

 iText in Action, Second Edition

 Bruno Lowagie

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 180 Broad Street
 Suite 1323
 Stamford, CT 06901
 Email: orders@manning.com

 ©2011 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
180 Broad Street, Suite 1323
Stamford, CT 06901

	Development editor: Katharine Osborne
 Copyeditor: Andy Carroll
 Cover designer: Marija Tudor
 Typesetter: Gordan Salinovic

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10

Dedication

 To Ingeborg, Inigo, and Jago

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Preface to the First Edition

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 1. Creating PDF documents from scratch

 Chapter 1. Introducing PDF and iText

 Chapter 2. Using iText’s basic building blocks

 Chapter 3. Adding content at absolute positions

 Chapter 4. Organizing content in tables

 Chapter 5. Table, cell, and page events

 2. Manipulating existing PDF documents

 Chapter 6. Working with existing PDFs

 Chapter 7. Making documents interactive

 Chapter 8. Filling out interactive forms

 3. Essential iText skills

 Chapter 9. Integrating iText in your web applications

 Chapter 10. Brightening your document with color and images

 Chapter 11. Choosing the right font

 Chapter 12. Protecting your PDF

 4. Under the hood

 Chapter 13. PDFs inside-out

 Chapter 14. The imaging model

 Chapter 15. Page content and structure

 Chapter 16. PDF streams

 Appendix A. Bibliography

 Appendix B. Useful links

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Preface to the First Edition

