2014 it won the Daytona Gray Sort contest and set a world record (jointly with
 TritonSort, to be fair) by sorting 100 TB in 1,406 seconds (see http://sortbenchmark.org).

Spark’s ease of use

 The Spark API is much easier to use than the classic MapReduce API. To implement the classic word-count example from appendix A as a MapReduce job, you’d need three classes: the main class that sets up the job, a Mapper, and a Reducer, each 10 lines long, give or take a few.

 By contrast, the following is all it takes for the same Spark program written in Scala:

 val spark = SparkSession.builder().appName("Spark wordcount")
val file = spark.sparkContext.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1)).countByKey()
counts.saveAsTextFile("hdfs://...")

 Figure 1.1. shows this graphically.

 Figure 1.1. A word-count program demonstrates Spark’s conciseness and simplicity. The program is shown implemented in Hadoop’s MapReduce
 framework on the left and as a Spark Scala program on the right.

 [image:]

 Spark supports the Scala, Java, Python, and R programming languages, so it’s accessible to a much wider audience. Although
 Java is supported, Spark can take advantage of Scala’s versatility, flexibility, and functional programming concepts, which
 are a much better fit for data analysis. Python and R are widespread among data scientists and in the scientific community,
 which brings those users on par with Java and Scala developers.

 Furthermore, the Spark shell (read-eval-print loop [REPL]) offers an interactive console that can be used for experimentation
 and idea testing. There’s no need for compilation and deployment just to find out something isn’t working (again). REPL can
 even be used for launching jobs on the full set of data.

 Finally, Spark can run on several types of clusters: Spark standalone cluster, Hadoop’s YARN (yet another resource negotiator),
 and Mesos. This gives it additional flexibility and makes it accessible to a larger community of users.

Spark as a unifying platform

 An important aspect of Spark is its combination of the many functionalities of the tools in the Hadoop ecosystem into a single
 unifying platform. The execution model is general enough that the single framework can be used for stream data processing,
 machine learning, SQL-like operations, and graph and batch processing. Many roles can work together on the same platform,
 which helps bridge the gap between programmers, data engineers, and data scientists. And the list of functions that Spark
 provides is continuing to grow.

Spark anti-patterns

 Spark isn’t suitable, though, for asynchronous updates to shared data[3] (such as online transaction processing, for example), because it has been created with batch analytics in mind. (Spark streaming
 is simply batch analytics applied to data in a time window.) Tools specialized for those use cases will still be necessary.

 3

See “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing“ by Matei Zaharia et al.,
 http://mng.bz/57uJ.

 Also, if you don’t have a large amount of data, Spark may not be required, because it needs to spend some time setting up
 jobs, tasks, and so on. Sometimes a simple relational database or a set of clever scripts can be used to process data more
 quickly than a distributed system such as Spark. But data has a tendency to grow, and it may outgrow your relational database
 management system (RDBMS) or your clever scripts rather quickly.

1.2. Spark components

 Spark consists of several purpose-built components. These are Spark Core, Spark SQL, Spark Streaming, Spark GraphX, and Spark
 MLlib, as shown in figure 1.2.

 Figure 1.2. Main Spark components and various runtime interactions and storage options

 [image:]

 These components make Spark a feature-packed unifying platform: it can be used for many tasks that previously had to be accomplished with several different frameworks. A brief description
 of each Spark component follows.

 1.2.1. Spark Core

 Spark Core contains basic Spark functionalities required for running jobs and needed by other components. The most important
 of these is the resilient distributed dataset (RDD),[4] which is the main element of the Spark API. It’s an abstraction of a distributed collection of items with operations and transformations applicable to the dataset. It’s resilient because it’s capable of rebuilding datasets in case of node failures.

 4

RDDs are explained in chapter 2. Because they’re the fundamental abstraction of Spark, they’re also covered in detail in chapter 4.

 Spark Core contains logic for accessing various filesystems, such as HDFS, GlusterFS, Amazon S3, and so on. It also provides
 a means of information sharing between computing nodes with broadcast variables and accumulators. Other fundamental functions,
 such as networking, security, scheduling, and data shuffling, are also part of Spark Core.

 1.2.2. Spark SQL

 Spark SQL provides functions for manipulating large sets of distributed, structured data using an SQL subset supported by
 Spark and Hive SQL (HiveQL). With DataFrames introduced in Spark 1.3, and DataSets introduced in Spark 1.6, which simplified handling of structured data and enabled radical performance optimizations, Spark
 SQL became one of the most important Spark components. Spark SQL can also be used for reading and writing data to and from
 various structured formats and data sources, such as JavaScript Object Notation (JSON) files, Parquet files (an increasingly
 popular file format that allows for storing a schema along with the data), relational databases, Hive, and others.

 Operations on DataFrames and DataSets at some point translate to operations on RDDs and execute as ordinary Spark jobs. Spark SQL provides a query optimization
 framework called Catalyst that can be extended by custom optimization rules. Spark SQL also includes a Thrift server, which
 can be used by external systems, such as business intelligence tools, to query data through Spark SQL using classic JDBC and
 ODBC protocols.

