
        
            
                
            
        

    
    


  [image: ]


   


   


  Simple Object-Oriented Design


  


  Create clean, maintainable applications


    


  Maurício Aniche


    


  To comment go to liveBook


   


   


  [image: ]


  Manning


  Shelter Island


   


  For more information on this and other Manning titles go to


  www.manning.com


   


  Copyright


  For online information and ordering of these  and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.


  For more information, please contact


    


  Special Sales Department


  Manning Publications Co.


  20 Baldwin Road


  PO Box 761


  Shelter Island, NY 11964


  Email: orders@manning.com


    


  ©2024 by Manning Publications Co. All rights reserved.


    


  No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.


  Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.


  ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.


   


  
    
      
      
    

    
      
        	
          [image: ]    

        

        	
          Manning Publications Co.


          20 Baldwin Road


          PO Box 761


          Shelter Island, NY 11964

        
      

    
  


    


  
    
      
      
    

    
      
        	
          Development editor:  

        

        	
          Toni Arritola

        
      


      
        	
          Technical editor:  

        

        	
          Matthias Noback

        
      


      
        	
          Review editor:  

        

        	
          Isidora Isakov

        
      


      
        	
          Production editor:  

        

        	
          Keri Hales

        
      


      
        	
          Copy editor:  

        

        	
          Tiffany Taylor

        
      


      
        	
          Proofreader:  

        

        	
          Katie Tennant

        
      


      
        	
          Technical proofreader:  

        

        	
          Srihari Sridharan

        
      


      
        	
          Typesetter:  

        

        	
          Gordan Salinović

        
      


      
        	
          Cover designer:  

        

        	
          Marija Tudor

        
      

    
  


    


    


  ISBN: 9781633437999


  dedication


  To Laura, Thomas, Bono, and Duke,


  my lovely family/team


  
contents


    


         Front matter


  preface


  acknowledgments


  about this book


  about the author


  about the cover illustration


    