 Acknowledgments

 About this Book

 About the Title

 About the Cover Illustration

 1. Creating PDF documents from scratch

 Chapter 1. Introducing PDF and iText

 1.1. Things you can do with PDF

 1.2. Working with the examples in this book

 1.3. Creating a PDF document in five steps with iText

 1.3.1. Creating a new Document object

 1.3.2. Getting a PdfWriter instance

 1.3.3. Opening the Document

 1.3.4. Adding content

 1.3.5. Closing the Document

 1.4. Summary

 Chapter 2. Using iText’s basic building blocks

 2.1. Illustrating the examples with a real-world database

 2.2. Adding Chunk, Phrase, Paragraph, and List objects

 2.2.1. The Chunk object: a String, a Font, and some attributes

 2.2.2. The Phrase object: a List of Chunks with leading

 2.2.3. Paragraph object: a Phrase with extra properties and a newline

 2.2.4. Distributing text over different lines

 2.2.5. The List object: a sequence of Paragraphs called ListItem

 2.2.6. The DrawInterface: vertical position marks, separators, and tabs

 2.3. Adding Anchor, Image, Chapter, and Section objects

 2.3.1. The Anchor object: internal and external links

 2.3.2. Chapter and Section: get bookmarks for free

 2.3.3. The Image object: adding raster format illustrations

 2.3.4. Summary

 Chapter 3. Adding content at absolute positions

 3.1. Introducing the concept of direct content

 3.1.1. Direct content layers

 3.1.2. Graphics state and text state

 3.1.3. A real-world database: three more tables

 3.2. Adding text at absolute positions

 3.2.1. Convenience method: PdfContentByte.showTextAligned()

 3.2.2. Convenience method: ColumnText.showTextAligned()

 3.3. Working with the ColumnText object

 3.3.1. Using ColumnText in text mode

 3.3.2. Using ColumnText in composite mode

 3.4. Creating reusable content

 3.4.1. Image XObjects

 3.4.2. The PdfTemplate object

 3.5. Summary

 Chapter 4. Organizing content in tables

 4.1. Constructing tables

 4.1.1. Your first PdfPTable

 4.1.2. PdfPTable properties

 4.2. Changing the properties of a cell

 4.2.1. PdfPCell in text mode

 4.2.2. PdfPCell in composite mode

 4.3. Dealing with large tables

 4.3.1. Repeating headers and footers

 4.3.2. Splitting tables

 4.3.3. Memory management for LargeElement implementations

 4.4. Adding a table at an absolute position

 4.4.1. Working with writeSelectedRows()

 4.4.2. Wrapping tables in columns

 4.5. Summary

 Chapter 5. Table, cell, and page events

 5.1. Decorating tables using table and cell events

 5.1.1. Implementing the PdfPTableEvent interface

 5.1.2. Implementing the PdfPCellEvent interface

 5.1.3. Combining table and cell events

 5.2. Events for basic building blocks

 5.2.1. Generic Chunk functionality

 5.2.2. Paragraph events

 5.2.3. Chapter and Section events

 5.2.4. Page order and blank pages

 5.3. Overview of the page boundaries

 5.3.1. The media box

 5.3.2. The crop box

 5.3.3. Other page boundaries

 5.4. Adding page events to PdfWriter

 5.4.1. Adding a header and a footer

 5.4.2. Solving the “page X of Y” problem

 5.4.3. Adding a watermark

 5.4.4. Creating a slideshow

 5.5. Summary

 2. Manipulating existing PDF documents

 Chapter 6. Working with existing PDFs

 6.1. Accessing an existing PDF with PdfReader

 6.1.1. Retrieving information about the document and its pages

 6.1.2. Reducing the memory use of PdfReader

 6.2. Copying pages from existing PDF documents

 6.2.1. Importing pages

 6.2.2. Scaling and superimposing pages

 6.2.3. N-up copying and tiling PDF documents

 6.3. Adding content with PdfStamper

 6.3.1. Adding content at absolute positions

 6.3.2. Creating a PDF in multiple passes

 6.3.3. Adding company stationery to an existing document

 6.3.4. Inserting pages into an existing document

 6.3.5. Filling out a PDF form

 6.4. Copying pages with PdfCopy

 6.4.1. Concatenating and splitting PDF documents

 6.4.2. PdfCopy versus PdfSmartCopy

 6.4.3. Concatenating forms

 6.5. Summary

 Chapter 7. Making documents interactive

 7.1. Introducing actions

 7.1.1. Document-navigation actions

 7.1.2. Explicit destinations

 7.1.3. JavaScript in PDF documents

 7.1.4. More actions

 7.2. Adding bookmarks

 7.2.1. Creating bookmarks for a new document

 7.2.2. Retrieving bookmarks from an existing document

 7.2.3. Adding bookmarks to an existing document

 7.2.4. Concatenating documents with bookmarks

 7.2.5. Open parameters

 7.3. Creating annotations

 7.3.1. Text annotations

 7.3.2. Link annotations

 7.3.3. File attachments

 7.3.4. Stamp, line, and rectangle annotations

 7.4. JavaScript programming in PDF

 7.4.1. Triggering JavaScript from a button

 7.4.2. Showing and hiding an annotation

 7.4.3. A popup triggered by a button that doesn’t need to be pushed

 7.4.4. Additional actions

 7.4.5. A PDF calculator

 7.5. Summary

 Chapter 8. Filling out interactive forms

 8.1. Introducing AcroForms

 8.2. Selecting states or trigger actions with button fields

 8.2.1. Radio fields and radio buttons

 8.2.2. Check boxes

 8.2.3. Pushbuttons

 8.3. Filling in data with text fields

 8.3.1. Creating text fields

 8.3.2. Filling out text fields

 8.3.3. Text fields and fonts

 8.3.4. Validating text fields

 8.4. Selecting options with choice fields

 8.4.1. Creating lists and combo boxes

 8.4.2. Manipulating lists and combo boxes

 8.5. Refining the form-filling process

 8.5.1. Choosing field names

 8.5.2. Optimizing the filling process

 8.5.3. Partial form flattening

 8.5.4. Customized form flattening

 8.6. Introducing the XML Forms Architecture (XFA)

 8.6.1. Static XFA forms

 8.6.2. Dynamic XFA forms

 8.7. Preserving the usage rights of Reader-enabled forms

 8.7.1. Reader-enabling a form using Adobe Acrobat

 8.7.2. Filling out Reader-enabled forms using iText

 8.8. Summary

 3. Essential iText skills

 Chapter 9. Integrating iText in your web applications

 9.1. Creating a PDF from a servlet

 9.1.1. The five steps of PDF creation in a web application

 9.1.2. Troubleshooting web applications

 9.1.3. Generating a PDF from a JSP page

 9.2. Making a form “web ready”

 9.2.1. Adding a submit button to an existing form

 9.2.2. Filling out a form on the server side

 9.2.3. FDF and XFDF in web applications

 9.3. JavaScript communication between HTML and PDF

 Embedding a PDF Document as an HTML Object

 HTML to PDF Communication

 PDF to HTML Communication

 9.4. Creating basic building blocks from HTML and XML

 9.4.1. Parsing HTML

 9.4.2. Parsing XML

 9.5. Summary

 Chapter 10. Brightening your document with color and images

 10.1. Working with the iText color classes

 10.1.1. Device colors

 10.1.2. Spot colors

 10.1.3. Painting patterns

 10.1.4. Transparency

 10.2. Overview of supported image types

 10.2.1. JPEG, JPEG2000, GIF, PNG, BMP, WMF, TIFF, and JBIG2

 10.2.2. Creating a raw image

 10.2.3. CCITT compressed images

 10.2.4. Creating barcodes

 10.2.5. Working with java.awt.Image

 10.2.6. Compressing images

 10.2.7. Images consisting of multiple pages or frames

 10.3. Making images transparent

 10.3.1. Images and transparency

 10.3.2. Masking images

 10.3.3. Clipping images

 10.4. Summary

 Chapter 11. Choosing the right font

 11.1. Getting fonts from a file

 11.1.1. Font files and their extensions

 11.1.2. Type 1 fonts

 11.1.3. TrueType and OpenType fonts

 11.2. Examining font types from a PDF perspective

 11.2.1. Simple fonts

 11.2.2. Composite fonts

 11.3. Using fonts in iText

 11.3.1. Overview of the Font classes

 11.3.2. Type 3 fonts

 11.3.3. CJK fonts

 11.3.4. Writing from right to left

 11.3.5. Advanced typography

 11.4. Automating font creation and selection

 11.4.1. Getting a Font from the FontFactory

 11.4.2. Automatic font selection

 11.5. Summary

 Chapter 12. Protecting your PDF

 12.1. Adding metadata

 12.1.1. The info dictionary

 12.1.2. The Extensible Metadata Platform (XMP)

 12.2. PDF and compression

 12.2.1. Compression levels

 12.2.2. Compressing and decompressing existing files

 12.3. Encrypting a PDF document

 12.3.1. Creating a password-encrypted PDF

 12.3.2. Public-key encryption

 12.4. Digital signatures, OCSP, and timestamping

 12.4.1. Creating an unsigned signature field

 12.4.2. Signing a PDF

 12.4.3. Adding multiple signatures

 12.4.4. Verifying the signatures in a document

 12.4.5. Creating the digest and signing externally

 12.4.6. CRLs, OCSP, and timestamping

 12.4.7. PDF Advanced Electronic Signatures (PAdES) profiles

 12.5. Summary

 4. Under the hood

 Chapter 13. PDFs inside-out

 13.1. PDF, why and how?

 13.1.1. The ancestors of PDF

 13.1.2. The history of PDF

 13.1.3. PDF as an ISO standard

 13.1.4. PDF/X, PDF/A, PDF/E, PDF/UA, and other types of PDF

 13.2. Understanding the Carousel Object System

 13.2.1. Basic PDF objects

 13.2.2. The PDF file structure

 13.2.3. Climbing up the object tree

 13.3. Exploring the root of a PDF file

 13.3.1. Page layout, page mode, and viewer preferences

 13.3.2. Pages and page labels

 13.3.3. Outlines, destinations, and names

 13.3.4. AcroForms revisited

 13.4. Summary

 Chapter 14. The imaging model

 14.1. Examining the content stream

 PDF Syntax Notation

 14.2. Path construction and painting operators

 14.2.1. Constructing paths

 14.2.2. Painting and clipping paths

 14.2.3. Convenience methods to draw shapes

 14.3. Overview of the graphics state methods

 14.3.1. Line characteristics

 14.3.2. Colors

 14.3.3. Changing the coordinate system

 14.3.4. Affine transformations using Java

 14.4. Overview of the text and text state methods

 14.4.1. Text state operators

 14.4.2. Text-positioning and text-showing operators

 14.4.3. Convenience methods for text

 14.5. Using java.awt.Graphics2D

 14.5.1. Drawing content to PdfGraphics2D

 14.5.2. Drawing text to PdfGraphics2D

 14.6. Summary

 Chapter 15. Page content and structure

 15.1. Making content visible or invisible

 15.1.1. Optional content groups

 15.1.2. Adding structure to layers

 15.1.3. Optional content membership

 15.1.4. Changing the state of a layer with an action

 15.1.5. Optional content in XObjects and annotations

 15.2. Working with marked content

 15.2.1. Object data

 15.2.2. Section 508 and accessibility

 15.2.3. Adding structure

 15.3. Parsing PDFs

 15.3.1. Examining the content stream with PRTokeniser

 15.3.2. Processing content streams with PdfContentStreamProcessor

 15.3.3. Extracting text with PdfReaderContentParser and PdfTextExtractor

 15.3.4. Finding text margins

 15.3.5. Extracting images

 15.4. Summary

 Chapter 16. PDF streams

 16.1. Finding and replacing image and font streams

 16.1.1. Adding a special ID to an Image

 16.1.2. Resizing an image in an existing document

 16.1.3. Listing the fonts used

 16.1.4. Replacing a font

 16.2. Embedding files into a PDF

 16.2.1. File attachment annotations

 16.2.2. Document-level attachments

 16.2.3. Go to embedded file action

 16.2.4. PDF packages, portable collections, or portfolios

 16.3. Integrating rich media

 16.3.1. Movie annotations

 16.3.2. 3D annotations

 16.3.3. Embedding Flash into a PDF

 16.3.4. Establishing communication between Flex and PDF

 16.4. Summary

 What You’ve Learned From This Book

 Creating PDFs

 Updating PDFs

 Reading PDFs

 Appendix A. Bibliography

 A.1. Published by Adobe Systems

 A.1.1. Specifications (PDF documents)

 A.1.2. Presentations (PDF documents)

 A.2. Published by the Association for Information and Image Management (AIIM)

 A.3. Published by the European Telecommunications Standards Institute (ETSI)

 A.4. Published by the International Organization for Standardization (ISO)

 A.5. Other publications

 Appendix B. Useful links

 B.1. iText-related links

 B.1.1. iText links

 B.1.2. iText in Action links

 B.2. PDF-related links

 B.3. Technical links

 B.3.1. Tools and products referred to in the book

 B.3.2. Fonts

 B.3.3. Accessibility

 B.3.4. Miscellaneous

 B.4. Other links

 B.4.1. Certificate authorities

 B.4.2. Movie links

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 Each aspect is explained with numerous examples that can be applied to real-world problems right away.

 Ulf Ditmer, JavaRanch

 Any developer who is making serious use of iText would be a fool not to buy this book.

 Dave Gilbert, jfree.org

 Thorough and complete ... will be a long-running, valuable resource for iText and PDF.

 Alan Dennis Software Architect, MyFamily.com

 One of the best technical books I have ever read! Great work!

 Oliver Zeigermann Technical Trainer, CoreMedia AG

 I wholeheartedly recommend it.

 Doug James eReporting Team Lead, Benefitfocus.com, Inc.

 Impressive! It provides depth without all the noise.

 Justin Lee, President, Antwerkz Inc.

 Valuable to any developer using PDF.

 Stuart Caborn, Consultant, Thoughtworks

Preface

 In the summer of 2009, Manning Publications contacted me with the offer to write a revision of the first edition of iText in Action, published in 2007.

 I initially refused, much to the surprise of the publisher. He put forward several arguments in favor of a second edition:
 the book had received good reviews, the first printing sold out in about a year, and the book was still selling well, in spite
 of the fact that it was almost three years old and that its content was probably somewhat outdated.

 So I had to clarify: “I want to write a second edition, but I don’t want it to be a revision.” I’m always disappointed when a revised version of a book is a rehash of the first version, with only a limited amount of
 new material. I wanted to write a book that was valuable for developers who already owned the first edition.

 I had accumulated a series of new examples, demonstrating techniques that were either presented differently, or were missing
 from the first edition. Moreover, I had been giving iText training sessions for different companies, and I had discovered
 that the order of the chapters in the first book wasn’t ideal. The content needed to be reorganized, and the only good way
 to achieve that was to rewrite the book from scratch.

 I realized that this meant more work than merely writing a revision, and although hard work doesn’t scare me, I hesitated.
 For many companies and families, 2008 had been the year of the economic crisis, but that was the least of my concerns. For
 me, it was the year my twelve-year-old son was diagnosed with bone cancer. Suddenly all priorities changed.

 Eighteen chemotherapy treatments later, with major surgery in between to replace his knee by a prosthesis, life wasn’t the
 same as before. I received plenty of support from the iText community, and I want to thank everyone for being patient with
 me. Unfortunately, there were some who emailed me, demanding a solution for their problem for free, not realizing that I had
 far more important personal worries than their technical problems.

 In the end, I decided to accept the offer from Manning and write a second book about iText, because it was an opportunity,
 and probably the best chance I would get to pick up the iText thread. There’s no better way to make an inventory of a product’s
 functionality than to write a book about it. Some new iText features were written to fill gaps I discovered while writing
 the book. The creative process was also very inspiring; some recently added enhancements started off as examples for the book,
 and eventually made it into the main iText release.

 Looking back, I’m glad I took up the challenge, and I’m happy with the result. This second edition is more advanced than the
 first edition, aiming at the more experienced developer who wants to know more about the Portable Document Format, not just
 about iText. I can’t hide that I’m very passionate about PDF, and I hope this book transmits this passion to as many readers
 as possible.

Preface to the First Edition

 I have lost count of the number of PCs I have worn out since I started my career as a software developer—but I will never
 forget my first computer.

 I was only 12 years old when I started programming in BASIC. I had to learn English at the same time because there simply
 weren’t any books on computer programming in my mother tongue (Dutch). This was in 1982. Windows didn’t exist yet; I worked
 on a TI99/4A home computer from Texas Instruments. When I told my friends at school about it, they looked at me as if I had
 just been beamed down from the Starship Enterprise.

 Two years later, my parents bought me my first personal computer: a Tandy/Radio Shack TRS80/4P. As the P indicates, it was
 supposed to be a portable computer, but in reality it was bigger than my mother’s sewing machine. It could be booted from
 a hard disk, but I didn’t have one; nor did I have any software besides the TRSDOS and its BASIC interpreter. By the time
 I was 16, I had written my own word-processing program, an indexed flat-file database system, and a drawing program—nothing
 fancy, considering the low resolution of the built-in, monochrome green computer screen.

 I don’t remember exactly what happened to me at that age—maybe it was my delayed discovery of girls—but it suddenly struck
 me that I was becoming a first-class nerd. So I made a 180-degree turn, studying Latin and math in high school and taking
 evening classes at a local art school. I decided that I wanted to become an artist instead of going to college. As a compromise
 with my parents, I studied civil architectural engineering at Ghent University. In my final year, I bought myself a Compaq
 portable computer to write my master’s thesis. It was like finding a long-lost friend! After I earned my degree as an architect,
 I decided that it was time to return to the world of computers.

 In 1996 I enrolled in a program that would retrain me as a software engineer. I learned and taught a brand-new programming
 language, Java. During my apprenticeship, I was put in charge of an experimental broadband Internet project. It was my first
 acquaintance with the web. This expertise resulted in different assignments for the Flemish government. One of my tasks was
 to write an R&D report on standard internet-intranet tools for GIS applications. That’s when I wrote my first Java servlets.

 I returned to Ghent University as an employee in 1998. When I published my first free/open source software library, I knew
 I had finally found my vocation. Now I have had the chance to write a book about it. I tried to give this book the personal
 touch I often miss when reading technical writings. I hope you will enjoy reading it as much as I have enjoyed writing it.

Acknowledgments

 I thought that writing this second edition would be easier than writing the first. I was wrong. Yes, the process of writing
 itself was easier because I had the experience, but I didn’t take into account how little free time I have now, compared to
 three years ago. On top of that, different incidents have cost me handfuls of time, such as my now ex-hosting provider which
 caused me to lose all the data on my dedicated server.

 I don’t know what I would have done without the support of my wife, Ingeborg Willaert, and my children, Inigo and Jago, during
 those moments of despair. They always remind me of what is really important in life, and that helps when faced with problems
 big and small. I want to thank them for that.

 iText wouldn’t be iText if it weren’t for the developers. In the first place, I would like to thank Paulo Soares, who started
 working on iText in the summer of 2000 and who has been contributing code ever since. Kudos to Xavier Le Vourch for the continuous
 integration server he has set up for iText, and for the many code clean-up operations. Two other developers complete the list
 of project members on the SourceForge pages of the iText project: Mark Storer, who was the technical editor of the first edition,
 and Kevin Day, who designed the functionality to extract text from PDF files. Numerous people contributed valuable code, fixed
 bugs, added new features, and posted useful answers on the mailing list. The list of names is too long to sum up. Thank you
 all for making iText the library it is today!

 I want to thank Adobe’s PDF technical standards evangelist Leonard Rosenthol, for sharing his insights on the PDF format;
 Adobe’s VP of engineering Bob Wulff; and last but not least, Adobe’s principal scientist Jim King, who reviewed and corrected
 sections 13.1 and 13.2.

 Special thanks go to Andrew Binstock, Kevin Brown, and Michael Bradbury. There wouldn’t be any iText business without their
 help. I’m also grateful to Christophe Vangeel, Evi Mellebeek, Frank Gielen, Peter Camps, Peter Myngheer, and Wouter De Stecker
 for helping me understand the different aspects of doing business, and I want to thank Stephan Janssen for organizing Devoxx.

 A Flemish “hartelijk bedankt” goes to all of my current and former colleagues at Ghent University, especially to my fellow
 whiteboard artists, Johan Lauryssens, Cédric Peirsegaele, and Peter Van de Voorde; to my former bosses, professor Geert De
 Soete and Bernard Becue; to my current bosses, Danny Schellemans and Luc Verschraegen; and to the rector and vice-rector of
 the University, professor Paul Van Cauwenberghe and professor Luc Moens.

 I want to take advantage of these acknowledgment pages to thank my employer for the flexibility I was offered while my son
 was treated for cancer.