 1.2.3. Spark Streaming

 Spark Streaming is a framework for ingesting real-time streaming data from various sources. The supported streaming sources
 include HDFS, Kafka, Flume, Twitter, ZeroMQ, and custom ones. Spark Streaming operations recover from failure automatically,
 which is important for online data processing. Spark Streaming represents streaming data using discretized streams (DStreams), which periodically create RDDs containing the data that came in during the last time window.

 Spark Streaming can be combined with other Spark components in a single program, unifying real-time processing with machine
 learning, SQL, and graph operations. This is something unique in the Hadoop ecosystem. And since Spark 2.0, the new Structured
 Streaming API makes Spark streaming programs more similar to Spark batch programs.

 1.2.4. Spark MLlib

 Spark MLlib is a library of machine-learning algorithms grown from the MLbase project at UC Berkeley. Supported algorithms
 include logistic regression, naïve Bayes classification, support vector machines (SVMs), decision trees, random forests, linear
 regression, and k-means clustering.

 Apache Mahout is an existing open source project offering implementations of distributed machine-learning algorithms running
 on Hadoop. Although Apache Mahout is more mature, both Spark MLlib and Mahout include a similar set of machine-learning algorithms.
 But with Mahout migrating from MapReduce to Spark, they’re bound to be merged in the future.

 Spark MLlib handles machine-learning models used for transforming datasets, which are represented as RDDs or DataFrames.

 1.2.5. Spark GraphX

 Graphs are data structures comprising vertices and the edges connecting them. GraphX provides functions for building graphs,
 represented as graph RDDs: EdgeRDD and VertexRDD. GraphX contains implementations of the most important algorithms of graph theory, such as page rank, connected components,
 shortest paths, SVD++, and others. It also provides the Pregel message-passing API, the same API for large-scale graph processing
 implemented by Apache Giraph, a project with implementations of graph algorithms and running on Hadoop.

1.3. Spark program flow

 Let’s see what a typical Spark program looks like. Imagine that a 300 MB log file is stored in a three-node HDFS cluster.
 HDFS automatically splits the file into 128 MB parts (blocks, in Hadoop terminology) and places each part on a separate node of the cluster[5] (see figure 1.3). Let’s assume Spark is running on YARN, inside the same Hadoop cluster.

 5

Although it’s not relevant to our example, we should probably mention that HDFS replicates each block to two additional nodes
 (if the default replication factor of 3 is in effect).

 Figure 1.3. Storing a 300 MB log file in a three-node Hadoop cluster

 [image:]

 A Spark data engineer is given the task of analyzing how many errors of type OutOfMemoryError have happened during the last two weeks. Mary, the engineer, knows that the log file contains the last two weeks of logs
 of the company’s application server cluster. She sits at her laptop and starts to work.

 She first starts her Spark shell and establishes a connection to the Spark cluster. Next, she loads the log file from HDFS (see figure 1.4) by using this (Scala) line:

 val lines = sc.textFile("hdfs://path/to/the/file")

 Figure 1.4. Loading a text file from HDFS

 [image:]

 To achieve maximum data locality,[6] the loading operation asks Hadoop for the locations of each block of the log file and then transfers all the blocks into
 RAM of the cluster’s nodes. Now Spark has a reference to each of those blocks (partitions, in Spark terminology) in RAM. The sum of those partitions is a distributed collection of lines from the log file referenced
 by an RDD. Simplifying, we can say that RDDs allow you to work with a distributed collection the same way you would work with
 any local, nondistributed one. You don’t have to worry about the fact that the collection is distributed, nor do you have
 to handle node failures yourself.

 6

Data locality is honored if each block gets loaded in the RAM of the same node where it resides in HDFS. The whole point is
 to try to avoid having to transfer large amounts of data over the wire.

 In addition to automatic fault tolerance and distribution, the RDD provides an elaborate API, which allows you to work with
 a collection in a functional style. You can filter the collection; map over it with a function; reduce it to a cumulative
 value; subtract, intersect, or create a union with another RDD, and so on.

 Mary now has a reference to the RDD, so in order to find the error count, she first wants to remove all the lines that don’t
 have an OutOfMemoryError substring. This is a job for the filter function, which she calls like this:

 val oomLines = lines.filter(l => l.contains("OutOfMemoryError")).cache()

 After filtering the collection so it contains the subset of data that she needs to analyze (see figure 1.5), Mary calls cache on it, which tells Spark to leave that RDD in memory across jobs. Caching is the basic component of Spark’s performance improvements
 we mentioned before. The benefits of caching the RDD will become apparent later.

 Figure 1.5. Filtering the collection to contain only lines containing the OutOfMemoryError string

 [image:]

 Now she is left with only those lines that contain the error substring. For this simple example, we’ll ignore the possibility
 that the OutOfMemoryError string might occur in multiple lines of a single error. Our data engineer counts the remaining lines and reports the result as the number of out-of-memory errors that occurred in the last two weeks:

 val result = oomLines.count()

 Spark enabled her to perform distributed filtering and counting of the data with only three lines of code. Her little program
 was executed on all three nodes in parallel.

