

 [image: cover]

Big Data: Principles and best practices of scalable realtime data systems

 Nathan Marz with James Warren

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 	Special Sales Department
	Manning Publications Co.
	20 Baldwin Road
	PO Box 761
	Shelter Island, NY 11964
	Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editors: Renae Gregoire, Jennifer Stout
Technical development editor: Jerry Gaines
Copyeditor: Andy Carroll
Proofreader: Katie Tennant
Technical proofreader: Jerry Kuch
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617290343

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter 1. A new paradigm for Big Data

 1. Batch layer

 Chapter 2. Data model for Big Data

 Chapter 3. Data model for Big Data: Illustration

 Chapter 4. Data storage on the batch layer

 Chapter 5. Data storage on the batch layer: Illustration

 Chapter 6. Batch layer

 Chapter 7. Batch layer: Illustration

 Chapter 8. An example batch layer: Architecture and algorithms

 Chapter 9. An example batch layer: Implementation

 2. Serving layer

 Chapter 10. Serving layer

 Chapter 11. Serving layer: Illustration

 3. Speed layer

 Chapter 12. Realtime views

 Chapter 13. Realtime views: Illustration

 Chapter 14. Queuing and stream processing

 Chapter 15. Queuing and stream processing: Illustration

 Chapter 16. Micro-batch stream processing

 Chapter 17. Micro-batch stream processing: Illustration

 Chapter 18. Lambda Architecture in depth

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter 1. A new paradigm for Big Data

