

 [image: ,]

 Microservices Security in Action

 Prabath Siriwardena and Nuwan Dias

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical development editor:

 	
 Jonathan Thoms and Joshua White

 	
 Review editor:

 	
 Ivan Martinović

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Sharon Wilkey

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Thorsten P. Weber

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617295959

 dedication

 To Dr. Sanjiva Weerawarana, our mentor for more than a decade and for many more years to come!

brief contents

 Part 1. Overview

 1 Microservices security landscape

 2 First steps in securing microservices

 Part 2. Edge security

 3 Securing north/south traffic with an API gateway

 4 Accessing a secured microservice via a single-page application

 5 Engaging throttling, monitoring, and access control

 Part 3. Service-to-service communications

 6 Securing east/west traffic with certificates

 7 Securing east/west traffic with JWT

 8 Securing east/west traffic over gRPC

 9 Securing reactive microservices

 Part 4. Secure deployment

 10 Conquering container security with Docker

 11 Securing microservices on Kubernetes

 12 Securing microservices with Istio service mesh

 Part 5. Secure development

 13 Secure coding practices and automation

 Appendixes:

 Appendix A. OAuth 2.0 and OpenID Connect

 Appendix B. JSON Web Token

 Appendix C. Single-page application architecture

 Appendix D. Observability in a microservices deployment

 Appendix E. Docker fundamentals

 Appendix F. Open Policy Agent

 Appendix G. Creating a certificate authority and related keys with OpenSSL

 Appendix H. Secure Production Identity Framework for Everyone

 Appendix I. gRPC fundamentals

 Appendix J. Kubernetes fundamentals

 Appendix K. Service mesh and Istio fundamentals

contents

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1. Overview

 1 Microservices security landscape

 How security works in a monolithic application

 Challenges of securing microservices

 The broader the attack surface, the higher the risk of attack

 Distributed security screening may result in poor performance

 Deployment complexities make bootstrapping trust among microservices a nightmare

 Requests spanning multiple microservices are harder to trace

 Immutability of containers challenges how you maintain service credentials and access-control policies

 The distributed nature of microservices makes sharing user context harder

 Polyglot architecture demands more security expertise on each development team

 Key security fundamentals

 Authentication protects your system against spoofing

 Integrity protects your system from data tampering

 Nonrepudiation: Do it once, and you own it forever

 Confidentiality protects your systems from unintended information disclosure

 Availability: Keep the system running, no matter what

 Authorization: Nothing more than you’re supposed to do

 Edge security

 The role of an API gateway in a microservices deployment

 Authentication at the edge

 Authorization at the edge

 Passing client/end-user context to upstream microservices

 Securing service-to-service communication

 Service-to-service authentication

 Service-level authorization

 Propagating user context among microservices

 Crossing trust boundaries

 2 First steps in securing microservices

 Building your first microservice

 Downloading and installing the required software

 Clone samples repository

 Compiling the Order Processing microservice

 Accessing the Order Processing microservice

 What is inside the source code directory?

 Understanding the source code of the microservice

 Setting up an OAuth 2.0 server

 The interactions with an authorization server

 Running the OAuth 2.0 authorization server

 Getting an access token from the OAuth 2.0 authorization server

 Understanding the access token response

 Securing a microservice with OAuth 2.0

 Security based on OAuth 2.0

 Running the sample

 Invoking a secured microservice from a client application

 Performing service-level authorization with OAuth 2.0 scopes

 Obtaining a scoped access token from the authorization server

 Protecting access to a microservice with OAuth 2.0 scopes

 Part 2. Edge security

 3 Securing north/south traffic with an API gateway

 The need for an API gateway in a microservices deployment

 Decoupling security from the microservice

 The inherent complexities of microservice deployments make them harder to consume

 The rawness of microservices does not make them ideal for external exposure

 Security at the edge

 Understanding the consumer landscape of your microservices

 Delegating access

 Why not basic authentication to secure APIs?

 Why not mutual TLS to secure APIs?

 Why OAuth 2.0?

 Setting up an API gateway with Zuul

 Compiling and running the Order Processing microservice

 Compiling and running the Zuul proxy

 Enforcing OAuth 2.0-based security at the Zuul gateway

 Securing communication between Zuul and the microservice

 Preventing access through the firewall

 Securing the communication between the API gateway and microservices by using mutual TLS

 4 Accessing a secured microservice via a single-page application

 Running a single-page application with Angular

 Building and running an Angular application from the source code

 Looking behind the scenes of a single-page application

 Setting up cross-origin resource sharing

 Using the same-origin policy

 Using cross-origin resource sharing

 Inspecting the source that allows cross-origin requests

 Proxying the resource server with an API gateway

 Securing a SPA with OpenID Connect

 Understanding the OpenID Connect login flow

 Inspecting the code of the applications

 Using federated authentication

 Multiple trust domains

 Building trust between domains

 5 Engaging throttling, monitoring, and access control

 Throttling at the API gateway with Zuul

 Quota-based throttling for applications

 Fair usage policy for users

 Applying quota-based throttling to the Order Processing microservice

 Maximum handling capacity of a microservice

 Operation-level throttling

 Throttling the OAuth 2.0 token and authorize endpoints

 Privilege-based throttling

 Monitoring and analytics with Prometheus and Grafana

 Monitoring the Order Processing microservice

 Behind the scenes of using Prometheus for monitoring

 Enforcing access-control policies at the API gateway with Open Policy Agent

 Running OPA as a Docker container

 Feeding the OPA engine with data

 Feeding the OPA engine with access-control policies

 Evaluating OPA policies 132Next steps in using OPA

 Part 3. Service-to-service communications

 6 Securing east/west traffic with certificates

 Why use mTLS?

 Building trust between a client and a server with a certificate authority

 Mutual TLS helps the client and the server to identify each other

 HTTPS is HTTP over TLS

 Creating certificates to secure access to microservices

 Creating a certificate authority

 Generating keys for the Order Processing microservice

 Generating keys for the Inventory microservice

 Using a single script to generate all the keys

 Securing microservices with TLS

 Running the Order Processing microservice over TLS

 Running the Inventory microservice over TLS

 Securing communications between two microservices with TLS

 Engaging mTLS

 Challenges in key management

 Key provisioning and bootstrapping trust

 Certificate revocation

 Key rotation

 Monitoring key usage

 7 Securing east/west traffic with JWT

 Use cases for securing microservices with JWT

 Sharing user context between microservices with a shared JWT

 Sharing user context with a new JWT for each service-to-service interaction

 Sharing user context between microservices in different trust domains

 Self-issued JWTs

 Nested JWTs

 Setting up an STS to issue a JWT

 Securing microservices with JWT

 Using JWT as a data source for access control

 Securing service-to-service communications with JWT

 Exchanging a JWT for a new one with a new audience

 8 Securing east/west traffic over gRPC

 Service-to-service communications over gRPC

 Securing gRPC service-to-service communications with mTLS

 Securing gRPC service-to-service communications with JWT

 9 Securing reactive microservices

 Why reactive microservices?

 Setting up Kafka as a message broker

 Developing a microservice to push events to a Kafka topic

 Developing a microservice to read events from a Kafka topic

 Using TLS to protect data in transit

 Creating and signing the TLS keys and certificates for Kafka

 Configuring TLS on the Kafka server

 Configuring TLS on the microservices

 Using mTLS for authentication

 Controlling access to Kafka topics with ACLs

 Enabling ACLs on Kafka and identifying the clients

 Defining ACLs on Kafka

 Setting up NATS as a message broker

 Part 4. Secure deployment

 10 Conquering container security with Docker

 Running the security token service on Docker

 Managing secrets in a Docker container

 Externalizing secrets from Docker images

 Passing secrets as environment variables

 Managing secrets in a Docker production deployment

 Using Docker Content Trust to sign and verify Docker images

 The Update Framework

 Docker Content Trust

 Generating keys

 Signing with DCT

 Signature verification with DCT

 Types of keys used in DCT

 How DCT protects the client application from replay attacks

 Running the Order Processing microservice on Docker

 Running containers with limited privileges

 Running a container with a nonroot user

 Dropping capabilities from the root user

 Running Docker Bench for security

 Securing access to the Docker host

 Enabling remote access to the Docker daemon

 Enabling mTLS at the NGINX server to secure access to Docker APIs

 Considering security beyond containers

 11 Securing microservices on Kubernetes

 Running an STS on Kubernetes

 Defining a Kubernetes Deployment for the STS in YAML

 Creating the STS Deployment in Kubernetes

 Troubleshooting the Deployment

 Exposing the STS outside the Kubernetes cluster

 Managing secrets in a Kubernetes environment

 Using ConfigMap to externalize configurations in Kubernetes

 Defining a ConfigMap for application.properties file

 Defining ConfigMaps for keystore.jks and jwt.jks files

 Defining a ConfigMap for keystore credentials

 Creating ConfigMaps by using the kubectl client

 Consuming ConfigMaps from a Kubernetes Deployment

 Loading keystores with an init container

 Using Kubernetes Secrets

 Exploring the default token secret in every container

 Updating the STS to use Secrets

 Understanding how Kubernetes stores Secrets

 Running the Order Processing microservice in Kubernetes

 Creating ConfigMaps/Secrets for the Order Processing microservice

 Creating a Deployment for the Order Processing microservice

 Creating a Service for the Order Processing microservice

 Testing the end-to-end flow

 Running the Inventory microservice in Kubernetes

 Using Kubernetes service accounts

 Creating a service account and associating it with a Pod

 Benefits of running a Pod under a custom service account

 Using role-based access control in Kubernetes

 Talking to the Kubernetes API server from the STS

 Associating a service account with a ClusterRole

 12 Securing microservices with Istio service mesh

 Setting up the Kubernetes deployment

 Enabling Istio autoinjection

 Clean up any previous work

 Deploying microservices

 Redeploying Order Processing and STS as NodePort Services

 Testing end-to-end flow

 Enabling TLS termination at the Istio Ingress gateway

 Deploying TLS certificates to the Istio Ingress gateway

 Deploying VirtualServices

 Defining a permissive authentication policy

 Testing end-to-end flow

 Securing service-to-service communications with mTLS

 Securing service-to-service communications with JWT

 Enforcing JWT authentication

 Testing end-to-end flow with JWT authentication

 Peer authentication and request authentication

 How to use JWT in service-to-service communications

 A closer look at JSON Web Key

 Enforcing authorization

 A closer look at the JWT

 Enforcing role-based access control

 Testing end-to-end flow with RBAC

 Improvements to role-based access control since Istio 1.4.0

 Managing keys in Istio

 Key provisioning and rotation via volume mounts

 Limitations in key provisioning and rotation via volume mounts

 Key provisioning and rotation with SDS

 Part 5. Secure development

 13 Secure coding practices and automation

 OWASP API security top 10

 Broken object-level authorization

 Broken authentication

 Excessive data exposure

 Lack of resources and rate limiting

 Broken function-level authorization

 Mass assignment

 Security misconfiguration

 Injection

 Improper asset management

 Insufficient logging and monitoring

 Running static code analysis

 Integrating security testing with Jenkins

 Setting up and running Jenkins

 Setting up a build pipeline with Jenkins

 Running dynamic analysis with OWASP ZAP

 Passive scanning vs. active scanning

 Performing penetration tests with ZAP

 Appendixes

 Appendix A. OAuth 2.0 and OpenID Connect

 Appendix B. JSON Web Token

 Appendix C. Single-page application architecture

 Appendix D. Observability in a microservices deployment

 Appendix E. Docker fundamentals

 Appendix F. Open Policy Agent

 Appendix G. Creating a certificate authority and related keys with OpenSSL

 Appendix H. Secure Production Identity Framework for Everyone

 Appendix I. gRPC fundamentals

 Appendix J. Kubernetes fundamentals

 Appendix K. Service mesh and Istio fundamentals

 index

front matter

 preface

 While working at WSO2 for more than a decade, we’ve seen how the integration domain evolved over time from SOAP-based services to JSON/RESTful services and then to microservices. We spent most of our early days at WSO2 contributing to the Apache Axis2 project, which was a popular SOAP engine in those days, and to the Apache Rampart project, which implements many Organization for the Advancement of Structured Information Standards (OASIS) standards for web services security. Even though SOAP was quite promising in those days, it started to fade rapidly over time, and clearly JSON/RESTful services had won. Most of the microservice implementations we see today follow RESTful design principles.

 In the last two to three years, we’ve seen a genuine interest from many companies we’ve worked with to move into microservices architecture, and projects starting from scratch are adopting microservices principles. Most of the early adopters of microservices just wanted to get things done, and worried mostly about implementing functional requirements. They didn’t worry too much about security, although they should have. In many cases, securing microservices would mean securing the interactions among microservices with Transport Layer Security (TLS), and may be, for some, enforcing mutual TLS for service-to-service authentication. But none of them are quite adequate. There are two main reasons many didn’t worry much about security: complexity and awareness.