 If she now wants to further analyze lines with OutOfMemoryErrors, and perhaps call filter again (but with other criteria) on an oomLines object that was previously cached in memory, Spark won’t load the file from HDFS again, as it would normally do. Spark will
 load it from the cache.

1.4. Spark ecosystem

 We’ve already mentioned the Hadoop ecosystem, consisting of interface, analytic, cluster-management, and infrastructure tools.
 Some of the most important ones are shown in figure 1.6.

 Figure 1.6. Basic infrastructure, interface, analytic, and management tools in the Hadoop ecosystem, with some of the functionalities
 that Spark incorporates or makes obsolete

 [image:]

 Figure 1.6 is by no means complete.[7] You could argue that we failed to add one tool or another, but a complete list of tools would be hard to fit in this section.
 We believe, though, that this list represents a good subset of the most prominent tools in the Hadoop ecosystem.

 7

If you’re interested, you can find a (hopefully) complete list of Hadoop-related tools and frameworks at http://hadoopecosystemtable.github.io.

 If you compare the functionalities of Spark components with the tools in the Hadoop ecosystem, you can see that some of the
 tools are suddenly superfluous. For example, Apache Giraph can be replaced by Spark GraphX, and Spark MLlib can be used instead of Apache Mahout. Apache Storm’s capabilities overlap greatly with those of Spark Streaming, so in many cases
 Spark Streaming can be used instead.

 Apache Pig and Apache Sqoop aren’t needed any longer, because the same functionalities are covered by Spark Core and Spark
 SQL. But even if you have legacy Pig workflows and need to run Pig, the Spork project enables you to run Pig on Spark.

 Spark has no means of replacing the infrastructure and management of the Hadoop ecosystem tools (Oozie, HBase, and ZooKeeper),
 though. Oozie is used for scheduling different types of Hadoop jobs and now even has an extension for scheduling Spark jobs.
 HBase is a distributed and scalable database, which is something Spark doesn’t provide. ZooKeeper provides fast and robust
 implementation of common functionalities many distributed applications need, like coordination, distributed synchronization,
 naming, and provisioning of group services. It is used for these purposes in many other distributed systems, too.

 Impala and Drill can coexist alongside Spark, especially with Drill’s coming support for Spark as an execution engine. But
 they’re more like competing frameworks, mostly spanning the features of Spark Core and Spark SQL, which makes Spark feature-richer
 (pun not intended).

 We said earlier that Spark doesn’t need to use HDFS storage. In addition to HDFS, Spark can operate on data stored in Amazon
 S3 buckets and plain files. More exciting, it can also use Alluxio (formerly Tachyon), which is a memory-centric distributed
 filesystem, or other distributed filesystems, such as GlusterFS.

 Another interesting fact is that Spark doesn’t have to run on YARN. Apache Mesos and the Spark standalone cluster are alternative
 cluster managers for Spark. Apache Mesos is an advanced distributed systems kernel bringing distributed resource abstractions.
 It can scale to tens of thousands of nodes with full fault tolerance (we’ll visit it in chapter 12). Spark Standalone is a Spark-specific cluster manager that is used in production today on multiple sites.

 So if we switch from MapReduce to Spark and get rid of YARN and all the tools that Spark makes obsolete, what’s left of the
 Hadoop ecosystem? To put it another way: Are we slowly moving toward a new big data standard: a Spark ecosystem?

1.5. Setting up the spark-in-action VM

 In order to make it easy for you to set up a Spark learning environment, we prepared a virtual machine (VM) that you’ll be
 using throughout this book. It will allow you to run all the examples from the book without surprises due to different versions
 of Java, Spark, or your OS. For example, you could have problems running the Spark examples on Windows; after all, Spark is
 developed on OS X and Linux, so, understandably, Windows isn’t exactly in the focus. The VM will guarantee we’re all on the
 same page, so to speak.

 The VM consists of the following software stack:

 	
64-bit Ubuntu OS, 14.04.4 (nicknamed Trusty)— Currently the latest version with long-term support (LTS).

 	
Java 8 (OpenJDK)— Even if you plan on only using Spark from Python, you have to install Java, because Spark’s Python API communicates with Spark
 running in a JVM.

 	
Hadoop 2.7.2— Hadoop isn’t a hard requirement for using Spark. You can save and load files from your local filesystem, if you’re running
 a local cluster, which is the case with our VM. But as soon as you set up a truly distributed Spark cluster, you’ll need a
 distributed filesystem, such as Hadoop’s HDFS. Hadoop installation will also come in handy in chapter 12 for trying out the methods of running Spark on YARN, Hadoop’s execution environment.

 	
Spark 2.0— We included the latest Spark version at the time this book was finished. You can easily upgrade the Spark version in the VM,
 if you wish to do so, by following the instructions in chapter 2.

 	
Kafka 0.8.2— Kafka is a distributed messaging system, used in chapters 6 and 13.