 During the year my son was in the hospital, many people gave me the courage to keep strong: William Alexander Segraves, Juancho
 Diaz, Ingrid Adriaens, Heidi Naeye, Marleen Depaemelaere, Ines Bruyninckx, Liesje Berteloot, Tania Bruggeman, Cathy De Kerf,
 Mieke Simoen, Wendy Jacobs, and many others.

 The theme of this book was inspired by the friends of the film festival in Ghent, and I want to thank Wim De Witte for the
 excellent selection of movies presented each year, and Daniella De Decker, for helping us enjoy as many movies as possible
 during the festival.

 I would like to thank all the people at Manning Publications for giving me the opportunity to write this book, including publisher
 Marjan Bace, Michael Stephens, Katharine Osborne, Andy Carroll, Elizabeth Martin, Gordan Salinovic, and Mary Piergies, as
 well as everyone else on the team who worked on my book.

 Sincere thanks to the people who reviewed my manuscript. Their remarks and suggestions at different stages of development
 were invaluable to me in making this a better book: Andrew Binstock, Mark Stephens, Marc Gravell, Leonardo Padula, Jim King,
 Kevin Day, John S. Griffin, William A. Segraves, Alexis Pigeon, Paulo Soares, Thomas Morgner, Michael Klink, Matt Michalak,
 Michael Niedermair, and Saicharan Manga for completing a technical proofread of the manuscript shortly before it went to press.

 Finally, I want to thank you, the people who are using iText. You are the ones who have kept me going! Many of you have sent
 me nice notes of appreciation. Thanks! I couldn’t have written this book without your encouragement.

About this Book

 This book will teach you about PDF, Adobe’s Portable Document Format, from a Java developer’s point of view. You’ll learn
 how to use iText in a Java/J2EE application to produce and manipulate PDF documents. Along the way, you’ll become acquainted
 with interesting PDF features and discover e-document functionality you may not have known about before.

Who should read this book?

 This book is intended for Java developers who want to enhance their projects with dynamic PDF generation or manipulation.
 It assumes you have some background in Java programming.

 This book includes lots of ready-made solutions that can easily be adapted and integrated into larger projects. For reasons
 of convenience, most of the examples are constructed as standalone command-line applications. If you want to run these examples
 in a web application, you should know how to set up an application server, where to put the necessary Java archive files (JARs)
 and resources, and how to deploy a servlet.

 .NET developers using iTextSharp, the C# port of iText, can also benefit from this book, but they’ll have to adapt the examples.

 Knowledge of the Portable Document Format isn’t necessary, because this book will explain a good deal of the PDF functionality
 and syntax where needed. ISO-32000-1 is a good companion to this book, for those who want to know every detail about PDF internals.

How to use this book

 You can read this book chronologically, starting with the part about creating PDFs, moving on to the part about manipulating
 documents, and then learning some essential skills in part 3. Part 4 looks under the hood and digs deeper into the PDF specification.

 You can also read the book in random order or thematically, selecting specific chapters that explain how to meet your own
 requirements. Once you’re well acquainted with iText, you’ll probably use the book as a reference manual. In particular, the
 tables in chapter 14 are the result of my own frustration with tables that were too scattered throughout different chapters in the first edition.

What you’ll be able to achieve after reading this book

 The book consists of four parts:

	
Part 1— Creating PDF documents from scratch

 	
Part 2— Manipulating existing PDF documents

 	
Part 3— Essential iText skills

 	
Part 4— Under the hood

Throughout this book, the examples use a movie database created for a (fictional) film festival. You’ll access this database
 from a series of simple applications, creating and manipulating different PDF files that could be useful for the visitors
 of the imaginary film festival.

Creating PDF documents

 In chapters 1 and 2 you’ll create a series of PDF documents from scratch. You’ll use SQL statements to query a movie database, loop over the
 ResultSet, and add the data from each record to a PDF document using high-level objects such as Chunks, Phrases, Paragraphs, and so on. You’ll create PDF documents without having to know anything about the PDF specification.

 In chapter 3, you’ll learn how to draw lines, shapes, and text to create a timetable visualizing the screenings, using a different color
 for each festival category. To achieve this, you’ll need low-level operations that demand a sound understanding of how PDF
 works.

 In chapter 4, one of the most important chapters of the first part, you’ll use the database information to create documents containing
 tabular data. You’ll learn almost everything there is to know about the PdfPTable and PdfPCell objects.

 Your knowledge about tables and cells will be completed in chapter 5, where you’ll learn how to add custom behavior to a table and its cells using events. Finally, you’ll also learn about page
 events. You’ll add the finishing touch to your documents in the form of headers, footers, page numbers, and a watermark.

 After reading the first part of the book, you’ll be able to write a proof of concept for any project that requires you to
 generate PDF reports from scratch. If your project also involves existing PDF documents, you’ll need to move on to part 2.

Manipulating PDF documents

 Consider what you can do with paper documentation: you can bundle different articles into a book, you can cut out the pages
 of a large catalog to create a brochure containing only those pages that are interesting for your customers, you can fill
 out blanks in an exercise book, and so on.

 All of this is also possible with PDF and iText. You’ll use PdfReader to access an existing PDF file, and you’ll use one or more of these document manipulation classes:

	
PdfWriter in combination with PdfImportedPage objects, if you want to take “photocopies” of specific pages

 	
PdfStamper, if you want to add content to an existing PDF document

 	
PdfCopy, PdfSmartCopy, or PdfCopyFields to combine a selection of pages from different, existing documents into a new PDF document

All these classes will be explained in chapter 6.

 You’ll have a closer look at the PdfStamper class in chapter 7, where you’ll use it to annotate a document.

 You can interpret the word “annotate” in different ways. One special type of annotation in PDF is the interactive form field.
 These are used in forms using AcroForm technology. Another type of PDF form is based on the XML Forms Architecture (XFA).
 You’ll learn about both types of interactive forms in chapter 8.

 Having read parts 1 and 2, you’ll have a good idea of the possibilities offered by iText, but there’s more.

Essential iText skills

 For the sake of simplicity, most of the examples in this book are standalone applications, but a majority of projects use
 iText as a PDF engine in server-side web applications. You’ll certainly benefit from chapter 9 if you want to avoid the pitfalls you might encounter while integrating your iText application into a Java servlet.

 Once your proof of concept is online, you’ll probably be confronted with many extra user requirements:

	Can you change this or that color?

 	Can you print the text in a different font?

 	Can you protect the document against abuse?

Part 3 will complete your knowledge about iText.

 After mastering the content of the first three parts of the book, you’ll be able to meet over 90 percent of the standard requirements
 that have ever come up on the iText mailing list in the past 10 years. But please read on if you’re hungry for more.

Under the hood

 While the first three parts give you the high-level view of PDF, part 4 will focus on the lowest level of PDF creation and manipulation. You should read this part

	if you want to know what a PDF looks like under the hood

 	if you need a short introduction to and a quick reference for ISO-32000-1

 	if you want to learn how to tweak PDF files using iText’s low-level objects and methods

In chapter 13, you’ll learn that PDF has undergone many changes over the years. One of Adobe’s important goals was that every new version
 of the specification had to be backward-compatible. This was possible thanks to the well-designed architecture of a PDF file
 (the Carousel Object System). By studying the different objects that make up a PDF document, you’ll learn how iText creates a PDF file.

 Chapter 14 focuses on the streams holding the content of a page in a PDF document. You’ll learn all the methods for drawing lines and
 shapes (graphics state), and for writing letters and words (text state).

 In chapter 15, you’ll discover how to make content optional, and you’ll also learn about structure in the content stream of a page. You’ll
 learn how to parse content streams of existing PDF pages.

 Finally, you’ll get a closer look at the other streams that can be found in a PDF document: images, fonts, file attachments,
 and rich media.

The goal of the book

 My goal for this book is for it to become a must-have reference for the many developers who are already familiar with iText.
 With this book, they’ll have a complete overview of iText’s powerful PDF capabilities. But, let’s not forget the first-time
 users of iText. This book will lower their learning curve and inspire them to use PDF in ways they hadn’t previously considered.

Code conventions

 First use of technical terms is in italic. The same goes for emphasized terms.

 Source code in listings or in text is in fixed width font. Some code lines are in bold fixed width font for emphasis. Java methods and parameters, XML elements and attributes, PDF operators and operands, are also presented using
 fixed width font. PDF names are preceded by a forward slash; this is a /Name. Methods can be recognized by the parentheses that are added: this is a method(). In most cases, the parameters are omitted but are explained in the text.

 Occasionally, code lines that are too long for the page but that shouldn’t be split on screen are broken with a code-continuation
 character ([image:]).

 Code annotations accompany many of the source code listings, highlighting important concepts. Numbered annotations correspond
 to explanations that follow the listing.

Software requirements and downloads

 iText is a free and open source library distributed by 1T3XT BVBA. You can download it from itextpdf.com or from the SourceForge
 site. The software is protected by the Affero General Public License (AGPL). iText requires Java 5; iTextSharp requires .NET
 2.0.

 All examples have been tested in a SUN Java runtime environment on Windows XP and Fedora Linux. You can download the source
 code, resources, and all the tools that are required to compile and run the examples from the SVN repository on SourceForge
 or from the publisher’s website at www.manning.com/iTextinActionSecondEdition.

 See appendix B.1.2 to find out how to get access to these examples.

About the Title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help with learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we’re convinced that for learning to become permanent, it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it is example driven. It encourages the reader to try things out, to play with new code, and to explore new
 ideas.

 There is another, more mundane reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 On the cover of iText in Action, Second Edition is “A woman from Kastela,” a small town near Split in Dalmatia, Croatia. The illustration is taken from a reproduction of
 an album of Croatian traditional costumes from 1879 by Nikola Arsenovic, published by the Ethnographic Museum in Split. The
 illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core
 of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book includes
 finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and
 of everyday life.

 Kastela is a series of seven settlements located northwest of Split that developed around seven castles overlooking a large
 bay. The settlements are now treated as a single town with a population of 40,000. Once an ancient Greek port, a stopover
 point for Roman patricians and Venetian royals and a summer place for Croatian kings, Kastela today is a tourist resort, with
 long sandy beaches and terraces overlooking the Adriatic Sea, surrounded by pine, tamaris, and olive trees.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Creating PDF documents from scratch

 Part 1 shows you how to create a document from scratch. Concepts such as iText’s basic building blocks and direct content will be
 introduced, and important objects for adding columns and tables to a document are discussed in great detail. These first five
 chapters also explain how to add finishing touches to your document, using page events for headers, footers, page numbers,
 and watermarks.

Chapter 1. Introducing PDF and iText

 This chapter covers

	A summary of what will be presented in this book

 	Compiling and executing your first example

 	Learning the five steps in iText’s PDF creation process

Call me Bruno. About ten years ago—never mind how long precisely—I thought I’d create a small PDF library in Java and publish
 it as free and open source software (F/OSS). Little did I know that this would lead to my writing a whale of a book about
 the extensive functionality that has been added over the years.

