

 [image: cover]

OpenShift in Action

 Jamie Duncan and John Osborne

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Toni Arritola
Review editor: Ivan Martinović
Technical development editor: Dani Cortés
Project manager: Kevin Sullivan
Copyeditor: Tiffany Taylor
Proofreader: Melody Dolab
Technical proofreader: Eric Rich
Typesetter: Gordan Salinovic
Illustrations: Chuck Larson
Cover designer: Marija Tudor

 ISBN 9781617294839

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Dedication

 For Molly and Elizabeth. Thank you for your understanding, your immeasurable assistance, and making me take time off to play
 with the chickens.

 J.D.

 To my wife and two daughters, thank you for always giving me spontaneous reasons to laugh.

 J.O.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Fundamentals

 Chapter 1. Getting to know OpenShift

 Chapter 2. Getting started

 Chapter 3. Containers are Linux

 2. Cloud-native applications

 Chapter 4. Working with services

 Chapter 5. Autoscaling with metrics

 Chapter 6. Continuous integration and continuous deployment

 3. Stateful applications

 Chapter 7. Creating and managing persistent storage

 Chapter 8. Stateful applications

 4. Operations and security

 Chapter 9. Authentication and resource access

 Chapter 10. Networking

 Chapter 11. Security

 Appendix A. Installing and configuring OpenShift

 Appendix B. Setting up a persistent storage source

 Appendix C. Working directly with Docker

 Appendix D. Configuring identity providers

 OpenShift application components

 oc Cheat Sheet

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Fundamentals

 Chapter 1. Getting to know OpenShift

 1.1. What is a container platform?

 1.1.1. Containers in OpenShift

 1.1.2. Orchestrating containers

 1.2. Examining the architecture

 1.2.1. Integrating container images

 1.2.2. Accessing applications

 1.2.3. Handling network traffic in your cluster

 1.3. Examining an application

 1.3.1. Building applications

 1.3.2. Deploying and serving applications

 1.4. Use cases for container platforms

 1.4.1. Technology use cases

 1.4.2. Use cases for businesses

 1.4.3. When containers aren’t the answer

 1.5. Solving container storage needs

 1.6. Scaling applications

 1.7. Integrating stateful and stateless applications

 1.8. Summary

 Chapter 2. Getting started

 2.1. Cluster options

 2.2. Logging in

 2.2.1. Using the oc command-line application

 2.3. Creating projects

 2.4. Application components

 2.4.1. Custom container images

 2.4.2. Build configs

 2.4.3. Deployment configs

 2.4.4. Image streams

 2.5. Deploying an application

 2.5.1. Providing consistent application access with services

 2.5.2. Exposing services to the outside world with routes

 2.6. Deploying applications using the web interface

 2.6.1. Logging in to the OpenShift web interface

 2.7. Deploying applications with the web interface

 2.8. Summary

 Chapter 3. Containers are Linux

 3.1. Defining containers

 3.2. How OpenShift components work together

 3.2.1. OpenShift manages deployments

 3.2.2. Kubernetes schedules applications across nodes

 3.2.3. Docker creates containers

 3.2.4. Linux isolates and limits resources

 3.2.5. Putting it all together

 3.3. Application isolation with kernel namespaces

 3.3.1. The mount namespace

 3.3.2. The UTS namespace

 3.3.3. PIDs in containers

 3.3.4. Shared memory resources

 3.3.5. Container networking

 3.4. Summary

 2. Cloud-native applications

 Chapter 4. Working with services

 4.1. Testing application resiliency

 4.1.1. Understanding replication controllers

 4.1.2. Labels and selectors

 4.2. Scaling applications

 4.2.1. Modifying the deployment config

 4.3. Maintaining healthy applications

 4.3.1. Creating liveness probes

 4.3.2. Creating readiness probes

 4.4. Summary

 Chapter 5. Autoscaling with metrics

 5.1. Determining expected workloads is difficult

 5.2. Installing OpenShift metrics

 5.2.1. Understanding the metrics stack

 5.3. Using pod metrics to trigger pod autoscaling

 5.3.1. Creating an HPA object

 5.3.2. Testing your autoscaling implementation

 5.3.3. Avoiding thrashing

 5.4. Summary

 Chapter 6. Continuous integration and continuous deployment

 6.1. Container images as the centerpiece of a CI/CD pipeline

 6.2. Promoting images

 6.3. CI/CD part 1: creating a development environment

 6.3.1. Invoking object triggers

 6.3.2. Enabling automated and consistent deployments with image streams

 6.4. CI/CD part 2: promoting dev images into a test environment

 6.4.1. Service discovery

 6.4.2. Automating image promotion with image stream triggers

 6.5. CI/CD part 3: masking sensitive data in a production environment

 6.5.1. Protecting sensitive data with secrets

 6.5.2. Using config maps for environment-specific settings

 6.6. Using Jenkins as the backbone of a CI/CD pipeline

 6.6.1. Triggering Jenkins from Gogs