 We chose Ubuntu because it’s a popular Linux distribution and Linux is the preferred Spark platform. If you’ve never worked
 with Ubuntu before, this could be your chance to start. We’ll guide you, explaining commands and concepts as you progress
 through the chapters.

 Here we’ll explain only the basics: how to download, start, and stop the VM. We’ll go into more details about using it in
 the next chapter.

 1.5.1. Downloading and starting the virtual machine

 To run the VM, you’ll need a 64-bit OS with at least 3 GB of free memory and 15 GB of free disk space. You first need to install
 these two software packages for your platform:

 	
Oracle VirtualBox— Oracle’s free, open source hardware virtualization software (www.virtualbox.org)

 	
Vagrant— HashiCorp’s software for configuring portable development environments (www.vagrantup.com/downloads.html)

 When you have these two installed, create a folder for hosting the VM (called, for example, spark-in-action), and enter it.
 Then download the Vagrant box metadata JSON file from our online repository. You can download it manually or use the wget command on Linux or Mac:

 $ wget https://raw.githubusercontent.com/spark-in-action/first-edition/
[image:] master/spark-in-action-box.json

 Then issue the following command to download the VM itself:

 $ vagrant box add spark-in-action-box.json

 The Vagrant box metadata JSON file points to the Vagrant box file. The command will download the 5 GB VM box (this will probably
 take some time) and register it as the manning/spark-in-action Vagrant box. To use it, initialize the Vagrant VM in the current
 directory by issuing this command:

 $ vagrant init manning/spark-in-action

 Finally, start the VM with the vagrant up command (this will also allocate approximately 10 GB of disk space):

 $ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Checking if box 'manning/spark-in-action' is up to date...
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
...

 If you have several network interfaces on your machine, you’ll be asked to choose one of them for connecting it to the VM.
 Choose the one with an access to the internet. For example:

 ==> default: Available bridged network interfaces:
1) 1x1 11b/g/n Wireless LAN PCI Express Half Mini Card Adapter
2) Cisco Systems VPN Adapter for 64-bit Windows
==> default: When choosing an interface, it is usually the one that is
==> default: being used to connect to the internet.
 default: Which interface should the network bridge to? 1
==> default: Preparing network interfaces based on configuration...
...

 1.5.2. Stopping the virtual machine

 You’ll learn how to use the VM in the next chapter. For now, we’ll only show you how to stop it. To power off the VM, issue
 the following command:

 $ vagrant halt

 This will stop the machine but preserve your work. If you wish to completely remove the VM and free up its space, you need
 to destroy it:

 $ vagrant destroy

 You can also remove the downloaded Vagrant box, which was used to create the VM, with this command:

 $ vagrant box remove manning/spark-in-action

 But we hope you won’t feel the need for that for quite some time.

1.6. Summary

 	Apache Spark is an exciting new technology that is rapidly superseding Hadoop’s MapReduce as the preferred big data processing
 platform.

 	Spark programs can be 100 times faster than their MapReduce counterparts.

 	Spark supports the Java, Scala, Python, and R languages.

 	Writing distributed programs with Spark is similar to writing local Java, Scala, or Python programs.

 	Spark provides a unifying platform for batch programming, real-time data-processing functions, SQL-like handling of structured
 data, graph algorithms, and machine learning, all in a single framework.

 	Spark isn’t appropriate for small datasets, nor should you use it for OLTP applications.

 	The main Spark components are Spark Core, Spark SQL, Spark Streaming, Spark MLlib, and Spark GraphX.

 	RDDs are Spark’s abstraction of distributed collections.

 	Spark supersedes some of the tools in the Hadoop ecosystem.

 	You’ll use the spark-in-action VM to run the examples in this book.

Chapter 2. Spark fundamentals

 This chapter covers

 	Exploring the spark-in-action VM

 	Managing multiple Spark versions

 	Getting to know Spark’s command line interface (spark-shell)

 	Playing with simple examples in spark-shell

 	Exploring RDD actions and transformations and double functions

 It’s finally time to get down to business. In this chapter, you’ll start using the VM we prepared for you and write your first
 Spark programs. All you need is a laptop or a desktop machine with a usable internet connection and the prerequisites described
 in chapter 1.

 To avoid overwhelming you this early in the book with various options for running Spark, for now you’ll be using the so-called
 Spark standalone local cluster. Standalone means Spark is using its own cluster manager (rather than Mesos or Hadoop’s YARN). Local means the whole system is running locally—that is, on your laptop or a desktop machine. We’ll talk extensively about Spark
 running modes and deployment options in the second part of the book. Strap in: things are about to get real!

 Rest assured, we aren’t assuming any prior Spark or Scala knowledge; in this chapter, you’ll start slowly and progress step-by-step,
 tutorial style, through the process of setting up prerequisites, downloading and installing Spark, and playing with simple
 code examples in spark-shell (used for accessing Spark from the command prompt).