 1.1. How this book is structured

 1.2. Scaling with a traditional database

 1.2.1. Scaling with a queue

 1.2.2. Scaling by sharding the database

 1.2.3. Fault-tolerance issues begin

 1.2.4. Corruption issues

 1.2.5. What went wrong?

 1.2.6. How will Big Data techniques help?

 1.3. NoSQL is not a panacea

 1.4. First principles

 1.5. Desired properties of a Big Data system

 1.5.1. Robustness and fault tolerance

 1.5.2. Low latency reads and updates

 1.5.3. Scalability

 1.5.4. Generalization

 1.5.5. Extensibility

 1.5.6. Ad hoc queries

 1.5.7. Minimal maintenance

 1.5.8. Debuggability

 1.6. The problems with fully incremental architectures

 1.6.1. Operational complexity

 1.6.2. Extreme complexity of achieving eventual consistency

 1.6.3. Lack of human-fault tolerance

 1.6.4. Fully incremental solution vs. Lambda Architecture solution

 1.7. Lambda Architecture

 1.7.1. Batch layer

 1.7.2. Serving layer

 1.7.3. Batch and serving layers satisfy almost all properties

 1.7.4. Speed layer

 1.8. Recent trends in technology

 1.8.1. CPUs aren’t getting faster

 1.8.2. Elastic clouds

 1.8.3. Vibrant open source ecosystem for Big Data

 1.9. Example application: SuperWebAnalytics.com

 1.10. Summary

 1. Batch layer

 Chapter 2. Data model for Big Data

 2.1. The properties of data

 2.1.1. Data is raw

 2.1.2. Data is immutable

 2.1.3. Data is eternally true

 2.2. The fact-based model for representing data

 2.2.1. Example facts and their properties

 2.2.2. Benefits of the fact-based model

 2.3. Graph schemas

 2.3.1. Elements of a graph schema

 2.3.2. The need for an enforceable schema

 2.4. A complete data model for SuperWebAnalytics.com

 2.5. Summary

 Chapter 3. Data model for Big Data: Illustration

 3.1. Why a serialization framework?

 3.2. Apache Thrift

 3.2.1. Nodes

 3.2.2. Edges

 3.2.3. Properties

 3.2.4. Tying everything together into data objects

 3.2.5. Evolving your schema

 3.3. Limitations of serialization frameworks

 3.4. Summary

 Chapter 4. Data storage on the batch layer

 4.1. Storage requirements for the master dataset

 4.2. Choosing a storage solution for the batch layer

 4.2.1. Using a key/value store for the master dataset

 4.2.2. Distributed filesystems

 4.3. How distributed filesystems work

 4.4. Storing a master dataset with a distributed filesystem

 4.5. Vertical partitioning

 4.6. Low-level nature of distributed filesystems

 4.7. Storing the SuperWebAnalytics.com master dataset on a distributed filesystem

 4.8. Summary

 Chapter 5. Data storage on the batch layer: Illustration

 5.1. Using the Hadoop Distributed File System

 5.1.1. The small-files problem

 5.1.2. Towards a higher-level abstraction

 5.2. Data storage in the batch layer with Pail

 5.2.1. Basic Pail operations

 5.2.2. Serializing objects into pails

 5.2.3. Batch operations using Pail

 5.2.4. Vertical partitioning with Pail

 5.2.5. Pail file formats and compression

 5.2.6. Summarizing the benefits of Pail

 5.3. Storing the master dataset for SuperWebAnalytics.com

 5.3.1. A structured pail for Thrift objects

 5.3.2. A basic pail for SuperWebAnalytics.com

 5.3.3. A split pail to vertically partition the dataset

 5.4. Summary

 Chapter 6. Batch layer

 6.1. Motivating examples

 6.1.1. Number of pageviews over time

 6.1.2. Gender inference

 6.1.3. Influence score

 6.2. Computing on the batch layer

 6.3. Recomputation algorithms vs. incremental algorithms

 6.3.1. Performance

 6.3.2. Human-fault tolerance

 6.3.3. Generality of the algorithms

 6.3.4. Choosing a style of algorithm

 6.4. Scalability in the batch layer

 6.5. MapReduce: a paradigm for Big Data computing

 6.5.1. Scalability

 6.5.2. Fault-tolerance

 6.5.3. Generality of MapReduce

 6.6. Low-level nature of MapReduce

 6.6.1. Multistep computations are unnatural

 6.6.2. Joins are very complicated to implement manually

 6.6.3. Logical and physical execution tightly coupled

 6.7. Pipe diagrams: a higher-level way of thinking about batch computation

 6.7.1. Concepts of pipe diagrams

 6.7.2. Executing pipe diagrams via MapReduce

 6.7.3. Combiner aggregators

 6.7.4. Pipe diagram examples

 6.8. Summary

 Chapter 7. Batch layer: Illustration

 7.1. An illustrative example

 7.2. Common pitfalls of data-processing tools

 7.2.1. Custom languages

 7.2.2. Poorly composable abstractions

 7.3. An introduction to JCascalog

 7.3.1. The JCascalog data model

 7.3.2. The structure of a JCascalog query

 7.3.3. Querying multiple datasets

 7.3.4. Grouping and aggregators

 7.3.5. Stepping though an example query

 7.3.6. Custom predicate operations

 7.4. Composition

 7.4.1. Combining subqueries

 7.4.2. Dynamically created subqueries

 7.4.3. Predicate macros

 7.4.4. Dynamically created predicate macros

 7.5. Summary

 Chapter 8. An example batch layer: Architecture and algorithms

 8.1. Design of the SuperWebAnalytics.com batch layer

 8.1.1. Supported queries

 8.1.2. Batch views

 8.2. Workflow overview

 8.3. Ingesting new data

 8.4. URL normalization

 8.5. User-identifier normalization

 8.6. Deduplicate pageviews

 8.7. Computing batch views

 8.7.1. Pageviews over time

 8.7.2. Unique visitors over time

 8.7.3. Bounce-rate analysis

 8.8. Summary

 Chapter 9. An example batch layer: Implementation

 9.1. Starting point

 9.2. Preparing the workflow

 9.3. Ingesting new data

 9.4. URL normalization