 Some time back, we found that most tools for securing microservices were not easy to use or couldn’t address the challenges specific to microservices deployments. This complexity was a barrier to securing microservices. At the same time, people who didn’t put much effort into security weren’t fully aware of the risks. We started hearing these stories from many of our customers as well as from the extended open source community we work with. That motivated us to write this book on securing microservices. Bringing an idea from inception to reality takes considerable time and effort. We lived with this idea of writing a book for more than two years until Manning reached out to us. During that period, with the increased adoption of microservices, the infrastructure around microservices security also evolved.

 Writing a book about a rapidly evolving domain is bit of a challenge; you never know when your book will be obsolete. After discussing this challenge with the publisher, we decided to put more weight on principles and patterns, and use tools just to demonstrate how to apply those principles and patterns in practice. This was our ground rule in picking up the technology stack for the book. We use Spring Boot / Java to develop all the samples, though we don’t expect you to know either Java or Spring Boot in detail. If you have development experience in any programming language, you should be able to follow all the samples in the book with no difficulty.

 Security itself is a larger domain. Securing microservices can mean different things to different people, based on their experiences and expectations. This fact was highlighted by one of the reviewers of the book, who comes from a security testing background. In our book, we wanted to focus on managing access to microservices. In other words, we wanted to focus on securing access to microservices with authentication and authorization. So, the book doesn’t talk about protecting microservices against different types of attacks, such as SQL injection, cross-site scripting (XSS), cross-site request forgery, and so on.

 After a marathon effort that spanned slightly more than two years, we are glad to see that our book on microservices security is out. We are also excited that this is the very first book on securing microservices. We hope you will enjoy reading it!

acknowledgments

 This book would not have been possible without the support of many amazing people:

 	
Brian Sawyer, senior acquisitions editor at Manning, reached out to us and helped us structure our book proposal.

 	
Marina Michaels, development editor at Manning, was very patient and tolerant of us throughout the publishing process and provided invaluable advice during the writing process.

 	
To the rest of the staff at Manning: Deirdre Hiam, the project editor; Sharon Wilkey, the copyeditor; Keri Hales, the proofreader; and Ivan Martinovic´ ,the review editor.

 	
All the Manning Early Access Program (MEAP) subscribers of the book.

 	
Thorsten P. Weber, technical proofreader, who helped us review the code to make sure all the code samples work as expected.

 	
Tim Hinrichs, one of the creators of the Open Policy Agent (OPA) project, and Andrew Jessup, one of the creators of the SPIFFE project, who helped us by reviewing the appendices on OPA and SPIFFE.

 	
Sanjiva Weerawarana, the founder and CEO of WSO2, and Paul Fremantle, the CTO of WSO2, who have constantly mentored us for many years.

 	
To all the reviewers: Andrew Bovill, Björn Nordblom, Bruno Vernay, Eros Pedrini, Evgeny Shmarnev, Gerd Koenig, Gustavo Gomes, Harinath Mallepally, Joel Holmes, John Guthrie, Jonas Medina, Jonathan Levine, Jorge Ezequiel Bo, Leonardo Gomes da Silva, Lukáš Hozda, Massimo Siani, Matthew Rudy Jacobs, Mostafa Siraj, Philip Taffet, Raushan Jha, Salvatore Campagna, Simeon Leyzerzon, Srihari Sridharan, Stephan Pirnbaum, Thilo Käsemann, Tim van Deurzen, Ubaldo Pescatore, Yurii Bodarev--your suggestions helped make this a better book.

 Prabath Siriwardena: My wife, Pavithra, and my little daughter, Dinadi, supported me throughout the writing process. Thank you very much, Pavithra and Dinadi. My parents and my sister are with me all the time. I am grateful to them for everything they have done for me. And also, my wife’s parents--they were amazingly helpful.

 Nuwan Dias: My family, including my wife, Kasun, and son, Jason. I would not have been able to make the effort required to contribute to this book if not for their consistent support and patience throughout. My parents and in-laws are always a strength to me and back me up in everything I do.

about this book

 Microservices Security in Action teaches you how to secure your microservices applications code and infrastructure. After a straightforward introduction to the challenges of microservices security, you’ll learn fundamentals needed to secure both the application perimeter and service-to-service communications. Following a hands-on example, you’ll explore how to deploy and secure microservices behind an API gateway as well as how to access microservices via a single-page application (SPA).

 Along the way, the book highlights important concepts including throttling, analytics gathering, access control at the API gateway, and microservice-to-microservice communications. You’ll also discover how to securely deploy microservices by using state-of-the-art technologies, including Kubernetes, Docker, and the Istio service mesh.

 Lots of hands-on exercises secure your learning as you go, and this straightforward guide wraps up with a security process review and best practices. When you’re finished reading, you’ll be planning, designing, and implementing microservices applications with the priceless confidence that comes with knowing they’re secure!

Who should read this book

 Microservices Security in Action is for developers who are well versed in microservices design principles and have a basic familiarity with Java. Even if you are not a Java developer, but are familiar with any object-oriented programming language such as C++ or C#, and understand basic programming constructs well, you’ll still get much out of this book. While some documents and blog posts exist online, this book brings together everything in a clear, easy-to-follow format that will benefit anyone wanting to get a thorough understanding of securing microservices.

How this book is organized: A roadmap

 The book has five sections and 13 chapters. Part 1 takes you through the fundamentals in securing microservices:

 	
Chapter 1 teaches you why securing microservices is challenging, and takes you through the key principles in securing a microservices deployment.

 	
Chapter 2 teaches you how to build your first microservice in Spring Boot and secure it with OAuth 2.0. You will also learn how to set up an OAuth 2.0 token issuer.

 Part 2 takes you through securing a microservice at the edge (or entry point) in a typical microservices deployment:

 	
Chapter 3 takes you through the consumer landscape of your microservices and teaches you how to deploy a Spring Boot microservice behind the Zuul API gateway. You will also learn how to enforce OAuth 2.0-based security at the Zuul API gateway.

 	
Chapter 4 teaches you how to develop a single-page application (SPA) with Angular. You will also learn how to secure a SPA with OpenID Connect.

 	
Chapter 5 teaches you how to extend the use case you built in chapter 4 by engaging throttling, monitoring, and access control at the Zuul API gateway.

 Part 3 takes you through the process of securing interactions among microservices once a request from a client application passes through the security at the edge and enters into your microservices deployment:

 	
Chapter 6 teaches you how to secure communications among microservices that take place over HTTP, with mutual Transport Layer Security (mTLS).

 	
In chapter 7, you learn how to share contextual data (for example, the end user context) among microservices by using JSON Web Token (JWT).

 	
Chapter 8 teaches you how to secure communications among microservices that take place over gRPC, with mTLS and JWT.

 	
Chapter 9 teaches you how to secure reactive microservices. It also teaches you how to set up Kafka as a message broker, and how to enforce access-control policies for Kafka topics.

 Part 4 takes you through deploying and securing microservices in a containerized environment:

 	
Chapter 10 teaches you how to deploy your microservices in Docker and to secure service-to-service interactions with mTLS and JWT. You also learn some of the built-in security features related to Docker.

 	
Chapter 11 teaches you how to deploy your microservices as Docker containers in Kubernetes and to secure service-to-service communications with JWT over mTLS.

 	
Chapter 12 teaches you how to offload the security processing overhead from your microservices by using the Istio service mesh.

 Part 5 takes you through security testing in the development process:

 	
Chapter 13 teaches you how to automate security testing of your microservices with SonarQube, Jenkins, and OWASP ZAP.

 In general, you should be sure to read the first two chapters so that you have the right mindset to take on the challenges of securing microservices and that you’ve gotten your feet wet and are ready to build more complex security patterns, which the book teaches you. The appendices provide information on OAuth 2.0, JWT, gRPC, Docker, Kubernetes, Istio, Open Policy Agent (OPA), and SPIFFE. This information supplements the chapters.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (\). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations highlight important concepts and significant lines of code in many of the listings.

 Source code for the examples in this book is available for download from the publisher’s website at www.manning.com/books/microservices-security-in-action.

liveBook discussion forum

 Purchase of Microservices Security in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/books/ microservices-security-in-action. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 Need additional help?

 	
You can ask any questions related to the content of this book from the Microservices Security Slack channel: https://bit.ly/microservices-security.

 	
The OAuth IETF working group is a good place to ask any questions on OAuth 2.0 and related standards. You can subscribe to the OAuth IETF working group mailing list with the information available at https://datatracker.ietf.org/wg /oauth/about.

 	
The JOSE IETF working group is a good place to ask any questions on JSON Web Token (JWT) and the related standards. You can subscribe to the JOSE IETF working group mailing list with the information available at https:// datatracker.ietf.org/wg/jose/about.

 	
You can ask any questions related to Kubernetes security from the Slack channel: https://slack.k8s.io/.

 	
You can ask any questions related to the Open Policy Agent (OPA) project from the Slack channel: https://slack.openpolicyagent.org/.

 	
You can ask any questions related to the SPIFFE project from the Slack channel: https://slack.spiffe.io/.

 	
To get updates on the conference/meetup talks the authors of this book do regularly, you can subscribe to the YouTube channel: http://vlog.facilelogin.com/.

about the authors

 Prabath Siriwardena is the vice president of security architecture at WSO2, and has been working in the identity management and security domain since 2007.

 Nuwan Dias is the director of API architecture at WSO2 and has worked in the software industry since 2012, most of which he has spent focusing on the API management domain.

about the cover illustration

 The figure on the cover of Microservices Security in Action is captioned “Homme Islandois,” or a man from Iceland. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1. Overview

 Microservices are no longer a novelty. We’re seeing large-scale microservices deployments with thousands of services. But whether we have one or two services or thousands, security is a top priority. This part of the book takes you through the fundamentals in securing microservices.

 Chapter 1 teaches you why securing microservices is challenging, and takes you through the key principles in securing a microservices deployment.

 Chapter 2 teaches you how to build your first microservice in Spring Boot and secure it with OAuth 2.0. You will also learn how to set up an OAuth 2.0 token issuer.

 When you’re finished with these two chapters, you’ll have the right mindset to take on the challenges of securing microservices. After getting your feet wet in this part of the book, you’ll be ready to build more complex security patterns (which we teach you in the rest of the book) on top of your first microservice.

1 Microservices security landscape

 This chapter covers

 	
Why microservices security is challenging

 	
Principles and key elements of a microservices security design

 	
Edge security and the role of an API gateway

 	
Patterns and practices in securing service-to-service communications

 Fail fast, fail often is a mantra in Silicon Valley. Not everyone agrees, but we love it! It’s an invitation to experiment with new things, accept failures, fix problems, and try again. Not everything in ink looks pretty in practice. Fail fast, fail often is only hype unless the organizational leadership, the culture, and the technology are present and thriving.

 We find microservices to be a key enabler for fail fast, fail often. Microservices architecture has gone beyond technology and architectural principles to become a culture. Netflix, Amazon, Lyft, Uber, and eBay are the front-runners in building that culture. Neither the architecture nor the technology behind microservices--but the discipline practiced in an organizational culture--lets your team build stable products, deploy them in a production environment with less hassle, and introduce frequent changes with no negative impact on the overall system.

 Speed to production and evolvability are the two key outcomes of microservices architecture. International Data Corporation (IDC) has predicted that by 2022, 90% of all apps will feature microservices architectures that improve the ability to design, debug, update, and leverage third-party code.1

 We assume that you’re well versed in microservices design principles, applications, and benefits. If you’re new to microservices and have never been (or are only slightly) involved in development projects, we recommend that you read a book on microservices first, such as Spring Microservices in Action by John Carnell (Manning, 2017). Microservices Patterns by Chris Richardson (Manning, 2018) and Microservices in Action by Morgan Bruce and Paulo A. Pereira (Manning, 2018) are two other good books on the subject. Microservices for the Enterprise: Designing, Developing, and Deploying by Prabath Siriwardena (a coauthor of this book) and Kasun Indrasiri (Apress, 2018) is another beginner’s book on microservices.

 In this book, we focus on microservices security. When you make the decision to go ahead with microservices architecture to build all your critical business operations, security is of topmost importance. A security breach could result in many unpleasant outcomes, from losing customer confidence to bankruptcy. Emphasis on security today is higher than at any time in the past. Microservices are becoming key enablers of digital transformation, so microservices security must be consciously planned, designed, and implemented.

 This book introduces you to the key fundamentals, security principles, and best practices involved in securing microservices. We’ll be using industry-leading open source tools along with Java code samples developed with Spring Boot for demonstrations. You may pick better, competitive tools later in your production environment, of course.