 Although we intend to explain all the Scala specifics throughout the book, we don’t have the illusion that you can learn Scala
 using a book about Spark. Therefore, it might be beneficial to get a dedicated Scala book, such as Nilanjan Raychaudhuri’s
 Scala in Action (Manning, 2013). Or you can use the second edition of Programming in Scala (Artima Inc., 2010), an excellent book by Martin Odersky, father of the Scala programming language. Another awesome, readily
 available resource we can recommend is Twitter’s online Scala School (http://twitter.github.io/scala_school). As you come across a new Scala topic, look it up in your book or online, because that will make it much easier to put things
 into perspective—especially Scala topics that you need more details on (than we have room to provide).

 We hope you’ve followed our instructions from the last chapter and successfully set up the spark-in-action VM. If for some
 reason you can’t use the VM, check out appendix B for instructions on installing Spark.

 You’ll now use the spark-in-action VM for writing and executing your first Spark program. We guess you’re eager to start,
 so let’s get to it!

2.1. Using the spark-in-action VM

 To start using the VM, change to the folder where you put Vagrantfile, and, if it’s not already running, start the machine with the following command:

 $ vagrant up

 When the command finishes, you can log in to the VM. Open an SSH connection to the machine, either by issuing Vagrant’s ssh command

 $ vagrant ssh

 or by using your favorite SSH program (such as ssh on Linux and Mac, or Putty, Kitty, or MobaXTerm if you’re running on Windows)
 to connect directly to 192.168.10.2, which is the IP address we configured for the spark-in-action VM. Both methods should
 present the same login prompt. Enter username spark and password spark, and you should be greeted with the following prompt:

 Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-85-generic x86_64)
... several omitted lines ...
spark@spark-in-action:~$

 You’re in. The first step is behind you!

 2.1.1. Cloning the Spark in Action GitHub repository

 Before doing anything else, clone our Spark in Action GitHub repository into your home directory by issuing the following command (Git is already installed in the VM):

 $ git clone https://github.com/spark-in-action/first-edition

 This creates the first-edition folder in your home directory.

 2.1.2. Finding Java

 We configured the spark user’s PATH so that you can easily invoke Java, Hadoop, and Spark commands from wherever you’re positioned in the VM. Let’s first see
 where Java is installed. The which command shows the location of the executable file specified, if it can be found in the current PATH:

 $ which java
/usr/bin/java

 	

 Code formatting and notation

 We’ve established the following notation and formatting rules to distinguish commands entered into the terminal from those
 entered into the Spark shell, from terminal and the Spark-shell outputs. Terminal commands start with a dollar sign, while
 code entered into the Spark-shell starts with scala>:

 $ terminal command
terminal output
scala> a line of code
spark shell output

 	

 That’s the default location for system-wide user programs, so it’s hardly surprising. But the file is a symbolic link, which you can trace to Java’s real install location:

 spark@spark-in-action:~$ ls -la /usr/bin/java
lrwxrwxrwx 1 root root 22 Apr 19 18:36 /usr/bin/java -> /etc/alternatives
[image:] /java
spark@spark-in-action:~$ ls -la /etc/alternatives/java
lrwxrwxrwx 1 root root 46 Apr 19 18:36 /etc/alternatives/java -> /usr/lib/
[image:] jvm/java-8-openjdk-amd64/jre/bin/java

 So, the Java install location is /usr/lib/jvm/java-8-openjdk-amd64. The JAVA_HOME variable, which is important for running Hadoop and Spark, has also been set up for you:

 $ echo $JAVA_HOME
/usr/lib/jvm/java-8-openjdk-amd64/jre

 	

 Symbolic links

 A symbolic link (or symlink) is a reference to a file or a folder. It behaves as though you have access to the same file or folder from two different
 places in your filesystem. The symlink isn’t a copy; it’s a reference to the target folder (in the case of a folder symlink) with the ability to navigate inside, as if it were the target folder. Every change you make inside the symlink is applied
 directly to the target folder and reflected in the symlink. If you were to edit a file symlink using the vi editor, for example,
 you would be editing the target file, and the changes would be visible in both places.

 	

 2.1.3. Using the VM’s Hadoop installation

 With the spark-in-action VM, you also get a fully functioning Hadoop installation. You’ll need it for reading and writing
 files to and from the HDFS and for running YARN later in the book.

 Hadoop is installed in the folder /usr/local/hadoop. But that is a symlink again, pointing to /opt/hadoop-2.7.2, which is
 where the Hadoop binaries are located.

 Many HDFS shell commands are available in Hadoop, mimicking the usual filesystem commands (for creating, copying, moving files
 and folders, and so on). They’re issued as arguments to the hadoop fs command. For example, to list the files and folders in the /user HDFS folder, you use the following:

 $ hadoop fs -ls /user
Found 1 items
drwxr-xr-x - spark supergroup 0 2016-04-19 18:49 /user/spark

 We don’t have the time or space here to explain other Hadoop commands, but you can find the complete Hadoop filesystem command
 reference in the official documentation: http://mng.bz/Y9FP.