    1   It’s all about managing complexity


    1.1   Object-oriented design and the test of time


    1.2   Designing simple object-oriented systems


  Simple code


  Consistent objects


  Proper dependency management


  Good abstractions


  Properly handled external dependencies and infrastructure


  Well modularized


    1.3   Simple design as a day-to-day activity


  Reducing complexity is similar to personal hygiene


  Complexity may be necessary but should not be permanent


  Consistently addressing complexity is cost effective


  High-quality code promotes good practices


  Controlling complexity isn’t as difficult as it seems


  Keeping the design simple is a developer’s responsibility


  Good-enough designs


    1.4   A short dive into the architecture of an information system


    1.5   The example project: PeopleGrow!


    1.6   Exercises


    2   Making code small


    2.1   Make units of code small


  Break complex methods into private methods


  Move a complex unit of code to another class


  When not to divide code into small units


  Get a helicopter view of the refactoring before you do it


  Example: Importing employees


    2.2   Make code readable and documented


  Keep looking for good names


  Document decisions


  Add code comments


  Example: Deciding when to send an update email


    2.3   Move new complexity away from existing classes


  Give the complex business logic a class of its own


  Break down large business flows


  Example: Waiting list for offerings


    2.4   Exercises


    3   Keeping objects consistent


    3.1   Ensure consistency at all times


  Make the class responsible for its consistency


  Encapsulate entire actions and complex consistency checks


  Example: The Employee entity


    3.2   Design effective data validation mechanisms


  Make preconditions explicit


  Create validation components


  Use nulls carefully or avoid them if you can


  Example: Adding an employee to a training offering


    3.3   Encapsulate state checks


  Tell, don’t ask


  Example: Available spots in an offering


    3.4   Provide only getters and setters that matter


  Getters that don’t change state and don’t reveal too much to clients


  Setters only to attributes that describe the object


  Example: Getters and setters in the Offering class


    3.5   Model aggregates to ensure invariants in clusters of objects


  Don’t break the rules of an aggregate root


  Example: The Offering aggregate


    3.6   Exercises


    4   Managing dependencies


    4.1   Separate high-level and low-level code


  Design stable code


  Interface discovery


  When not to separate the higher level from the lower level


  Example: The messaging job


    4.2   Avoid coupling to details or things you don’t need


  Only require or return classes that you own


  Example: Replacing the HTTP bot with the chat SDK


  Don’t give clients more than they need


  Example: The offering list


    4.3   Break down classes that depend on too many other classes


  Example: Breaking down the MessageSender service


    4.4   Inject dependencies, aka dependency injection


  Avoid static methods for operations that change the state


  Always inject collaborators: Everything else is optional


  Strategies to instantiate the class together with its dependencies


  Example: Dependency injection in MessageSender and collaborators


    4.5   Exercises


    5   Designing good abstractions


    5.1   Design abstractions and extension points


  Identifying the need for an abstraction


  Designing an extension point


  Attributes of good abstractions


  Learn from your abstractions


  Learn about abstractions


  Abstractions and coupling


  Example: Giving badges to employees


    5.2   Generalize important business rules


  Separate the concrete data from the generalized business rule


  Example: Generalizing the badge rules


    5.3   Prefer simple abstractions


  Rules of thumb


  Simple is always better


  Enough is enough


  Don’t be afraid of modeling abstractions from day one


  Example: Revisiting the badge example


    5.4   Exercises


    6   Handling external dependencies and infrastructure


    6.1   Separate infrastructure from the domain code


  Do you need an interface?


  Hide details from the code, not from the developers


  Changing the infrastructure someday: Myth or reality?


  Example: Database access and the message bot


    6.2   Use the infrastructure fully


  Do your best not to break your design


  Example: Cancelling an enrollment


    6.3   Only depend on things you own


  Don’t fight your frameworks


  Be aware of indirect leakage


  Example: Message bot


    6.4   Encapsulate low-level infrastructure errors into high-level domain errors


  Example: Handling exceptions in SDKBot


    6.5   Exercises


    7   Achieving modularization


    7.1   Build deep modules


  Find ways to reduce the effects of changes


  Keep refining your domain boundaries


  Keep related things close


  Fight accidental coupling, or document it when you can’t


    7.2   Design clear interfaces


  Keep the module’s interface simple


  Backward-compatible modules


  Provide clean extension points


  Code as if your module will be used by someone with different needs


  Modules should have clear ownership and engagement rules


    7.3   No intimacy between modules


  Make modules and clients responsible for the lack of intimacy


  Don’t depend on internal classes


  Monitor the web of dependencies


  Monoliths or microservices?


  Consider events as a way to decouple modules


  Example: The notification system


    7.4   Exercises


    8   Being pragmatic


    8.1   Be pragmatic and go only as far as you must


    8.2   Refactor aggressively but in small steps


    8.3   Accept that your code won’t ever be perfect


    8.4   Consider redesigns


    8.5   You owe this to junior developers


    8.6   References


    8.7   Exercises


    


            index


  front matter


  
preface


  Why write another book on object-oriented design when so many are out there? This was the question I had to answer for myself before embarking on this project.


  We already possess a wealth of knowledge about object-oriented design from the early works of Dave Parnas, Grady Booch’s books on UML and object-oriented analysis, and Eric Evans’ domain-driven design approach. However, object-oriented design is not merely a pure engineering task; it transcends into art. No prescribed sequence of steps will unfailingly lead us to an optimal design. Instead, object-oriented design demands a creative approach.


  This book delves into object-oriented design from two specific angles: how to prevent the complexity of a system from skyrocketing and how to achieve “good-enough” designs.


  First, most of a developer’s work revolves around maintaining and evolving existing systems. Unfortunately, without due care, every time you make changes to a software system, it becomes more complex, even if it is well designed from the outset. Therefore, this book greatly emphasizes how to combat the natural growth in complexity.


  Second, more often than not, you initially have limited knowledge about what you’re building. Despite your best efforts, your first design may fall short. However, that’s acceptable if you arrive at a good-enough design. The purpose of this book is not to lead you to always achieve the absolute best possible design, but to enable you to create good designs that empower you to build software effectively.


  If you are familiar with the existing literature on object-oriented design, you will recognize many of the principles discussed here. Much of my perspective on good modeling has been inspired by existing work. However, I’ve infused my own flavor into these ideas. I hope even seasoned developers can glean a thing or two from this book.