 6.6.2. Native integration with a Jenkinsfile

 6.7. Deployment strategies

 6.8. Summary

 3. Stateful applications

 Chapter 7. Creating and managing persistent storage

 7.1. Container storage is ephemeral

 7.2. Handling permanent data requirements

 7.3. Creating a persistent volume

 7.3.1. Logging in as the admin user

 7.3.2. Creating new resources from the command line

 7.3.3. Creating a physical volume

 7.4. Using persistent storage

 7.4.1. Creating a persistent volume claim using the command line

 7.4.2. Adding a volume to an application on the command line

 7.4.3. Adding persistent storage to an application using the web interface

 7.5. Testing applications after adding persistent storage

 7.5.1. Data doesn’t get mixed up

 7.5.2. Forcing a pod restart

 7.5.3. Investigating persistent volume mounts

 7.6. Summary

 Chapter 8. Stateful applications

 8.1. Enabling a headless service

 8.1.1. Application clustering with WildFly

 8.1.2. Querying the OpenShift API server from a pod

 8.1.3. Verifying WildFly data replication

 8.1.4. Other use cases for direct pod access

 8.2. Demonstrating sticky sessions

 8.2.1. Toggling sticky sessions

 8.3. Shutting down applications gracefully

 8.3.1. Setting a grace period for application cleanup

 8.3.2. Using container lifecycle hooks

 8.4. Native API object support for stateful applications with stateful sets

 8.4.1. Deterministic sequencing of startup and shutdown order with stateful sets

 8.4.2. Examining a stateful set

 8.4.3. Predictable network identity

 8.4.4. Consistent persistent storage mappings

 8.4.5. Stateful set limitations

 8.4.6. Stateful applications without native solutions

 8.5. Summary

 4. Operations and security

 Chapter 9. Authentication and resource access

 9.1. Proper permissions vs. the Wild West

 9.2. Working with user roles

 9.2.1. Assigning new user roles

 9.2.2. Creating administrators

 9.2.3. Setting default user roles

 9.3. Limit ranges

 9.3.1. Defining resource limit ranges

 9.4. Resource quotas

 9.4.1. Creating compute quotas

 9.4.2. Creating resource quotas

 9.5. Working with quotas and limits

 9.5.1. Applying quotas and limits to existing applications

 9.5.2. Changing quotas for deployed applications

 9.6. Using cgroups to limit resources

 9.6.1. Cgroups overview

 9.6.2. Identifying container cgroups

 9.6.3. Confirming cgroup resource limits

 9.7. Summary

 Chapter 10. Networking

 10.1. OpenShift network design

 10.2. Managing the OpenShift SDN

 10.2.1. Configuring application node networks

 10.2.2. Linking containers to host interfaces

 10.2.3. Working with OVS

 10.3. Routing application requests

 10.3.1. Using HAProxy to route requests

 10.3.2. Investigating the HAProxy pod

 10.3.3. How HAProxy gets requests to the correct pods

 10.4. Locating services with internal DNS

 10.4.1. DNS resolution in the pod network

 10.5. Configuring OpenShift SDN

 10.5.1. Using the ovs-subnet plugin

 10.5.2. Isolating traffice with the ovs-multitenant plugin

 10.5.3. Creating advanced network designs with the ovs-networkpolicy plugin

 10.5.4. Enabling the ovs-multitenant plugin

 10.5.5. Testing the multitenant plugin

 10.6. Summary

 Chapter 11. Security

 11.1. Understanding SELinux core concepts

 11.1.1. Working with SELinux labels

 11.1.2. Applying labels with SELinux contexts

 11.1.3. Enforcing SELinux with policies

 11.1.4. Isolating pods with MCS levels

 11.2. Investigating pod security contexts in OpenShift

 11.2.1. Examining MCS levels in OpenShift

 11.2.2. Managing pods Linux capabilities

 11.2.3. Controlling the pod user ID

 11.3. Scanning container images

 11.3.1. Obtaining the image-scanning application

 11.3.2. Deploying the image-scanning application

 11.3.3. Viewing events on the command line

 11.3.4. Changing SCCs for an application deployment

 11.3.5. Viewing security scan results

 11.4. Annotating images with security information

 11.5. Summary

 Appendix A. Installing and configuring OpenShift

 A.1. Prerequisites

 A.1.1. Available systems or creating virtual machines

 A.1.2. Administrator or root access

 A.1.3. Internet access

 A.1.4. Access to the servers

 A.1.5. Communication between servers

 A.1.6. DNS resolution

 A.1.7. Networking information

 A.2. Machine resource requirements

 A.3. Installing CentOS 7

 A.3.1. Launching the installer

 A.3.2. Configuring the disk setup

 A.3.3. Setting up networking

 A.3.4. Setting the permanent configurations on the servers

 A.3.5. Starting the installation

 A.3.6. Wrapping up and rebooting

 A.4. Preparing to install OpenShift

 A.4.1. Software prerequisites

 A.4.2. Configuring DNS resolution on both servers

 A.4.3. Installing software on the master server

 A.4.4. Configuring container storage for application nodes

 A.4.5. Enabling and starting docker on your OpenShift nodes

 A.4.6. Configuring SELinux on your OpenShift nodes