 The last command (hadoop fs -ls) works because the spark-in-action VM is configured to automatically start HDFS daemon processes during its startup, so the
 command can connect to HDFS and query the filesystem. HDFS startup is done by invoking a single script (note that Hadoop’s
 sbin directory isn’t on the spark user’s PATH):

 $ /usr/local/hadoop/sbin/start-dfs.sh

 If you wish to stop HDFS daemons, you can invoke the equivalent stop-dfs.sh script:

 $ /usr/local/hadoop/sbin/stop-dfs.sh

 You should note that the spark user has full access rights (read/write/execute [rwx]) to the /usr/local/hadoop directory, so you won’t have to fiddle with
 sudo every time you need to make a change (for example, to a configuration file) or start or stop the daemons.

 2.1.4. Examining the VM’s Spark installation

 When installing Spark, you download the appropriate Spark archive from the Spark downloads page (https://spark.apache.org/downloads.html) and unpack it to the folder of your choice. In the spark-in-action VM, similar to Hadoop, Spark is available from the /usr/local/spark
 folder, which is a symlink pointing to /opt/spark-2.0.0-bin-hadoop2.7, where the Spark binary archive was unpacked. As the
 folder name suggests, the installed version is 2.0, prebuilt for Hadoop 2.7 or higher, which is what we needed for this VM.

 Instead of downloading a prebuilt version, you can build Spark yourself. Please see appendix B for details. The examples in this book were tested with Spark 2.0.0 (the latest version at the time of writing), so make
 sure you install that version.

Managing Spark releases

 Because new versions of Spark are flying out every couple of months, you need a way to manage them so you can have multiple
 versions installed and easily choose which one to use. By using a symlink in the described way, regardless of the current
 version of Spark, you can always use /usr/local/spark to reference a Spark installation in all of your programs, scripts,
 and configuration files. You switch versions by deleting the symlink and creating a new one, pointing to the root installation
 folder of the Spark version you want to work with.

 For example, after unpacking several Spark versions, your /opt folder might contain the following folders:

 $ ls /opt | grep spark
spark-1.3.0-bin-hadoop2.4
spark-1.3.1-bin-hadoop2.4
spark-1.4.0-bin-hadoop2.4
spark-1.5.0-bin-hadoop2.4
spark-1.6.1-bin-hadoop2.6
spark-2.0.0-bin-hadoop2.7

 To switch from the current version of 2.0 back to 1.6.1, for example, you would remove the current symlink (you would need
 to use sudo here because the spark user doesn’t have the rights for changing the /usr/local folder)

 $ sudo rm -f /usr/local/spark

 and then create a new one pointing to version 1.6.1:

 $ sudo ln -s /opt/spark-1.6.1-bin-hadoop2.4 /usr/local/spark

 The idea is to always refer to the current Spark installation the same way, using the spark symlink.

Other Spark installation details

 Many Spark scripts require the SPARK_HOME environment variable to be set. It’s already set up for you in the VM, and it points to the spark symlink, as you can check yourself:

 $ export | grep SPARK
declare -x SPARK_HOME="/usr/local/spark"

 Spark’s bin and sbin directories have been added to the spark user’s PATH. The spark user is also the owner of the files and folders under /usr/local/spark, so you can change them as necessary without using
 sudo.

2.2. Using Spark shell and writing your first Spark program

 In this section, you’ll start the Spark shell and use it to write your first Spark example program. So what is this Spark
 shell all about?

 There are two different ways you can interact with Spark. One way is to write a program in Scala, Java, or Python that uses
 Spark’s library—that is, its API (more on programs in chapter 3). The other is to use the Scala shell or the Python shell.

 The shell is primarily used for exploratory data analysis, usually for one-off jobs, because a program written in the shell is discarded after you exit the shell. The other common shell-usage scenario
 is testing and developing Spark applications. It’s much easier to test a hypothesis in a shell (for example, probe a dataset
 and experiment) than to write an application, submit it to be executed, write results to an output file, and then analyze
 that output.

 Spark shell is also known as Spark REPL, where the REPL acronym stands for read-eval-print loop. It reads your input, evaluates it, prints the result, and then does it all over again—that is, after a command returns a
 result, it doesn’t exit the scala> prompt; it stays ready for your next command (thus loop).

 2.2.1. Starting the Spark shell

 You should be logged in to the VM as the spark user by now. As we said earlier, Spark’s bin directory is in the spark user’s PATH, so you should be able to start the Spark shell by entering the following:

 $ spark-shell
Spark context Web UI available at http://10.0.2.15:4040
Spark context available as 'sc' (master = local[*], app id = local-1474054368520).
Spark session available as 'spark'.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.0.0
 /_/

Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_72-internal)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

 And boom! You have a running spark-shell on your machine.

 	

 Note

 To write Python programs in the Spark Python shell, type pyspark.

 	

 In previous Spark versions, Spark logged all the detailed INFO messages to the console and cluttered the view. That was toned down in later versions, but now those messages, which may
 be valuable, are no longer available. Let’s correct that.

 You’ll make spark-shell print only errors, but you’ll maintain the complete log in the logs/info.log file (relative to the
 Spark root) for troubleshooting. Exit the shell by typing :quit (or pressing Ctrl-D) and create a log4j.properties file in the conf subfolder, like this:

 $ nano /usr/local/spark/conf/log4j.properties

 nano is a text editor for UNIX-like systems, available in Ubuntu by default. You are, of course, free to use any other text editor.
 Copy the contents of the following listing into the newly created log4j.properties file.