  Happy reading!


  
acknowledgments


  First, I want to thank Dr. Ismar Frango Silveira. Ismar was the teacher of my first-ever formal course on object-oriented design during my undergrad studies back in 2004. The class was an eye-opener for me. Since then, I’ve been working diligently to sharpen my skills, but his instruction was the foundation. Although it’s been a long time since we spoke last, I’ve never forgotten his contribution to my career.


  I would also like to thank Alberto Souza. Besides being one of my best friends in life, Alberto loves good code as much as I do. Despite living one ocean apart, we still find ways to keep in touch not only about life but also about software engineering. Our conversations have always kept me sharp, and many of my thoughts on class design are influenced by his point of view.


  I would like to express my gratitude to Toni Arritola, my development editor at Manning. She has been a great partner on this journey, offering numerous valuable suggestions and being an attentive listener. Whenever I was running low in energy, she consistently provided me with a fresh boost. I also must thank Matthias Noback, trainer and consultant at Noback’s Office, who was the technical editor for this book. He made many insightful comments that were very helpful. In addition, many thanks go to the behind-the-scenes production staff who helped create this book in its final form.


  To all the reviewers—Adail Retamal, Amit Lamba, Brent Honadel, Colin Hastie, Daivid Morgan, Emanuele Origgi, George Onofrei, Gilbert Beveridge, Goetz Heller, Harsh Raval, Helder da Rocha, Iago Sanjurjo Alvarez, Ismail Tapaal, Juan Durillo, Karl van Heijster, Laud Bentil, Marcus Geselle, Mikael Byström, Mustafa Özçetin, Najeeb Arif, Narayanan Jayaratchagan, Nedim Bambur, Nghia To, Nguyen Tran Chau Giang, Oliver Korten, Patrice Maldague, Peter Szabo, Ranjit Sahai, Robert Trausmuth, Sebastian Palma, Sergio Gutierrez, and Victor Durán—thank you. Your suggestions helped make this a better book. A special thank you goes to Paulo Afonso Parreira, Jr., who sent me very helpful, detailed feedback on the manuscript.


  Finally, I would like to thank Laura, my wife. She always supports whatever project I decide to start. Without her support, none of this would be possible.


  
about this book


  Simple Object-Oriented Design presents a set of principles that help developers keep the complexity of their designs under control—in other words, keep it simple. The principles can be grouped into six higher-level ideas:


  
    	
      Small units of code

    


    	
      Consistent objects

    


    	
      Proper dependency management

    


    	
      Good abstractions

    


    	
      Properly handled infrastructure

    


    	
      Well modularized

    

  


  
Who should read this book


  Simple Object-Oriented Design is a book for software developers who want to sharpen their object-oriented design skills. We discuss code complexity, consistency and encapsulation, dependency management, designing abstractions, handling infrastructure, and modularization in depth. If you are an advanced developer who is familiar with similar approaches, such as clean architecture, you’ll still benefit from this book’s unique perspective.


  Readers must have basic knowledge of object-oriented concepts such as classes, polymorphism, and interfaces. The code examples are written in pseudo-Java code but can be understood by developers familiar with any object-oriented programming language such as C#, Python, or Ruby.


  
How this book is organized: A road map


  This book contains object-oriented design principles derived from my experience. The principles are grouped into six dimensions (complexity, consistency, dependency management, abstractions, infrastructure, and modularization), one per chapter.


  Principles are first introduced theoretically and later illustrated with code examples. No new ideas are introduced in the code examples, so more experienced readers can skip them if they wish. You’ll also notice that the examples are small in terms of lines of code and complexity. It’s impractical to illustrate all the principles in this book with real-world examples from large-scale software systems. Instead, I demonstrate the ideas with small snippets, and it’s up to you, the reader, to generalize the idea.


  I do my best to provide context, pros and cons, tradeoffs, and when and when not to apply the principles. Nevertheless, as with any best practice, you should consider your context and not blindly adopt what you find here.


  Chapters end with a few exercises in which I ask you to discuss the ideas covered in that chapter with a colleague. They are broad and open on purpose. I don’t provide answers to these questions because there are no one-size-fits-all responses.