 A.5. Installing OpenShift

 A.5.1. Creating the OpenShift inventory

 A.5.2. Running the deployment playbook

 A.6. Installation complete

 A.7. Installing the oc OpenShift command-line utility

 A.7.1. Installing oc on Windows

 A.7.2. Installing oc on macOS

 A.7.3. Installing oc on Linux

 A.7.4. Confirming that oc is installed and functioning correctly

 A.8. Adding an OpenShift node

 A.8.1. Preparing the new application node

 A.9. Configuring the master node

 A.9.1. Updating OpenShift playbooks

 A.9.2. Updating your OpenShift inventory

 A.10. Adding the node

 Appendix B. Setting up a persistent storage source

 B.1. Installing the NFS server software

 B.2. Configuring storage for NFS

 B.2.1. Creating a filesystem on your storage disk

 B.3. Mounting your storage disk at startup

 B.3.1. Creating a mountpoint directory

 B.3.2. Getting your storage drive’s block ID

 B.3.3. Editing /etc/fstab to include your volume

 B.3.4. Activating your new mount point

 B.4. Configuring NFS

 B.4.1. Setting ownership of the mountpoint

 B.5. Setting firewall rules to allow NFS traffic

 B.6. Enabling and starting NFS

 B.6.1. Starting NFS services

 B.6.2. Confirming that your NFS volume is exported and ready to use

 Appendix C. Working directly with Docker

 C.1. Getting running containers

 C.2. Using docker inspect

 C.3. Interactive shells in a container

 Appendix D. Configuring identity providers

 D.1. Introduction to htpasswd

 D.2. Creating the htpasswd database

 D.3. Changing authentication providers

 OpenShift application components

 oc Cheat Sheet

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Containers are becoming the primary way applications are built and deployed. They’re one of those rare technologies that comes
 along and not only cuts operating costs, but also increases productivity. Containers also provide the flexibility to keep
 organizations from getting locked into any one technology. Our vision at Red Hat is to become a default choice for organizations
 looking for a partner to help them build any applications and deploy them in any environment.

 Enter Red Hat OpenShift: Red Hat’s answer to bringing together the best and most popular projects and developer services to
 emerge around containers—such as Kubernetes and Ansible—in a single, scalable, rock-solid container platform combined with
 all the services developers need.

 In the pages that follow, you’ll find something unique: the first holistic view of OpenShift in print. OpenShift in Action, written by two of Red Hat’s top contributors, is the first book that takes a soup-to-nuts approach in combining both the
 developer and operator perspectives and covering everything from deployment to the top of the application stack.

 As you read, you’ll discover how containers reduce costs, increase productivity, and address the Holy Grail of software: the
 power to write code once and then reuse it multiple times. In the past, the heavy cost of architecting and building a reusable
 infrastructure has been a difficult barrier to cross. With containers working in cooperation with microservices, we finally
 have a lightweight technology that has kicked off an IT revolution.

 Large-scale applications are moving to hybrid and multicloud environments, and more organizations are choosing containers
 to easily build applications, deploy them, and move them across clouds. By abstracting applications from underlying resources,
 OpenShift makes developers and operators more efficient and productive in delivering feature functionality.

 We have long had a front-row seat in seeing how large enterprises and organizations with massive tech footprints struggle
 to implement the latest technology. Red Hat was early to embrace containers and container orchestration and contribute deeply
 to related open source communities. Just as we’ve done with Red Hat Enterprise Linux for decades, we created OpenShift as
 a way to bring the power of the community to the enterprise while making it consumable in a safe, secure, and reliable way.

 Read on to get your own glimpse of how open source is leading the way in this emerging new paradigm of computing.

 JIM WHITEHURST, PRESIDENT AND CEO, RED HAT

Preface

 When we first began developing OpenShift in Action, it was going to be a book focusing on the ops side of DevOps in OpenShift. Existing books focus on OpenShift’s developer
 experience, and we wanted to be their counterpoint. As we continued to work on the content and look at what we wanted to teach,
 it became apparent that we didn’t want to be a counterpoint. We didn’t want to represent one side of anything. Instead, we
 decided to create a complete example of OpenShift with a strong experience for both operators and developers. OpenShift in Action takes a holistic view of OpenShift, giving equal weight to both perspectives represented in DevOps.