 This book will give you a good understanding of how to implement microservices security concepts in real life, even if you’re not a Java developer. If you’re familiar with any object-oriented programming language (such as C++ or C#) and understand basic programming constructs well, you’ll still enjoy reading the book, even though its samples are in Java. Then again, security is a broader topic. It’s a discipline with multiple subdisciplines. In this book, we mostly focus on application developers and architects who worry about managing access to their microservices. Access management itself is another broader subdiscipline of the larger security discipline. We do not focus on pen testing, developing threat models, firewalls, system-level configurations to harden security, and so on.

1.1 How security works in a monolithic application

 A monolithic application has few entry points. An entry point for an application is analogous to a door in a building. Just as a door lets you into a building (possibly after security screening), an application entry point lets your requests in.

 Think about a web application (see figure 1.1) running on the default HTTP port 80 on a server carrying the IP address 192.168.0.1. Port 80 on server 192.168.0.1 is an entry point to that web application. If the same web application accepts HTTPS requests on the same server on port 443, you have another entry point. When you have more entry points, you have more places to worry about securing. (You need to deploy more soldiers when you have a longer border to protect, for example, or to build a wall that closes all entry points.) The more entry points to an application, the broader the attack surface is.

 Most monolithic applications have only a couple of entry points. Not every component of a monolithic application is exposed to the outside world and accepts requests directly.

 In a typical Java Platform, Enterprise Edition (Java EE) web application such as the one in figure 1.1, all requests are scanned for security at the application level by a servlet filter.2 This security screening checks whether the current request is associated with a valid web session and, if not, challenges the requesting party to authenticate first.

 [image:]

 Figure 1.1 A monolithic application typically has few entry points. Here, there are two: ports 80 and 443.

 Further access-control checks may validate that the requesting party has the necessary permissions to do what they intend to do. The servlet filter (the interceptor) carries out such checks centrally to make sure that only legitimate requests are dispatched to the corresponding components. Internal components need not worry about the legitimacy of the requests; they can rightly assume that if a request lands there, all the security checks have already been done.

 In case those components need to know who the requesting party (or user) is or to find other information related to the requesting party, such information can be retri-eved from the web session, which is shared among all the components (see figure 1.2). The servlet filter injects the requesting-party information into the web session during the initial screening process, after completing authentication and authorization.

 Once a request is inside the application layer, you don’t need to worry about security when one component talks to another. When the Order Processing component talks to the Inventory component, for example, you don’t necessarily need to enforce any additional security checks (but, of course, you can if you need to enforce more granular access-control checks at the component level). These are in-process calls and in most cases are hard for a third party to intercept.

 [image:]

 Figure 1.2 Multiple entry points (ports 80 and 443) are funneled to a single servlet filter. The filter acts as a centralized policy enforcement point.

 In most monolithic applications, security is enforced centrally, and individual components need not worry about carrying out additional checks unless there is a desperate requirement to do so. As a result, the security model of a monolithic application is much more straightforward than that of an application built around microservices architecture.

1.2 Challenges of securing microservices

 Mostly because of the inherent nature of microservices architecture, security is challenging. In this section, we discuss the challenges of securing microservices without discussing in detail how to overcome them. In the rest of the book, we discuss multiple ways to address these challenges.

1.2.1 The broader the attack surface, the higher the risk of attack

 In a monolithic application, communication among internal components happens within a single process--in a Java application, for example, within the same Java Virtual Machine (JVM). Under microservices architecture, those internal components are designed as separate, independent microservices, and those in-process calls among internal components become remote calls. Also, each microservice now independently accepts requests or has its own entry points (see figure 1.3).

 [image:]

 Figure 1.3 As opposed to a monolithic application with few entry points, a microservices-based application has many entry points that all must be secured.

 Instead of a couple of entry points, as in a monolithic application, now you have a large number of entry points. As the number of entry points to the system increases, the attack surface broadens too. This situation is one of the fundamental challenges in building a security design for microservices. Each entry point to each microservice must be protected with equal strength. The security of a system is no stronger than the strength of its weakest link.

1.2.2 Distributed security screening may result in poor performance

 Unlike in a monolithic application, each microservice in a microservices deployment has to carry out independent security screening. From the viewpoint of a monolithic application, in which the security screening is done once and the request is dispatched to the corresponding component, having multiple security screenings at the entry point of each microservice seems redundant. Also, while validating requests at each microservice, you may need to connect to a remote security token service (STS). These repetitive, distributed security checks and remote connections could contribute heavily to latency and considerably degrade the performance of the system.

 Some do work around this by simply trusting the network and avoiding security checks at each and every microservice. Over time, trust-the-network has become an antipattern, and the industry is moving toward zero-trust networking principles. With zero-trust networking principles, you carry out security much closer to each resource in your network. Any microservices security design must take overall performance into consideration and must take precautions to address any drawbacks.

1.2.3 Deployment complexities make bootstrapping trust among microservices a nightmare

 Security aside, how hard would it be to manage 10, 15, or hundreds of independent microservices instead of one monolithic application in a deployment? We have even started seeing microservices deployments with thousands of services talking to each other.

 Capital One, one of the leading financial institutions in the United States, announced in July 2019 that its microservices deployment consists of thousands of microservices on several thousands of containers, with thousands of Amazon Elastic Compute Cloud (EC2) instances. Monzo, another financial institution based in the United Kingdom, recently mentioned that it has more than 1,500 services running in its microservices deployment. Jack Kleeman, a backend engineer at Monzo, explains in a blog (http://mng.bz/gyAx) how they built network isolation for 1,500 services to make Monzo more secure. The bottom line is, large-scale microservices deployments with thousands of services have become a reality.

 Managing a large-scale microservices deployment with thousands of services would be extremely challenging if you didn’t know how to automate. If the microservices concept had popped up at a time when the concept of containers didn’t exist, few people or organizations would have the guts to adopt microservices. Fortunately, things didn’t happen that way, and that’s why we believe that microservices and containers are a match made in heaven. If you’re new to containers or don’t know what Docker is, think of containers as a way to make software distribution and deployment hassle-free. Microservices and containers (Docker) were born at the right time to complement each other nicely. We talk about containers and Docker later in the book, in chapter 10.

 Does the deployment complexity of microservices architecture make security more challenging? We’re not going to delve deep into the details here, but consider one simple example. Service-to-service communication happens among multiple microservices. Each of these communication channels must be protected. You have many options (which we discuss in detail in chapters 6 and 7), but suppose that you use certificates.

 Now each microservice must be provisioned with a certificate (and the corresponding private key), which it will use to authenticate itself to another microservice during service-to-service interactions. The recipient microservice must know how to validate the certificate associated with the calling microservice. Therefore, you need a way to bootstrap trust between microservices. Also, you need to be able to revoke certificates (in case the corresponding private key gets compromised) and rotate certificates (change the certificates periodically to minimize any risks in losing the keys unknowingly). These tasks are cumbersome, and unless you find a way to automate them, they’ll be tedious in a microservices deployment.

1.2.4 Requests spanning multiple microservices are harder to trace

 Observability is a measure of what you can infer about the internal state of a system based on its external outputs. Logs, metrics, and traces are known as the three pillars of observability.

 A log can be any event you record that corresponds to a given service. A log, for example, can be an audit trail that says that the Order Processing microservice accessed the Inventory microservice to update the inventory on April 15th, 2020, at 10:15.12 p.m. on behalf of the user Peter.

 Aggregating a set of logs can produce metrics. In a way, metrics reflect the state of the system. In terms of security, the average invalid access requests per hour is a metric, for example. A high number probably indicates that the system is under attack or the first-level defense is weak. You can configure alerts based on metrics. If the number of invalid access attempts for a given microservice goes beyond a preset threshold value, the system can trigger an alert.

 Traces are also based on logs but provide a different perspective of the system. Tracing helps you track a request from the point where it enters the system to the point where it leaves the system. This process becomes challenging in a microservices deployment. Unlike in a monolithic application, a request to a microservices deployment may enter the system via one microservice and span multiple microservices before it leaves the system.

 Correlating requests among microservices is challenging, and you have to rely on distributed tracing systems like Jaeger and Zipkin. In chapter 5, we discuss how to use Prometheus and Grafana to monitor all the requests coming to a microservices deployment.

1.2.5 Immutability of containers challenges how you maintain service credentials and access-control policies

 A server that doesn’t change its state after it spins up is called an immutable server. The most popular deployment pattern for microservices is container based. (We use the terms container and Docker interchangeably in this book, and in this context, both terms have the same meaning.) Each microservice runs in its own container, and as a best practice, the container has to be an immutable server.3 In other words, after the container has spun up, it shouldn’t change any of the files in its filesystem or maintain any runtime state within the container itself.

 The whole purpose of expecting servers to be immutable in a microservices deployment is to make deployment clean and simple. At any point, you can kill a running container and create a new one with the base configuration without worrying about runtime data. If the load on a microservice is getting high, for example, you need more server instances to scale horizontally. Because none of the running server instances maintains any runtime state, you can simply spin up a new container to share the load.

 What impact does immutability have on security, and why do immutable servers make microservices security challenging? In microservices security architecture, a microservice itself becomes a security enforcement point.4 As a result, you need to maintain a list of allowed clients (probably other microservices) that can access the given microservice, and you need a set of access-control policies.

 These lists aren’t static; both the allowed clients and access-control policies get updated. With an immutable server, you can’t maintain such updates in the server’s filesystem. You need a way to get all the updated policies from some sort of policy administration endpoint at server bootup and then update them dynamically in memory, following a push or pull model. In the push model, the policy administration endpoint pushes policy updates to the interested microservices (or security enforcement points). In the pull model, each microservice has to poll the policy administration endpoint periodically for policy updates. Section 1.5.2 explains in detail service-level authorization.

 Each microservice also has to maintain its own credentials, such as certificates. For better security, these credentials need to be rotated periodically. It’s fine to keep them with the microservice itself (in the container filesystem), but you should have a way to inject them into the microservice at the time it boots up. With immutable servers, maybe this process can be part of the continuous delivery pipeline, without baking the credentials into the microservice itself.

1.2.6 The distributed nature of microservices makes sharing user context harder

 In a monolithic application, all internal components share the same web session, and anything related to the requesting party (or user) is retrieved from it. In microservices architecture, you don’t enjoy that luxury. Nothing is shared among microservices (or only a very limited set of resources), and the user context has to be passed explicitly from one microservice to another. The challenge is to build trust between two microservices so that the receiving microservice accepts the user context passed from the calling microservice. You need a way to verify that the user context passed among microservices isn’t deliberately modified.5

 Using a JSON Web Token (JWT) is one popular way to share user context among microservices; we explore this technique in chapter 7. For now, you can think of a JWT as a JSON message that helps carry a set of user attributes from one microservice to another in a cryptographically safe manner.

1.2.7 Polyglot architecture demands more security expertise on each development team

 In a microservices deployment, services talk to one another over the network. They depend not on each service’s implementation, but on the service interface. This situation permits each microservice to pick its own programming language and the technology stack for implementation. In a multiteam environment, in which each team develops its own set of microservices, each team has the flexibility to pick the optimal technology stack for its requirements. This architecture, which enables the various components in a system to pick the technology stack that is best for them, is known as a polyglot architecture.

 A polyglot architecture makes security challenging. Because different teams use different technology stacks for development, each team has to have its own security experts. These experts should take responsibility for defining security best practices and guidelines, research security tools for each stack for static code analysis and dynamic testing, and integrate those tools into the build process. The responsibilities of a centralized, organization-wide security team are now distributed among different teams. In most cases, organizations use a hybrid approach, with a centralized security team and security-focused engineers on each team who build microservices.

1.3 Key security fundamentals

 Adhering to fundamentals is important in any security design. There’s no perfect or unbreakable security. How much you should worry about security isn’t only a technical decision, but also an economic decision. There’s no point in having a burglar-alarm system to secure an empty garage, for example. The level of security you need depends on the assets you intend to protect. The security design of an e-commerce application could be different from that of a financial application.

 In any case, adhering to security fundamentals is important. Even if you don’t foresee some security threats, following the fundamentals helps you protect your system against such threats. In this section, we walk you through key security fundamentals and show you how they’re related to microservices security.

1.3.1 Authentication protects your system against spoofing

 Authentication is the process of identifying the requesting party to protect your system against spoofing. The requesting party can be a system (a microservice) or a system requesting access on behalf of a human user or another system (see figure 1.4). It’s rather unlikely that a human user will access a microservice directly, though. Before creating a security design for a given system, you need to identify the audience. The authentication method you pick is based on the audience.

 [image:]

 Figure 1.4 A system (for example, a web/mobile application), just by being itself or on behalf of a human user or another system, can access microservices via an API gateway.