 Listing 2.1. Contents of Spark’s log4j.properties file

 # set global logging severity to INFO (and upwards: WARN, ERROR, FATAL)
log4j.rootCategory=INFO, console, file

console config (restrict only to ERROR and FATAL)
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.threshold=ERROR
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss}
[image:] %p %c{1}: %m%n

file configlog4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=logs/info.log
log4j.appender.file.MaxFileSize=5MB
log4j.appender.file.MaxBackupIndex=10
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss}
[image:] %p %c{1}: %m%n

Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
log4j.logger.org.apache.spark=WARN
log4j.logger.org.apache.hadoop=WARN

 Exit nano by pressing Ctrl-X and then Y, confirming that you wish to save the file, and press Enter if you’re asked for the
 file’s name.

 	

 log4j

 Although it has been superseded by the logback library and is almost two decades old, log4j is still one of the most widely
 used Java logging libraries, due to the simplicity of its design.

 	

 Then use the same command as before to start the Spark shell:

 $ spark-shell

 As you can see in the output, you’re provided with the Spark context in the form of the sc variable and the SQL context as sqlContext. The Spark context is the entry point for interacting with Spark. You use it for things like connecting to Spark from an
 application, configuring a session, managing job execution, loading or saving a file, and so on.

 2.2.2. The first Spark code example

 It’s time for your first Spark example. Suppose you want to find out how many third-party libraries that Spark uses are licensed
 under the BSD license (acronym for Berkeley Software Distribution). Luckily, Spark comes with a file named LICENSE, located
 in the Spark root directory. The LICENSE file contains the list of all libraries used by Spark and the licenses they’re provided
 under. Lines in the file, which names packages licensed under the BSD license, contain the word BSD. You could easily use
 a Linux shell command to count those lines, but that’s not the point. Let’s see how you can ingest that file and count the
 lines using the Spark API:

 [image:]

 You now know the total number of lines in the file. What good does that do? You need to find out the number of lines BSD appears
 in. The idea is to run the licLines collection through a filter that sifts out the lines that don’t contain BSD:

 [image:]

 	

 Function literals

 If you’ve never used Scala, you may be wondering what the snippet with the fat arrow (=>) means [image:]. That is a Scala function literal; it defines an anonymous function that takes a string and returns true or false, depending on whether line contains the “BSD” substring.

 The fat arrow basically designates the transformation that a function does on the left side of the expression, converting
 it to the right side, which is then returned. In this case, String (line) is transformed into a Boolean (the result of contains), which is then returned as the function’s result.

 	

 The filter function evaluates the fat-arrow function on each element of the licLines collection (each line) and returns a new collection, bsdLines, that has only those elements for which the fat-arrow function returned true.

 The fat-arrow function you use for filtering lines is anonymous, but you could also define the equivalent named function,
 like this

 scala> def isBSD(line: String) = { line.contains("BSD") }
isBSD: (line: String)Boolean

 or store (a reference to) the function definition in a variable

 scala> val isBSD = (line: String) => line.contains("BSD")
isBSD: String => Boolean = <function1>

 and then use it in place of the anonymous function:

 scala> val bsdLines1 = licLines.filter(isBSD)
bsdLines1: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[5] at filter
[image:] at <console>:25
scala> bsdLines1.count
res1: Long = 34

 To print the lines containing BSD to the console, you call println for each line:

 scala> bsdLines.foreach(bLine => println(bLine))
BSD-style licenses
The following components are provided under a BSD-style license. See
[image:] project link for details.
 (BSD 3 Clause) netlib core (com.github.fommil.netlib:core:1.1.2 -
[image:] https://github.com/fommil/netlib-java/core)
 (BSD 3 Clause) JPMML-Model (org.jpmml:pmml-model:1.1.15 -
[image:] https://github.com/jpmml/jpmml-model)
 (BSD 3-clause style license) jblas (org.jblas:jblas:1.2.4 -
[image:] http://jblas.org/)
 (BSD License) AntLR Parser Generator (antlr:antlr:2.7.7 -
[image:] http://www.antlr.org/)
...

 To accomplish the same thing with less typing, you can also use a shortcut version:

 scala> bsdLines.foreach(println)

 2.2.3. The notion of a resilient distributed dataset

 Although licLines and bsdLines feel and look like ordinary Scala collections (filter and foreach methods are available in ordinary Scala collections, too), they aren’t. They’re distributed collections, specific to Spark,
 called resilient distributed datasets or RDDs.

 The RDD is the fundamental abstraction in Spark. It represents a collection of elements that is

 	
Immutable (read-only)

 	
Resilient (fault-tolerant)

 	
Distributed (dataset spread out to more than one node)

 RDDs support a number of transformations that do useful data manipulation, but they always yield a new RDD instance. Once
 created, RDDs never change; thus the adjective immutable. Mutable state is known to introduce complexity, but besides that, having immutable collections allows Spark to provide important
 fault-tolerance guarantees in a straightforward manner.