 9.5. User-identifier normalization

 9.6. Deduplicate pageviews

 9.7. Computing batch views

 9.7.1. Pageviews over time

 9.7.2. Uniques over time

 9.7.3. Bounce-rate analysis

 9.8. Summary

 2. Serving layer

 Chapter 10. Serving layer

 10.1. Performance metrics for the serving layer

 10.2. The serving layer solution to the normalization/denormalization problem

 10.3. Requirements for a serving layer database

 10.4. Designing a serving layer for SuperWebAnalytics.com

 10.4.1. Pageviews over time

 10.4.2. Uniques over time

 10.4.3. Bounce-rate analysis

 10.5. Contrasting with a fully incremental solution

 10.5.1. Fully incremental solution to uniques over time

 10.5.2. Comparing to the Lambda Architecture solution

 10.6. Summary

 Chapter 11. Serving layer: Illustration

 11.1. Basics of ElephantDB

 11.1.1. View creation in ElephantDB

 11.1.2. View serving in ElephantDB

 11.1.3. Using ElephantDB

 11.2. Building the serving layer for SuperWebAnalytics.com

 11.2.1. Pageviews over time

 11.2.2. Uniques over time

 11.2.3. Bounce-rate analysis

 11.3. Summary

 3. Speed layer

 Chapter 12. Realtime views

 12.1. Computing realtime views

 12.2. Storing realtime views

 12.2.1. Eventual accuracy

 12.2.2. Amount of state stored in the speed layer

 12.3. Challenges of incremental computation

 12.3.1. Validity of the CAP theorem

 12.3.2. The complex interaction between the CAP theorem and incremental algorithms

 12.4. Asynchronous versus synchronous updates

 12.5. Expiring realtime views

 12.6. Summary

 Chapter 13. Realtime views: Illustration

 13.1. Cassandra’s data model

 13.2. Using Cassandra

 13.2.1. Advanced Cassandra

 13.3. Summary

 Chapter 14. Queuing and stream processing

 14.1. Queuing

 14.1.1. Single-consumer queue servers

 14.1.2. Multi-consumer queues

 14.2. Stream processing

 14.2.1. Queues and workers

 14.2.2. Queues-and-workers pitfalls

 14.3. Higher-level, one-at-a-time stream processing

 14.3.1. Storm model

 14.3.2. Guaranteeing message processing

 14.4. SuperWebAnalytics.com speed layer

 14.4.1. Topology structure

 14.5. Summary

 Chapter 15. Queuing and stream processing: Illustration

 15.1. Defining topologies with Apache Storm

 15.2. Apache Storm clusters and deployment

 15.3. Guaranteeing message processing

 15.4. Implementing the SuperWebAnalytics.com uniques-over-time speed layer

 15.5. Summary

 Chapter 16. Micro-batch stream processing

 16.1. Achieving exactly-once semantics

 16.1.1. Strongly ordered processing

 16.1.2. Micro-batch stream processing

 16.1.3. Micro-batch processing topologies

 16.2. Core concepts of micro-batch stream processing

 16.3. Extending pipe diagrams for micro-batch processing

 16.4. Finishing the speed layer for SuperWebAnalytics.com

 16.4.1. Pageviews over time

 16.4.2. Bounce-rate analysis

 16.5. Another look at the bounce-rate-analysis example

 16.6. Summary

 Chapter 17. Micro-batch stream processing: Illustration

 17.1. Using Trident

 17.2. Finishing the SuperWebAnalytics.com speed layer

 17.2.1. Pageviews over time

 17.2.2. Bounce-rate analysis

 17.3. Fully fault-tolerant, in-memory, micro-batch processing

 17.4. Summary

 Chapter 18. Lambda Architecture in depth

 18.1. Defining data systems

 18.2. Batch and serving layers

 18.2.1. Incremental batch processing

 18.2.2. Measuring and optimizing batch layer resource usage

 18.3. Speed layer

 18.4. Query layer

 18.5. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 When I first entered the world of Big Data, it felt like the Wild West of software development. Many were abandoning the relational
 database and its familiar comforts for NoSQL databases with highly restricted data models designed to scale to thousands of
 machines. The number of NoSQL databases, many of them with only minor differences between them, became overwhelming. A new
 project called Hadoop began to make waves, promising the ability to do deep analyses on huge amounts of data. Making sense of how to use these
 new tools was bewildering.

 At the time, I was trying to handle the scaling problems we were faced with at the company at which I worked. The architecture
 was intimidatingly complex—a web of sharded relational databases, queues, workers, masters, and slaves. Corruption had worked
 its way into the databases, and special code existed in the application to handle the corruption. Slaves were always behind.
 I decided to explore alternative Big Data technologies to see if there was a better design for our data architecture.

 One experience from my early software-engineering career deeply shaped my view of how systems should be architected. A coworker
 of mine had spent a few weeks collecting data from the internet onto a shared filesystem. He was waiting to collect enough
 data so that he could perform an analysis on it. One day while doing some routine maintenance, I accidentally deleted all
 of my coworker’s data, setting him behind weeks on his project.

 I knew I had made a big mistake, but as a new software engineer I didn’t know what the consequences would be. Was I going
 to get fired for being so careless? I sent out an email to the team apologizing profusely—and to my great surprise, everyone
 was very sympathetic. I’ll never forget when a coworker came to my desk, patted my back, and said “Congratulations. You’re
 now a professional software engineer.”