 That library was iText, and the book was titled iText in Action: Creating and Manipulating PDF (2007). Today, iText is the world’s leading F/OSS PDF library. It’s released under the Affero General Public License (AGPL)
 and is available in two versions: the original Java version, and the C# port, iTextSharp. These libraries make it possible
 for you to enhance applications with dynamic PDF solutions. You can use iText to create invoices for your customers if you
 have a web shop, to produce tickets if you work for an airline or railway company, and so on. You can integrate iText into
 an application to generate PDF documents as an alternative to printing on paper, to add digital signatures to a document, to split or concatenate different documents, and so forth.

 In the first edition of iText in Action, readers learned why things work the way they do in iText, complemented with simple examples. This second edition takes you
 further with more real-life examples, skipping a bit on the whys, but presenting comprehensive code samples that you can use
 to solve everyday problems.

 In this chapter, I’ll give you a quick overview of the things you can do with PDF—you’ll compile and execute a first “Hello
 World” example—and you’ll learn the basics of creating PDFs with iText.

1.1. Things you can do with PDF

 Let’s start with six quick facts about PDF:

	PDF is the Portable Document Format.

 	It’s an open file format (ISO-32000-1), originally created by Adobe.

 	It’s used for documents that are independent of system software and hardware.

 	PDF documents are an essential part of the web.

 	Adobe Reader is the most widely used PDF viewer.

 	There are a lot of free and proprietary, open and closed source, desktop and web-based software products for creating, viewing,
 and manipulating PDF documents.

Figure 1.1 offers an overview of the things you can do with PDF. There are tools to create PDF documents, there are applications to consume PDF documents, and there are utilities to manipulate existing PDF documents.

 Figure 1.1. Overview of PDF-related functionality. The functionality covered by iText is marked with the iText logo.

 [image:]

 If you look at PDF creation, you’ll find that graphical designers use desktop applications such as Adobe Acrobat or Adobe
 InDesign to create a document in a manual or semimanual process. In another context, PDF documents are created programmatically,
 using an API to produce PDFs directly from software applications, without—or with minimal—human intervention. Sometimes the
 document is created in an intermediary format first, then converted to PDF. These different approaches demand different software
 products. The same goes for PDF manipulation. You can update a PDF manually in Adobe Acrobat, but there are also tools that
 allow forms to be filled out automatically based on information from a database.

 This book will focus on the automation side of things: we’ll create and manipulate PDF documents in an automated process using
 iText. The functionality covered by iText in figure 1.1 is marked with the iText logo. A smaller logo indicates that the functionality is only partly supported.

 Typically, iText is used in projects that have one of the following requirements:

	The content isn’t available in advance: it’s calculated based on user input or real-time database information.

 	The PDF files can’t be produced manually due to the massive volume of content: a large number of pages or documents.

 	Documents need to be created in unattended mode, in a batch process.

 	The content needs to be customized or personalized; for instance, the name of the end user has to be stamped on a number of
 pages.

Often you’ll encounter these requirements in web applications, where content needs to be served dynamically to a browser.
 Normally, you’d serve this information in the form of HTML, but for some documents, PDF is preferred over HTML for better
 printing quality, for identical presentation on a variety of platforms, for security reasons, or to reduce the file size.
 In this case, you can serve PDF on the fly.

 As you read this book, you’ll create and manipulate hundreds of PDF documents that demonstrate how to use a specific feature,
 how to solve common and less common issues, and how to build an application that involves PDF technology. We’ll use iText
 because it’s an API that was developed to allow developers to do the following (and much more):

	Generate documents and reports based on data from an XML file or a database

 	Create maps and books, exploiting numerous interactive features available in PDF

 	Add bookmarks, page numbers, watermarks, and other features to existing PDF documents

 	Split or concatenate pages from existing PDF files

 	Fill out interactive forms

 	Serve dynamically generated or manipulated PDF documents to a web browser

For first-time users, this book is indispensable. Although the basic functionality of iText is easy to grasp, the first parts
 of this book significantly lower the learning curve and gradually offer more advanced functionality.

 It’s also a must-have for the many developers who are already familiar with iText. In the final chapters, many PDF secrets
 hidden in ISO-32000-1, the open standard that defines the Portable Document Format, will be unveiled. Even experienced iText
 developers will learn new ways to master the PDF specification using their favorite PDF library.

 Without further ado, let’s start with a simple example that explains how to compile and run the many examples that come with
 this book.

1.2. Working with the examples in this book

 All the source files, as well as the resources and extra libraries necessary to run the book’s examples, were uploaded to
 a Subversion (SVN) repository on SourceForge. If you have an SVN client, you can check out of the complete working environment
 at once. This way, you’ll be able to get the latest updates and new examples, even after the book has been released. Please
 consult appendix B for the URL of this repository.

 You can find more info about this on the examples page of the itextpdf.com site. That’s also the place where you’ll find zipped
 archives, in case you don’t have an SVN client. You can download these archives and unzip them on your local system.

 Before you start experimenting, make sure that you have a recent version of the Java Development Kit (JDK) installed. The
 examples won’t work for versions of iText that are older than iText 5, and iText 5 is compiled with Java 5, so the minimum
 requirement for your JVM is Sun’s JDK 1.5. You can use other JDKs, but only the JDK from Sun is supported.

 Figure 1.2 shows how I compiled and executed the first example, HelloWorld, on Ubuntu Linux using OpenJDK 6. As you can see, you first change the directory to the examples folder (or whichever folder
 contains your copy of the project). Then you run this command:

 javac -d bin -cp lib/iText.jar src/part1/chapter01/HelloWorld.java

 Figure 1.2. Compiling and running from the command line

 [image:]

 HelloWorld.java is the source file; we’ll take a close look at it in the next section. The option -d says that the compiled code should be written to the bin folder. With option -cp you define the classpath. For this simple example, you only need the iText.jar file. For other examples, you might need to
 add more JARs, such as a JAR with the database driver, encryption JARs, and so forth.

 Once you’ve compiled the code, you can execute it:

 java -cp "bin:lib/iText.jar" part1.chapter01.HelloWorld

 If you’re working on Windows, you’ll need to replace the colon separating the different parts of the classpath with a semicolon:

 java -cp "bin;lib/iText.jar" part1.chapter01.HelloWorld

 Congratulations! You have created your first PDF file using iText. Figure 1.3 shows how everything is organized.

 Figure 1.3. Organization of the sample files

 [image:]

 The source code of the examples can be found in the src folder; see, for instance, the file HelloWorld.java. The package names
 of the examples correspond to the part and chapter numbers of the book. In the lib directory, you’ll find all the JARs you
 need to compile the examples. There’s also a resources folder containing all the resources you might need to run the examples:
 database scripts, images, special fonts, and existing PDF files, such as interactive forms.

 The examples are compiled to the bin folder. The HelloWorld.class file will appear as soon as you run the javac command. When you execute the java command, you’ll see the hello.pdf file appear in the results directory. Figure 1.4 shows the end result: a PDF file containing the text “Hello World!”

 Figure 1.4. A “Hello World” PDF

 [image:]

 It’s certainly possible to compile and execute all the examples from the command line, but it’s more likely that you’ll prefer
 using an integrated development environment (IDE). Figure 1.5 shows what the project looks like in Eclipse—you’ll recognize the same folders. Observe that Eclipse puts the src folder
 on top. The bin directory is hidden; you’ll find the JARs under Referenced Libraries. You can view and update the list of
 registered JARs by selecting Project > Properties > Java Build Path > Libraries.

 Figure 1.5. The project opened in Eclipse

 [image:]

 Figure 1.5 already gives you a peek at the source code. The hello.pdf file is created in five steps. The next section discusses every
 step in detail.

1.3. Creating a PDF document in five steps with iText

 Let’s copy the content of the main method of figure 1.5, and remove the comments. The numbers to the side in this listing indicate the different steps in the PDF-creation process.

 Listing 1.1. HelloWorld.java

 [image:]

 We’ll devote a separate subsection to each of these five steps:

	
Step [image:]—Create a Document.

 	
Step [image:]—Get a PdfWriter instance.

 	
Step [image:]—Open the Document.

 	
Step [image:]—Add content.

 	
Step [image:]—Close the Document.

In each of the following subsections, we’ll focus on one specific step. You’ll apply small changes to step [image:] in the first subsection, to step [image:] in the second, and so on. This way, you’ll create several new documents that are slightly different from the one in figure 1.4. You can hold these variations on the original hello.pdf against a strong light (literally or not) and discover the differences
 and similarities caused by the small code changes.

 1.3.1. Creating a new Document object

 Document is the object to which you’ll add content in the form of Chunk, Phrase, Paragraph, and other high-level objects. These objects are often referred to as iText’s basic building blocks, and they’ll be discussed
 in chapter 2. For now, we’ll only work with Paragraph objects.

Measurements

 Upon creating the Document object, you’ll define the page size and the page margins of the first page. Either this happens implicitly, as is the case
 in step [image:] of listing 1.1; or you can define the size and margins explicitly using a com.itextpdf.text.Rectangle object and four float values for the margins as shown here.

 Listing 1.2. HelloWorldNarrow.java

 Rectangle pagesize = new Rectangle(216f, 720f);
Document document = new Document(pagesize, 36f, 72f, 108f, 180f);

 In this example, a rectangle measuring 216 x 720 user units is created. This rectangle is used as the page size in the Document constructor, along with a left margin of 36 user units, a right margin of 72 user units, a top margin of 108 user units,
 and a bottom margin of 180 user units.

	

FAQ

 What is the measurement unit in PDF documents? Most of the measurements in PDFs are expressed in user space units. ISO-32000-1 (section 8.3.2.3) tells us “the default for
 the size of the unit in default user space (1/72 inch) is approximately the same as a point (pt), a unit widely used in the
 printing industry. It is not exactly the same; there is no universal definition of a point.” In short, 1 in. = 25.4 mm = 72
 user units (which roughly corresponds to 72 pt).

	

If you open the document created by listing 1.2 in Adobe Reader and look at the Description tab in the Document properties dialog box (opened via File > Properties), you’ll
 find that the document measures 3 in. x 10 in.

 iText also created a left margin of 0.5 in. (36/72), a right margin of 1 in. (72/72), a top margin of 1.5 in. (108/72), and
 a bottom margin of 2.5 in. (180/72).

 If you don’t like doing all that math, there’s a Utilities class in iText with static methods that help you switch among points, inches, and millimeters: millimeters-ToPoints(), millimetersToInches(), pointsToMillimeters(), pointsToInches(), inchesToMillimeters(), and inchesToPoints(). All these methods expect a float as their value.

 Note that these methods refer to points, not to user units. That’s because the default value of the user unit corresponds with a point, but it’s possible to change this default.

 Listing 1.3. HelloWorldMaximum.java

 Document document = new Document(new Rectangle(14400, 14400));
PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT));
writer.setUserunit(75000f);

 Looking at the first line in this code snippet, you might expect a document with a page measuring 200 in. x 200 in., but when
 you look at the document properties of the resulting file, you’ll see that it measures 15,000,000 in. x 15,000,000 in. That’s
 because you’ve changed the user unit to 75,000 in the last line of listing 1.3. Now, one user unit corresponds with 75,000 points, and you’ve created a PDF document with the largest possible page size.

Page Size

 Theoretically, you could create pages of any size, but the PDF specification imposes limits depending on the PDF version of
 the document.