 We think this is important, because the ultimate goal of DevOps is to enable and enhance communication between developer and
 operations teams that historically have been placed in adversarial (at best) relationships. To accomplish this, the two authors
 each specialize in one of these roles. For us, writing this book has been an amazing learning experience in how DevOps can
 work for just about anything, including writing a book.

 We can’t cover every OpenShift topic in a single book. But we hope OpenShift in Action gives you the fundamental knowledge from both developer and operation perspectives to allow you to deploy and successfully
 use OpenShift in your own environments. We also hope you can use OpenShift to accomplish meaningful work using containers.
 Most important, we hope the content in this book expands your knowledge through hands-on experience with OpenShift and becomes
 a reference for you for years to come.

 OpenShift has a great web-based user interface, powerful command-line utilities, and a robust API. Almost any of the examples
 we go through in OpenShift in Action can be accomplished using any of those interfaces. We try to give you examples using all of these methods, but you’ll notice
 as you read and work through the examples that we tend to focus on command-line workflows to accomplish tasks. There are two
 primary reasons we did this:

 	With the electronic versions of the book, you can copy and paste most of the examples directly into the command line to run
 them.

 	In our experience at Red Hat, working with hundreds of customers and helping them effectively use OpenShift, the command line
 is the most common interface for power users.

 OpenShift in Action was written using the experience we’ve gained helping countless Red Hat customers over the years. We cover a wide range of
 topics, and we’ve done our best to organize them in a way that will be relevant and useful as you begin this exciting journey.
 We hope this book is as helpful to you as the process of writing it has been to us.

Acknowledgments

 We’d like to thank the OpenShift and Kubernetes communities. These technologies are changing how IT solutions are delivered.
 This book wouldn’t have been possible without immeasurable help from those communities, as well as the other open source communities
 whose software makes OpenShift the industry-leading Kubernetes-based platform. To call out individuals would be nearly impossible.
 We’d also like to thank Red Hat for its sponsorship and leadership in open source endeavors globally.

 We want to thank the people at Manning who made this book possible: publisher Marjan Bace and everyone on the editorial and
 production teams who worked behind the scenes.

 We also want to thank Dani Cortés and Eric Rich for giving the book a thorough technical review and proofread. Several other
 reviewers also looked over the manuscript at various stages of development: Alexandros Koufoudakis, Andrea Cosentino, Andrea
 Tarocchi, Areg Melik-Adamyan, Bruno Vernay, Carlos Esteban Feria Vila, Derek Hampton, Ioannis Sermetziadis, Jorge Quilcate,
 Juan Lopez, Julien Pohie, Mario-Leander Reimer, Michael Bright, Paolo Antinori, Paul Balogh, Rick Wagner, Tony Sweets, Vinicius
 Miana, and Zorodzayi Mukuya. We appreciate all their time and feedback.

About this book

 Our goal in this book is to give you working knowledge of how to build, deploy, and maintain applications running on OpenShift.
 We use practical examples to build core knowledge of the platform. Throughout, we explore the inner workings of containers
 within the Linux kernel all the way up through running a CI/CD pipeline. While OpenShift has a fast release cadence, this
 book is designed to be relevant for future releases by focusing on foundational concepts instead of latest-and-greatest features.
 We hope it gives you the fundamental tools to succeed and is a reference for you going forward.

Who should read this book

 OpenShift in Action is for any IT professional who’s investigating OpenShift specifically, or containers in general from a developer or operations
 perspective. Countless blog posts and documentation sites are available online, but this is the first book that takes a view
 of OpenShift from top to bottom. Included in that is how to use container runtimes like docker as well as information about
 Kubernetes. This book brings all that information together in a single source.

How this book is organized: a roadmap

 This book has 4 parts and 11 chapters. Part 1 explains OpenShift at a high level and explores deploying a cluster, creating your first applications, and how applications
 work in containers:

 	
Chapter 1 provides a high-level overview of how OpenShift works and how it fits modern business needs.

 	
Chapter 2 walks you through deploying an OpenShift cluster. It also covers the components in OpenShift and creating your first containerized
 applications.

 	
Chapter 3 is a deep dive into how applications in containers are isolated on an OpenShift node, using examples of the applications
 you’ve just deployed.

 Part 2 focuses on working with cloud-native applications in OpenShift:

 	
Chapter 4 examines the OpenShift components that make up a deployed application. It also demonstrates how to set liveness and readiness
 probes for applications to ensure that they’re functioning correctly.

 	
Chapter 5 demonstrates how to set up metrics-based application autoscaling.

 	
Chapter 6 uses Jenkins to deploy an entire CI/CD pipeline in OpenShift.

 Part 3 is about using OpenShift to deploy stateful applications:

 	
Chapter 7 goes through the process of deploying persistent storage and making it available for applications in OpenShift.

 	
Chapter 8 deploys an application using persistent storage and covers managing application session persistence and other challenges
 for distributed stateful applications.