 In his joking statement lay a deep unspoken truism in software development: we don’t know how to make perfect software. Bugs
 can and do get deployed to production. If the application can write to the database, a bug can write to the database as well.
 When I set about redesigning our data architecture, this experience profoundly affected me. I knew our new architecture not
 only had to be scalable, tolerant to machine failure, and easy to reason about—but tolerant of human mistakes as well.

 My experience re-architecting that system led me down a path that caused me to question everything I thought was true about
 databases and data management. I came up with an architecture based on immutable data and batch computation, and I was astonished
 by how much simpler the new system was compared to one based solely on incremental computation. Everything became easier,
 including operations, evolving the system to support new features, recovering from human mistakes, and doing performance optimization.
 The approach was so generic that it seemed like it could be used for any data system.

 Something confused me though. When I looked at the rest of the industry, I saw that hardly anyone was using similar techniques.
 Instead, daunting amounts of complexity were embraced in the use of architectures based on huge clusters of incrementally
 updated databases. So many of the complexities in those architectures were either completely avoided or greatly softened by
 the approach I had developed.

 Over the next few years, I expanded on the approach and formalized it into what I dubbed the Lambda Architecture. When working on a startup called BackType, our team of five built a social media analytics product that provided a diverse
 set of realtime analytics on over 100 TB of data. Our small team also managed deployment, operations, and monitoring of the
 system on a cluster of hundreds of machines. When we showed people our product, they were astonished that we were a team of
 only five people. They would often ask “How can so few people do so much?” My answer was simple: “It’s not what we’re doing,
 but what we’re not doing.” By using the Lambda Architecture, we avoided the complexities that plague traditional architectures.
 By avoiding those complexities, we became dramatically more productive.

 The Big Data movement has only magnified the complexities that have existed in data architectures for decades. Any architecture
 based primarily on large databases that are updated incrementally will suffer from these complexities, causing bugs, burdensome
 operations, and hampered productivity. Although SQL and NoSQL databases are often painted as opposites or as duals of each
 other, at a fundamental level they are really the same. They encourage this same architecture with its inevitable complexities.
 Complexity is a vicious beast, and it will bite you regardless of whether you acknowledge it or not.

 This book is the result of my desire to spread the knowledge of the Lambda Architecture and how it avoids the complexities
 of traditional architectures. It is the book I wish I had when I started working with Big Data. I hope you treat this book
 as a journey—a journey to challenge what you thought you knew about data systems, and to discover that working with Big Data
 can be elegant, simple, and fun.

 NATHAN MARZ

Acknowledgments

 This book would not have been possible without the help and support of so many individuals around the world. I must start
 with my parents, who instilled in me from a young age a love of learning and exploring the world around me. They always encouraged
 me in all my career pursuits.

 Likewise, my brother Iorav encouraged my intellectual interests from a young age. I still remember when he taught me Algebra
 while I was in elementary school. He was the one to introduce me to programming for the first time—he taught me Visual Basic
 as he was taking a class on it in high school. Those lessons sparked a passion for programming that led to my career.

 I am enormously grateful to Michael Montano and Christopher Golda, the founders of BackType. From the moment they brought
 me on as their first employee, I was given an extraordinary amount of freedom to make decisions. That freedom was essential
 for me to explore and exploit the Lambda Architecture to its fullest. They never questioned the value of open source and allowed
 me to open source our technology liberally. Getting deeply involved with open source has been one of the great privileges
 of my life.

 Many of my professors from my time as a student at Stanford deserve special thanks. Tim Roughgarden is the best teacher I’ve
 ever had—he radically improved my ability to rigorously analyze, deconstruct, and solve difficult problems. Taking as many
 classes as possible with him was one of the best decisions of my life. I also give thanks to Monica Lam for instilling within
 me an appreciation for the elegance of Datalog. Many years later I married Datalog with MapReduce to produce my first significant
 open source project, Cascalog.

 Chris Wensel was the first one to show me that processing data at scale could be elegant and performant. His Cascading library
 changed the way I looked at Big Data processing.

 None of my work would have been possible without the pioneers of the Big Data field. Special thanks to Jeffrey Dean and Sanjay
 Ghemawat for the original MapReduce paper, Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
 Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels for the original Dynamo paper, and Michael
 Cafarella and Doug Cutting for founding the Apache Hadoop project.