 If you’re worried about a system accessing a microservice on behalf of a human user, you need to think about how to authenticate the system as well as the human user. In practice, this can be a web application, which is accessing a microservice, on behalf of a human user who logs into the web application. In these kinds of delegated use cases, in which a system requests access on behalf of another system or a human user, OAuth 2.0 is the de facto standard for security. We discuss OAuth 2.0 in detail in appendix A.

 To authenticate the human user to a system (for example, a web application), you could request the username and password with another factor for multifactor authentication (MFA). Whether MFA is required is mostly a business decision, based on how critical your business assets are or how sensitive the data you want to share with users. The most popular form of MFA is the one-time passcode (OTP) sent over SMS. Even though it’s not the best method in terms of security, it’s the most usable form of MFA, mostly because a large portion of the world population has access to mobile phones (which don’t necessarily need to be smartphones). MFA helps reduce account breaches by almost 99.99%.6 Much stronger forms of MFA include biometrics, certificates, and Fast Identity Online (FIDO).

 You have multiple ways to authenticate a system. The most popular options are certificates and JWTs. We discuss both these options in detail, with a set of examples, in chapters 6 and 7.

1.3.2 Integrity protects your system from data tampering

 When you transfer data from your client application to a microservice or from one microservice to another microservice--depending on the strength of the communication channel you pick--an intruder could intercept the communication and change the data for their advantage. If the channel carries data corresponding to an order, for example, the intruder could change its shipping address to their own. Systems protected for integrity don’t ignore this possibility; they introduce measures so that if a message is altered, the recipient can detect and discard the request.

 The most common way to protect a message for integrity is to sign it. Any data in transit over a communication channel protected with Transport Layer Security (TLS), for example, is protected for integrity. If you use HTTPS for communications among microservices (that communication is, in fact, HTTP over TLS), your messages are protected for integrity while in transit.

 Along with the data in transit, the data at rest must be protected for integrity. Of all your business data, audit trails matter most for integrity checks. An intruder who gets access to your system would be happiest if they could modify your audit trails to wipe out any evidence. In a microservices deployment based on containers, audit logs aren’t kept at each node that runs the microservice; they’re published in some kind of a distributed tracing system like Jaeger or Zipkin. You need to make sure that the data maintained in those systems is protected for integrity.

 One way is to periodically calculate the message digests of audit trails, encrypt them, and store them securely. In a research paper, Gopalan Sivathanu, Charles P. Wright, and Erez Zadok of Stony Brook University highlight the causes of integrity violations in storage and present a survey of available integrity assurance techniques.7 The paper explains several interesting applications of storage integrity checking; apart from security it also discusses implementation issues associated with those techniques.

1.3.3 Nonrepudiation: Do it once, and you own it forever

 Nonrepudiation is an important aspect of information security that prevents you from denying anything you’ve done or committed. Consider a real-world example. When you lease an apartment, you agree to terms and conditions with the leasing company. If you leave the apartment before the end of the lease, you’re obliged to pay the rent for the remaining period or find another tenant to sublease the apartment. All the terms are in the leasing agreement, which you accept by signing it. After you sign it, you can’t dispute the terms and conditions to which you agreed. That’s nonrepudiation in the real world. It creates a legal obligation. Even in the digital world, a signature helps you achieve nonrepudiation; in this case, you use a digital signature.

 In an e-commerce application, for example, after a customer places an order, the Order Processing microservice has to talk to the Inventory microservice to update inventory. If this transaction is protected for nonrepudiation, the Order Processing microservice can’t later deny that it updated inventory. If the Order Processing microservice signs a transaction with its private key, it can’t deny later that the transaction was initiated from that microservice. With a digital signature, only the owner of the corresponding private key can generate the same signature; so make sure that you never lose the key!

 Validating the signature alone doesn’t help you achieve nonrepudiation, however. You also need to make sure that you record transactions along with the timestamp and the signature--and maintain those records for a considerable amount of time. In case the initiator disputes a transaction later, you’ll have it in your records.

1.3.4 Confidentiality protects your systems from unintended information disclosure

 When you send order data from a client application to the Order Processing microservice, you expect that no party can view the data other than the Order Processing microservice itself. But based on the strength of the communication channel you pick, an intruder can intercept the communication and get hold of the data. Along with the data in transit, the data at rest needs to be protected for confidentiality (see figure 1.5). An intruder who gets access to your data storage or backups has direct access to all your business-critical data unless you’ve protected it for confidentiality.

 [image:]

 Figure 1.5 To protect a system for confidentiality, both the data in transit and at rest must be protected. The data in transit can be protected with TLS, and data at rest can be protected by encryption.

 Data in transit

 Encryption helps you achieve confidentiality. A cryptographic operation makes sure that the encrypted data is visible only to the intended recipient. TLS is the most popular way of protecting data for confidentiality in transit. If one microservice talks to another over HTTPS, you’re using TLS underneath, and only the recipient microservice will be able to view the data in cleartext.

 Then again, the protection provided by TLS is point to point. At the point where the TLS connection terminates, the security ends. If your client application connects to a microservice over a proxy server, your first TLS connection terminates at the proxy server, and a new TLS connection is established between the proxy server and the microservice. The risk is that anyone who has access to the proxy server can log the messages in cleartext as soon as the data leaves the first connection.

 Most proxy servers support two modes of operation with respect to TLS: TLS bridging and TLS tunneling. TLS bridging terminates the first TLS connection at the proxy server, and creates a new TLS connection between the proxy server and the next destination of the message. If your proxy server uses TLS bridging, don’t trust it and possibly put your data at risk, even though you use TLS (or HTTPS). If you use TLS bridging, the messages are in cleartext while transiting through the proxy server. TLS tunneling creates a tunnel between your client application and the microservices, and no one in the middle will be able to see what’s going through, not even the proxy server. If you are interested in reading more about TLS, we recommend having a look at SSL and TLS: Designing and Building Secure Systems by Eric Rescorla (Addison-Wesley Professional, 2000).

 NOTE Encryption has two main flavors: public-key encryption and symmetric-key encryption. With public-key encryption, the data is encrypted using the recipient’s public key, and only the party who owns the corresponding private key can decrypt the message and see what’s in it. With symmetric-key encryption, the data is encrypted with a key known to both the sender and the recipient. TLS uses both flavors. Symmetric-key encryption is used to encrypt the data, while public-key encryption is used to encrypt the key used in symmetric-key encryption. If you are interested in reading more about encryption and cryptography, we recommend having a look at Real-World Cryptography by David Wong (Manning, to be published in 2021).

 Data at rest

 Encryption should also apply to data at rest to protect it from intruders who get direct access to the system. This data can be credentials for other systems stored in the filesystem or business-critical data stored in a database. Most database management systems provide features for automatic encryption, and disk-level encryption features are available at the operating-system level. Application-level encryption is another option, in which the application itself encrypts the data before passing it over to the filesystem or to a database.

 Of all these options, the one that best fits your application depends on the criticality of your business operations. Also keep in mind that encryption is a resource-intensive operation that would have considerable impact on your application’s performance unless you find the optimal solution.8

1.3.5 Availability: Keep the system running, no matter what

 The whole point of building any kind of a system is to make it available to its users. Every minute (or even second) that the system is down, your business loses money. Amazon was down for 20 minutes in March 2016, and the estimated revenue loss was $3.75 million. In January 2017, more than 170 Delta Airlines flights were canceled because of a system outage, which resulted in an estimated loss of $8.5 million.

 It’s not only the security design of a system that you need to worry about to keep a system up and running, but also the overall architecture. A bug in the core functionality of an application can take the entire system down. To some extent, these kinds of situations are addressed in the core design principles of microservices architecture. Unlike in monolithic applications, in a microservices deployment, the entire system won’t go down if a bug is found in one component or microservice. Only that microservice will go down; the rest should be able to function.

 Of all the factors that can take a system down, security has a key role to play in making a system constantly available to its legitimate stakeholders. In a microservices deployment, with many entry points (which may be exposed to the internet), an attacker can execute a denial-of-service (DoS) or a distributed denial-of-service (DDoS) attack and take the system down.

 Defenses against such attacks can be built on different levels. On the application level, the best thing you could do is reject a message (or a request) as soon as you find that it’s not legitimate. Having layered security architecture helps you design each layer to take care of different types of attacks and reject an attacker at the outermost layer.

 As shown in figure 1.6, any request to a microservice first has to come through the API gateway. The API gateway centrally enforces security for all the requests entering the microservices deployment, including authentication, authorization, throttling, and message content validation for known security threats. We get into the details of each topic in chapters 3, 4, and 5.

 [image:]

 Figure 1.6 Multiple security enforcement points at multiple layers help improve the level of security of a microservices deployment.

 The network perimeter level is where you should have the best defense against DoS/DDoS attacks. A firewall is one option; it runs at the edge of the network and can be used to keep malicious users away. But firewalls can’t protect you completely from a DDoS attack. Specialized vendors provide DDoS prevention solutions for use outside corporate firewalls. You need to worry about those solutions only if you expose your system to the internet. Also, all the DDoS protection measures you take at the edge aren’t specific to microservices. Any endpoint that’s exposed to the internet must be protected from DoS/DDoS attacks.

1.3.6 Authorization: Nothing more than you’re supposed to do

 Authentication helps you learn about the user or the requesting party. Authorization determines the actions that an authenticated user can perform on the system. In an e-commerce application, for example, any customer who logs into the system can place an order, but only the inventory managers can update the inventory.

 In a typical microservices deployment, authorization can happen at the edge (the entry point to the microservices deployment, which could be intercepted by a gateway) and at each service level. In section 1.4.3, we discuss how authorization policies are enforced at the edge and your options for enforcing authorization policies in service-to-service communication at the service level.

1.4 Edge security

 In a typical microservices deployment, microservices are not exposed directly to client applications. In most cases, microservices are behind a set of APIs that is exposed to the outside world via an API gateway. The API gateway is the entry point to the microservices deployment, which screens all incoming messages for security.

 Figure 1.7 depicts a microservices deployment that resembles Netflix’s, in which all the microservices are fronted by the Zuul API gateway.9 Zuul provides dynamic routing, monitoring, resiliency, security, and more. It acts as the front door to Netflix’s server infrastructure, handling traffic from Netflix users around the world. In figure 1.7, Zuul is used to expose the Order Processing microservice via an API. Other microservices in the deployment, Inventory and Delivery, don’t need to be exposed from the API gateway because they don’t need to be invoked by external applications. A typical microservices deployment can have a set of microservices that external applications can access, and another set of microservices that external applications don’t need to access; only the first set of microservices is exposed to the outside world via an API gateway.

 [image:]

 Figure 1.7 A typical microservices deployment with an API gateway: the API gateway is the entry point, which screens all incoming messages for security.

1.4.1 The role of an API gateway in a microservices deployment

 Over time, APIs have become the public face of many companies. We’re not exaggerating by saying that a company without an API is like a computer without the internet. If you’re a developer, you surely know how life would look with no internet!

 APIs have also become many companies’ main revenue-generation channel. At Expedia, for example, 90% of revenue comes through APIs; at Salesforce, APIs account for 50% of revenue; and at eBay, APIs account for 60% of revenue.10 Netflix is another company that has heavily invested in APIs. Netflix accounts for a considerable percentage of all internet traffic in North America and also globally, all of which comes through Netflix APIs.

 APIs and microservices go hand in hand. Most of the time, a microservice that needs to be accessed by a client application is exposed as an API via an API gateway. The key role of the API gateway in a microservices deployment is to expose a selected set of microservices to the outside world as APIs and build quality-of-service (QoS) features. These QoS features are security, throttling, and analytics.

 Exposing a microservice to the outside world, however, doesn’t necessarily mean making it public-facing or exposed to the internet. You could expose it only outside your department, allowing users and systems from other departments within the same organizational boundary to talk to the upstream microservices via an API gateway. In chapter 3, we discuss in detail the role that an API gateway plays in a microservices deployment.

1.4.2 Authentication at the edge

 Similar to microservices, even for APIs the audience is a system that acts on behalf of itself or on behalf of a human user or another system (see figure 1.8). It’s unlikely (but not impossible) for human users to interact directly with APIs. In most cases, an API gateway deals with systems. In the following sections, we discuss options for authenticating a system (or a client application) at the API gateway.

 [image:]

 Figure 1.8 Authentication at the edge is enforced by the API gateway. Only the authenticated requests are dispatched to the upstream microservices.

 Certificate-based authentication

 Certificate-based authentication protects an API at the edge with mutual Transport Layer Security (mTLS). In the Netflix microservices deployment, access to the APIs is protected with certificates. Only a client provisioned with a valid certificate can access Netflix APIs. The role of the API gateway here is to make sure that only clients carrying a trusted certificate can access the APIs and that only those requests are routed to the upstream microservices. In chapter 3, we discuss how to secure APIs at the API gateway with mTLS.