 Part 4 focuses on the operational aspects of OpenShift and handling security challenges:

 	
Chapter 9 configures user roles to control access, resource limits, and quotas, and investigates how Linux cgroups enforce these constraints.

 	
Chapter 10 is a deep dive into how the software-defined networking layer is set up and managed.

 	
Chapter 11 deals with core aspects of security, including SELinux and working with security contexts.

 Part 1 will be especially helpful to you if containers are a new concept; chapter 3 is the deepest technical chapter in the section. Parts 3 and 4 cover both operations and developer topics. Part 4 is primarily focused around operations but will still appeal to developers who have a need or desire to understand the OpenShift
 platform more deeply.

About the code

 Beginning with chapter 2, each chapter has extensive code samples and source code; these are available for download at the book’s website, www.manning.com/books/openshift-in-action, and at https://github.com/OpenShiftInAction. Because OpenShift evolves so quickly, we’ll continue to update the samples on GitHub even after the book is printed. Please
 join us there or at the book’s forum (https://forums.manning.com/forums/openshift-in-action) to let us know if you run into issues or have questions around the examples in the book. If you’re looking for additional
 resources, you can find the official OpenShift documentation repository at https://docs.openshift.com.

 This book presents source code both in numbered listings and in line with normal text. In both cases, it’s formatted in a
 fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. When even this wasn’t enough, listings include line-continuation markers ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

Book forum

 Purchase of OpenShift in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum, go to https://forums.manning.com/forums/openshift-in-action. You can also learn more about Manning’s forums and the rules of conduct on the forums at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the authors

 JAMIE DUNCAN is a recovering history major with 11 years of experience working professionally with Linux. Six of those years have been
 at Red Hat, focusing increasingly on the operations-oriented features of OpenShift. Jamie spends his days explaining how containers
 are an integral part of the Linux operating system, and he’s had this discussion with customers, OpenShift advocates, and
 technology fans on multiple continents. That fundamental knowledge of how containers work helps people treat containers like
 the revolutionary technology they are, using them strategically to solve their challenges. When not knee-deep in OpenShift,
 Jamie’s a wanna-be farmer and Formula 1 racing fan.

 JOHN OSBORNE is a principal OpenShift architect dedicated to Red Hat public sector customers. He’s been at Red Hat for five years, with
 a strong focus on Kubernetes and DevOps. Before his arrival at Red Hat, he worked at a startup and then spent seven years
 with the U.S. Navy developing high-performance applications and deploying them to several mission-critical areas across the
 globe. He enjoys making cutting-edge technologies useful and practical for people trying to solve business problems. He lives
 in northern Virginia with his wife and two daughters.

About the cover illustration

 The figure on the cover of OpenShift in Action is captioned “Morning Habit of a Lady of the City of Pera in Natolia in 1568.” Pera was the name of a district on the European
 side of Istanbul, separated from the historic old city by the Golden Horn, an inlet of the Bosporus. The illustration is taken
 from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern, published in London between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened
 with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who
 was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local
 dress customs of the lands he surveyed and mapped; they are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the eighteenth century, and collections
 such as this one were popular, introducing both the tourist and the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 centuries ago. Dress codes have changed, and the diversity by region and country, so rich at one time, has faded away. It
 is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have
 traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical
 life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of national costumes from centuries ago, brought back to life
 by Jefferys’ pictures.

Part 1. Fundamentals

 As with most things, the best place to start with OpenShift is with the fundamentals. If you’re an experienced OpenShift user,
 this part of the book may seem familiar. If this is your first look at OpenShift, these chapters may be very valuable.

 Chapter 1 is a high-level overview of what OpenShift does and the issues it’s designed to solve. We’ll talk about the business problems
 and lay out the use cases where OpenShift and containers provide advantages over previous technology solutions.

 Chapter 2 gets down to the bits and bytes. After deploying an OpenShift cluster, you’ll deploy your first container-based applications
 on top of it. Using these examples, we’ll discuss the OpenShift components that work together to make applications function
 correctly.

 Chapter 3 takes you down to the bottom of the Linux kernel. We’ll talk about how the containers used by OpenShift isolate the applications
 inside them. This is a fundamental concept of how containers work, and we feel that it’s important for people who develop
 applications in containers as well as people who operate OpenShift clusters to have this essential knowledge.

Chapter 1. Getting to know OpenShift

 This chapter covers

 	How container platforms are changing IT

 	Comparing containers to virtual machines

 	Understanding when containers don’t fit

 	Designing OpenShift

 Containers are changing how everyone in the IT industry does their job. Containers initially entered the scene on developers’
 laptops, helping them develop applications more quickly than they could with virtual machines or by configuring a laptop’s
 operating system. As containers became more common in development environments, their use began to expand. Once limited to
 laptops and small development labs, containers worked their way into the enterprise. Within a couple of years, containers
 progressed to the point that they’re powering massive production workloads like GitHub (www.github.com).