 Rich Hickey has been one of my biggest inspirations during my programming career. Clojure is the best language I have ever
 used, and I’ve become a better programmer having learned it. I appreciate its practicality and focus on simplicity. Rich’s
 philosophy on state and complexity in programming has influenced me deeply.

 When I started writing this book, I was not nearly the writer I am now. Renae Gregoire, one of my development editors at Manning,
 deserves special thanks for helping me improve as a writer. She drilled into me the importance of using examples to lead into
 general concepts, and she set off many light bulbs for me on how to effectively structure technical writing. The skills she
 taught me apply not only to writing technical books, but to blogging, giving talks, and communication in general. For gaining
 an important life skill, I am forever grateful.

 This book would not be nearly of the same quality without the efforts of my coauthor James Warren. He did a phenomenal job
 absorbing the theoretical concepts and finding even better ways to present the material. Much of the clarity of the book comes
 from his great communication skills.

 My publisher, Manning, was a pleasure to work with. They were patient with me and understood that finding the right way to
 write on such a big topic takes time. Through the whole process they were supportive and helpful, and they always gave me
 the resources I needed to be successful. Thanks to Marjan Bace and Michael Stephens for all the support, and to all the other
 staff for their help and guidance along the way.

 I try to learn as much as possible about writing from studying other writers. Bradford Cross, Clayton Christensen, Paul Graham,
 Carl Sagan, and Derek Sivers have been particularly influential.

 Finally, I can’t give enough thanks to the hundreds of people who reviewed, commented, and gave feedback on our book as it
 was being written. That feedback led us to revise, rewrite, and restructure numerous times until we found ways to present
 the material effectively. Special thanks to Aaron Colcord, Aaron Crow, Alex Holmes, Arun Jacob, Asif Jan, Ayon Sinha, Bill
 Graham, Charles Brophy, David Beckwith, Derrick Burns, Douglas Duncan, Hugo Garza, Jason Courcoux, Jonathan Esterhazy, Karl
 Kuntz, Kevin Martin, Leo Polovets, Mark Fisher, Massimo Ilario, Michael Fogus, Michael G. Noll, Patrick Dennis, Pedro Ferrera
 Bertran, Philipp Janert, Rodrigo Abreu, Rudy Bonefas, Sam Ritchie, Siva Kalagarla, Soren Macbeth, Timothy Chklovski, Walid
 Farid, and Zhenhua Guo.

 NATHAN MARZ

 I’m astounded when I consider everyone who contributed in some manner to this book. Unfortunately, I can’t provide an exhaustive
 list, but that doesn’t lessen my appreciation. Nonetheless, there are individuals to whom I wish to explicitly express my
 gratitude:

 	My wife, Wen-Ying Feng—for your love, encouragement and support, not only for this book but for everything we do together.

 	My parents, James and Gretta Warren—for your endless faith in me and the sacrifices you made to provide me with every opportunity.

 	My sister, Julia Warren-Ulanch—for setting a shining example so I could follow in your footsteps.

 	My professors and mentors, Ellen Toby and Sue Geller—for your willingness to answer my every question and for demonstrating
 the joy in sharing knowledge, not just acquiring it.

 	Chuck Lam—for saying “Hey, have you heard of this thing called Hadoop?” to me so many years ago.

 	My friends and colleagues at RockYou!, Storm8, and Bina—for the experiences we shared together and the opportunity to put
 theory into practice.

 	Marjan Bace, Michael Stephens, Jennifer Stout, Renae Gregoire, and the entire Manning editorial and publishing staff—for your
 guidance and patience in seeing this book to completion.

 	The reviewers and early readers of this book—for your comments and critiques that pushed us to clarify our words; the end
 result is so much better for it.

 Finally, I want to convey my greatest appreciation to Nathan for inviting me to come along on this journey. I was already
 a great admirer of your work before joining this venture, and working with you has only deepened my respect for your ideas
 and philosophy. It has been an honor and a privilege.

 JAMES WARREN

About this Book

 Services like social networks, web analytics, and intelligent e-commerce often need to manage data at a scale too big for
 a traditional database. Complexity increases with scale and demand, and handling Big Data is not as simple as just doubling
 down on your RDBMS or rolling out some trendy new technology. Fortunately, scalability and simplicity are not mutually exclusive—you
 just need to take a different approach. Big Data systems use many machines working in parallel to store and process data,
 which introduces fundamental challenges unfamiliar to most developers.