  Chapter 1 introduces why systems become complex over time, why we must continuously combat the growth of complexity, and why this endeavor is less painful than it may seem. Then, chapters 2–7 delve into the six higher-level ideas.


  Chapter 2 discusses the importance of keeping code simple. In a nutshell, it covers how to break large units of code into smaller pieces, isolate new complexity from existing code units, and document code effectively to improve understanding.


  Chapter 3 focuses on maintaining objects’ consistency at all times. It explores the problems that arise when objects fall into an inconsistent state and how to implement validation mechanisms that ensure objects remain consistent throughout.


  Chapter 4 delves into dependencies and how managing them properly is fundamental for a simple design. It explains how to reduce the effect of coupling in the design, how to model stable classes that are less likely to change, and why dependency injection is crucial for effective dependency management.


  Chapter 5 discusses abstractions and how to design them to facilitate software system evolution without altering numerous classes each time.


  Chapter 6 concentrates on handling infrastructure code without compromising the design. The chapter explains how to decouple infrastructure code from the domain, allowing changes in one without affecting the other.


  Chapter 7 explores modularity: specifically, how to design modules that provide complex features through simple interfaces, how to minimize dependencies among modules, and the importance of defining ownership and engagement rules.


  Chapter 8 offers some final advice about the importance of being pragmatic, the necessity for continuous refactoring, and the value of perpetual learning about object-oriented design.


  
About the code


  This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  
liveBook discussion forum


  Purchase of Simple Object-Oriented Design includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/simple-object-oriented-design/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


  
Other online resources


  If you want to continue reading my thoughts on object-oriented design and software testing, subscribe to my newsletter: https://effectivesoftwaretesting.substack.com.


  
about the author


  Maurício Aniche’s mission is to help software engineers become better and more productive. Maurício is currently a Tech Lead at Adyen, where he leads different engineering enablement initiatives, including Adyen’s Tech Academy, a team focused on additional training and education for engineers. Maurício is also an assistant professor of software engineering at Delft University of Technology in the Netherlands. His teaching efforts in software testing earned him the Computer Science Teacher of the Year 2021 award and the TU Delft Education Fellowship, a prestigious fellowship given to innovative lecturers. He is the author of Effective Software Testing: A Developer’s Guide (Manning, 2022).


  
about the cover illustration


  The figure on the cover of Simple Object-Oriented Design is “Femme de l’Isle Scio,” or “Woman of Chios Island,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.


  In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.


  
1 It’s all about managing complexity


  This chapter covers


  
    	
Why software systems get more complex over time


    	
The challenges of object-oriented design


    	
Why we should keep improving our design over time

  


  In 2010, I worked for a great internet company as part of a team responsible for billing. The company founder wrote the first version of the system 10 or 15 years before I joined. The logic was all in complex SQL Server stored procedures, each of which had thousands of lines of code. It was time to refactor this existing billing infrastructure into something new, and I can’t count the number of hours we spent talking to the financial team so that we could create a design that would fit all their current and future needs.


  The great news is that we made it. With our new implementation, we could add new products or financial rules in hours. The financial team was very happy with us. Feature requests that in the past took weeks now took a couple of days. The quality was also much higher. Our design was highly testable, so we rarely introduced regression bugs. Even our most junior engineer could easily navigate the code and feel confident enough to make critical changes. In a word, our new design was simple.


  I’ve been developing object-oriented software systems for 20 years and have learned that in an object-oriented system without a proper design, even simple things are too hard. It doesn’t have to be like this.


  
1.1 Object-oriented design and the test of time


  Object-oriented programming is always a great choice when implementing complex software systems where flexibility and maintainability are requisites. However, solely picking an object-oriented language for your project isn’t enough. You need to make good use of it. 


  Luckily, we don’t have to invent best practices for object-oriented systems from scratch, as our community already has extensive knowledge. If you don’t know much about existing best practices or want to revisit them, this book is perfect for you, and you should read it cover to cover, including the code examples. If you are already a more senior engineer and aware of the existing best practices, this book will give you a different and pragmatic view of them, which will hopefully trigger interesting discussions in your mind.