 	

 Note

 The success of Pokémon GO running on a container platform makes for interesting reading. Pokémon GO runs on Google Cloud Platform.
 Its massive workloads are documented in the blog post “Bringing Pokémon GO to life on Google Cloud” by Luke Stone (September
 29, 2016, http://mng.bz/dK8B). The next time you’re stalking a Pikachu across your local park, remember that it’s all happening in a container.

 	

 As powerful as container are—and we’ll be discussing that throughout this book—they aren’t a solution on their own. Containers
 are a new way to deliver applications. But the platform that serves those applications needs to have a lot more going for
 it than just containers. To effectively use containers, they need to be part of a container platform like OpenShift. Container platforms provide orchestration and other services that containers need in order for users to take
 full advantage of containers.

1.1. What is a container platform?

 A container platform is an application platform that uses containers to build, deploy, serve, and orchestrate the applications running inside
 it. OpenShift uses two primary tools to serve applications in containers: a container runtime to create containers in Linux and an orchestration engine to manage a cluster of servers running containers. Let’s discuss the container runtime first.

 1.1.1. Containers in OpenShift

 A container runtime works on a Linux server to create and manage containers. For that to make sense, we need to look at how
 containers function when they’re running on a Linux system.

 In subsequent chapters, we’ll dig deeply into how containers isolate applications in OpenShift. To start, you can think of
 containers as discrete, portable, scalable units for applications.

 Containers hold everything required for the applications inside them to function. Each time a container is deployed, it holds
 all the libraries and code needed for its application to function properly (see figure 1.1).

 Figure 1.1. Overview of container properties

 [image:]

 Applications running inside a container can only access the resources in the container. The applications in the container
 are isolated from anything running in other containers or on the host. Five types of resources are isolated with containers:

 	Mounted filesystems

 	Shared memory resources

 	Hostname and domain name

 	Network resources (IP address, MAC address, memory buffers)

 	Process counters

 We’ll investigate these in more depth throughout this book.

 In OpenShift, the service that handles the creation and management of containers is docker (https://github.com/docker). Docker is a large, active, open source project started by Docker, Inc. The resources that docker uses to isolate processes
 in containers all exist as part of the Linux kernel. These resources include things like SELinux, Linux namespaces, and control groups (cgroups),
 which will all be covered later in the book. In addition to making these resources much easier to use, docker has also added
 several features that have enhanced its popularity and growth:

 	
Portability— Earlier attempts at container formats weren’t portable between hosts running different operating systems. This container format
 is now standardized as part of the Open Container Initiative.[1]
 1

More information is available here: https://github.com/opencontainers/image-spec.

 	
Image reuse— Any container image can be reused as the base for other container images.

 	
Application-centric API— The API and command-line tooling allow developers to quickly create, update, and delete containers.

 	
Ecosystem— Docker, Inc. maintains a free public hosting environment for container images; it now contains several hundred thousand images.

 1.1.2. Orchestrating containers

 Although the docker engine manages containers by facilitating Linux kernel resources, it’s limited to a single host operating
 system. Although a single server running containers is interesting, it isn’t a platform that you can use to create robust
 applications. To deploy highly available and scalable applications, you have to be able to deploy application containers across
 multiple servers. To orchestrate containers across multiple servers effectively, you need to use a container orchestration engine: an application that manages a container runtime across a cluster of hosts to provide a scalable application platform. OpenShift uses Kubernetes (https://kubernetes.io) as its container orchestration engine.

 Kubernetes is an open source project that was started by Google. In 2015, it was donated to the Cloud Native Computing Foundation
 (www.cncf.io).

 	

 Note

 Kubernetes is a bit of a challenge to type or spell. It’s often abbreviated as kube or k8s, which stands for “k + 8 letters + s.”

 	

 Kubernetes employs a master/node architecture. Kubernetes master servers maintain the information about the server cluster,
 and nodes run the actual application workloads (see figure 1.2).

 Figure 1.2. Overview of the Kubernetes architecture

 [image:]

 Kubernetes is a great open source project. The community around it is quickly growing and incredibly active. It’s consistently
 one of the most active projects on GitHub. But to realize the full power of a container platform, Kubernetes needs a few additional
 components. OpenShift uses docker and Kubernetes as a starting point for its design. But to be a truly effective container
 platform, it adds a few more tools to provide a better experience for users.

1.2. Examining the architecture

 OpenShift uses the Kubernetes master/node architecture as a starting point. From there, it expands to provide additional services
 that a good application platform needs to include out of the box.

 1.2.1. Integrating container images

 In a container platform like OpenShift, container images are created when applications are deployed or updated. To be effective,
 the container images have to be available quickly on all the application nodes in a cluster. To do this, OpenShift includes
 an integrated image registry as part of its default configuration (figure 1.3).