 Big Data teaches you to build these systems using an architecture that takes advantage of clustered hardware along with new tools
 designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to Big Data
 systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory
 of Big Data systems and how to implement them in practice.

 Big Data requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful,
 though not required. The goal of the book is to teach you how to think about data systems and how to break down difficult
 problems into simple solutions. We start from first principles and from those deduce the necessary properties for each component
 of an architecture.

Roadmap

 An overview of the 18 chapters in this book follows.

 Chapter 1 introduces the principles of data systems and gives an overview of the Lambda Architecture: a generalized approach to building
 any data system. Chapters 2 through 17 dive into all the pieces of the Lambda Architecture, with chapters alternating between theory and illustration chapters. Theory chapters demonstrate the concepts that hold true regardless of existing tools, while illustration chapters
 use real-world tools to demonstrate the concepts. Don’t let the names fool you, though—all chapters are highly example-driven.

 Chapters 2 through 9 focus on the batch layer of the Lambda Architecture. Here you will learn about modeling your master dataset, using batch processing to create arbitrary
 views of your data, and the trade-offs between incremental and batch processing.

 Chapters 10 and 11 focus on the serving layer, which provides low latency access to the views produced by the batch layer. Here you will learn about specialized databases
 that are only written to in bulk. You will discover that these databases are dramatically simpler than traditional databases,
 giving them excellent performance, operational, and robustness properties.

 Chapters 12 through 17 focus on the speed layer, which compensates for the batch layer’s high latency to provide up-to-date results for all queries. Here you will learn about
 NoSQL databases, stream processing, and managing the complexities of incremental computation.

 Chapter 18 uses your new-found knowledge to review the Lambda Architecture once more and fill in any remaining gaps. You’ll learn about
 incremental batch processing, variants of the basic Lambda Architecture, and how to get the most out of your resources.

Code downloads and conventions

 The source code for the book can be found at https://github.com/Big-Data-Manning. We have provided source code for the running example SuperWebAnalytics.com.

 Much of the source code is shown in numbered listings. These listings are meant to provide complete segments of code. Some
 listings are annotated to help highlight or explain certain parts of the code. In other places throughout the text, code fragments
 are used when necessary. Courier typeface is used to denote code for Java. In both the listings and fragments, we make use of a bold code font to help identify key parts of the code that are being explained in the text.

Author Online

 Purchase of Big Data includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. To access the forum and subscribe to it, point your web browser
 to www.manning.com/BigData. This Author Online (AO) page provides information on how to get on the forum once you’re registered, what kind of help is
 available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog among individual readers and between readers
 and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The AO forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book
 is in print.

About the cover illustration

 The figure on the cover of Big Data is captioned “Le Raccommodeur de Fiance,” which means a mender of clayware. His special talent was mending broken or chipped
 pots, plates, cups, and bowls, and he traveled through the countryside, visiting the towns and villages of France, plying
 his trade.

 The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume compendium of regional dress
 customs published in France. Each illustration is finely drawn and colored by hand. The rich variety of Maréchal’s collection
 reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other,
 people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived
 and what their trade or station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Chapter 1. A new paradigm for Big Data

 This chapter covers

 	Typical problems encountered when scaling a traditional database

 	Why NoSQL is not a panacea

 	Thinking about Big Data systems from first principles

 	Landscape of Big Data tools

 	Introducing SuperWebAnalytics.com

 In the past decade the amount of data being created has skyrocketed. More than 30,000 gigabytes of data are generated every second, and the rate of data creation is only accelerating.

 The data we deal with is diverse. Users create content like blog posts, tweets, social network interactions, and photos. Servers
 continuously log messages about what they’re doing. Scientists create detailed measurements of the world around us. The internet,
 the ultimate source of data, is almost incomprehensibly large.

 This astonishing growth in data has profoundly affected businesses. Traditional database systems, such as relational databases,
 have been pushed to the limit. In an increasing number of cases these systems are breaking under the pressures of “Big Data.” Traditional systems, and the data
 management techniques associated with them, have failed to scale to Big Data.