 Table 1.1. Minimum and maximum size of a page depending on the PDF version

	
 PDF version

 	
 Minimum size

 	
 Maximum size

	PDF 1.3 or earlier
 	72 × 72 units (1 in. × 1 in.)
 	3240 × 3240 units (45 in. × 45 in.)

	PDF 1.4 and later
 	3 × 3 units (approximately 0.04 in. × 0.04 in.)
 	14,400 × 14,400 units (200 in. × 200 in.)

Changing the user unit has been possible since PDF 1.6. The minimum value of the user unit is 1 (this is the default; 1 unit
 = 1/72 in.); the maximum value is 75,000 points (1 unit = 1042 in.).

 But enough about exotic page sizes; you’re probably interested in the standard paper sizes. The default value of a page in
 iText, if you create a Document object without any parameters, is A4, which is the most common paper size in Europe, Asia, and Latin America. It’s specified
 by the International Standards Organization (ISO) in ISO-216. An A4 document measures 210 mm x 297 mm, or 8.3 in. × 11.7 in.,
 or 595 pt x 842 pt.

 If you want to create a document in another standard format, take a look at the PageSize class. This class was written for your convenience, and it contains a list of static final Rectangle objects, offering a wide selection of standard paper sizes, including A0 to A10, B0 to B10, and the American standard sizes: LETTER, LEGAL, LEDGER, and TABLOID. Listing 1.4 shows how to adapt the initial HelloWorld example so that it produces a PDF document saying “Hello World!” on a page that’s the American letter paper size.

 Listing 1.4. HelloWorldLetter.java

 Document document = new Document(PageSize.LETTER);

 The orientation of most of the paper sizes defined in PageSize is portrait. You can change this to landscape by invoking the rotate() method on the Rectangle.

 Listing 1.5. HelloWorldLandscape1.java

 Document document = new Document(PageSize.LETTER.rotate());

 Another way to create a Document in landscape orientation is to create a Rectangle object with a width that is greater than its height.

 Listing 1.6. HelloWorldLandscape2.java

 Document document = new Document(new Rectangle(792, 612));

 The results of both landscape examples look exactly the same in Adobe Reader. The Reader’s Description tab doesn’t show any
 difference in size. Both PDF documents have a page size of 11 in. x 8.5 in. (instead of 8.5 in. x 11 in.), but there are subtle
 differences internally:

	In the first file, the page is defined with a size that has a width smaller than the height, but with a rotation of 90 degrees.

 	The second file has the page size you defined without any rotation (a rotation of 0 degrees).

This difference will matter when you want to manipulate the PDF. We’ll return to this issue in chapter 6.

Page Margins

 In listing 1.2, you defined margins using the constructor of the Document object, and you added a Paragraph to it. In the next two examples, you’ll define the page size and margins using the setPageSize() and setMargins() methods. You can use these methods at any time in the document’s creation process, but be aware that the change will never
 affect the current page, only the next page.

 In these examples, you’ll add paragraphs that are aligned on both sides—justified text—so you can clearly see the left and
 right margins. You’ll add enough paragraphs to cause a page break, so you can make sure the bottom margin is respected.

 Suppose this document consists of pages that are to be printed on both sides, and bound into a book. Depending on the way
 the book is bound, you might want a larger or smaller margin on the inner edges of the pages: the left margin of an odd-numbered
 page should correspond to the right margin of an even-numbered page. The same goes for the opposite margins. In short, you
 want the margins to be mirrored.

 Listing 1.7. HelloWorldMirroredMargins.java

 Document document = new Document();
PdfWriter.getInstance(document, new FileOutputStream(RESULT));
document.setPageSize(PageSize.A5) ;
document.setMargins(36, 72, 108, 180);
document.setMarginMirroring(true) ;

 Listing 1.7 assumes that the spine of the book is to the left (for Western books) or to the right (for Japanese books). But some books
 are bound in a completely different way, with the spine of the book at the top or bottom of the pages. In that case, you’d
 need to use this method.

 Listing 1.8. HelloWorldMirroredMarginsTop.java

 document.setMarginMirroringTopBottom(true);

 Now the top and bottom margins are mirrored instead of the left and right margins.

 But maybe we’re getting ahead of ourselves. We’re already adding content, but we haven’t yet discussed step [image:] in listing 1.1 in the PDF creation process.

 1.3.2. Getting a PdfWriter instance

 PdfWriter is the class responsible for writing the PDF file. You can also add contents, such as annotations, to PdfWriter. As opposed to the high-level objects added to the Document object, manipulations on PdfWriter are often referred to as low-level access and writing to the direct content. You’ll find out more about these concepts in chapter 3.

 Step [image:] in listing 1.1 in the PDF creation process combines two actions:

	
It associates a Document with the PdfWriter. This writer will “listen” to the document. High-level objects, such as a Paragraph, will be translated into low-level operations. For example, iText will generate the PDF syntax that draws the textual content
 of a paragraph at a specific position on a page, taking into account the page size and margins.

 	
It tells the PdfWriter to which OutputStream the file should be written. In the previous examples, you have written the content to a FileOutputStream, but you could have written to any other type of OutputStream. You could even have written the bytes of a PDF file to System.out.

In rare circumstances, creating a writer instance can cause a DocumentException.

Exceptions

 DocumentException is the most general exception in iText. It can occur in step [image:] or step [image:] of listing 1.1. For example, if you try adding a Paragraph before you’ve done step [image:], you’ll get the following error message: “The document isn’t open yet; you can only add metadata information.” DocumentExceptions also occur when manipulating existing documents. For instance, “Append mode requires a document without errors even if recovery
 was possible.”

 If you look at listing 1.1, you see that you can also expect an IOException. Once you start using resources such as images, fonts, or existing PDFs, this exception can occur if something goes wrong
 while reading from an InputStream.

 In the examples we’ve looked at so far, the only IOException that could be thrown is a FileNotFoundException. This happens when you’re trying to create a hello.pdf file, but you already have a file with that name opened—and locked—in
 Adobe Reader. (This happened to me all the time while writing the examples for this book.) Or maybe you’re trying to create
 the file in the results/part1/chapter01 directory, but this directory doesn’t exist on your filesystem. The empty results
 directories are provided with the example archives to avoid this problem.

Other Outputstreams

 While you’re adding content to the Document, the PdfWriter gradually writes a PDF file to the OutputStream. This PDF file will be written to a file on disk if you choose a FileOutputStream. In a web application, you’ll generally prefer serving the PDF to a web browser without saving it on the server, so you could
 write directly to the ServletOutputStream, using response.getOutputStream() in your servlets. This will work with some browsers, but unfortunately not with all. Chapter 9 will explain why it’s better to write the complete file to memory before transferring the bytes to the OutputStream of an HttpServletResponse object.

 Here’s how to write a file to memory using a ByteArrayOutputStream.

 Listing 1.9. HelloWorldMemory.java

 [image:]

 Observe that the PDF is created in memory in the first part of this snippet; nothing is written to disk. The bytes are written
 to a file in the last three lines of the snippet to prove that what was generated in memory represents a valid PDF file.

 Now that you have all the infrastructure in place, it’s time to open the Document.

 1.3.3. Opening the Document

 Java programmers may not be used to having to open streams before being able to add content. When you create a new stream
 in Java, you can start writing bytes, chars, and Strings to it right away. With iText, it’s mandatory to open the document first.

 When a Document object is opened, a lot of initializations take place, and the file header is written to the OutputStream.

The File Header and the PDF Version

 Figure 1.6 shows your first PDF file, hello.pdf, opened in the Notepad++ text editor.

 Figure 1.6. hello.pdf opened in Notepad++

 [image:]

 As you can see, the first lines look like this:

 %PDF-1.4
%âãïÓ

 This is the header of a PDF file. The structure of a PDF file, with its header, body, cross-reference table, and footer, will
 be discussed in great detail in chapter 13. For now, it’s sufficient to know that the first line gives you an indication of the PDF version that is used.

 By default, iText uses version 1.4, which was introduced in 2001. If you introduce functionality newer than what’s available
 in PDF 1.4 after step [image:] in listing 1.1, it’s your responsibility to set the correct PDF version before step [image:]. Otherwise, the default version—PDF-1.4—will be written to the OutputStream, and there’s no going back.

	

Note

 Beginning with PDF 1.4, the PDF version can also be stored elsewhere in the PDF (in the root object of the document, aka the
 catalog; see chapter 13). This implies that a file with header PDF-1.4 can be seen as a PDF 1.6 file if it’s defined that way in the document root.

	

In some cases, iText changes the PDF version automatically. In listing 1.3, you changed the user unit, and this capability was introduced in version 1.6 of the PDF specification. Because you changed
 the user unit before step [image:], iText was able to update the PDF version in the header to %PDF-1.6.

 It’s a better practice to set the version number with PdfWriter.setPdfVersion() if you use PDF features that are newer than what was available in PDF 1.4. Here’s how to change the PDF version to 1.7.

 Listing 1.10. HelloWorldVersion_1_7.java

 PdfWriter writer
 = PdfWriter.getInstance(document, new FileOutputStream(RESULT));
writer.setPdfVersion(PdfWriter.VERSION_1_7);

 It’s not forbidden for the PDF version in the header to be different from the PDF version in the catalog, but it’s good practice
 to make setting the PDF version a part of your initializations to avoid ambiguity.

Initializations

 Document.open() also performs many initializations. For instance, you can’t access the outline of the bookmarks before the document has been
 opened (see chapter 7). If you want to create an encrypted PDF file, you must set the encryption type, strength, and permissions before step [image:] in listing 1.1 (see chapter 12).

	

FAQ

 I have set feature X, and it doesn’t work, or it doesn’t work for page 1, only for the pages that follow. Why is that? Many settings, such as the page size and margins, only go into effect on the next page. This may seem trivial, but it’s a
 common question for new iText users. If you want the feature to work on page 1, define it before opening the document.

	

After step [image:], the first page of our document is available for you to add content (step [image:]).

 1.3.4. Adding content

 In this section, we’re creating simple Hello World PDF documents, learning the elementary mechanics of iText’s PDF creation
 process. Once these are understood, you can start generating real-world documents containing real-world data.

 To learn how to implement step [image:], you’ll copy steps [image:], [image:], [image:], and [image:] from listing 1.1 into an application, then focus on step [image:]: adding content to the PDF document.

 There are different ways to add content. Up until now, you’ve been adding one or more high-level objects of type Paragraph to the Document. In the next chapter, you’ll learn about other objects, such as Chunk, Phrase, Anchor, and List. You can also add content to a page using low-level methods.

Direct Content

 Listing 1.11 shows a variation on this chapter’s initial “Hello World” example. Although this is a rather complex example for a first
 chapter about using iText, it will give you an idea of iText’s internal PDF-creation process.

 Listing 1.11. HelloWorldDirect.java

 [image:]

 Steps [image:], [image:], and [image:] are the same as they were in listing 1.1, but you need to make a small change to step [image:]. Instead of using an unnamed instance of PdfWriter, you now give it a name: writer. You need this instance because you want to grab a canvas on which you can draw lines and shapes, and, in this case, text.
 In listing 1.11, comment sections were added, reflecting the PDF syntax that is written by each method.