 Figure 1.3. Overview of the OpenShift architecture

 [image:]

 An image registry is a central location that can serve container images to multiple locations. In OpenShift, the integrated
 registry runs in a container.

 In addition to providing tightly integrated image access, OpenShift works to make access to the applications more efficient.

 1.2.2. Accessing applications

 In Kubernetes, containers are created on nodes using components called pods. There are some distinctions that we’ll discuss in more depth in chapter 2, but they’re often similar. When an application consists of more than one pod, access to the application is managed through
 a component called a service. A service is a proxy that connects multiple pods and maps them to an IP address on one or more nodes in the cluster.

 IP addresses can be hard to manage and share, especially when they’re behind a firewall. OpenShift helps to solve this problem
 by providing an integrated routing layer. The routing layer is a software load balancer. When an application is deployed in OpenShift, a DNS entry is created for
 it automatically. That DNS record is added to the load balancer, and the load balancer interfaces with the Kubernetes service
 to efficiently handle connections between the deployed application and its users (see figure 1.3).

 With applications running in pods across multiple nodes, and management requests coming from the master node, there’s a lot
 of communication between servers in an OpenShift cluster. You need to make sure that traffic is properly encrypted and can
 be separated when needed.

 1.2.3. Handling network traffic in your cluster

 OpenShift uses a software-defined networking (SDN) solution to encrypt and shape network traffic in a cluster. OpenShift SDN,
 an SDN solution that uses Open vSwitch (OVS, http://openvswitch.org) and other open source technologies, is configured by default when OpenShift is deployed. Other SDN solutions are also supported.
 We’ll examine OpenShift SDN in depth in chapter 10.

 Now that you have a good idea of how OpenShift is designed, let’s look at the lifecycle of an application in an OpenShift
 cluster.

1.3. Examining an application

 OpenShift has workflows that are designed to help you manage your applications through all phases of its lifecycle:

 	Build

 	Deployment

 	Upgrade

 	Retirement

 The following sections examine each of these phases.

 1.3.1. Building applications

 The primary way to build applications is to use a builder image. This process is the default workflow in OpenShift, and it’s what you’ll use in chapter 2 to deploy your first applications in OpenShift.

 A builder image is a special container image that includes applications and libraries needed for an application in a given
 language. In chapter 2, you’ll deploy a PHP web application. The builder image you’ll use for your first deployment includes the Apache web server
 and the PHP language libraries.

 The build process takes the source code for an application and combines it with the builder image to create a custom application
 image for the application. The custom application image is stored in the integrated registry (see figure 1.4), where it’s ready to be deployed and served to the application’s users.

 Figure 1.4. Overview of the application build process

 [image:]

 1.3.2. Deploying and serving applications

 In the default workflow in OpenShift, application deployment is automatically triggered after the container image is built
 and available. The deployment process takes the newly created application image and deploys it on one or more nodes. In addition
 to the application pods, a service is created, along with a DNS route in the routing layer.

 Users are able to access the newly created application through the routing layer after all the components have been deployed
 (see figure 1.5).

 Figure 1.5. Overview of application deployment

 [image:]

 Application upgrades use the same workflow. When an upgrade is triggered, a new container image is created, and the new application
 version is deployed. Multiple upgrade processes are available; we’ll discuss them in more depth in chapter 6.

 That’s how OpenShift works at a high level. We’ll dig much deeper into all of these components and mechanisms over the course
 of this book. Now that you’re armed with a working knowledge of OpenShift, let’s talk about some of the things container platforms
 are good (and sometimes not so good) at doing.

 	

 Tip

 For a more comprehensive list of how OpenShift integrates with and expands the functionality of Kubernetes, visit www.openshift.com/container-platform/kubernetes.html.

 	

1.4. Use cases for container platforms

 The technology in OpenShift is pretty cool. But unless you can tie a new technology to some sort of benefit to your mission,
 it’s hard to justify investigating it. In this section, we’ll look at some of the benefits OpenShift can provide. Let’s start
 by exploring its technological benefits.

 1.4.1. Technology use cases

 If you stop and think about it for a minute, you can hang the major innovations in IT on a timeline of people seeking more
 efficient process isolation. Starting with mainframes, we were able to isolate applications more effectively with the client-server
 model and the x86 revolution. That was followed by the virtualization revolution. Multiple virtual machines can run on a single
 physical server. This gives administrators better density in their datacenters while still isolating processes from each other.

 With virtual machines, each process was isolated in its own virtual machine. Because each virtual machine has a full operating
 system and a full kernel (see figure 1.6), it must have all the filesystems required for a full operating system. That also means it must be patched, managed, and
 treated like traditional infrastructure.

 Figure 1.6. Virtual machines can be used for process isolation.