 Oauth 2.0-based access delegation

 Anyone can create an application to consume Twitter and Facebook APIs. These can be web or mobile applications (refer to figure 1.8). An application can access an API as itself or on behalf of a human user. OAuth 2.0, which is an authorization framework for delegated access control, is the recommended approach for protecting APIs when one system wants to access an API on behalf of another system or a user.

 We explain OAuth 2.0 in chapter 3 and appendix A; don’t worry if you don’t know what it is. Even if you don’t know what OAuth 2.0 is, you use it if you use Facebook to log into third-party web applications, because Facebook uses OAuth 2.0 to protect its APIs.

 Cambridge Analytica/Facebook scandal

 The Cambridge Analytica/Facebook privacy scandal happened in early 2018, when public media accounts reported that British political consulting firm Cambridge Analytica had collected the personal Facebook data of more than 87 million people without their consent for use in targeted political campaign advertising. The data was collected by a third-party application called This Is Your Digital Life, created by researcher Alexander Kogan, and was sold to Cambridge Analytica.

 The third-party application acted as a system, accessing the Facebook API secured with OAuth 2.0, on behalf of legitimate Facebook users to collect their personal data. These Facebook users directly or indirectly delegated access to their personal data to this third-party application; users were under the impression they were taking a personality quiz that would be used by a university for academic purposes.

 The role of the API gateway is to validate the OAuth 2.0 security tokens that come with each API request. The OAuth 2.0 security token represents both the third-party application and the user who delegated access to the third-party application to access an API on their behalf.

 Those who know about OAuth 2.0 probably are raising their eyebrows at seeing it mentioned in a discussion of authentication. We agree that it’s not an authentication protocol at the client application end, but at the resource server end, which is the API gateway. We discuss this topic further in appendix A.

1.4.3 Authorization at the edge

 In addition to figuring out who the requesting party is during the authentication process, the API gateway could enforce corporatewide access-control policies, which are probably coarse-grained. More fine-grained access-control policies are enforced at the service level by the microservice itself (or by a proxy to the microservice, which we discuss in chapter 12). In section 1.5.2, we discuss service-level authorization in detail.

1.4.4 Passing client/end-user context to upstream microservices

 The API gateway terminates all the client connections at the edge, and if everything looks good, it dispatches the requests to the corresponding upstream microservices. But you need a way to protect the communication channels between the gateway and the corresponding microservice, as well as a way to pass the initial client/user context. User context carries basic information about the end user, and client context carries information about the client application. This information probably could be used by upstream microservices for service-level access control.

 As you may have rightly guessed, communication between the API gateway and the microservices is system to system, so you probably can use mTLS authentication to secure the channel. But how do you pass the user context to the upstream microservices? You have a couple of options: pass the user context in an HTTP header, or create a JWT with the user data. The first option is straightforward but raises some trust concerns when the first microservice passes the same user context in an HTTP header to another microservice. The second microservice doesn’t have any guarantee that the user context isn’t altered. But with JWT, you have an assurance that a man in the middle can’t change its content and go undetected, because the issuer of the JWT signs it.

 We explain JWT in detail in appendix B; for now, think of it as a signed payload that carries data (in this case, the user context) in a cryptographically safe manner. The gateway or an STS connected to the gateway can create a JWT that includes the user context (and the client context) and passes it to the upstream microservices. The recipient microservices can validate the JWT by verifying the signature with the public key of the STS that issued the JWT.

1.5 Securing service-to-service communication

 The frequency of service-to-service communication is higher in a microservices deployment. Communication can occur between two microservices within the same trust domain or between two trust domains. A trust domain represents the ownership. Microservices developed, deployed, and managed together probably fall under one trust domain, or the trust boundaries can be defined at the organizational level by taking many other factors into account.

 The security model that you develop to protect service-to-service communication should consider the communication channels that cross trust boundaries, as well as how the actual communication takes place between microservices: synchronously or asynchronously. In most cases, synchronous communication happens over HTTP. Asynchronous communication can happen over any kind of messaging system, such as RabbitMQ, Kafka, ActiveMQ, or even Amazon Simple Queue Service (SQS). In chapters 6, 7, and 8, we discuss various security models to secure synchronous communication among microservices, and chapter 9 covers securing event-driven microservices.

1.5.1 Service-to-service authentication

 You have three common ways to secure communications among services in a microservices deployment: trust the network, mTLS, and JWTs.

 Trust the network

 The trust-the-network approach is an old-school model in which no security is enforced in service-to-service communication; rather, the model relies on network-level security (see figure 1.9). Network-level security must guarantee that no attacker can intercept communications among microservices. Also, each microservice is a trusted system. Whatever it claims about itself and the end user is trusted by other microservices. You should make this deployment choice based on the level of security you expect and the trust you keep on every component in the network.

 [image:]

 Figure 1.9 The trusted network makes sure that communications among microservices are secured. No one on a system outside the trusted network can see the traffic flows among microservices in the trusted network.

 Another school of thought, known as the zero-trust network approach, opposes the trust-the-network approach. The zero-trust network approach assumes that the network is always hostile and untrusted, and it never takes anything for granted. Each request must be authenticated and authorized at each node before being accepted for further processing. If you are interested in reading more about zero-trust networks, we recommend Zero Trust Networks: Building Secure Systems in Untrusted Networks by Evan Gilman and Doug Barth (O'Reilly Media, 2017).

 Mutual TLS

 Mutual TLS is another popular way to secure service-to-service communications in a microservices deployment (see figure 1.10). In fact, this method is the most common form of authentication used today. Each microservice in the deployment has to carry a public/private key pair and uses that key pair to authenticate to the recipient microservices via mTLS.

 TLS provides confidentiality and integrity for the data in transit, and helps the client identify the service. The client microservice knows which microservice it’s going to talk with. But with TLS (one-way), the recipient microservice can’t verify the identity of the client microservice. That’s where mTLS comes in. mTLS lets each microservice in communication identify the others.

 [image:]

 Figure 1.10 Communications among microservices are secured with mTLS. All the microservices that communicate with each other trust the certificate authority (CA) in the deployment.

 Challenges in mTLS include bootstrapping trust and provisioning keys/certificates to workloads/microservices, key revocation, key rotation, and key monitoring. We discuss those challenges and possible solutions in detail in chapter 6.

 JSON Web Tokens

 JSON Web Token is the third approach for securing service-to-service communications in a microservices deployment (see figure 1.11). Unlike mTLS, JWT works at the application layer, not at the transport layer. JWT is a container that can carry a set of claims from one place to another.

 These claims can be anything, such as end-user attributes (email address, phone number), end-user entitlements (what the user can do), or anything the calling microservice wants to pass to the recipient microservice. The JWT includes these claims and is signed by the issuer of the JWT. The issuer can be an external STS or the calling microservice itself.

 The latter example is a self-issued JWT. As in mTLS, if we use self-issued JWT-based authentication, each microservice must have its own key pair, and the corresponding private key is used to sign the JWT. In most cases, JWT-based authentication works over TLS; JWT provides authentication, and TLS provides confidentiality and integrity of daFigure 1.ta in transit.

 [image:]

 Figure 1.11 Communications among microservices are secured with JWT. Each microservice uses a certificate issued to it by the certificate authority to sign JWTs.

1.5.2 Service-level authorization

 In a typical microservices deployment, authorization can happen at the edge (with the API gateway), at the service, or in both places. Authorization at the service level gives each service more control to enforce access-control policies in the way it wants. Two approaches are used to enforce authorization at the service level: the centralized policy decision point (PDP) model and the embedded PDP model.

 In the centralized PDP model, all the access-control policies are defined, stored, and evaluated centrally (see figure 1.12). Each time the service wants to validate a request, it has to talk to an endpoint exposed by the centralized PDP. This method creates a lot of dependency on the PDP and also increases the latency because of the cost of calling the remote PDP endpoint. In some cases, the effect on latency can be prevented by caching policy decisions at the service level, but other than cache expiration time, there’s no way to communicate policy update events to the service. In practice, policy updates happen less frequently, and cache expiration may work in most cases.

 With embedded PDPs, policies are defined centrally but are stored and evaluated at the service level. The challenge with embedded PDPs is how to get policy updates from the centralized policy administration point (PAP).

 [image:]

 Figure 1.12 Each microservice is connected to a centralized PDP to authorize requests. All the access-control policies are defined, stored, and evaluated centrally.

 There are two common methods. One approach is to poll the PAP continuously after a set period and then pull new and updated policies from PAP. The other approach is based on a push mechanism. Whenever a new policy or policy update is available, the PAP publishes an event to a topic (see figure 1.13). Each microservice acts as an event consumer and registers for the events it’s interested in. Whenever a microservice receives an event for a registered topic, it pulls the corresponding policy from the PAP and updates the embedded PDP.

 Some people believe that both these approaches are overkill, however. They load policies to the embedded PDP only when the server starts up from a shared location. Whenever a new policy or a policy update is available, each service has to restart.

 [image:]

 Figure 1.13 Each microservice embeds a PDP. The embedded PDPs pull the policies from the policy administration point upon receiving a notification.

1.5.3 Propagating user context among microservices

 When one microservice invokes another microservice, it needs to carry both the end-user identity and the identity of the microservice itself. When one microservice authenticates to another microservice with mTLS or JWT, the identity of the calling microservice can be inferred from the embedded credentials. There are three common ways to pass the end-user context from one microservice to another microservice:

 	
 Send the user context as an HTTP header. This technique helps the recipient microservice identify the user but requires the recipient to trust the calling microservice. If the calling microservice wants to fool the recipient microservice, it can do so easily by setting any name it wants as the HTTP header.

 	
 Use a JWT. This JWT carries the user context from the calling microservice to the recipient microservice and is also passed in the HTTP request as a header. This approach has no extra value in terms of security over the first approach if the JWT that carries the user context is self-issued. A self-issued JWT is signed by the calling service itself, so it can fool the recipient microservice by adding any name it wants to add.

 	
 Use a JWT issued by an external STS that is trusted by all the microservices in the deployment. The user context included in this JWT can’t be altered, as alteration would invalidate the signature of the JWT. This is the most secure approach. When you have the JWT from an external STS, the calling microservice can embed that JWT in the new JWT it creates to make a nested JWT (if JWT-based authentication is used among microservices) or pass the original JWT as-is, as an HTTP header (if mTLS is being used among microservices).

1.5.4 Crossing trust boundaries

 In a typical microservices deployment, you find multiple trust domains. We can define these trust domains by the teams having control and governance over the microservices or organizational boundaries. The purchasing department, for example, might manage all its microservices and create its own trust domain.

 In terms of security, when one microservice talks to another microservice, and both microservices are in the same trust domain, each microservice may trust one STS in the same domain or a certificate authority in the same domain. Based on this trust, the recipient microservice can validate a security token sent to it by a calling microservice. Typically, in a single trust domain, all the microservices trust one STS and accept only security tokens issued by that STS.

 When one microservice wants to talk to another microservice in a different trust domain, it can take one of two primary approaches. In the first approach (see figure 1.14), the calling microservice (Order Processing) in the foo trust domain wants to talk to the recipient microservice (Delivery) of the bar trust domain. First, it has to obtain a security token that is trusted by all the microservices in the bar trust domain. In other words, it needs to obtain a security token from the STS of the recipient trust domain.

 [image:]

 Figure 1.14 Cross-domain security between two trust domains behind a single trusted API gateway (and an STS). Each trust domain has its own STS.

 Here’s the numbered flow shown in figure 1.14:

 	
 Step 1 --The API gateway routes the request from the client application to the Order Processing microservice in the foo trust domain, along with a JWT signed by the gateway (or by an STS attached to it). Because all the microservices in the foo trust domain trust the top-level STS (the one attached to the API gateway), the Order Processing microservice accepts the token as valid. The JWT has an attribute called aud that defines the target system of the JWT. In this case, the value of aud is set to the Order Processing microservice of the foo trust domain. Ideally, if the Order Processing microservice receives a JWT with a different aud value, it must reject that JWT, even if its signature is valid. We discuss JWT in detail in appendix B.

 	
 Step 2 --The Order Processing microservice passes the original JWT that it got from the gateway (or STS at the top level) to the STS at the foo trust domain. Once again, the foo STS has to validate the aud value in the JWT it gets. If it cannot identify the audience of the token, the foo STS must reject it.

 	
 Step 3 --The foo STS returns a new JWT, which is signed by it and has an aud value targeting the STS in the bar trust domain.

 	
 Steps 4 and 5 --The Order Processing microservice accesses the STS of the bar trust domain and exchanges the JWT from step 3 to a new JWT signed by the STS of the bar trust domain, with an aud value targeting the Delivery microservice.