 By using the setCompressionLevel() method with a parameter of 0, you avoid compressing the stream. This allows you to read the PDF syntax when opening the file
 in a text editor. Figure 1.7 shows the resulting PDF when opened in WordPad.

 Figure 1.7. PDF document opened in WordPad

 [image:]

 This screenshot contains less gibberish than figure 1.6, though it’s showing the syntax of a similar “Hello World” PDF. You’ll recognize the PDF header, followed by a PDF object
 with number 2: 2 0 obj. After reading part 4 of this book, you’ll understand that this object is a stream object, the content stream of the first page. In figure 1.6, the content stream was compressed, but in figure 1.7, the compression is zero. You can see the syntax in clear text, although you’ll need to read chapter 14 to decipher what it means.

	

Note

 Setting the compression level to 0 can be interesting if you need to debug your PDF file, but you shouldn’t change the compression
 level in a production environment, because the file size of the resulting PDFs will be bigger than files generated using the
 default compression level.

	

As you move on in this book, you’ll find out that you’ll need to add content directly to the page on different occasions,
 such as when adding page numbers, or when drawing custom borders for tables. As you might imagine, you’ll need a sound understanding of the PDF reference to achieve all this.

	

FAQ

 I’ve added text using low-level methods and it doesn’t respect the margins, nor does the text wrap at the end of the line.
 What is wrong? That is expected behavior. When adding content like this, you need to do all the math necessary to split a String in different lines, and add it at the appropriate coordinates. Also, make sure that you don’t add the text outside the visible
 area of the page; this is a common mistake when adding text to an existing PDF document.

	

Listing 1.11 gets increasingly complex as soon as you need to add more text. Fortunately, iText comes to the rescue: you can use convenience
 classes and methods that significantly reduce the complexity and the lines of code needed to work with direct content.

Convenience Classes and Methods

 Listing 1.12 is identical to listing 1.11 as far as steps [image:], [image:], [image:], and [image:] are concerned, but in step [image:] you create a Phrase object and add this to the direct content, named canvas, using the static method ColumnText.showTextAligned(). The phrase hello will be added left aligned at coordinates (36, 788) with rotation 0.

 Listing 1.12. HelloWorldColumn.java

 [image:]

 If you open the resulting PDFs from listings 1.11 and 1.12 in Adobe Reader, you’ll see that both documents look identical. If you open them in a text editor, you’ll notice that the
 syntax is slightly different. There’s usually more than one way to create PDF documents that look like identical twins when
 opened in a PDF viewer. And even if you create two identical PDF documents using the exact same code, there will be small
 differences between the two resulting files. That’s inherent to the PDF format.

 We’re almost finished discussing the five steps in the PDF creation process. It’s time for step 5.

 1.3.5. Closing the Document

 One of the typical uses of iText is to create documents containing many pages. For example, a financial institution uses iText
 to create PDFs of bank statements, consisting of 100,000 or more pages. You don’t want to keep the content of that many pages
 in memory, and that’s why iText will write content to the OutputStream as soon as possible. If a page is full, the content stream of that page will be written to the OutputStream; if you’re writing to a file, that content will be flushed from the memory.

Content Flushed to the Outputstream Versus Content Kept in Memory

 If you return to figure 1.6 or 1.7, you’ll see that object 2, the page content stream of page 1, appears as the first object in the file. Other objects will
 be added at a higher byte position, regardless of their object number. iText has to keep certain objects in memory because
 there’s a chance you’ll reuse them and change them during the creation process. You’ll use this mechanism in section 5.4.2 to add the total number of pages—a number that is only known when the final page is reached—to all the previous pages.

 Specific objects, such as the catalog and the info dictionary, will be added last by iText. They’re written to the OutputStream upon closing the Document. There’s also the cross-reference table, an important structure that is written immediately after the catalog and info dictionary.
 It contains the byte positions of the PDF objects that define the document. It’s followed by the trailer, containing information
 that enables an application to quickly find the start of the cross-reference table, and objects such as the info dictionary.
 Finally, the following byte sequence will be added, indicating that the file has been completely written:

 %EOF

 You don’t need to close the OutputStream you created in step [image:]. iText will close this stream right after the end-of-file sequence.

Keeping the Outputstream Open

 There may be occasions when you don’t want the stream to be closed automatically.

 Listing 1.13. HelloZip.java

 [image:]

 In [image:], you create a ZipOutputStream. It will generate a zip archive named hello.zip containing different PDF files. You use this OutputStream [image:] to create an instance of PdfWriter, but you immediately use the setCloseStream() method to tell the writer that it shouldn’t close the stream. If you don’t do this, the ZipOutputStream will be closed [image:], and a java.io.IOException will be thrown [image:], saying “Stream closed.” You have to wait until you’ve closed the final entry added to the zip file, before you can close
 the ZipOutputStream [image:].

 This example concludes our series of simple “Hello World” examples. You now have a solid first impression of how to use iText
 to create new PDF documents.

1.4. Summary

 In this first introductory chapter, you’ve had a brief introduction to PDF, learning what is possible in PDF and what is possible
 with iText.

 You’ve compiled and executed a first example, generating a simple “Hello World” PDF document. Using listings 1.1 through 1.13, you’ve created 15 similar files, of which three were archived in a zip file. In doing so, you’ve gone through the five elementary
 steps in iText’s PDF-creation process: create a Document, get a PdfWriter instance, open the Document, add content, close the Document.

 This chapter contained many forward references, and some of the examples introduced functionality that was probably too complex
 for a first chapter, but don’t worry: every line of code will be explained further on in the book.

 In the next chapter, you’ll create PDFs with content that is more meaningful. I’ll introduce a simple movie database and you’ll
 use iText’s high-level objects to publish the content of this database in different PDF documents.

Chapter 2. Using iText’s basic building blocks

 This chapter covers

	An overview of the database used in the book’s examples

 	An overview of the basic building blocks: Chunk, Phrase, Paragraph, List, ListItem, Anchor, Chapter, Section, and Image

This chapter describes a series of high-level objects that can be used as basic building blocks. These objects allow you to
 generate PDF documents without having to bother with PDF syntax. Figure 2.1 is a UML diagram that serves as a visual table of contents, presenting the building blocks discussed in this chapter.

 Figure 2.1. UML class diagram, presenting the building blocks that will be discussed in this chapter

 [image:]

 This class diagram is far from complete. All the methods, as well as a number of member variables, were omitted for the sake
 of clarity. The diagram will help you to understand in one glance how the interfaces and classes relate to each other.

 We’ll discuss a first series of objects in section 2.2: Chunk, Phrase, Paragraph, and List. In section 2.3, we’ll cover a second series: Anchor, Chapter, Section, and Image. But before starting to build documents using these building blocks, let’s have a look at the database you’ll publish to
 different PDF files in the upcoming examples.

2.1. Illustrating the examples with a real-world database

 The main theme of the examples in this book is movies. I’ve made a selection of 120 movies, 80 directors, and 32 countries, and I’ve put all this information in a database. The
 entity relationship diagram (ERD) in figure 2.2 shows how the data is organized. There are three main tables, consisting of movies, directors, and countries. Furthermore,
 there are two tables connecting these tables.

 Figure 2.2. Film database entity relationship diagram

 [image:]

 For the examples in this book, we’ll use the HSQL database engine (http://hsqldb.org/). This is a lightweight database that doesn’t need to be installed. Just add hsqldb.jar to your classpath and you’re set.
 You’ll find this JAR in the lib directory. The HSQL database is in the db subdirectory of the resources folder. When you execute an example using the movie database, the
 contents of the filmfestival.script file will be loaded into memory, and you’ll see temporary files appear in the directory
 as soon as you start using the database.

 I wrote a couple of convenience classes to hide the complexity of the database. The abstract class DatabaseConnection wraps the java.sql.Connection class, and it’s extended by the HsqldbConnection class.

 Listing 2.1. DatabaseTest.java

 [image:]

 This is a small standalone example to test the database connection. It writes the 32 countries from the film_country table
 to a file named countries.txt.

 I’ve also created a class named PojoFactory, along with a series of plain old Java objects (POJOs), such as Movie, Director, and Country. These classes hide most of the database querying. In the examples that follow, you’ll find code that looks like this:

 List<Movie> movies = PojoFactory.getMovies(connection);
for (Movie movie : movies) {
 document.add(new Paragraph(movie.getTitle()));
}

 Each instance of the Movie class corresponds with a record in the film_movietitle table.

 In the following sections and chapters, you’ll create numerous PDF files from a database, but you’ll hardly ever be confronted
 with difficult database queries or database-related Java syntax. The database aspects of the examples won’t get any more complex
 than in the first examples of the next section.

2.2. Adding Chunk, Phrase, Paragraph, and List objects

 The general idea of step [image:] in listing 1.1 in the PDF-creation process using document.add() is that you add objects implementing the Element interface to a Document object. Behind the scenes, a PdfWriter and a PdfDocument object analyze these objects and translate them into the appropriate PDF syntax, positioning the content on one or more pages,
 taking into account the page size and margins.

 In this section, we’ll explore text elements that implement the TextElementArray interface. As the name of the interface indicates, these objects will be composed of different pieces of text; most of the
 time, it will be text wrapped in Chunk objects.

 2.2.1. The Chunk object: a String, a Font, and some attributes

 A Chunk is the smallest significant piece of text that can be added to a Document. The Chunk object contains a StringBuffer that represents a chunk of text whose characters all have the same font, font size, font style, and font color. These properties
 are defined in the Font object. Other properties of the Chunk, such as the background color, the text rise—used to simulate subscript and superscript—and the underline values—used to
 underline text or strike a line through it—are defined as attributes. These attributes can be changed with a series of setter
 methods.

 Listing 2.1 wrote the names of 32 countries to a text file to test the database. Here you’re creating a PDF document with nothing but
 Chunks as building blocks.

 Listing 2.2. CountryChunks.java

 [image:]

 This example is rather unusual: in normal circumstances you’ll use Chunk objects to compose other text objects, such as Phrases and Paragraphs. Typically, you won’t add Chunk objects directly to a Document, except for some special Chunks, such as Chunk.NEWLINE.

The Space Between Two Lines: Leading

 A Chunk isn’t aware of the space that is needed between two lines. That’s why you set the leading in [image:]. The word leading is pronounced as ledding, and it’s derived from the word lead (the metal). When type was set by hand for printing presses, strips of lead were placed between lines of type to add space—the
 word originally referred to the thickness of these strips of lead that were placed between the lines. The PDF Reference redefined
 the leading as “the vertical distance between the baselines of adjacent lines of text” (IS0-32000-1, section 9.3.5). As an
 exercise, you could remove setInitialLeading(16) from line [image:]. If you compile and execute the altered example, you’ll find that all the text is written on the same line.

The Font Object

 Figure 2.3 shows the PDF created by listing 2.2. You can see all the fonts that are present in the document by choosing File > Properties > Fonts.

 Figure 2.3. Country chunks, produced with listing 2.2

 [image:]

 The document properties reveal that two fonts were used: Helvetica and Helvetica-Bold. These fonts weren’t embedded. When
 I open the file on Windows, Adobe Reader replaces Helvetica with ArialMT and Helvetica-Bold with ArialBoldMT. These fonts
 look very similar, but nevertheless, there’s a difference!