 [image:]

 Containers are the next step in this evolution. An application container holds everything the application needs to run:

 	Source code or compiled code for the application

 	Libraries or applications needed for the application to run properly

 	Configurations and information about connecting to shared data sources

 What containers don’t contain is equally important. Unlike virtual machines, containers all run on a single, shared Linux kernel. To isolate the
 applications, containers use components inside the kernel (see figure 1.7) that we’ll discuss in chapters 3 and 9.

 Figure 1.7. Containers use a single kernel to serve applications, saving space and resources and providing flexible application platforms.

 [image:]

 Because containers don’t have to include a full kernel to serve their application, along with all the dependencies of an operating
 system, they tend to be much smaller than virtual machines both in their storage needs and their resource consumption. For
 example, whereas a typical virtual machine starts out with a 10 GB or larger disk, the CentOS 7 container image is 140 MB.

 Being smaller comes with a couple of advantages. First, portability is enhanced. Moving 140 MB from one server to another
 is much faster than moving 10 GB or more.

 Second, because starting a container doesn’t include booting up an entire kernel, the startup process is much faster. Starting
 a container is typically measured in milliseconds, as opposed to seconds or minutes for virtual machines.

 The technologies behind containers provide multiple technical benefits. They provide business advantages as well.

 1.4.2. Use cases for businesses

 Modern business solutions must include time or resource savings as part of their design. Solutions today have to be able to
 use human and computer resources more efficiently than in the past. Containers’ ability to enable both types of savings is
 one of the major reasons they’ve exploded on the scene the way they have.

OEBPS/01fig03_alt.jpg
SUSES RUVIINTHR 1 % WUR S0 TN
and command line tools through
the master server. —

Master server manages

SO SO A -
through the routing layer.

Routing layer provides casy
DNS access and a consistent
endpoint for all applications

in Openshift. \

all actions inside
the cluster. \
Openshit maser sover Openshitnods
® ®
))
Oparshit node

S
be scaled across multiple
nodes to provide scalable

and highly available
applications.

All communications inside —
the cluster are encryped
using TLS.

‘Openshift nodes run the application /

workloads as directed by the master
server.

©

))

container images to build and

deploy applications on the
b7

|-

Integrated registry provides ,/

OEBPS/01fig04_alt.jpg
Applcation
source code

3a. The application

|. The developer 2. The master source code is T
triggers an 5 server triggers copied into the i
application build. — ' a new build.

buid pod. —__

OpenShift master server OpenShift node
-
3b. A builder image i
is provided by the ———— i OpenShift node
integrated registry. =;
®
/
5. After the build process completes, 4. A build pod is used to create
the new application image is stored a custom container image
in the image registry and is ready combining the source code

to be deployed to the nodes. and the builder image.

OEBPS/01fig01_alt.jpg
LRI SETVEN REWTNY COMmEINS.

Some resources on
the server are shared
among all containers.

Each container provides i X
an environment for each A container carries
application running alllibraries and code
needed for the
application to run.

Multiple containers can
run simultaneously on
a single kernel without
® causing resource
conflicts.

OEBPS/01fig02_alt.jpg
The master server maintains
information about the cluster

Access to application

containers is through
and manages the actions | « " the Kubernetes master
on the nodes. server.
\ Kubernetes master

The nodes run all of the
application containers

using the container

runtime- Kubernetes master services.
Kubermetes node Kubemetes node
Container orchestration engine (kube) Container orchestration engine (kube)
Container runtime (docker) ‘Container runtime (docker)

<
Container 1 | Container 2 | Container 3

<
Container 1 | Container 2 [Container 3

(Sowee Source) | (“Source) | ("Source
codo. code code code
ubraries

Libraries | [Lbrﬁms || (iraries

©

Replications e it wibia et

OEBPS/common2.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/01fig05_alt.jpg
9 USIFS SC0ME The SpRiCation
through the routing layer
and the newly created
hostname component.

1. The developer triggers an \\
lication deployment.
o N

4. A service is created

OpenShift maslersener 2. The master server OpenSillnode o proxy connection
iggers the creation —— for e ppca
- of muldple components — pods. Al applcaton
« to deploy the application. {7 pods are connected
o the service.
(©)

3. The application image
s used to deploy one
or more pods to the
application nodes.

7

OEBPS/01fig07_alt.jpg
Server running containers

Each process is isolated in
a container that contains
all the code needed to
run the application.

Components in the Linux
kernel are used to isolate —
processes in containers.

OEBPS/01fig06_alt.jpg
Hypervisor server

Virtual Virtual Virtual
machine 1 machine 2 machine 3

Each process is i Applicati icati
F plication Application
a virtual mac 1 3
its own filesystems and Virtualized | | (Virtualized || (Virtualized
virtualized kernel. Linux Linux Linux
kemel kernel kernel

One server runs on the
physical server, running =
the hypervisor code.

OEBPS/cover.jpg