 	
 Step 6 --The Order Processing microservice accesses the Delivery microservice with the JWT obtained from step 5. Because the STS of the bar domain signs this JWT and has a matching aud value, the Delivery microservice will accept the token.

 In the second approach, the Order Processing microservice from the foo trust domain doesn’t talk directly to the Delivery microservice of the bar trust domain. Each trust domain has its own API gateway, and communication among microservices happens via the gateways (see figure 1.15).

 [image:]

 Figure 1.15 Cross-domain security between two trust domains behind two API gateways (and STSs)

 Here’s the numbered flow shown in figure 1.15:

 	
 Step 1 --The API gateway of the foo trust domain routes the request from the client application to the Order Processing microservice, along with a JWT signed by the gateway (or the foo STS, which is attached to the foo API gateway). Because all the microservices in the foo trust domain trust the foo STS, the Order Processing microservice accepts the token as valid.

 	
 Step 2 --The Order Processing microservice passes the original JWT that it got from the gateway (or the foo STS) to its own STS (which is also the foo STS).

 	
 Step 3 --The foo STS returns a new JWT, which is signed by it and has an aud value targeting the API gateway of the bar trust domain.

 	
 Step 4 --The Order Processing microservice accesses the Delivery microservice of the bar domain with the JWT obtained from step 3. Because the API gateway of the bar domain trusts the foo domain STS, it accepts the JWT as valid. The JWT is signed by the foo STS and has an aud value to match the bar API gateway.

 	
 Step 5 --The bar API gateway talks to the bar STS to create its own JWT (signed by the bar STS) with an aud value to match the Delivery microservice.

 	
 Step 6 --The bar API gateway forwards the request to the Delivery microservice along with the new JWT issued by the bar STS. Because the Delivery microservice trusts its own STS, the token is accepted as valid.

Summary

 	
 Securing microservices is quite challenging with respect to securing a monolithic application, mostly because of the inherent nature of the microservices architecture.

 	
 A microservices security design starts by defining a process to streamline development and engage security-scanning tools to the build system, so that we can discover the code-level vulnerabilities at a very early stage in the development cycle.

 	
 We need to worry about edge security of a microservices deployment and securing communications among microservices.

 	
 Edge security is about authenticating and authorizing requests coming into the microservices deployment from client applications, at the edge, probably with an API gateway.

 	
 Securing communications among microservices is the most challenging part. We discussed multiple techniques in this chapter, and which you choose will depend on many factors, such as the level of security, the type of communication (synchronous or asynchronous), and trust boundaries.

 1.You can read more about IDC’s predictions for 2019 and beyond at https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019.

 2.If you aren’t familiar with servlet filters, think of them as interceptors running in the same process with the web application, intercepting all the requests to the web application.

 3.In “What Is Mutable vs. Immutable Infrastructure,” Armon Dadger explains the trade-offs between the two infrastructure types: http://mng.bz/90mr.

 4.This isn’t 100% precise, and we discuss why in chapter 12. In many cases, it’s not the microservice itself that becomes the security enforcement point, but another proxy, which is deployed collocated with the microservice itself. Still, the argument we present here related to immutability is valid.

 5.User context carries information related to the user who invokes a microservice. This user can be a human user or a system, and the information related to the user can be a name, email address, or any other user attribute.

 6.See “Basics and Black Magic: Defending Against Current and Emerging Threats” by Alex Weinert at www .youtube.com/watch?v=Nmkeg0wPRGE for more details.

 7.See “Ensuring Data Integrity in Storage: Techniques and Applications” at http://mng.bz/eQVP.

 8.See “Performance Evaluation of Encryption Techniques for Confidentiality of Very Large Databases” by Malik Sikander et al. at www.ijcte.org/papers/410-G1188.pdf.

 9.Zuul (https://github.com/Netflix/zuul) is a gateway service that provides dynamic routing, monitoring, resiliency, security, and more.

 10.See “The Strategic Value of APIs” by Bala Iyer and Mohan Subramaniam at https://hbr.org/2015/01/the -strategic-value-of-apis.

2 First steps in securing microservices

 This chapter covers

 	
Developing a microservice in Spring Boot/Java

 	
Running and testing a Spring Boot/Java microservice with curl

 	
Securing a microservice at the edge with OAuth 2.0

 	
Enforcing authorization at the service level with OAuth 2.0 scopes

 You build applications as a collection of smaller/modular services or components when you adhere to architectural principles of microservices. A system by itself, or a system on behalf of a human user or another system, can invoke a microservice. In all three cases, we need to properly authenticate and authorize all the requests that reach the microservice. A microservice may also consume one or more other microservices in order to cater to a request. In such cases, it is also necessary to propagate user context (from downstream services or client applications) to upstream microservices.

 In this chapter, we explain how the security validation of the incoming requests happens, and in chapter 3, we discuss how to propagate the user context to upstream microservices. The focus of this chapter is to get you started with a straightforward deployment. The design of the samples presented in this chapter is far from a production deployment. As we proceed in the book, we explain how to fill the gaps and how to build a production-grade microservices security design step by step.

2.1 Building your first microservice

 In this section, we discuss how to write, compile, and run your first microservice using Spring Boot. You will learn some basics about the Spring Boot framework and how you can use it to build microservices. Throughout this book, we use a retail store application as an example, which we build with a set of microservices. In this section, we build our first microservice, which accepts requests to create and manage orders, using Spring Boot (https://spring.io/projects/spring-boot).

 Spring Boot is a framework based on the Spring platform that allows you to convert functions written in the Java programming language to network-accessible functions, known as services or APIs, by decorating your code with a special set of annotations. If you’re not familiar with Java, you still have nothing to worry about, because we don’t expect you to write code yourself. All the code samples you see in this book are available on GitHub (https://github.com/microservices-security-in-action/samples). As long as you are or have been a software developer, you’ll find it easy to understand the code.

 Figure 2.1 shows a set of microservices, which are part of the retail store application we are building, with a set of consumer applications. The consumer applications, in fact, are the consumers of the microservices we build.

 [image:]

 Figure 2.1 In this typical microservices deployment, consumer applications (a web app or a mobile app) access microservices on behalf of their end users, while microservices communicate with each other.

2.1.1 Downloading and installing the required software

 To build and run samples we use in this chapter and throughout the rest of this book, you need to have a development environment set up with the Java Development Kit (JDK), Apache Maven, the curl command-line tool, and the Git command-line client.

Installing the JDK

 The JDK is required to compile the source code in the samples. You can download the latest JDK from http://mng.bz/OMmo. We used Java version 11 to test all the samples.

Installing Apache Maven

 Maven is a project management and comprehension tool that makes it easy to declare third-party (external) dependencies of your Java project required in the compile/build phase. It has various plugins such as the compiler plugin, which compiles your Java source code and produces the runnable artifact (binary). You can download Maven from the Apache website (https://maven.apache.org/download.cgi). Follow the installation instructions at https://maven.apache.org/install.html to install Maven on your operating system. We used Maven version 3.5 to test all the samples. To work with the samples in the book, we do not expect you to know Maven in detail, and where required, the book provides all the necessary commands. If you are interested in learning Maven, we recommend Mastering Apache Maven 3 (Packt Publishing, 2014) by Prabath Siriwardena, a coauthor of this book.

Installing curl

 Download and install the curl command-line tool from the curl website (https://curl.haxx.se/download.html). You use curl in the book as a client application to access microservices. Most of the operating systems do have curl installed out of the box.

Installing the Git command-line tool

 Download and install the Git command-line client on your computer, based on your operating system. You use the Git client only once to clone our samples Git repository. It’s not a must to install the Git client; you can also download the complete sample Git repository as a zip file from https://github.com/microservices-security-in-action/samples. When you click the Clone or Download button, you will find a link to download a zip file.

2.1.2 Clone samples repository

 Once you complete the steps in section 2.1.1, and you’d like to clone the samples Git repository, rather than download it as a zip file, you can run the following command. Once successfully executed, it creates a directory called samples in your local filesystem, with all the samples we have for the book:

 \> git clone \
https://github.com/microservices-security-in-action/samples.git

2.1.3 Compiling the Order Processing microservice

 Once you complete the preceding steps, it’s time to get your hands dirty and run your first microservice. First, open the command-line tool in your operating system, and navigate to the location on your filesystem where you cloned the samples repository; in the rest of the book, we identify this location as [samples]:

 \> cd [samples]/chapter02/sample01

 Inside the chapter02/sample01 directory, you’ll find the source code corresponding to the Order Processing microservice. From within that directory, execute the following command to build the Order Processing microservice:

 \> mvn clean install

 If you run into problems while running the command, old and incompatible dependencies might reside in your local Maven repository. To get rid of such problems, try removing (or renaming) the .m2 directory that resides in your home directory (~/.m2/). The preceding command instructs Maven to compile your source code and produce a runnable artifact known as a Java Archive (JAR) file. Note that you need to have Java and Maven installed to execute this step successfully. If your build is successful, you’ll see the message BUILD SUCCESS.

 If this is the first time you’re using Maven to build a Spring Boot project, Maven downloads all the Spring Boot dependencies from their respective repositories; therefore, an internet connection is required in the build phase. The first-time build is expected to take slightly longer than the next attempts. After the first build, Maven installs all the dependencies in your local filesystem, and that takes the build times down considerably for the subsequent attempts.

 If the build is successful, you should see a directory named target within your current directory. The target directory should contain a file named com.manning .mss.ch02.sample01-1.0.jar. (Other files will be within the target directory, but you’re not interested in them at the moment.) Then run the following command from the chapter02/sample01/ directory to spin up the Order Processing microservice. Here, we use a Maven plugin called spring-boot:

 \> mvn spring-boot:run

 If the microservice started successfully, you should see a bunch of messages being printed on the terminal. At the bottom of the message stack, you should see this message:

 Started OrderApplication in <X> seconds

 By default, Spring Boot starts the microservice on HTTP port 8080. If you have any other services running on your local machine on port 8080, make sure to stop them; alternatively, you can change the default port of the Order Processing microservice by changing the value of the server.port property as appropriate in the chapter02/sample01/src/main/resources/application.properties file. But, then again, it would be much easier to follow the rest of the samples in the chapter, with minimal changes, if you keep the Order Processing microservice running on the default port.

2.1.4 Accessing the Order Processing microservice

 By default, Spring Boot runs an embedded Apache Tomcat web server that listens for HTTP requests on port 8080. In this section, you access your microservice using curl as the client application. In case you run the Order Processing microservice on a custom port, make sure to replace the value of the port (8080) in the following command with the one you used. To invoke the microservice, open your command-line client and execute the following curl command:

 \> curl -v http://localhost:8080/orders \
-H 'Content-Type: application/json' \
--data-binary @- << EOF
{
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}
EOF

 You should see this message on your terminal:

 {
 "orderId":"1633c9bd-7b9b-455f-965e-91d41331063c",
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}

 If you see this message, you’ve successfully developed, deployed, and tested your first microservice!

 NOTE All samples in this chapter use HTTP (not HTTPS) endpoints to spare you from having to set up proper certificates and to make it possible for you to inspect messages being passed on the wire (network), if required. In production systems, we do not recommend using HTTP for any endpoint. You should expose all the endpoints only over HTTPS. In chapter 6, we discuss how to secure microservices with HTTPS.

 When you executed the preceding command, curl initiated an HTTP POST request to the /orders resource located on the server localhost on port 8080 (local machine). The content (payload) of the request represents an order placed for two items to be shipped to a particular address. The Spring Boot server runtime (embedded Tomcat) dispatched this request to the placeOrder function (in the Java code) of your Order Processing microservice, which responded with the message.

2.1.5 What is inside the source code directory?

 Let’s navigate inside the sample01 directory and inspect its contents. You should see a file named pom.xml and a directory named src. Navigate to the src/main/java/com/manning/mss/ch02/sample01/service/ directory. You’ll see two files: OrderApplication.java and OrderProcesingService.java.

 Before you dig into the contents of these files, let us explain what you’re trying to build here. As you’ll recall, a microservice is a collection of network-accessible functions. In this context, network-accessible means that these functions are accessible over HTTP (https://tools.ietf.org/html/rfc2616) through applications such as web browsers and mobile applications, or software such as curl (https://curl.haxx.se/) that’s capable of communicating over HTTP. Typically, a function in a microservice is exposed as an action over a REST resource (https://spring.io/guides/tutorials/rest/). Often, a resource represents an object or entity that you intend to inspect or manipulate. When mapped to HTTP, a resource is usually identified by a request URI, and an action is represented by an HTTP method; see sections 5.1.1 and 5.1.2 of the HTTP specification or RFC 2616 (https://tools.ietf.org/html/rfc2616#page-35).