 The first font in the list in figure 2.3 is the default font used for the Chunks created in listing 2.2 [image:].

	

FAQ

 What is the default font used in iText, and can I change it? The default font in iText is Helvetica with size 12 pt. There’s no way to change this. If you need objects with another default
 font, just create a factory class that produces objects with the font of your choice.

	

In [image:], you specify a different font from the same family: Helvetica with style Bold. You define a different font size (6 pt) and
 set the font color to white. It would be difficult to read white text on a white page, so you also change one of the many
 attributes of the Chunk object: the background color [image:]. The setBackground() method draws a colored rectangle behind the text contained in the Chunk. The extra parameters of the method define extra space (expressed in user units) to the left, bottom, right, and top of the
 Chunk. In this case, the ID of each country will be printed as white text on a black background.

 You use setTextRise() [image:] to print the country ID in superscript. The parameter is the distance from the baseline in user units. A positive value simulates
 superscript; a negative value simulates subscript. You’ll discover more Chunk attributes as you read on in the book.

 Finally you add Chunk.NEWLINE to make sure that every country name starts on a new line. In the next subsection, we’ll combine Chunks into a Phrase.

 2.2.2. The Phrase object: a List of Chunks with leading

 When I created iText, I chose the word chunk for the atomic text element because of its first definition in my dictionary: “a solid piece.” A phrase, on the other hand, is defined as “a string of words.” It’s a composed object. Translated to iText and Java, a Phrase is an ArrayList of Chunk objects.

A Phrase with Different Fonts

 When you create methods that compose Phrase objects using different Chunks, you’ll usually create constants for the different Fonts you’ll use.

 Listing 2.3. DirectorPhrases1.java

 [image:]

 The createDirectorPhrase() method produces the Phrase exactly the way you want it. You’ll use it 80 times to list the 80 directors from the movie database. It’s good practice
 to create a factory class containing different createObject() methods if you need to create Chunk, Phrase, or other objects in a standardized way.

The Leading of a Phrase

 The method createDirectorPhrase() from listing 2.3 is used in this listing in which you’re repeating the five steps in the PDF creation process.

 Listing 2.4. DirectorPhrases1.java

 [image:]

 Observe that you no longer need to set the initial leading in step [image:]. Instead, the default leading is used.

	

FAQ

 What is the default leading in iText? If you don’t define a leading, iText looks at the font size of the Phrase or Paragraph that is added to the document, and multiplies it by 1.5. For instance, if you have a Phrase with a font of size 10, the default leading is 15. For the default font—with a default size of 12—the default leading is
 18.

	

In the next example, you’ll change the leading with the setLeading() method.

Database Encoding Versus the Default Charset Used by the JVM

 In listing 2.3, some Strings were created using the UTF-8 encoding explicitly:

 new String(rs.getBytes("given_name"), "UTF-8")

 That’s because the database contains different names with special characters. If you look at the HSQL script filmfestival.script,
 you’ll find INSERT statements like this:

 INSERT INTO FILM_DIRECTOR VALUES(
 41,'I\u00c3\u00b1\u00c3\u00a1rritu','Alejandro Gonz\u00c3\u00a1lez')

 That’s the record for the director Alejandro González Iñárritu. The characters á—(char) 226—and ñ—(char) 241—can be stored as one byte each, using the ANSI character encoding, which is a superset of ISO-8859-1, aka Latin-1. HSQL stores
 them in Unicode using multiple bytes per character. To make sure that the String is created correctly, listing 2.3 uses ResultSet.getBytes() instead of ResultSet.getString().

 This isn’t always necessary. In most database systems, you can define the encoding for each table or for the whole database.
 The JVM uses the platform’s default charset, for instance, in the new String(byte[] bytes) constructor.

	

FAQ

 Why is the data I retrieve from my database rendered as gibberish? This can be caused by an encoding mismatch. The records in your database are encoded using encoding X; but the String objects obtained from your ResultSet assume that they are encoded using your platform’s charset Y. For instance, the name González could be rendered as GonzÃ¡lez if the Unicode characters are interpreted as ANSI characters.

	

Once you’ve created the PDF document correctly, you no longer have to worry about encodings. One of the main reasons why people
 prefer PDF over any other document format is because PDF, as the name tells us, is a portable document format. A PDF document can be viewed and printed on any platform: UNIX, Macintosh, Windows, Linux, and others, regardless
 of the encoding or the character set that is used.

 In theory, a PDF document should look the same on any of these platforms, using any viewer available on that platform, but
 there’s a caveat! If you take a close look at figure 2.4, you can see that this isn’t always true.

 Figure 2.4. A PDF file opened in Adobe Reader and Evince on Ubuntu

 [image:]

Font Substitution for Nonembedded Fonts

 In figure 2.3, you could see that Helvetica was replaced by ArialMT. Figure 2.4 shows that the choice of the replacement font is completely up to the document viewer.

 Adobe Reader on Ubuntu (see the left window in figure 2.4) replaces Helvetica with Adobe Sans MM and Times-Roman with Adobe Serif MM. The MM refers to the fact that these are Multiple Master fonts. Wikipedia tells us that MM fonts are “an extension to Adobe Systems’ Type 1 PostScript fonts ... From one MM font,
 it is conceivable to create a wide gamut of typeface styles of different widths, weights and proportions, without losing the
 integrity or readability of the character glyphs.”

 Adobe Reader for Linux uses a generic font when it encounters a nonembedded font for which it can’t find an exact match. Looking
 at the output of File > Properties > Fonts in Evince (Ubuntu’s default document viewer; see the right window in figure 2.4), you might have the impression that the actual Times-Bold, Times-Roman, and Helvetica fonts are used, but that’s just Evince
 fooling you. Helvetica and Times-Roman aren’t present on my Linux distribution; Evince is using other fonts instead. On Ubuntu
 Linux, you can consult the configuration files in the /etc/fonts directory. I did, and I discovered that on my Linux installation,
 Times and Helvetica are mapped to Nimbus Roman No9 L and Nimbus Sans—free fonts that can be found in the /usr/share/fonts/type1/gsfonts
 directory.

 Note that we are looking at the same document, on the same OS (Ubuntu Linux), yet the names of the directors in the document
 look slightly different because different fonts were used. We were very lucky that the names were legible.

	

FAQ

 Why are the special characters missing in my PDF document? This isn’t an iText problem. You could be using a character that has a description for the corresponding glyph on your system,
 but if you don’t embed the font, that glyph can be missing on an end user’s system. If the PDF viewer on that system can’t
 find a substitution font, it won’t be able to display the glyph. The solution is to embed the font. But even if you embed
 the font, some glyphs can be missing because they weren’t present in the font you tried to embed. The solution here is to
 use a different font that does have the appropriate glyph descriptions. This will be discussed in great detail in chapter 11.

	

Not embedding fonts is always a risk, especially if you need special glyphs in your document. Not every font has the descriptions
 for every possible glyph.

	

Note

 Characters in a file are rendered on screen or on paper as glyphs. ISO-32000-1, section 9.2.1, states: “A character is an abstract symbol, whereas a glyph is a specific graphical rendering of a character. For example:
 The glyphs A, A, and A are renderings of the abstract ‘A’ character. Glyphs are organized into fonts. A font defines glyphs for a particular character
 set.”

	

In the next example, you’ll see how to avoid possible problems caused by font substitution by embedding the font.

Embedding Fonts

 Up until now, you’ve created font objects using nothing but the Font class. The fonts available in this class are often referred to as the standard Type 1 fonts. These fonts aren’t embedded by iText.

	

Note

 The standard Type 1 fonts used to be called built-in fonts or Base 14 fonts. The font programs for fourteen fonts—four styles of Helvetica, Times-Roman, and Courier, plus Symbol and ZapfDingbats—used
 to be shipped with the PDF viewer. This is no longer the case; most viewers replace these fonts. It’s important to understand
 that these fonts have no support for anything other than American/Western-European character sets. As soon as you want to
 add text with foreign characters, you’ll need to use another font program.

	

The next example is a variation on the previous one. You don’t have to change listing 2.4; you only have to replace listing 2.3 with this one.

 Listing 2.5. DirectorPhrases2.java

 [image:]

 You tell iText where to find the font programs for Times New Roman (times.ttf) and Times New Roman Bold (timesbd.ttf) by creating
 a BaseFont object. You ask iText to embed the characters (BaseFont.EMBEDDED versus BaseFont.NOT_EMBEDDED) using the ANSI character set (BaseFont.WINANSI). You’ll learn more about the BaseFont object in chapter 11. For now, it’s sufficient to know that you can create a Font instance using a BaseFont object and a float value for the font size.

 Figure 2.5 looks very similar to figure 2.4; only now the PDF file is rendered the same way in both viewers.

 Figure 2.5. A PDF file opened in Adobe Reader and Evince on Ubuntu

 [image:]

 Observe that there’s more space between the names in this version because listing 2.5 used setLeading() to change the leading. The names of the directors are also underlined differently compared to the previous example, because
 you don’t define the underlining as a property of the Font, but as an attribute of the Chunk.

 With the Chunk.setUnderline()

OEBPS/01fig03_alt.jpg
FHle Edt View Go Bookmarks Jabs Help
“«. »

Back Foward

Tt & o]

Places
B3 bruno.

13 Deskeop
il system
& Network

“hello.pdf* selected (906 bytes)

P

e e
- B part 1iem map. 11209 2009 171729 CEST
S e
920 bytes Java-klasse di 11 aug 2009 17:16:21 CEST

e T

e e

T T T T
e

e AR

< B part1 Litem map. i 11.2ug 2009 17:12:36 CEST
= [B chapterol 1item map di 11 aug 2009 17:13:01 CEST
| Helloverdjava 937 bytes Jovarbroncode. 20 09 aug 2009 13:13:15 CEST

up. © Reload Home Computer Search

OEBPS/01fig04_alt.jpg
" hello e - Adobe Resder [ESICIRES
[o x|

Hello World!

[sasuaiein 0 v

OEBPS/01fig01.jpg
o 1y
oo g

[view |

[

Update

Sign

7
7
Spitmorge [Ig
4
7
T

Encrypt

OEBPS/01fig02.jpg
file Edit View Terminal Help

brunos cd examples

brunos javac -d bin -cp Lib/iText.jar src/partl/chapterol/Hellovorld.java
brunos java -cp “bin:lib/iText.jar" part1.chapterol.Helloworld

brunos.

OEBPS/lt-manning.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/01fig05_alt.jpg
i o e o ot P
Joe 500 [EHG- |85 5+ |#50 i

il e

.
SR el
R CEm o SO ——

o= R
= =
8= (21 SO —
-t pr—

bl | € e | | O oo 5 iy = X% ioTe] 2 @3- =0)

S i ——

" .