  Here are some common questions that emerge when almost any developer is building an information system using an object-oriented language:


  
    	
      Is this implementation simple enough, or should I propose a more elegant abstraction?

    


    	
      This class goes through many states during its life cycle. How can I ensure that it’s always in a consistent state?

    


    	
      How should I model the interaction between my system and an external web app?

    


    	
      Is it okay to make this class depend on this other class, or is that coupling bad?

    

  


  This book is called Simple Object-Oriented Design because simple object-oriented designs are always easier to maintain. The challenge is not only to develop a simple design but also to keep it that way. I learned a lot from my good and bad decisions over the years, and that’s what I’ll share in this book: the set of patterns that help me deliver object- oriented software systems that are easy to maintain and evolve. 


  
1.2 Designing simple object-oriented systems


  “As software systems evolve, their complexity increases unless work is done to maintain or reduce it.”


  This insight comes from Manny Lehman’s 1984 paper, “On understanding laws, evolution, and conservation in the large-program life cycle” (https://dl.acm.org/doi/10.1016/0164-1212%2879%2990022-0). Evolving software systems of any type isn’t straightforward. We know that code tends to decay over time and requires effort to maintain. And despite 40 years of progress, the maintainability of software systems remains a challenge.


  In essence, maintainability is the effort you put into completing tasks like modifying business rules, adding features, identifying bugs, and patching the system. Highly maintainable software enables developers to perform such tasks with reasonable effort, whereas low maintainability makes tasks too difficult, time consuming, and bug prone.


  Many factors affect maintainability, from overly complex code to dependency management, poorly designed abstractions, and bad modularization. Systems naturally become more complex over time, so continually adding code without considering its consequences for maintenance can quickly lead to a messy codebase.


  Consistently combating complexity growth is crucial, even if it seems time consuming. And I know it’s more effort than simply “dumping code.” But trust me, developers feel much worse when handling big balls of mud the entire day. You may have worked on codebases that were hard to maintain. I did. Doing anything in such systems takes a lot of time. You can’t find where to write your code, all the code you write feels like it’s a workaround, you can’t write automated tests because the code is untestable, you are always afraid something will go wrong because you never feel confident about changing the code, and so on.


  What constitutes a simple object-oriented design? Based on my experience, it’s a design that presents the following six characteristics, also illustrated in figure 1.1:


  
    	
      Simple code

    


    	
      Consistent objects

    


    	
      Proper dependency management

    


    	
      Good abstractions

    


    	
      Properly handled external dependencies and infrastructure

    


    	
      Well modularized

    

  


  
    [image: ]


    Figure 1.1 Characteristics of a simple object-oriented design

  


  These ideas may sound familiar to you. They are all popular in object-oriented systems. Let’s look at what I mean by each of them and what happens when we lose control, all in a nutshell.


  
1.2.1 Simple code


  Implementing methods and classes that are simple is a great way to start your journey toward maintainable object-oriented design. Consider a method that began as a few lines with a handful of conditional statements but grew over time and now has hundreds of lines and ifs inside of ifs. Maintaining such a method is tricky. 


  Interestingly, classes and methods usually start simple and manageable. But if we don’t work to keep them like this, they become hard to understand and maintain, as in figure 1.2. Complex code tends to result in bugs, which are drawn to complex implementations that are difficult to understand. Complex code is also challenging to maintain, refactor, and test, as developers fear breaking something and struggle to identify all possible test cases.


  
    [image: ]


    Figure 1.2 Simple code becomes complex over time and, consequently, very hard to maintain.

  


  There are many ways to reduce the complexity of a class or method. For example, clear and expressive variable names help developers better understand what’s going on. However, in this part of the book, I argue that the number-one rule to keep classes and methods simple is to keep them small. A method shouldn’t be too long. A class shouldn’t have too many methods. Smaller units of code are always easier to maintain and evolve. 


  
1.2.2 Consistent objects


  It’s much easier to work on a system when you can trust that objects are always in a consistent state and any attempt to make them inconsistent is denied. When consistency isn’t accounted for in the design, objects may hold invalid states, leading to bugs and maintainability problems. 