 To tackle the challenges of Big Data, a new breed of technologies has emerged. Many of these new technologies have been grouped
 under the term NoSQL. In some ways, these new technologies are more complex than traditional databases, and in other ways they’re simpler. These
 systems can scale to vastly larger sets of data, but using these technologies effectively requires a fundamentally new set
 of techniques. They aren’t one-size-fits-all solutions.

 Many of these Big Data systems were pioneered by Google, including distributed filesystems, the MapReduce computation framework,
 and distributed locking services. Another notable pioneer in the space was Amazon, which created an innovative distributed
 key/value store called Dynamo. The open source community responded in the years following with Hadoop, HBase, MongoDB, Cassandra,
 RabbitMQ, and countless other projects.

 This book is about complexity as much as it is about scalability. In order to meet the challenges of Big Data, we’ll rethink
 data systems from the ground up. You’ll discover that some of the most basic ways people manage data in traditional systems
 like relational database management systems (RDBMSs) are too complex for Big Data systems. The simpler, alternative approach
 is the new paradigm for Big Data that you’ll explore. We have dubbed this approach the Lambda Architecture.

 In this first chapter, you’ll explore the “Big Data problem” and why a new paradigm for Big Data is needed. You’ll see the
 perils of some of the traditional techniques for scaling and discover some deep flaws in the traditional way of building data
 systems. By starting from first principles of data systems, we’ll formulate a different way to build data systems that avoids
 the complexity of traditional techniques. You’ll take a look at how recent trends in technology encourage the use of new kinds
 of systems, and finally you’ll take a look at an example Big Data system that we’ll build throughout this book to illustrate
 the key concepts.

1.1. How this book is structured

 You should think of this book as primarily a theory book, focusing on how to approach building a solution to any Big Data
 problem. The principles you’ll learn hold true regardless of the tooling in the current landscape, and you can use these principles
 to rigorously choose what tools are appropriate for your application.

 This book is not a survey of database, computation, and other related technologies. Although you’ll learn how to use many
 of these tools throughout this book, such as Hadoop, Cassandra, Storm, and Thrift, the goal of this book is not to learn those
 tools as an end in themselves. Rather, the tools are a means of learning the underlying principles of architecting robust
 and scalable data systems. Doing an involved compare-and-contrast between the tools would not do you justice, as that just
 distracts from learning the underlying principles. Put another way, you’re going to learn how to fish, not just how to use
 a particular fishing rod.

 In that vein, we have structured the book into theory and illustration chapters. You can read just the theory chapters and gain a full understanding of how to build Big Data systems—but we think
 the process of mapping that theory onto specific tools in the illustration chapters will give you a richer, more nuanced understanding
 of the material.

 Don’t be fooled by the names though—the theory chapters are very much example-driven. The overarching example in the book—SuperWebAnalytics.com—is
 used in both the theory and illustration chapters. In the theory chapters you’ll see the algorithms, index designs, and architecture
 for SuperWebAnalytics.com. The illustration chapters will take those designs and map them onto functioning code with specific
 tools.

1.2. Scaling with a traditional database

 Let’s begin our exploration of Big Data by starting from where many developers start: hitting the limits of traditional database
 technologies.

 Suppose your boss asks you to build a simple web analytics application. The application should track the number of pageviews
 for any URL a customer wishes to track. The customer’s web page pings the application’s web server with its URL every time
 a pageview is received. Additionally, the application should be able to tell you at any point what the top 100 URLs are by
 number of pageviews.

 You start with a traditional relational schema for the pageviews that looks something like figure 1.1. Your back end consists of an RDBMS with a table of that schema and a web server. Whenever someone loads a web page being
 tracked by your application, the web page pings your web server with the pageview, and your web server increments the corresponding
 row in the database.

 Figure 1.1. Relational schema for simple analytics application

 	
 Column name

 	
 Type

 	id
 	integer

 	user_id
 	integer

 	url
 	varchar(255)

 	pageviews
 	bigint

 Let’s see what problems emerge as you evolve the application. As you’re about to see, you’ll run into problems with both scalability
 and complexity.

 1.2.1. Scaling with a queue

 The web analytics product is a huge success, and traffic to your application is growing like wildfire. Your company throws
 a big party, but in the middle of the celebration you start getting lots of emails from your monitoring system. They all say
 the same thing: “Timeout error on inserting to the database.”

 You look at the logs and the problem is obvious. The database can’t keep up with the load, so write requests to increment
 pageviews are timing out.