OEBPS/circle-1.jpg

OEBPS/008fig01_alt.jpg
throws DocunmentException, IOException {

MRL MALI0 PSRN Gerang L. REOw|
3 o J Step
Document docunent - new Document () ;

PAfWriter.getInstance (document, new FileOutputStream(RESULT)); <—@) Step2
docunent..open () ; <
document .add (new Paragraph(*Hello World!®)); <@ Stepd @ Step3

document .close () ; <@ Step5

OEBPS/cover.jpg
Covers iText 5

=
]

Bruno Lowagie

OEBPS/02fig01_alt.jpg
winterfaces SN SERees i
B P S — H
Chunk. itedaces Tntedacer Rectangie
lresmort Sieggrer ToxtElementarray LargeElement | o
Jsont - Font ety foat
Jeatnbutes : HashMap s oat
T T Jrury - foat
T i | Jsctaton: int
. Pl ! J#border it
Phrase List Section [l poa
[Feading et [Pt Ayt [Fite Paragrap
fptont : Font J#symbol - Chunic fenumberdepth it
J#hyohenatin : Hyphenatontvent Jrsymbolingent - fioat| .
I
il 9
Paragraph Ustitem Chapter mage
[Fargrment ot [Fevmbor Ghunk [Fravbata bytell
fsndentatonLet - foat [spiainviiin” foat
fndentationRight ot [#painHeight - fioat
JsistLineindent - foat Jiscaieawidth - loat
|#spacingBetore - foat [#scaiedright :foat
[#spacingater :foat e
le

OEBPS/018fig01_alt.jpg
ZipOutputStream zip Creates
new ZipoutputStrean(new FileOutputStream(RESULT)); ZipOutputStream
for (int i =1; i <= 3; iss) {
ZipEntry entry = new ZipEntry("hello " + i + *.pdf");
2ip. putNextEncry (entry) ;
Document document - new Document () ;
Pafiriter writer = Creates writer
Pafiriter.getInstance (document, zip);)/o that won't close:
writer.setCloseStream(false) ; stream
Gocument .open () ;
docunent .add (new Paragraph ("ello * + i));
docunent . close (]
R CLZE T @ oses Ql Closes entry in
ipOutputStream ZipOutputStream

A I P |

Closes
Document

OEBPS/circle-3.jpg

OEBPS/circle-2.jpg

OEBPS/circle-5.jpg
G

OEBPS/circle-4.jpg

OEBPS/01fig06_alt.jpg
(5 Chtetcorebookrerut\part\chapterO el o - Notepad - =@ =]
Fie €9t Sewch Vew Femmt Linguage Setngs Macro_Run Tetbi_ P mgm o T x

- R R LI R =] ﬂ\u BRI E .
EEl

=) 5
AaRL6 ‘
20 com L
<</zengen 65/Fiises/FareDecades>seessll o
et \
§265°005EB142705” O BRI GDE0 <=M HEDSC1 eG4 . RS RS0
nascrcecim
ey
$o
<c/Pezens 3 0 R/concenss 2 0 R/Type/Page/Rescuzcesce/Brocses (/PDE /Text /Imaged /1t
ey
1o cm
<</Basesons Hexvacica/Type/ Font/Encoding/Winine Ercoding/ Subepe/ Tipe1>> 8

e g

s

OEBPS/013fig01.jpg
DOCUNEA: SOUTEISRE. = e DRGBNeaL A

Creates
ByteArrayOutputStrean baos ByteArrayOutputstream

new ByteArrayoutputstrean();
Pdfiiriter getInstance (document, baos) ; Creates
document .open () ; PdfWriter instance
document .add (new Paragraph(*Hello World!"));
document . close () ;

Gets

FileOutputstrean fos = mew FileOutputStream(RESULT);
fos.write (baos. toByteArray ()) ; brtes,
fos.close () :

OEBPS/01fig07.jpg
(&) hello_directpdf - WordPad lel@] =]
Bestand_Bewerken Becld_Invoegen _Opmask_Help
APDF-1.4 -

18516 B
20 ob3
<</Filter/FlateDecode/Length 81>>scream

xU F *gq
a

B
36 788 Td

/F1 12 T2
(Hello World)Tj
ET

Q

OEBPS/015fig01_alt.jpg
Document document = new Document () ; <4 Stepl
Pafiiriter writer = PAfiriter.getinetance

}ﬁ Step2
document, new FileOutputStream(RESULT)) ; J Step3

document .open () ;
PAfContentByte canvas = writer.getDirectContentUnder () ; Step 4
writer.setCompressionLevel (0);

canvas.savestate () ; ”q 4
canvas beginText (); 77 5t

canvas moveText (36, 788) ; 71 36 788 Ta

canvas. setFontandsize(

BaseFont.createFont (), 12); // /F1 12 Tf Stepd
canvas.shouText ("ello yorld"); // (Rello World)Tj
canvas.endText () ; // ET
canvas.restorestate() ; a

document .close () ;) Step5

OEBPS/017fig01_alt.jpg
Document document = new Document () ; @) Stepl

Pafiriter writer - PAfWriter.getInstance(Step2
document, new FileOutputStream (RESULT));
document .open () ; <@ Step3

writer . setCompressiontevel (0) ;
Phrase hello = new Phrase ("Hello World");
PafContentByte canvas = writer.getDirectContentUnder () ; Step 4
ColumnText . showTextAligned (

canvas, Element.ALIGN_LEFT, hello, 36, 788, 0);

document .close () ; o) StepS

OEBPS/02fig05_alt.jpg
Aronofsky, Sy

Becker, W "
Benei ey | 2T
Beri,Clud | orein v

Bielinsks, F |
Biben of "

Cameron

}

Affleck Ben
Aronofsky, Darren

Becker, Wolfgang
Beineix,Jean-Jacques
Berri, Claude.
Bitinky. Fi
Biraben, Gasi

Cameron, o

OEBPS/022fig01_alt.jpg
Printhrraam gub. = Dy PrintSLree ingw $1lsootparStese (RRGULT))¢
DatabaseConnection connection
new HsqldbConnection (*filnfestival®);

Statement stm = connection.createStatement () ;
ResultSet rs = stm.executeQuery(

"SELECT country FROM film_country ORDER BY country");
while (rs.next()) {

out .println(rs.getsString("country")) ;

}

stm.close();
bR R ARG

Creates connection
to HSQL database

OEBPS/02fig02.jpg
film_movietitie

fim_irector
X Pk [id
T fim_country
tite K i
e orgina. e
given_name imd country
yoar
£ duration L)
fim_movie_drector fim_movie_county

FK1 [fim_id
FK2 | country_id

OEBPS/02fig03.jpg
) country.chunks pf - Adobe Reader =@ %

Argentina @
Austraia ™ |
Austria™ 1
Belgium@
Bosnia and Herzegovina ™
Brazil®
Canada® Document Properies]
chie® Descrption | Secuity] Fonts | Advanced
China & " Fonts Usedinthis Document
Denmark® S @ reia
France @ Type Type1
Gormany®2 i
Greece R T TueTpe
Hong Kong@ @ Hewetica-Bold

Type Tye
1nma5"! Ceaing
srael et Fon: Al BoiMT
taly@ Actul Font Type TroType
Japan®
Mexico™

8280« W

OEBPS/023fig01_alt.jpg
DDt NocuREnt. R oo ot ()
Pafuriter.getTnstance (document, new FileOutputStream(REsurr)) @ Setsinitial
setInitialleading(16); < leading

document - open() ;
DatabaseConnection connection = new HsqldbConnection("£ilmfestival’) ;
Scatement stm = connection.createScatement ();
ResultSet rs = stm.executeQuery(
"SELECT country, id FROM £ilm_country ORDER BY country®);

while (rs.next()) { Adds Chunks
document.-add (new Chunk (zs. getString ("county"))) s using default Font
document . add(new Cunk(* *1) 5

Font font = new Font(Creates
FontFamily HELVETICA, 6, Font.BOLD, BaseColor .WHITE); Chunk using
Chunk 1d = new Chunk (rs.getString(rid"), font); custom Font

1d. setBackground (BaseColor .BLACK, 1f, 0.5f, 1f, 1.5€);

ia.setTextRise (6) ;
ol Defines text Sets

3 i ‘background

}

stm.close () ;
connection. close () ;
Ahetaradts 61 takit)

OEBPS/025fig02_alt.jpg
ik

Document document = new Document () ; Step I: Create Step 2: Get.
Pafuriter.getInstance (© Document instanceof
document, new FileOutputStream(€ilename)); PfWiter

document .open () ;
DatabaseConnection connection = new HsqldbConnection ("filmfestival®);

Statement stm = connection.createstatement () ; 5009300560

ResultSet rs = stm.executeQuery("SELECT name, given_name" 3 oven
+ VEROM £ilm_director ORDER BY name, given_name");

while (rs.nexc()) (Stepd:
docunent .add (createDirectorPhrase (xs)) ; Add content
document .add (Chunk . NEWLINE) ; Step a:

) Add content

stm.close (

connection.close() ; Step 5: Close

Document.

document - close() 5

OEBPS/025fig01_alt.jpg
public static final Font BOLD_UNDERLINED
new Font (FontFPamily. TIMES_ROMAN,
12, Font.BOLD | Font.UNDERLINE); Phopebotod
public static final Font NORMAL = objects
new Font (FontFamily. TIMES_ROMAN, 12);
public Phrase createDirectorPhrase (ResultSet rs)
throws UnsupportedEncodingException, SQLException {
Phrase director = new Phrase();
director.add (new Chunk (
new String(rs.getBytes ("name?), "UTF-87),
'BOLD_UNDERLINED)) ;
director.add(new Chunk (", ", BOLD_UNDERLINED)); Adds Chunks
director.add(new Chunk(* ", NORMAL) to Phrase
director.add (new Chunk (
new String(rs.getBytes("given name®), "UTF-8"),
NORMAL)) ;
return director;

Creates Phrase
object

OEBPS/028fig01.jpg
public static final Font BOLD;

Declares Font objects.
public static final Font NORMAL; X

static {
BaseFont timesbd - null;
Baseront times - mull;
ey {
timesbd = BaseFont.createPont (
‘windows/ fonts/tinesbd. £Lf", :h']“e:x"“"""
BaseFont .WINANSI, BaseFont.EMBEDDED);
times - BasePont.createFont (T

Creates BaseFont
objects

"c: /windows/fonts/tines . £LE",
BaseFont . WINANSI, BaseFont .EMBEDDED) ;
} catch (DocumentException e) {
e.princstackTrace () ;
System.exic(1);
} catch (I0Bxception e} {
e.printstackTrace () ;
System.exit(1);
}
BOLD = new Font (timesbd, 12} Creates Font using
NORMAL = new Font (times, 12); BaseFont and size

}

public Phrase createDirectorphrase (ResultSet rs)

throus UnsupportedEncodingException, SOLException (
Phrase director = new Phrase() ;
Chunk name =

new Chunk(new String(rs.getBytes(name"), "UTF-87), BOLD);
name.setunderline (0.2€, -2£); < Underines
airector.add(nane) ; Chunk
director.add(new Chunk(", ", BOLD));
director.add(new Chunk (" ", NORMAL)) ;
airector add(new Chunk (new String(

¥s.getBytes ("given name"), "UTF-8"), NORMAL)); 4
director. setLeading(24) ; w—leatlng
return director;

Defines custom

OEBPS/02fig04_alt.jpg
Affleck, Ben Affleck, Ben

Aronofske® = Aronofsky, Darren
Becker, W reemmmonees | Becker, Wolfgang
Beineix, Ji " “s

Bielinsky,

Biraben, (

@