 Consider a scenario in which an e-commerce application uses a microservice to retrieve the details of an order. An HTTP request template that maps to that particular function in the microservice looks similar to the following:

 GET /orders/{orderid}

 GET is the HTTP method used in this case, since you’re performing a data-retrieval operation. /orders/{orderid} is the resource path on the server that hosts the corresponding microservice. This path can be used to uniquely identify an order resource. {orderid} is a variable that needs to be replaced with proper values in the actual HTTP request. Something like GET /orders/d59dbd56-6e8b-4e06-906f-59990ce2e330 would ask the microservice to retrieve details of the order with ID d59dbd56-6e8b-4e06-906f-59990ce2e330.

2.1.6 Understanding the source code of the microservice

 Now that you have a fair understanding of how to expose a microservice as an HTTP resource, let’s look at the code samples to see how to develop a function in Java and use Spring Boot to expose it as an HTTP resource. Use the file browser in your operating system to open the directory located at sample01/src/main/java/com/manning/mss/ch02/sample01/service, and open the OrderProcessingService.java file in a text editor. If you’re familiar with Java integrated development environments (IDEs) such as Eclipse, NetBeans, IntelliJ IDEA, or anything similar, you can import the sample as a Maven project to the IDE. The following listing shows what the content of the OrderProcessingService.java file looks like.

 Listing 2.1 The content of the OrderProcessingService.java file

 @RestController ❶
@RequestMapping("/orders") ❷
public class OrderProcessingService {
 private Map<String, Order> orders = new HashMap<>();
 @PostMapping ❸
 public ResponseEntity<Order> placeOrder(@RequestBody Order order) {
 System.out.println("Received Order For "
 + order.getItems().size() + " Items");
 order.getItems().forEach((lineItem) ->
 System.out.println("Item: " + lineItem.getItemCode() +
 " Quantity: " + lineItem.getQuantity()));
 String orderId = UUID.randomUUID().toString();
 order.setOrderId(orderId);
 orders.put(orderId, order);
}

 ❶ Informs the Spring Boot runtime that you’re interested in exposing this class as a microservice

 ❷ Specifies the path under which all the resources of the service exist

 ❸ Informs the Spring Boot runtime to expose this function as a POST HTTP method

 This code is a simple Java class with a function named placeOrder. As you may notice, we decorated the class with the @RestController annotation to inform the Spring Boot runtime that you’re interested in exposing this class as a microservice. The @RequestMapping annotation specifies the path under which all the resources of the service exist. We also decorated the placeOrder function with the @PostMapping annotation, which informs the Spring Boot runtime to expose this function as a POST HTTP method (action) on the /orders context. The @RequestBody annotation says that the payload in the HTTP request is to be assigned to an object of type Order.

 Another file within the same directory is named OrderApplication.java. Open this file with your text editor and inspect its content, which looks like the following:

 @SpringBootApplication
public class OrderApplication {
 public static void main(String args[]) {
 SpringApplication.run(OrderApplication.class, args);
 }
}

 This simple Java class has only the main function. The @SpringBootApplication annotation informs the Spring Boot runtime that this application is a Spring Boot application. It also makes the runtime check for Controller classes (such as the OrderProcessingService class you saw earlier) within the same package of the OrderApplication class. The main function is the function invoked by the JVM when you command it to run the particular Java program. Within the main function, start the Spring Boot application through the run utility function of the SpringApplication class, which resides within the Spring framework.

2.2 Setting up an OAuth 2.0 server

 Now that you have your first microservice up and running, we can start getting to the main focus of this book: securing microservices. You’ll be using OAuth 2.0 to secure your microservice at the edge.

 If you are unfamiliar with OAuth 2.0, we recommend you first go through appendix A, which provides a comprehensive overview of the OAuth 2.0 protocol and how it works. In chapter 3, we discuss in detail why we opted for OAuth2.0 over options such as basic authentication and certificate-based authentication. For now, know that OAuth 2.0 is a clean mechanism for solving the problems related to providing your username and password to an application that you don’t trust to access your data.

 When combined with JWT, OAuth2.0 can be a highly scalable authentication and authorization mechanism, which is critical when it comes to securing microservices.1 Those who know about OAuth 2.0 probably are raising their eyebrows at seeing it mentioned as a way of authentication. We agree that it’s not an authentication protocol at the client application end, but at the resource server end, which is the microservice.

2.2.1 The interactions with an authorization server

 In an OAuth 2.0 flow, the client application, the end user, and the resource server all interact directly with the authorization server, in different phases (see figure 2.2). Before requesting a token from an authorization server, the client applications have to register themselves with it.

 [image:]

 Figure 2.2 Actors in an OAuth2.0 flow: in a typical access delegation flow, a client--on behalf of the end user--accesses a resource that is hosted on a resource server by using a token provided by the authorization server.

 An authorization server issues tokens only for the client applications it knows. Some authorization servers support Dynamic Client Registration Protocol (https://tools.ietf.org/html/rfc7591), which allows clients to register themselves on the authorization server on the fly or on demand (see figure 2.3).

 [image:]

 Figure 2.3 A client application is requesting an access token from the authorization server. The authorization server issues tokens to only known client applications. A client application must register at the authorization server first.

 The Order Processing microservice, which plays the role of the resource server here, would receive the token issued by the authorization server from the client, usually as an HTTP header or as a query parameter when the client makes an HTTP request (see step 1 in figure 2.4). It’s recommended that the client communicate with the microservice over HTTPS and send the token in an HTTP header instead of a query parameter. Because query parameters are sent in the URL, those can be recorded in server logs. Hence, anyone who has access to the logs can see this information.

 Having TLS to secure the communication (or in other words, the use of HTTPS) between all the entities in an OAuth 2.0 flow is extremely important. The token (access token) that the authorization server issues to access a microservice (or a resource) must be protected like a password. We do not send passwords over plain HTTP and always use HTTPS. Hence we follow the same process when sending access tokens over the wire.

 [image:]

 Figure 2.4 A client application is passing the OAuth access token in the HTTP Authorization header to access a resource from the resource server.

 Upon receipt of the access token, the Order Processing microservice should validate it against the authorization server before granting access to its resources. An OAuth 2.0 authorization server usually supports the OAuth 2.0 token introspection profile (https://tools.ietf.org/html/rfc7662)or a similar alternative for resource servers to check the validity of an access token (see figure 2.5). If the access token is a self-contained JWT, the resource server can validate it, by itself, without talking to the authorization server. We discuss self-contained JWT in detail in chapter 6.

 [image:]

 Figure 2.5 The Order Processing microservice (resource server) introspects the access token by talking to the authorization server.

2.2.2 Running the OAuth 2.0 authorization server

 Many production-grade OAuth 2.0 authorization servers are out there, both proprietary and open source. However, in this chapter, we use a simple authorization server that’s capable of issuing access tokens. It is built using Spring Boot. Within the Git repository you cloned earlier, you should find a directory named sample02 under the directory chapter02. There you’ll find the source code of the simple OAuth 2.0 authorization server. First, compile and run it; then look into the code to understand what it does.

 To compile, use your command-line client to navigate into the chapter02/sample02 directory. From within that directory, execute the following Maven command to compile and build the runnable artifact:

 \> mvn clean install

 If your build is successful, you’ll see the message BUILD SUCCESS. You should find a file named com.manning.mss.ch02.sample02-1.0.jar within a directory named target. Execute the following command from within the chapter02/sample02 directory, using your command-line client, to run the OAuth 2.0 authorization server:

 \> mvn spring-boot:run

 If you managed to run the server successfully, you should see this message:

 Started OAuthServerApplication in <X> seconds

 This message indicates that you successfully started the authorization server. By default, the OAuth 2.0 authorization server runs on HTTP port 8085. If you have any other services running on your local machine, on port 8085, make sure to stop them; alternatively, you can change the default port of the authorization server by changing the value of the server.port property as appropriate in the chapter02/sample02/src/main/resources/application.properties file. But, then again, it would be much easier to follow the rest of the samples in the chapter, with minimal changes, if you keep the authorization server running on the default port.

 NOTE The OAuth 2.0 authorization server used in this chapter is running on HTTP, while in a production deployment it must be over HTTPS. In chapter 6, we discuss how to set up an authorization server over HTTPS.

2.2.3 Getting an access token from the OAuth 2.0 authorization server

 To get an access token from the authorization server, use an HTTP client to make an HTTP request to the server. In the real world, the client application that is accessing the microservice would make this request. You’ll be using curl for this purpose as the HTTP client.To request an access token from the authorization server (which runs on port 8085), run the following command, using your command-line client:

 \> curl -u orderprocessingapp:orderprocessingappsecret \
-H "Content-Type: application/json" \
-d '{"grant_type": "client_credentials", "scope": "read write}' \
http://localhost:8085/oauth/token

 Take a quick look at this request and try to understand it. You can think of orderprocessingapp:orderprocessingappsecret as the client application’s username (orderprocessingapp) and password (orderprocessingappsecret). The only difference is that these credentials belong to an application, not a user. The application being used to request a token needs to bear a unique identifier and a secret that’s known by the authorization server. The -u flag provided to curl instructs it to create a basic authentication header and send it to the authorization server as part of the HTTP request. Then curl base64-encodes the orderprocessingapp :orderprocessingappsecret string and creates the Basic authentication HTTP header as follows:

 Authorization: Basic
b3JkZXJwcm9jZXNzaW5nYXBwOm9yZGVycHJvY2Vzc2luZ2FwcHNlY3JldA==

 The string that follows the Basic keyword is the base64-encoded value of orderprocessingapp:orderprocessingappsecret. As you may have noticed, you’re sending a Basic authentication header to the token endpoint of the OAuth2.0 authorization server because the token endpoint is protected with basic authentication (https://tools.ietf.org/html/rfc2617). Because the client application is requesting a token here, the Basic authentication header should consist of the credentials of the client application, not of a user. Note that basic authentication here isn’t used for securing the resource server (or the microservice); you use OAuth 2.0 for that purpose. Basic authentication at this point is used only for obtaining the OAuth token required to access the microservice, from the authorization server.

 In chapter 3, we discuss in detail why we chose OAuth 2.0 over protocols such as basic authentication and mTLS to secure your resource server. Even for securing the token endpoint of the OAuth 2.0 authorization server, instead of basic authentication, you can pick whichever authentication mechanism you prefer. For strong authentication, many prefer using certificates.

 The parameter -H "Content-Type: application/json" in the preceding token request informs the authorization server that the client will be sending a request in JSON format. What follows the -d flag is the actual JSON content of the message, which goes in the HTTP body. In the JSON message, the grant_type specifies the protocol to be followed in issuing the token. We talk more about OAuth 2.0 grant types in chapter 3. For now, think of a grant type as the sequence of steps that the client application and the authorization server follow to issue an access token. In the case of the client_credentials grant type, the authorization server validates the Basic authentication header and issues an access token if it’s valid.

 The scope declares what actions the application intends to perform with a token. When issuing a token, the authorization server validates whether the requesting application is permitted to obtain the requested scopes and binds them to the token as appropriate. If the application identified by orderprocessingapp can perform only read operations, for example, the authorization server issues the corresponding token under the scope read. The URL http://localhost:8085/oauth/token is the endpoint of the authorization server that issues access tokens. Your curl client sends the HTTP request to this endpoint to obtain an access token. If your request is successful, you should see a response similar to this:

 {
 "access_token":"8c017bb5-f6fd-4654-88c7-c26ccca54bdd",
 "token_type":"bearer",
 "expires_in":300,
 "scope":"read write"
}

2.2.4 Understanding the access token response

 The following list provides details on the preceding JSON response from the authorization server. If you are new to OAuth 2.0, please check appendix A for further details.

 	
 access_token--The value of the token issued by the authorization server to the client application (curl, in this case).

 	
 token_type--The token type (more about this topic when we talk about OAuth 2.0 in appendix A). Most of the OAuth deployments we see today use bearer tokens.

 	
 expires_in--The period of validity of the token, in seconds. The token will be considered invalid (expired) after this period.

 	
 scope--The actions that the token is permitted to perform on the resource server (microservice).

2.3 Securing a microservice with OAuth 2.0

 So far, you’ve learned how to develop your first microservice and how to set up an OAuth 2.0 authorization server to get an access token. In this section, you’ll see how to secure the microservice you developed. Up to now, you’ve accessed it without any security in place.

2.3.1 Security based on OAuth 2.0

 Once secured with OAuth 2.0, the Order Processing microservice now expects a valid security token (access token) from the calling client application. Then it will validate this access token with the assistance of the authorization server before it grants access to its resources. Figure 2.6 illustrates this scenario.