 The fact that the collection is distributed on a number of machines (execution contexts, JVMs) is transparent[1] to its users, so working with RDDs isn’t much different than working with ordinary local collections like plain old lists,
 maps, sets, and so on. To summarize, the purpose of RDDs is to facilitate parallel operations on large datasets in a straightforward
 manner, abstracting away their distributed nature and inherent fault tolerance.

 1

Well, almost transparent. In order to optimize computation and thus gain performance benefits, there are ways to control dataset
 partitioning (how the RDD is distributed among nodes in a cluster) and persistence options. We’ll talk about both features
 extensively later in the book.

 RDDs are resilient because of Spark’s built-in fault recovery mechanics. Spark is capable of healing RDDs in case of node failure. Whereas other
 distributed computation frameworks facilitate fault tolerance by replicating data to multiple machines (so it can be restored
 from healthy replicas once a node fails), RDDs are different: they provide fault tolerance by logging the transformations
 used to build a dataset (how it came to be) rather than the dataset itself. If a node fails, only a subset of the dataset
 that resided on the failed node needs to be recomputed.

 For example, in the previous section, the process of loading the text file yielded the licLines RDD. Then you applied the filter function to licLines, which produced the new bsdLines RDD. Those transformations and their ordering are referred to as RDD lineage. It represents the exact recipe for creating the bsdLines RDD, from start to finish. We’ll talk more about RDD lineage in later chapters. For now, let’s see what else you can do with
 RDDs.

2.3. Basic RDD actions and transformations

 There are two types of RDD operations: transformations and actions. Transformations (for example, filter or map) are operations that produce a new RDD by performing some useful data manipulation on another RDD. Actions (for example, count or foreach) trigger a computation in order to return the result to the calling program or to perform some actions on an RDD’s elements.

 	

 Laziness of Spark transformations

 It’s important to understand that transformations are evaluated lazily, meaning computation doesn’t take place until you invoke an action. Once an action is triggered on an RDD, Spark examines
 the RDD’s lineage and uses that information to build a “graph of operations” that needs to be executed in order to compute
 the action. Think of a transformation as a sort of diagram that tells Spark which operations need to happen and in which order
 once an action gets executed.

 	

 In this section, you’ll be introduced to a number of other important RDD operations, such as map

OEBPS/01fig04_alt.jpg
Disk (HDFS)

Disk (HDFS)

Disk (HDFS)

Distributed collection
(RDD)

OEBPS/01fig05_alt.jpg
Disk (HDFS)

Disk (HDFS)

Disk (HDFS)

+

Distributed collection
(RDD)

OEBPS/01fig02_alt.jpg
SO SUU SRS SPERE SCRNINIG UNLERY: S SN U N8
Kafka, Flume, Twitter, HDFS, GraphX features on the machine-learning models and
and ZeroMQ. data it receives. Spark SQL to analyze streaming data.

Spark MLib models
use DataFrames to

represent data.
Spark ML uses RDDs.
Both use features
from Spark Core.

Data sources include
Graph ROD / Hive, JSON, relationa

databases, NoSQL

databases, and
/ Parquet files.

Spark Streaming

uses DStreams to

periodically

create RDDs.

/

Spark GraphX uses Spark Filesystems include HDFS, ‘Spark SQL transforms
Core features behind Guster FS, and Amazon §3. operations on DataFrames
=iy o onevations:on RDDs.

OEBPS/01fig03_alt.jpg
Disk (HDFS)

128 MB
| = e chunk

RAM Disk (HDFS)

44 MB
= [te chunk

OEBPS/common01.jpg

OEBPS/01fig01_alt.jpg
MapReduce word count

Spark word count

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common02.jpg

OEBPS/01fig06_alt.jpg
Analytic tools providing Interface tools that can be used to transfer
data-transformation and data between Hadoop and other systems
-manipulation functions

e
A cluster-management tool Infrastructure tools, providing basic data storage,
synchronization, and scheduling functions

OEBPS/025fig01_alt.jpg
Vhink of Sclines variable as a colection of lines constructed
by spliting LICENSE on the newline character.

scala> val licLines = sc.textFile(*/usr/local/spark/LICENSE")
licLines: org.apache.spark.rdd.RDD[String) = LICENSE MapPartitionsRDD[1] at
3 textFile at <console>:27

scala> val lineCnt = licLines.count
linecnt: Long = 294

Retrieves the number of lines
in the licLines collection

The number of lines in LICENSE may vary (and
il Uit okaens Soutc vovalons:

OEBPS/enter.jpg

OEBPS/cover.jpg
ark

Y INACTION

OEBPS/num-01.jpg

OEBPS/025fig02_alt.jpg
Forms a new collection, @)
bsdines, that contains only
lines with the “BSD” substring

scala> val bsdlines = licLines.filter(line => line.contains('BSD')) <
bsdLines: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD(2] at filter
at <console>:23
scala> bsdLines.count <7 count how many
reso: Long = 34 elements (lines) the
colnction lodi lass b