  Consider a Basket class in an e-commerce system that tracks the products a person is buying and their final value. The total value must be updated whenever we add a product to or remove a product from the basket. The basket should also reject invalid client requests, like adding a product more than one time or removing a product that isn’t in the basket.


  In figure 1.3, the left side shows a protected basket: items can only be added or removed by asking the basket to do so. The basket is in complete control and ensures its consistency. On the right side, the unprotected basket allows unrestricted access to its contents. Given the lack of control, that basket can’t always ensure consistency.


  
    [image: ]


    Figure 1.3 Two baskets: one that has control over the actions that happen on it and another that doesn’t. Managing state and consistency is fundamental.

  


  We’ll see that a good design ensures that objects can’t ever be in an inconsistent state. Consistency can be mishandled in many ways, such as improper setter methods that bypass consistency checks or a lack of flexible validation mechanisms, which we’ll discuss in more detail later. 


  
1.2.3 Proper dependency management


  In large-scale object-oriented systems, dependency management becomes critical to maintainability. In a system where the coupling is high and no one cares which classes are coupled to which other classes, any simple change may have unpredicted consequences. 


  Figure 1.4 shows how the Basket class may be affected by changes in any of its dependencies: DiscountRules, Product, and Customer. Even a change in DiscountRepository, a transitive dependency, may affect Basket. For example, if the Product class changes frequently, Basket is always at risk of having to change as well.


  
    [image: ]


    Figure 1.4 Dependency management and change propagation

  


  Simple object-oriented designs aim to minimize dependencies among classes. The less they depend on each other and the less they know about each other, the better. Good dependency management also ensures that classes depend as much as possible on stable components that are less likely to change and, therefore, less likely to provoke cascading changes. 


  
1.2.4 Good abstractions


  Simple code is always preferred, but it may not be sufficient for extensibility. Extending a class by adding more code stops being effective at some point and becomes a burden. 


  Imagine implementing 30 or 40 different business rules in the same class or method. I illustrate that in figure 1.5. Note how the DiscountRules class, a class that’s responsible for applying different discounts in our e-commerce system, grows as new discount rules are introduced, making the class much harder to maintain. A good design provides developers with abstractions that help them evolve the system without making existing classes more complex. 


  
    [image: ]


    Figure 1.5 A class that has no abstractions grows in complexity indefinitely.

  


  
1.2.5 Properly handled external dependencies and infrastructure


  Simple object-oriented designs separate domain code that contains business logic from code required for communication with external dependencies. Figure 1.6 shows domain classes on the left and the classes that handle communication with other systems and infrastructure on the right. 


  
    [image: ]


    Figure 1.6 The architecture of a software system that separates infrastructure from domain code

  


  Letting infrastructure details leak into your domain code may hinder your ability to make changes in the infrastructure. Imagine that all the code to access the database is spread through the codebase. Now you must add a caching layer to speed up the application’s response time. You may have to change the code everywhere for that to happen.


  The challenge lies in abstracting irrelevant or external aspects of your infrastructure while using valuable features provided by the infrastructure. For instance, if you are using a relational database like Postgres, you may want to hide its presence from the domain code but still be able to use its unique features that enhance productivity or performance.


  
    Why do you call it infrastructure?


    I use the term infrastructure to refer to any dependency on external systems and resources such as web services, databases, third-party APIs, and anything beyond your system’s border. Whenever you have such a dependency, you must write code connecting your system to the external system or resource. We’ll focus on writing this “glue code” flexibly so it doesn’t harm the rest of your design in chapter 6. 



OEBPS/OEBPS/Images/CH01_F01_Aniche2.png


OEBPS/OEBPS/Images/CH01_F02_Aniche2.png


OEBPS/OEBPS/Images/CH01_F03_Aniche2.png


OEBPS/OEBPS/Images/Manning_M_small.png


OEBPS/cover.jpeg


OEBPS/OEBPS/Images/CH01_F06_Aniche2.png


OEBPS/OEBPS/Images/Manning_copyright.png


OEBPS/OEBPS/Images/CH01_F04_Aniche2.png


OEBPS/OEBPS/Images/CH01_F05_Aniche2.png