 [image:]

 Figure 2.6 A client application accessing a secured microservice with an access token obtained from the authorization server. The Order Processing microservice talks to the authorization server to validate the token before granting access to its resources.

 Here’s what happens in each of the steps illustrated in figure 2.6:

 	
 The client application requests an OAuth2.0 access token from the authorization server.

 	
 In response to the request in step 1, the authorization server issues an access token to the client application.

 	
 The client application makes an HTTP request to the Order Processing microservice. This request carries the access token obtained in step 2 as an HTTP header.

 	
 The Order Processing microservice checks with the authorization server to see whether the received access token is valid.

 	
 In response to the request in step 4, the authorization server checks to see whether the provided access token is an active token in the system (its state is active) and whether the token is valid for that particular moment (it isn’t expired). Then it responds to the Order Processing microservice, indicating whether the access token is valid.

 	
 In response to the request in step 3, and based on the result in step 5, the Order Processing microservice responds to the client application, either granting access to the resource being requested or sending an error message.

 In the examples in this chapter so far, you’ve used the client_credentials grant type to obtain an access token from the authorization server. In this particular case, the token endpoint of the authorization server is protected via basic authentication with the client ID and the client secret of the application. The client_credentials grant type is good when the client application doesn’t need to worry about end users. If it has to, it should pick an appropriate grant type. The client_credentials grant type is used mainly for system-to-system authentication.

2.3.2 Running the sample

 If you’re still running the Order Processing microservice from section 2.1, stop it, because you’re about to start a secured version of the same microservice on the same port. You can stop the microservice by going to the terminal window that is running it and pressing Ctrl-C. To run this sample, navigate to the directory where you cloned the samples from the Git repository from your command-line application, and go to the chapter02/sample03 directory. From within that directory, execute the following Maven command to build the sample:

 \> mvn clean install

 If the build is successful, you should see a directory named target within your current directory. The target directory should contain a file named com.manning.mss.ch02 .sample03-1.0.jar. (Other files will be within the target directory, but you’re not interested in them at the moment.) Then run the following command from the chapter02/sample03/ directory to spin up the secured Order Processing microservice. Here, we use a Maven plugin called spring-boot:

 \> mvn spring-boot:run

 If you managed to run the server successfully, you should see a message like this:

 Started OrderApplication in <X> seconds

 Now run the same curl command you used earlier in this chapter to access the Order Processing microservice:

 \> curl -v http://localhost:8080/orders \
-H 'Content-Type: application/json' \
--data-binary @- << EOF
{
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}
EOF

 You should see an error message saying that the request was unsuccessful. The expected response message is as follows:

 {
 "error":"unauthorized", "error_description":"Full authentication is
 required to access this resource"
}

 Your Order Processing microservice is now secured and can no longer be accessed without a valid access token obtained from the authorization server. To understand how this happened, look at the modified source code of your Order Processing microservice. Using your favorite text editor or IDE, open the file OrderProcessingService.java located inside the src/main/java/com/manning/mss/ch02/sample03/service directory. This is more or less the same class file you inspected earlier with a function named placeOrder. One addition to this class is the annotation @EnableWebSecurity. This annotation informs your Spring Boot runtime to apply security to the resources of this microservice. Following is the class definition:

 @EnableResourceServer
@EnableWebSecurity
@RestController
@RequestMapping("/orders")
public class OrderProcessingService extends WebSecurityConfigurerAdapter {
}

 If you further inspect this class, you should notice a method named tokenServices that returns an object of type ResourceServerTokenServices (see listing 2.2). Properties set in the RemoteTokenServices object (which is of the ResourceServerTokenServices type) are the ones that the Spring Boot runtime uses to communicate with the authorization server to validate credentials received by the Order Processing microservice (the resource server, in this case).

 If you go through the code of the tokenServices function, you’ll see that it uses a method named setCheckTokenEndpointUrl to set the value http://localhost:8085/oauth/check_token as the TokenEndpointURL property in the RemoteTokenServices class. The TokenEndpointURL property is used by the Spring Boot runtime to figure out the URL on the OAuth 2.0 authorization server that it has to talk to, to validate any tokens it receives via HTTP requests. This is the URL the Order Processing microservice uses in step 4 of figure 2.6 to talk to the authorization server.

 Listing 2.2 The tokenServices method from OrderProcessingService.java

 @Bean
public ResourceServerTokenServices tokenServices() {
 RemoteTokenServices tokenServices = new RemoteTokenServices();
 tokenServices.setClientId("orderprocessingservice");
 tokenServices.setClientSecret("orderprocessingservicesecret");
 tokenServices
 .setCheckTokenEndpointUrl("http://localhost:8085/oauth/check_token");
 return tokenServices;
}

 The endpoint that does the validation of the token itself is secure; it requires a valid Basic authentication header. This header should consist of a valid client ID and a client secret. In this case, one valid client ID and client secret pair is orderprocessingservice and orderprocessingservicesecret, which is why those values are set in the RemoteTokenServices object. In fact, these credentials are hardcoded in the simple OAuth server we developed.

 In section 2.4, you’ll see how to use the token you obtained from the authorization server in section 2.2 to make a request to the now-secure Order Processing microservice.

2.4 Invoking a secured microservice from a client application

 Before a client application can access your secured Order Processing microservice, it should obtain an OAuth2.0 access token from the authorization server. As explained in section 2.2.4, the client application at minimum requires a valid client ID and a client secret to obtain this token. The client ID and client secret registered on your OAuth 2.0 authorization server at the moment are orderprocessingapp and orderprocessingappsecret, respectively. As before, you can use the following curl command to obtain an access token:

OEBPS/OEBPS/Images/CH01_F13_Siriwardena.png
The embedded PDP in
each microservice pulls
the corresponding policies
when there is an update
at the PAP.

Each microservice will

API Gateway

be notified whenever
a new policy is added
or updated.
Inventory . Grdor
Service o
—
Policy
L Administration
Point (PAP)
: " A
Whenever there is a policy .

add/update, events are Ve
published to the message queue.

Policies are defined at the PAP.

Delivery
Service

OEBPS/OEBPS/Images/CH01_F09_Siriwardena.png
All the components within
the network perimeter are
considered to be trusted.

Inventory

Network perimeter.
Only the trusted
- connections are
I allowed to come in.
Network-level security makes sure no one outside the

network perimeter can intercept communications.

OEBPS/OEBPS/Images/CH01_F10_Siriwardena.png
This channel between the client Systems or applications

and the Zuul APl gateway can access APIs on behalf of
be protected with either certificates, themselves or on behalf of a
or OAuth 2.0, or a combination of both. human user or another system.

[

Passes the end-user
context to upstream
microservices in an

HTTP header or in —
a JWT An API gateway, which
% performs security

screening and throttling,

and publishes analytics
to an analytics server

Asynchronous
communication between

: N two microservices using
Propagates the user Service-to-service a notification service as

context from one communications can be the message broker
microservice to the other protected with mutual TLS.

OEBPS/OEBPS/Images/CH02_F05_Siriwardena.png
The Order Processing service
talks to the authorization server

to validate the access token. \

Authorization
Server

The reponse carries token metadata and
icates whether the token is valid or not.

OEBPS/OEBPS/Images/CH02_F02_Siriwardena.png
The Order Processing service

The client application gets a token talks to the authorization server
from the authorization server to to validate the access token it
access the microservices. \ gets from the client application.
/
OAuth 2.0

End u4 %@_A ‘K

End users are the /
direct consumers |
of client applications.
They do not access
microservices directly.

"~

According to OAuth 2.0 terminology,
/ the Order Processing service acts

The client application can be a \ as a resource server.
web application, a mobile !
application, and so on. Client applications consume

microservices on behalf of the
end users.

OEBPS/OEBPS/Images/CH01_F01_Siriwardena.png
A web portal rendered
on a browser acts as a
client application for
the monolithic applicati

S A

" Entry point to the
Entry point to the monolithic application
monolithic

A monolithic application
is deployed in a Tomcat
web server.

Server IP:

192.168.0.1. i

-

OEBPS/OEBPS/Images/CH01_F04_Siriwardena.png
Human users indirectly
access a microservice via a

web app, a mobile app, and
A system may directly

so on.
\ ___ access a microservice

\—, -) «— — by itself or on behalf
/ of another user.

API Gateway

Inventory
Service

h One microservice talks to another
" microservice on behalf of another
system or a human user.

nt applications via an
API gateway.

OEBPS/cover.jpeg
IN ACTI

Prabath Siriwardena
Nuwan Dias

/'l MANNING

OEBPS/OEBPS/Images/CH01_F07_Siriwardena.png
The embedded PDP in K
each microservice pulls

the corresponding policies
when there is an update
at the PAP.

Each microservice will
be notified whenever
a new policy is added
or updated.

Whenever there is a policy
add/update, events are
published to the message queue.

Policies are defined at the PAP.

OEBPS/OEBPS/Images/CH01_F08_Siriwardena.png
A system may directly
access a microservice
by itself or on behalf

:i“—l Famother wne
/

Human users indirectly access
a microservice via a web app,
a mobile app, and so on.

Microservices are exposed Inventory
to client applications via an Service
API gateway.

\

One microservice talks to another
microservice on behalf of another
system or a human user.

OEBPS/OEBPS/Images/CH02_F03_Siriwardena.png
The client application registers with
the authorization server and gets \
a set of credentials to access it. . The client application authenticates

/and requests an access token.
@ Authorization
Server

X
__ The authorization server sends back the access
token along with the related token metadata.

OEBPS/OEBPS/Images/CH01_F11_Siriwardena.png
e

Accepts a request.
from a client only if the
certificate used to sign
the JWT from the client
microservice is known
and trusted.

Each microservice has
its own public/private
key pair, and the private
key is used to sign the
JWI.

Certificate
Authority

Service-to-service

:&T&"mms are All the certificates issued to each
JWT over TLS. microservice are signed by this

trusted certificate authority.

OEBPS/OEBPS/Images/CH01_F14_Siriwardena.png

OEBPS/OEBPS/Images/CH02_F06_Siriwardena.png
The client application requests
an OAuth2.0 access token from
the authorization server. \

The authorization server
issues an access token to —__
the client application.

The client application makes |
an HTTP request to the Order /
Processing microservice along
with an access token.

The Order Processing microservice
checks with the authorization
server to see whether the received
access token is valid.

/

Authorization

The reponse carries token
metadata and indicates
whether the token is
valid or not.

The Order Processing microservice responds
to the client application, either granting
access to the resource being requested or
sending an error message.

OEBPS/OEBPS/Images/CH01_F05_Siriwardena.png
Protected
with TLS

Protected
with TLS

API Gateway

Protected
Inventory
Senvice

with TLS

Order

Processing

Service

|
rrmncn),
with TLS

A man in the middle cannot see
data in transit when TLS is used
Data at rest can be protected

with message-level encryption
or disk-level encryption.

OEBPS/OEBPS/Images/CH01_F02_Siriwardena.png
An entry point to the

i i

i i

i] monolithic application
An entry point E E
to the monolithic |] Servlet filter acts as the security
application : enforcement point. Only the

legitimate requests pass through
— « to the application components.
<«

All the application components
share the same web session, and

{ — user context is injected into the
session so th: s available for
all the components.

Order
Processing

Biling Delivery

Supplier
Management

Inventory

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F12_Siriwardena.png
Each microservice
talks to a centralized
PDP to authorize each
request it receives.

Policies are defined, stored,
and evaluated at the PDP.

OEBPS/OEBPS/Images/CH01_F15_Siriwardena.png
<<TRUSTS>>

OEBPS/OEBPS/Images/CH01_F03_Siriwardena.png
The service-to-service communications among At the entry point, each
microservices may be protected with certificates. microservice has to do
In such a case, each node should be provisioned with a security check.

a public/private key pair.

J Each
microservice
is deployed
in its own
container.

Service
<
Each —
microservice
has its own Microservices
entry point(s). deployment.

OEBPS/OEBPS/Images/CH02_F04_Siriwardena.png
Client sends a request with an access
token in the HTTP header. Each request
must carry this token.

Authorization: Bearer <TOKEN>

Client
Application \
The Order Processing service
validates the token and sends
a response back to the client.

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH02_F01_Siriwardena.png
Users accessing a microservice through
, an application (or an application accessing
_~" amicroservice on behalf of users)

Inventory
Service

A client application of the Order /

Processing microservice, which can

be a web app or a mobile app A microservice
accessing another
microservice

OEBPS/OEBPS/Images/CH01_F06_Siriwardena.png
@ Firewalls cannot
mitigate all the types
(of DDoS attacks.

The firewall denies
h- requests based
on IP addresses.

-

Performs authentication,
authorization, and throttling

The firewall applies
access-control rules
and protects the
system from attacks.

Inventor
Performs message sem:
content validation
to prevent known
threats