 You need to do something to fix the problem, and you need to do something quickly. You realize that it’s wasteful to only
 perform a single increment at a time to the database. It can be more efficient if you batch many increments in a single request.
 So you re-architect your back end to make this possible.

 Instead of having the web server hit the database directly, you insert a queue between the web server and the database. Whenever
 you receive a new pageview, that event is added to the queue. You then create a worker process that reads 100 events at a
 time off the queue, and batches them into a single database update. This is illustrated in figure 1.2.

 Figure 1.2. Batching updates with queue and worker

 [image:]

 This scheme works well, and it resolves the timeout issues you were getting. It even has the added bonus that if the database
 ever gets overloaded again, the queue will just get bigger instead of timing out to the web server and potentially losing
 data.

 1.2.2. Scaling by sharding the database

 Unfortunately, adding a queue and doing batch updates was only a band-aid for the scaling problem. Your application continues
 to get more and more popular, and again the database gets overloaded. Your worker can’t keep up with the writes, so you try
 adding more workers to parallelize the updates. Unfortunately that doesn’t help; the database is clearly the bottleneck.

 You do some Google searches for how to scale a write-heavy relational database. You find that the best approach is to use
 multiple database servers and spread the table across all the servers. Each server will have a subset of the data for the
 table. This is known as horizontal partitioning or sharding. This technique spreads the write load across multiple machines.

 The sharding technique you use is to choose the shard for each key by taking the hash of the key modded by the number of shards.
 Mapping keys to shards using a hash function causes the keys to be uniformly distributed across the shards. You write a script
 to map over all the rows in your single database instance, and split the data into four shards. It takes a while to run, so
 you turn off the worker that increments pageviews to let it finish. Otherwise you’d lose increments during the transition.

 Finally, all of your application code needs to know how to find the shard for each key. So you wrap a library around your
 database-handling code that reads the number of shards from a configuration file, and you redeploy all of your application
 code. You have to modify your top-100-URLs query to get the top 100 URLs from each shard and merge those together for the
 global top 100 URLs.

 As the application gets more and more popular, you keep having to reshard the database into more shards to keep up with the
 write load. Each time gets more and more painful because there’s so much more work to coordinate. And you can’t just run one
 script to do the resharding, as that would be too slow. You have to do all the resharding in parallel and manage many active
 worker scripts at once. You forget to update the application code with the new number of shards, and it causes many of the
 increments to be written to the wrong shards. So you have to write a one-off script to manually go through the data and move
 whatever was misplaced.

 1.2.3. Fault-tolerance issues begin

 Eventually you have so many shards that it becomes a not-infrequent occurrence for the disk on one of the database machines
 to go bad. That portion of the data is unavailable while that machine is down. You do a couple of things to address this:

 	You update your queue/worker system to put increments for unavailable shards on a separate “pending” queue that you attempt
 to flush once every five minutes.

 	You use the database’s replication capabilities to add a slave to each shard so you have a backup in case the master goes
 down. You don’t write to the slave, but at least customers can still view the stats in the application.

 You think to yourself, “In the early days I spent my time building new features for customers. Now it seems I’m spending all
 my time just dealing with problems reading and writing the data.”

 1.2.4. Corruption issues

 While working on the queue/worker code, you accidentally deploy a bug to production that increments the number of pageviews
 by two, instead of by one, for every URL. You don’t notice until 24 hours later, but by then the damage is done. Your weekly
 backups don’t help because there’s no way of knowing which data got corrupted. After all this work trying to make your system
 scalable and tolerant of machine failures, your system has no resilience to a human making a mistake. And if there’s one guarantee
 in software, it’s that bugs inevitably make it to production, no matter how hard you try to prevent it.

 1.2.5. What went wrong?

 As the simple web analytics application evolved, the system continued to get more and more complex: queues, shards, replicas,
 resharding scripts, and so on. Developing applications on the data requires a lot more than just knowing the database schema.
 Your code needs to know how to talk to the right shards, and if you make a mistake, there’s nothing preventing you from reading
 from or writing to the wrong shard.

 One problem is that your database is not self-aware of its distributed nature, so it can’t help you deal with shards, replication,
 and distributed queries. All that complexity got pushed to you both in operating the database and developing the application
 code.

OEBPS/common01.jpg

OEBPS/01fig02.jpg

OEBPS/logo.jpg

OEBPS/common02.jpg

OEBPS/cover.jpg

